SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU"

Transkript

1 SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU Matematické modelováí (KMA/MM Téma: Model pohybu mraveců Zdeěk Hazal (A8N18P, 8/9 Obor: FAV-AVIN-FIS

2 1. ÚVOD Model byl převzat z kihy Spojité modely v biologii viz literatura, jedá se o matematický model z oblasti biologie. Teoretický pohled a model vypadá obecě ásledově. Model vychází z áhodého pohybu mraveců v okolí mraveiště. Mraveec se áhodě pohybuje v okolí mraveiště dokud eajde větší zdroj potravy a svou cestu si přitom začkuje. V případě, že ajde větší zdroj potravy, vrací se podle svých feromoových začek zpět do mraveiště kde vyšle sigál ostatím mravecům. Mraveci ho poté jede po druhém ásledují, přitom po ějaké době vytvoří řada mraveců přímou cestu spojující mraveiště s místem, kde se zdroj potravy achází. V semestrálí práci ukážeme, že i bez předpokladu hlubší itelektuálí schoposti, pouhým sledováím pohybu předchozího mravece, vyřeší mraveci tímto kolektivím úsilím časem optimalizačí úlohu alezeí ejkratší spojice dvou bodů, tj. vytvoří optimálí cestu k cíli (potravě, kterou lze často v přírodě pozorovat. /17

3 . SESTAVENÍ MODELU Začeí a zavedeí soustavy souřadé a časové osy Nejprve je uto zavést soustavu souřadou a to tak, že mraveiště umístíme do počátku soustavy souřadé tj. [,]. Cíl (kořist, potravu pak umístíme do bodu [L,]. Dále zavedeme předpoklad kostatí stejé rychlosti pohybu v u všech mraveců. Nechť prví mraveec průzkumík, ozačeý jako M, se pohybuje po své ozačkovaé cestě ásledově. V čase τ je v bodě [,], poté vyráží a cestu. V čase t se achází kdesi v bodě [x (t, y (t] (tj. kdesi a křivce kopírující průběh jeho cesty V čase T se dostává koečě k potravě do cíle, který se achází v bodě [L,]. Nákres je zobraze v ásledujícím obrázku 1. Pro ostatí mravece poté platí: Obrázek 1 pohyb mraveců v zavedeé souřadé soustavě V čase τ > δ (kde δ >, vyráží z mraveiště druhý mraveec M 1 a zamíří přímo k mraveci M. 3/17

4 V čase τ τ1+ δ vyráží z mraveiště třetí mraveec M a míří přímo k mraveci M 1. A takto ásledují i ostatí mraveci. Odvozeí modelu pohybu mraveců : Polohový vektor uur p každého z mraveců M, pro =,1,, v čase t uur uur p p. (1 = ( t = ( x ( t, y ( t Vektor rychlosti p ( t mravece M je poté vyjádře ásledově: ( d ( ( t p t = p. dt Vzhledem k předpokladu kostatí stejé rychlosti v u všech mraveců, platí dále: (3 p = v, pro všecha =1,,3,.., kde x začí velikost vektoru x (tj. eukleidovskou ormu x = x + K+ x. 1 Poěvadž mraveec M míří přímo k mraveci M -1 platí dále: (4 p = c ( p 1 p, kde c je kladá kostata. Z výrazu (3 a (4 plye ovšem rovost (5 p = c ( p 1 p = c p 1 p = v. / Po vyjádřeí kostaty c= v p 1 p z předchozího výrazu (5 a její dosazeí do výrazu (4 dostáváme model pohybu mraveců ve tvaru ekoečého systému difereciálích vektorových rovostí: (6 ( p ( p ( v 1 t t p ( t = p ( t p ( t 1, =1,,3, 4/17

5 Pro řešeí tohoto systému rovic (řešeím jsou fce p (t při platosti rovosti (6 při zámém v a p (t je však uto dodat, že musí splňovat ještě počátečí podmíky a to kokrétě: (7 ( τ = (, kde { τ } 1 kde { ε } = 1 p, =1,,3, je rostoucí posloupost kladých reálých čísel splňující τ = τ 1= δ + ε, je ohraičeá posloupost ezáporých čísel. O vektorové fukci p ( = p t předpokládáme, že je defiovaá a itervalu,, je spojitá (mraveec edělá skoky, což odpovídá realitě, je diferecovatelá a itervalu ( v p = a pro,t (mraveec se pohybuje kostatí rychlostí v, tj. p existuje a t T je p t = ( L (,. Tuto fukci považujeme za zámou. Lze tedy umericky vyřešit počátečí úlohu (6, (7 s =1 a ajít vektorovou fukci p = p ( t, pak lze umericky ajít fukci p = p ( t, atd. 1 1 Problém může astat v případě, že pro ějaké ˆ τ τ platí p ( ˆ ˆ τ = p 1( τ. V takovém případě eí pravá straa rovosti (6 pro t = ˆ τ defiováa, a tedy řešeí výše staoveé rovice p elze prodloužit za ˆ τ. V tomto případě klademe pro p ( t = p ( t. Tímto způsobem lze adefiovat všechy vektorové fukce p t>τ ˆ 1 pro =1,,3,.. a itervalu τ,. 5/17

6 Odvozeí vlastostí systému: Aiž bychom řešili samotý systém (6,(7 lze odvodit ěkolik zásadích vlastostí. 1. Nerostoucí vzdáleost dvou mraveců a koečý čas dosažeí potravy Prví vlastostí je, že žádý z mraveců euteče svému ásledovíku, tj. vzdáleost mezi mraveci M -1 a M se s časem ezvětšuje. Je tedy uto ukázat, že fukce (8 = ( t = p 1( t p ( t, začící ou vzdáleost mezi mraveci, je erostoucí v čase, tedy platí: d d = ( p 1 p.( p 1 p = dt dt ( p p.( p p + ( p p.( p p = = ( p p.( p p 1 ( p 1 p.. p 1 p = p 1 1 p Využijeme-li rovosti (6 dostáváme d p p 1 1 = ( p p. = p p. p = p. p p dt v v ( ( p 1 p Připomeeme-li si, že pro každé dva vektory q, r platí Cauchyova-Bujakovského erovost zapsaá ásledově: q. r q r, kde q.r je skalárí souči těchto dvou vektorů. Použitím této erovosti, rovosti (3 a kostatí rychlosti mravece v dostáváme ( p 1 p p ( p 1 p v d =. = ( v v =. dt v v v Dokázali jsme tedy, že vzdáleost mezi za sebou jdoucími mraveci se s časem ezvětšuje v ámi defiovaém modelu. 6/17

7 Dále lze ukázat, že se každý mraveec dostae do k potravě, tj. do bodu [L,] v koečém čase. Vycházíme ze skutečosti, že z výchozí pozice mravece M -1 eboli z bodu [,] se mraveec M -1 dostae ejdále při přímočarém pohybu. To však zameá, že =, (9 ( τ v ( τ τ 1 v ( δ + ε tj. vzdáleost mravece M -1 od mravece M, který za ím vyráží z mraveiště v čase τ je rova ejvýše vzdáleosti, kterou urazil mraveec M -1 při přímočarém pohybu mezi časy τ 1 a τ. Zavedeme-li dále vzdáleost D, jakožto vzdáleost uražeou při přímočarém pohybu v ejdelším časovém rozdílu dvou po sobě vycházejících mraveců, tj. (1 D v ( δ sup { ε : } = +, pak při platosti již dokázaé erostoucí vzdáleosti mezi mraveci v čase lze psát (11 ( t D pro t τ, =1,,3,.. Z erovosti (11 tedy vyplývá, že každý mraveec se v koečém čase dostae k místu potravy do bodu [L,] eboť v čase T, kdy se do tohoto bodu dostal mraveec M, je vzdáleost mravece M 1 od ěho 1( T D. Mraveec M 1 tedy do bodu [L,] směřuje již přímočaře, takže bodu [L,] dosáhe v čase 1( T D T1 = T + T +. v v Aalogicky se pak -tý mraveec dostae do bodu [L,] v čase ( T 1 D D D D D T = T 1+ T 1+ T + + = T +... T +. v v v v v v 7/17

8 . Délka cesty mraveců Dále lze dokázat, že celková dráha, uražeá mraveci při cestě k potravě, se s časem a počtem mraveců ezvyšuje. V modelu je rozumé předpokládat, že cíl [L,] je dostatečě daleko od mraveiště [,] a to tak daleko, že -tý mraveec k ěmu dorazí později, ež jeho ásledovík (+1-í mraveec vyrazí z mraveiště (předchůdce edorazí k cíli dřív ež ásledovík vyrazí z mraveiště tj. (1 T > τ + 1, pro všecha =,1,,. Ozačme l jako celkovou délku dráhy, kterou urazí mraveec M, tj. (13 T = x ( s + y ( s ds= v ( T τ τ l Poěvadž předpokládáme T > τ a eulovou v platí l > pro každé. Vzhledem k tomu, že v okamžiku T, kdy předchozí mraveec M dorazí k cíli [L,], zamíří ásledující mraveec M +1 přímočaře k ěmu je celková délka l + 1 dráhy, kterou urazí mraveec M +1 vyjádřea ásledově (rekuretě: (14 l+ 1= v T τ T = v T τ v τ+ 1 τ + + 1T = l v δ+ ε T ( ( ( ( ( ( ( Z rovostí (13,(14 a z erovosti (1 a současě z faktu, že + 1 je erostoucí fukce času (viz výše dále plye l l = ( T v( δ + ε = ( T ( τ ( τ ( τ =, a je tedy dokázáo, že posloupost { l } = je erostoucí, což rověž zameá, že l l pro všecha =1,,3,.. 8/17

9 Dále dokážeme existeci rostoucí poslouposti { k} k= 1 přirozeých čísel takové, že δv (15 ( T 1 k k. Důkaz provedeme sporem. Tedy připustíme existeci takového, že δv (16 ( T 1 < pro všecha. Z rovosti (14 a z předpokladu (16 plye, že pro je splěa erovost l l = v( δ + ε + ( T Z í dále úplou idukcí plye, že pro platí vδ vδ vδ + + 1( T < vδ + = vδ l < l (, zejméa tedy pro + je vδ l vδ vδ l < l ( l + l =. vδ Zde arážíme a spor s předpokladem l >, čímž jsme dokázali erovost (15. 9/17

10 3. Optimalizace dráhy mravece Nakoec dokážeme, že při dostatečě velkém počtu mraveců, se po jisté době všichi mraveci pohybují v úzkém pásu kolem ejkratší spojice mraveiště a cíle. V limitě by se pak pohybovali po této spojici. Neboli vzdáleost mravece M od úsečky spojující mraveiště a potravu bude po celou dobu jeho pohybu meší ež libovolé, předem daé kladé číslo. Fukce y,druhá složka polohového vektoru p, je řešeím výše zmíěé počátečí úlohy v y = y y, y ( τ =. (17 ( 1 p 1 p Jedá se o spojitou fukci a itervalu τ, T a dle 1. Weierstrassovy věty lze tedy tvrdit, že je to fukce omezeá. Dále ozačme (18 Dokažme tedy, že platí { τ } { τ } Y = y ( t : t, T Y = mi y ( t : t, T mi = y ( τ Y Y, tj. že žádý mraveec se od úsečky 1 spojující mraveiště a potravu evzdálí více, ež jeho bezprostředí předchůdce. Kdyby toto tvrzeí eplatilo, tj. kdyby existovalo ějaké s τ, T takové, že y s = Y > Y y s, ( 1 1( utě by pak ( což by byl evidetě spor. v ( = ( ( <, y s = a současě dle (17 y s ( y s y s -1 p 1( s p ( s Posloupost { Y } = 1 je tedy erostoucí a zdola ohraičeá ulou, což zameá, že je kovergetí. 1/17

11 Buď yí k libovolé přirozeé číslo. S využitím erovosti (15 a faktu, že k je erostoucí fukce času, dostaeme, že pro každé t ( τ, T 1 k k platí v v ( ( ( ( (. k k k k k k k ( t δv δ (19 y t = ( y 1 t y t ( Y 1 y t = ( Y 1 y t k Řešeí počátečí úlohy pro lieárí difereciálí rovici = Y η, η( τ k = k δ ( η ( 1 pak vypadá ásledově ( t τ / (1 t Y 1( k δ η = e k ( 1. S přihlédutím k erovosti (19 dostaeme s použitím srovávací věty erovost ( t τ / ( ( 1( 1 k δ y t Y k e k, platou pro všecha t τ, T 1 k k. Dále tedy platí 1 (3 ( ( t τ / δ ( ( T / 1 1 k k τ δ Y Y k k e Y k e k 1 1. S využitím (13 tj. l v ( T τ = a skutečosti, že { l } = je erostoucí dostáváme erovost (viz expoet a pravé straě předchozího vztahu (3 (4 T l k 1 l τ T τ =. v v k 1 k k 1 k 1 Po dosazeí vztahu (4 do erovosti (3 tedy dostáváme (5 ( 1 l /( δv Y Y 1 e eboli při úplé idukci k, l δv (6 τ ( k Y = y ( Y Y 1 e = 1 e 1 /( k 1 /( k k k 1 1 l /( δv Poěvadž 1 e < 1 a současě lim k =, platí k l /( δv ( 1 e l δv ( k. 11/17

12 ( l /( δv e k lim 1 =. k Z erovosti (6 a z věty o třech posloupostech dostáváme limy k k =. Jelikož jsme vybrali posloupost { Y } k k= 1 z kovergetí poslouposti { Y } 1 =, platí limy =. Podobě by se dalo dokázat mi limy =. 1/17

13 3. SESTAVENÍ UPRAVENÉHO MODELU V předchozí kapitole jsem se zabývali modelem pohybu řady mraveců, vycházející z předpokladu, že každý mraveec sleduje svého předchůdce a míří přímo k ěmu. Nyí se budeme zabývat otázkou, akolik je teto předpoklad realistický. Budeme přitom předpokládat pouze to, že mraveec umí vímat každým z tykadel kocetraci ějakého feromou a podle rozdílu kocetrací feromou přijímaých jedotlivými tykadly měí směr svého pohybu. Zpřesěí v soustavě souřadé Nadefiujeme si souřadice hlavy mravece jako x= xt ( a y= yt (, a dále směrový úhel osy těla mravece ϑ= ϑ( t, viz ásledující obrázek. Obrázek mraveec v souřadé soustavě Stále budeme předpokládat pro jedoduchost kostatí rychlost pohybu mravece v, tj. vektor rychlosti vypadá ásledově v=(v cosϑ,v siϑ. Za krátký časový iterval t se poloha mravecovy hlavy změí o x= ( v cos ϑ t, y= ( vsi ϑ t. Dále budeme předpokládat, že mraveec měí směrový úhel osy těla v časovém itervalu t v závislosti a kocetracích feromou ClaCr přijatých levým a pravým tykadlem, tedy změa směrového úhlu osy těla je fukcí dvou proměých C l a C r tj. 13/17

14 (7 ϑ (, = F C C t, Limitím přechodem při t dostaeme model pohybu jedoho mravece ve tvaru l r (8 x v cos ϑ, y vsi ϑ, ϑ F( C, C = = =. l r Pro získáí kokrétího modelu, je zapotřebí blíže specifikovat fukci F. Budeme tedy předpokládat existeci ějaké imálí změy směru pohybu θ >, jíž je mraveec schope, tj. ϑ θ. Změa směru pohybu je přitom tím větší, čím je větší rozdíl C= Cl + Cr kocetrací feromou a kocích tykadel. V případě ulového rozdílu kocetrací se směr pohybu eměí, je-li a levém tykadle větší kocetrace feromou ež a pravém, tj. když C>, mraveec se otáčí v kladém smyslu, v opačém případě v záporém smyslu. Příklad fukce F, která splňuje uvedeé předpoklady je (9 F( Cl, Cr θ sg ( C f ( C =, přičemž fukce f :,, je eklesající, spojitá a splňuje podmíky (3 f ( =, lim f ( ξ = 1. Nejjedodušší fukce s těmito vlastostmi je ξ ξ (31 f ( ξ =, ξ + ρ kdeρ je kladá kostata. Pro staoveí F( C, C ϑ= tedy zbývá vyjádřit C l a C r. l r 14/17

15 Budiž se že zdroj feromou achází v bodě Z = [ x, y ] odkud se šíří do prostoru všemi směry, přičemž jeho kocetrace v bodě A bude epřímo úměrá druhé mociě vzdáleostí bodů A a Z. Kladou kostatu úměrosti závisející a kocetraci feromou ve zdroji a a vlastostech prostředí, ozačme jako c. Dále ozačme R l, resp. R r, vzdáleost bodu Z od koce levého, resp. pravého, tykadla. Platí tedy z Z c c c = = =. R R R R (3 Cl, Cr, C ( Rr Rl Dosazeím do (31 dostáváme: (33 f ( C l r l r crr Rl = cr R + ρr R r l l r Nechť δ ozačuje vzdáleost koce tykadla od středu hlavy (tj. délku tykadel a α π úhel svírající tykadlo s osou těla (viz obrázek ; patrě je δ >, < α <. Souřadice koce levého tykadla jsou potom ásledující (34 x + δ cos ( ϑ + α, y + δ si( ϑ + α, resp. souřadice koce pravého tykadla jsou (35 x+ δ cos ( ϑ α, y+ δ si( ϑ α Dále je uto vyjádřit vzdáleost R l, resp. R r, bodu Z [ x, y ] pravého, tykadla (36 R x x cos( resp.. = od levého, resp. Z z ( δ ϑ α ( y y δ si( ϑ α l Z Z (37 R x x cos( Odtud plye = + + +, ( δ ϑ α ( y y δ si( ϑ α r Z Z = +. 15/17

16 r l Z ( Z ( ( cos ( cos ( ( si ( si ( ( ( xz x ( yz y ( ( yz y ( xz x ( x x ( ( ( y y ( ( R R = δ cos ϑ α cos ϑ+ α δ si ϑ α si ϑ+ α + δ ϑ α ϑ α δ ϑ α ϑ α + + = = δ siϑ siα cosϑ siα = = 4δ siα cosϑ siϑ Při dosazeí předchozího rozdílu spolu s R l a R r tj. (36 a (37 do (33 dostáváme výsledý tvar fukce f. Spolu s fukcí f dosadíme do (9 i vztah ( Z Z ϑ (38 ( C = ( y y ϑ ( x x sg sg cos si Dostaeme vyjádřeí fukce F, které dosadíme do (8 a tím obdržíme výsledý model pohybu jedoho mravece. Teto model poměrě složitý, takže z ěho lze je obtížě získat ějaké aalytické výsledky. Lze ho ovšem řešit umericky a tím dostat tvar mravecovy cesty. To lze udělat v případě, že se bod Z epohybuje, tedy když x Z, y Z jsou kostaty a řešeý systém je autoomí, i v opačém případě, když x = x ( t, y = y ( t a systém eí autoomí. Je-li vzdáleost zdroje feromou a mravecovi hlavy příliš velká, přesěji řečeo, Z Z Z Z když cr R ρr R, pak porováím s (33 je vidět že f C. V takovém r l l r případě tedy můžeme model (8 ahradit jedoduchým systémem rovic (39 x = v cos ϑ, y = v si ϑ, ϑ =. Řešeím s počátečí podmíkou x( = x, y( = y, ϑ( = ϑ je ( = + cos ϑ, ( = si ϑ, ϑ( = ϑ. (4 xt x vt yt y t 16/17

17 Mraveec tedy a feromo ereaguje, ezměí směr a pohybuje se po přímce. To samo o sobě eí ějak překvapivý závěr. Upozorňuje ale a skutečost, že může být obtížé experimetálě rozhodout, zda vzdáleý mraveec ereaguje proto, že podět je atolik slabý, že ho ezachytil, ebo proto, že rozdíl podětů a kocích jedotlivých tykadel je příliš malý. LITERATURA [1] Spojité modely v biologii Josef Kalas, Zdeěk Pospíšil 17/17

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce MATEMATICKÁ INDUKCE ALEŠ NEKVINDA. Pricip matematické idukce Nechť V ) je ějaká vlastost přirozeých čísel, apř. + je dělitelé dvěma či < atd. Máme dokázat tvrzeí typu Pro každé N platí V ). Jeda možost

Více

ŘADY Jiří Bouchala a Petr Vodstrčil

ŘADY Jiří Bouchala a Petr Vodstrčil ŘADY Jiří Bouchala a Petr Vodstrčil Text byl vytvoře v rámci realizace projektu Matematika pro ižeýry 2. století (reg. č. CZ..07/2.2.00/07.0332), a kterém se společě podílela Vysoká škola báňská Techická

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

Posloupnosti a číselné řady. n + 1. n + 1 + n n + 1 + n. n n + 1 + n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b 2 + + b n) = 1 b

Posloupnosti a číselné řady. n + 1. n + 1 + n n + 1 + n. n n + 1 + n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b 2 + + b n) = 1 b Najděte itu Poslouposti a číselé řady ) + Protože + = + x ) + + =, je + + + + ) + = = 0 + + Najděte itu 3 si! + Protože je si! a 3 = 0, je 3 si! = 0 Najděte itu + a + a + + a + b + b, a

Více

1. Číselné obory, dělitelnost, výrazy

1. Číselné obory, dělitelnost, výrazy 1. Číselé obory, dělitelost, výrazy 1. obor přirozeých čísel - vyjadřující počet prvků možiy - začíme (jsou to kladá edesetiá čísla) 2. obor celých čísel - možia celých čísel = edesetiá, ale kladá i záporá

Více

Číselné řady. 1 m 1. 1 n a. m=2. n=1

Číselné řady. 1 m 1. 1 n a. m=2. n=1 Číselé řady Úvod U řad budeme řešit dva typy úloh: alezeí součtu a kovergeci. Nalezeí součtu (v případě, že řada koverguje) je obecě mohem těžší, elemetárě lze sečíst pouze ěkolik málo typů řad. Součet

Více

Zformulujme PMI nyní přesně (v duchu výrokové logiky jiný kurz tohoto webu):

Zformulujme PMI nyní přesně (v duchu výrokové logiky jiný kurz tohoto webu): Pricip matematické idukce PMI) se systematicky probírá v jié části středoškolské matematiky. a tomto místě je zařaze z důvodu opakováí matka moudrosti) a proto, abychom ji mohli bez uzarděí použít při

Více

20. Eukleidovský prostor

20. Eukleidovský prostor 20 Eukleidovský prostor V této kapitole budeme pokračovat ve studiu dalších vlastostí afiích prostorů avšak s tím rozdílem že místo obecého vektorového prostoru budeme uvažovat prostor uitárí Proto bude

Více

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR Ze serveru www.czso.cz jsme sledovali sklizeň obilovi v ČR. Sklizeň z ěkolika posledích let jsme vložili do tabulky 10.10. V kapitole 7. Idexy

Více

VLASTNOSTI ÚLOH CELOČÍSELNÉHO PROGRAMOVÁNÍ

VLASTNOSTI ÚLOH CELOČÍSELNÉHO PROGRAMOVÁNÍ Vlastosti úloh celočíselého programováí VLASTNOSTI ÚLOH CELOČÍSELNÉHO PROGRAMOVÁNÍ PRINCIP ZESILOVÁNÍ NEROVNOSTÍ A ZÁKLADNÍ METODY. METODA VĚTVENÍ A HRANIC. TYPY ÚLOH 1. Úloha lieárího programováí: max{c

Více

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D.

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D. MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ PH.D. Obsah MNOŽINY.... ČÍSELNÉ MNOŽINY.... OPERACE S MNOŽINAMI... ALGEBRAICKÉ VÝRAZY... 6. OPERACE S JEDNOČLENY A MNOHOČLENY...

Více

1.3. POLYNOMY. V této kapitole se dozvíte:

1.3. POLYNOMY. V této kapitole se dozvíte: 1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí

Více

IAJCE Přednáška č. 12

IAJCE Přednáška č. 12 Složitost je úvod do problematiky Úvod praktická realizace algoritmu = omezeí zejméa: o časem o velikostí paměti složitost = vztah daého algoritmu k daým prostředkům: časová složitost každé možiě vstupích

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

1 Trochu o kritériích dělitelnosti

1 Trochu o kritériích dělitelnosti Meu: Úloha č.1 Dělitelost a prvočísla Mirko Rokyta, KMA MFF UK Praha Jaov, 12.10.2013 Růzé dělitelosti, třeba 11 a 7 (aeb Jak zfalšovat rodé číslo). Prvočísla: které je ejlepší, které je ejvětší a jak

Více

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Úloha obchodího cestujícího OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Nejprve k pojmům používaým v okružích a rozvozích úlohách: HAMILTONŮV CYKLUS je typ cesty,

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

Matematika I. Název studijního programu. RNDr. Jaroslav Krieg. 2014 České Budějovice

Matematika I. Název studijního programu. RNDr. Jaroslav Krieg. 2014 České Budějovice Matematika I Název studijího programu RNDr. Jaroslav Krieg 2014 České Budějovice 1 Teto učebí materiál vzikl v rámci projektu "Itegrace a podpora studetů se specifickými vzdělávacími potřebami a Vysoké

Více

PříkladykecvičenízMMA ZS2013/14

PříkladykecvičenízMMA ZS2013/14 PříkladykecvičeízMMA ZS203/4 (středa, M3, 9:50 :20) Pozámka( ):Pokudebudeuvedeojiakbudemevždypracovatsprostoryadtělesem T= R.Ve všech ostatích případech(tj. při T = C), bude těleso explicitě specifikováo.

Více

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika)

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika) Kvatová a statistická fyzika (Termodyamika a statistická fyzika) Boltzmaovo - Gibbsovo rozděleí - ilustračí příklad Pro ilustraci odvozeí rozděleí eergií v kaoickém asámblu uvažujme ásledující příklad.

Více

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu.

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu. 2. URČITÝ INTEGRÁL 2. Určitý itegrál Průvodce studiem V předcházející kapitole jsme se sezámili s pojmem eurčitý itegrál, který daé fukci přiřazoval opět fukci (přesěji možiu fukcí). V této kapitole se

Více

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb:

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb: ruhlář Michal 8.. 5 Laboratorí práce č. Úloha č. 9 Polarizace světla a Browův pohyb: ϕ p, C 4% 97,kPa Úkol: - Staovte polarizačí schopost daého polaroidu - Určete polarimetrem úhel stočeí kmitavé roviy

Více

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení Odhad parametru p biomického rozděleí a test hypotézy o tomto parametru Test hypotézy o parametru p biomického rozděleí Motivačí úloha Předpokládejme, že v důsledku realizace jistého áhodého pokusu P dochází

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

Diskrétní matematika

Diskrétní matematika Diskrétí matematika Biárí relace, zobrazeí, Teorie grafů, Teorie pravděpodobosti Diskrétí matematika látka z I semestru iformatiky MFF UK Zpracovali: Odřej Keddie Profat, Ja Zaatar Štětia Obsah Biárí relace2

Více

5 Funkce. jsou si navzájem rovny právě tehdy, když se rovnají jejich.

5 Funkce. jsou si navzájem rovny právě tehdy, když se rovnají jejich. Fukce. Základí pojmy V kpt.. jsme mluvili o zobrazeí mezi možiami AB., Připomeňme, že se jedá o libovolý předpis, který každému prvku a A přiřadí ejvýše jede prvek b B. Jsou-li A, B číselé možiy, azýváme

Více

1. Definice elektrického pohonu 1.1 Specifikace pohonu podle typu poháněného pracovního stroje 1.1.1 Rychlost pracovního mechanismu

1. Definice elektrického pohonu 1.1 Specifikace pohonu podle typu poháněného pracovního stroje 1.1.1 Rychlost pracovního mechanismu 1. Defiice elektrického pohou Pod pojmem elektrický poho rozumíme soubor elektromechaických vazeb a vztahů mezi pracovím mechaismem a elektromechaickou soustavou. Mezi základí tři části elektrického pohou

Více

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus Podklady předmětu pro akademický rok 006007 Radim Faraa Obsah Tvorba algoritmů, vlastosti algoritmu. Popis algoritmů, vývojové diagramy, strukturogramy. Hodoceí složitosti algoritmů, vypočitatelost, časová

Více

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,

Více

3.1 OBSAHY ROVINNÝCH ÚTVARŮ

3.1 OBSAHY ROVINNÝCH ÚTVARŮ 3 OBSAHY ROVINNÝCH ÚTVARŮ Představa obsahu roviého obrazce byla pro lidi důležitá od pradávých dob ať již se jedalo o velikost a přeměu polí či apříklad rozměry základů obydlí Úlohy a výpočet obsahu základích

Více

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde POLYNOM Zákldí pojmy Polyomem stupě zveme fukci tvru y ( L +, P + + + + kde,,, R,, N Čísl,,, se zývjí koeficiety polyomu Číslo c zveme kořeem polyomu P(, je-li P(c výrz (-c pk zýváme kořeový čiitel Vlstosti

Více

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ 4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ 77 4. ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu

Více

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti 1 Základí statistické zpracováí dat 1.1 Základí pojmy Populace (základí soubor) je soubor objektů (statistických jedotek), který je vymeze jejich výčtem ebo charakterizací jejich vlastostí, může být proto

Více

Matematicko-fyzikální fakulta Univerzita Karlova. Diplomová práce. Renata Sikorová

Matematicko-fyzikální fakulta Univerzita Karlova. Diplomová práce. Renata Sikorová Matematicko-fyzikálí fakulta Uiverzita Karlova Diplomová práce e Reata Sikorová Obor: Učitelství matematika - fyzika Katedra didaktiky matematiky Vedoucí práce: RNDr. Jiří Kottas, CSc. i Prohlašuji, že

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

1.1 Definice a základní pojmy

1.1 Definice a základní pojmy Kaptola. Teore děltelost C. F. Gauss: Matematka je královou všech věd a teore čísel je králova matematky. Základím číselým oborem se kterým budeme v této kaptole pracovat jsou celá čísla a pouze v ěkterých

Více

ZÁKLADY DISKRÉTNÍ MATEMATIKY

ZÁKLADY DISKRÉTNÍ MATEMATIKY ZÁKLADY DISKRÉTNÍ MATEMATIKY Michael Kubesa Text byl vytvoře v rámci realizace projektu Matematika pro ižeýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), a kterém se společě podílela Vysoká škola báňská

Více

10. Rekurentní vztahy

10. Rekurentní vztahy Diskrétí matematika 0 Rekuretí vztahy phabala 202 Kapitolu uvedeme populárím příkladem 0 Rekuretí vztahy Příklad 0a: Teto problém je zám po ázvem Haojské věže Představte si tři tyčky, a jedé je avlečeo

Více

Základní požadavky a pravidla měření

Základní požadavky a pravidla měření Základí požadavky a pravidla měřeí Základí požadavky pro správé měřeí jsou: bezpečost práce teoretické a praktické zalosti získaé přípravou a měřeí přesost a spolehlivost měřeí optimálí orgaizace průběhu

Více

Geometrická optika. Zákon odrazu a lomu světla

Geometrická optika. Zákon odrazu a lomu světla Geometrická optika Je auka o optickém zobrazováí. Je vybudováa a 4 zákoech, které vyplyuly z pozorováí a ke kterým epotřebujeme zalosti o podstatě světla: ) přímočaré šířeí světla (paprsky) ) ezávislost

Více

Příklady k přednášce 9 - Zpětná vazba

Příklady k přednášce 9 - Zpětná vazba Příklady k předášce 9 - Zpětá vazba Michael Šebek Automatické řízeí 205 6--5 Příklad: Přibližá iverze tak průřezu s výškou hladiy y(t), přítokem u(t) a odtokem dy() t dt + 2 yt () = ut () Cíl řízeí: sledovat

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují

Více

Optické vlastnosti atmosféry, rekonstrukce optického signálu degradovaného průchodem atmosférou

Optické vlastnosti atmosféry, rekonstrukce optického signálu degradovaného průchodem atmosférou INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Optické vlastosti atmosféry, rekostrukce optického sigálu degradovaého průchodem atmosférou Učebí texty k semiáři Autor: Dr. Ig. Zdeěk Řehoř UO Bro) Datum: 22. 10. 2010

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Náhodá veličia Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 45/004. Náhodá veličia Většia áhodých pokusů má jako výsledky reálá čísla. Budeme tedy dále áhodou veličiou rozumět proměou, která

Více

z možností, jak tuto veličinu charakterizovat, je určit součet

z možností, jak tuto veličinu charakterizovat, je určit součet 6 Charakteristiky áhodé veličiy. Nejdůležitější diskrétí a spojitá rozděleí. 6.1. Číselé charakteristiky áhodé veličiy 6.1.1. Středí hodota Uvažujme ejprve diskrétí áhodou veličiu X s rozděleím {x }, {p

Více

Střední průmyslová škola sdělovací techniky Panská 3 Praha 1 Jaroslav Reichl

Střední průmyslová škola sdělovací techniky Panská 3 Praha 1 Jaroslav Reichl Středí průmyslová škol sdělovcí techiky Pská 3 Prh Jroslv Reichl, 00 Jroslv Reichl OBSAH Poslouposti, Jroslv Reichl, 00 Poslouposti jejich vlstosti 3 Pojem posloupost 3 Připomeutí fukcí 3 Defiice poslouposti

Více

Cvičení z termomechaniky Cvičení 5.

Cvičení z termomechaniky Cvičení 5. Příklad V kompresoru je kotiuálě stlačová objemový tok vzduchu [m 3.s- ] o teplotě 20 [ C] a tlaku 0, [MPa] a tlak 0,7 [MPa]. Vypočtěte objemový tok vzduchu vystupujícího z kompresoru, jeho teplotu a příko

Více

2. Definice plazmatu, základní charakteristiky plazmatu

2. Definice plazmatu, základní charakteristiky plazmatu 2. efiice plazmatu, základí charakteristiky plazmatu efiice plazmatu Plazma bývá obyčejě ozačováo za čtvrté skupeství hmoty. Pokud zahříváme pevou látku, dojde k jejímu roztaveí, při dalším zahříváí se

Více

3 - Póly, nuly a odezvy

3 - Póly, nuly a odezvy 3 - Póly, uly a odezvy Michael Šebek Automatické řízeí 5 3--5 Automatické řízeí - Kyberetika a robotika Póly přeosu jsou kořey jmeovatele pro gs () = bs () as () jsou to komplexí čísla si: as ( i) = pokud

Více

1. Základy počtu pravděpodobnosti:

1. Základy počtu pravděpodobnosti: www.cz-milka.et. Základy počtu pravděpodobosti: Přehled pojmů Jev áhodý jev, který v závislosti a áhodě může, ale emusí při uskutečňováí daého komplexu podmíek astat. Náhoda souhr drobých, ezjistitelých

Více

9.1.12 Permutace s opakováním

9.1.12 Permutace s opakováním 9.. Permutace s opakováím Předpoklady: 905, 9 Pedagogická pozámka: Pokud echáte studety počítat samostatě příklad 9 vyjde tato hodia a skoro 80 miut. Uvažuji o tom, že hodiu doplím a rozdělím a dvě. Př.

Více

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly.

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly. 0. KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Dovedosti :. Chápat pojem faktoriál a ovládat operace s faktoriály.. Zát defiici kombiačího čísla a základí vlastosti kombiačích čísel. Ovládat jedoduché operace

Více

Jednotkou tepla je jednotka energie, tj. 1 Joule (J). Z definice dále plyne, že jednotkou tepelného toku je 1 J/s ( neboli 1 W )

Jednotkou tepla je jednotka energie, tj. 1 Joule (J). Z definice dále plyne, že jednotkou tepelného toku je 1 J/s ( neboli 1 W ) 5. Sdíleí tepla. pomy: Pomem tepelá eergie ozačueme eergii mikroskopického pohybu částic (traslačího, rotačího, vibračího). Měřitelou mírou této eergie e teplota. Teplo e část vitří eergie, která samovolě

Více

Integrace hodnot Value-at-Risk lineárních subportfolií na bázi vícerozměrného normálního rozdělení výnosů aktiv

Integrace hodnot Value-at-Risk lineárních subportfolií na bázi vícerozměrného normálního rozdělení výnosů aktiv 3. meziárodí koferece Řízeí a modelováí fiačích rizik Ostrava VŠB-U Ostrava, Ekoomická fakulta, katedra Fiací 6.-7. září 006 tegrace hodot Value-at-Risk lieárích subportfolií a bázi vícerozměrého ormálího

Více

9.1.13 Permutace s opakováním

9.1.13 Permutace s opakováním 93 Permutace s opakováím Předpoklady: 906, 9 Pedagogická pozámka: Obsah hodiy přesahuje 45 miut, pokud emáte k dispozici další půlhodiu, musíte žáky echat projít posledí dva příklady doma Př : Urči kolik

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C) Přijímací řízeí pro akademický rok 24/ a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata C) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

1. K o m b i n a t o r i k a

1. K o m b i n a t o r i k a . K o m b i a t o r i k a V teorii pravděpodobosti a statistice budeme studovat míru výskytu -pravděpodobostvýsledků procesů, které mají áhodý charakter, t.j. při opakováí za stejých podmíek se objevují

Více

Posloupnosti na střední škole Bakalářská práce

Posloupnosti na střední škole Bakalářská práce MASARYKOVA UNIVERZITA V BRNĚ Přírodovědecká fkult Ktedr mtemtiky Poslouposti středí škole Bklářská práce Bro 00 Kteři Rábová Prohlášeí Prohlšuji, že tto bklářská práce je mým původím utorským dílem, které

Více

Jestliže nějaký objekt A můžeme vybrat m způsoby a jiný objekt B lze vybrat n způsoby, potom výběr buď A nebo B je možné provést m+n způsoby.

Jestliže nějaký objekt A můžeme vybrat m způsoby a jiný objekt B lze vybrat n způsoby, potom výběr buď A nebo B je možné provést m+n způsoby. V kapitole Ituitiví kobiatorika jse řešili příklady více éě stejý způsobe a stejých pricipech. Nyí si je zobecíe a adefiujee obvyklou teriologii. pravidlo součtu: Jestliže ějaký objekt A ůžee vybrat způsoby

Více

Téma 11 Prostorová soustava sil

Téma 11 Prostorová soustava sil Stavebí statka,.ročík bakalářského studa Téma Prostorová soustava sl Prostorový svazek sl Statcký momet síly a dvojce sl v prostoru Obecá prostorová soustava sl Prostorová soustava rovoběžých sl Katedra

Více

GRADIENTNÍ OPTICKÉ PRVKY Gradient Index Optical Components

GRADIENTNÍ OPTICKÉ PRVKY Gradient Index Optical Components Nové metody a postupy v oblasti přístrojové techiky, automatického řízeí a iformatiky Ústav přístrojové a řídicí techiky ČVUT v Praze, odbor přesé mechaiky a optiky Techická 4, 66 7 Praha 6 GRADIENTNÍ

Více

11. Časové řady. 11.1. Pojem a klasifikace časových řad

11. Časové řady. 11.1. Pojem a klasifikace časových řad . Časové řad.. Pojem a klasfkace časových řad Specfckým statstckým dat jsou časové řad pomocí chž můžeme zkoumat damku jevů v čase. Časovou řadou (damcká řada, vývojová řada) rozumíme v čase uspořádaé

Více

Pojem času ve finančním rozhodování podniku

Pojem času ve finančním rozhodování podniku Pojem času ve fiačím rozhodováí podiku 1.1. Výzam faktoru času a základí metody jeho vyjádřeí Fiačí rozhodováí podiku je ovlivěo časem. Peěží prostředky získaé des mají větší hodotu ež tytéž peíze získaé

Více

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti.

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti. Mtemtik II 5 Fzikálí plikce 5 Fzikálí plikce Cíle Sezámíte se s použitím určitého itegrálu při výpočtu hmotosti, sttických mometů, souřdic těžiště mometů setrvčosti Předpokládé zlosti Předpokládáme, že

Více

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ČÍSELNÉ OBORY vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z mtemtiky školí rok 204/205

Více

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení.,

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení., Def: Vetorovým součiem vetorů u =(u, u, u 3 ) v = (v, v, v 3 ) zýváme vetor u v = (u v 3 u 3 v, u 3 v u v 3, u v u v ) Vět: Pro vetory i, j, ortoormálí báze pltí i i = j = i, i = j Vět: Nechť u v, w, jsou

Více

17. Statistické hypotézy parametrické testy

17. Statistické hypotézy parametrické testy 7. Statistické hypotézy parametrické testy V této části se budeme zabývat statistickými hypotézami, pomocí vyšetřujeme jedotlivé parametry populace. K takovýmto šetřeím většiou využíváme ám již dobře zámé

Více

STATISTIKA. Základní pojmy

STATISTIKA. Základní pojmy Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci

Více

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications)

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications) Základy datové aalýzy, modelového vývojářství a statistického učeí (Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applicatios) Lukáš Pastorek POZOR: Autor upozorňuje, že se jedá

Více

1. Základy měření neelektrických veličin

1. Základy měření neelektrických veličin . Základ měřeí eelektrckých velč.. Měřcí řetězec Měřcí řetězec (měřcí soustava) je soubor měřcích čleů (jedotek) účelě uspořádaých tak, ab blo ožě splt požadovaý úkol měřeí, tj. získat formac o velkost

Více

FYZIKA 4. ROČNÍK. Disperze světla. Spektrální barvy. β č β f. T různé f různá barva. rychlost světla v prostředí závisí na f = disperze světla

FYZIKA 4. ROČNÍK. Disperze světla. Spektrální barvy. β č β f. T různé f různá barva. rychlost světla v prostředí závisí na f = disperze světla Disperze světla. Spektrálí barvy v = = f T v = F(f) růzé f růzá barva rychlost světla v prostředí závisí a f = disperze světla c = = F ( f ) idex lomu daého optického prostředí závisí a frekveci světla

Více

2. TEORIE PRAVDĚPODOBNOSTI

2. TEORIE PRAVDĚPODOBNOSTI . TEORIE PRAVDĚPODOBNOSTI V prax se můžeme setat s dvojím typem procesů. Jeda jsou to procesy determstcé, u terých platí, že př dodržeí orétích vstupích podmíe obdržíme přesý, předem zámý výslede (te můžeme

Více

Infinity series collection of solved and unsolved examples

Infinity series collection of solved and unsolved examples Nekoečé řady sbírka řešeých a eřešeých příkladů Ifiity series collectio of solved ad usolved examples Lucie Jaoušková Bakalářská práce 9 ABSTRAKT Cílem práce bylo vytvořit sbírku řešeých příkladů, která

Více

Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců.

Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců. 8..4 Užití ritmetických posloupostí Předpokldy: 80,80 Př. : S hloubkou roste teplot Země přibližě rovoměrě o 0 C 000 m. Jká bude teplot dě dolu hlubokého 900 m, je-li v hloubce 5 m teplot 9 C? Jký by byl

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

6. KOMBINATORIKA 181. 6.1. Základní pojmy 181 6.1.1. Počítání s faktoriály a kombinačními čísly 182. 6.2. Variace 184. 6.3.

6. KOMBINATORIKA 181. 6.1. Základní pojmy 181 6.1.1. Počítání s faktoriály a kombinačními čísly 182. 6.2. Variace 184. 6.3. Zálady matematiy Kombiatoria. KOMBINATORIKA 8.. Záladí pojmy 8... Počítáí s fatoriály a ombiačími čísly 8.. Variace 8.. Permutace 85.. Kombiace 87.5. Biomicá věta 89 Úlohy samostatému řešeí 9 Výsledy úloh

Více

Zobrazení čísel v počítači

Zobrazení čísel v počítači Zobraeí ísel v poítai, áklady algoritmiace Ig. Michala Kotlíková Straa 1 (celkem 10) Def.. 1 slabika = 1 byte = 8 bitů 1 bit = 0 ebo 1 (ve dvojkové soustavě) Zobraeí celých ísel Zobraeí ísel v poítai Ke

Více

3. Decibelové veličiny v akustice, kmitočtová pásma

3. Decibelové veličiny v akustice, kmitočtová pásma 3. Decibelové veličiy v akustice, kmitočtová ásma V ředchozí kaitole byly defiováy základí akustické veličiy, jako ař. akustický výko, akustický tlak a itezita zvuku. Tyto veličiy ve v raxi měí o moho

Více

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATED RA F YZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméo TUREČEK Daiel Datum měřeí 8.11.2006 Stud. rok 2006/2007 Ročík 2. Datum odevzdáí 15.11.2006 Stud.

Více

Vliv tváření za studena na pevnostní charakteristiky korozivzdorných ocelí Ing. Jan Mařík

Vliv tváření za studena na pevnostní charakteristiky korozivzdorných ocelí Ing. Jan Mařík stavebí obzor 9 10/2014 125 Vliv tvářeí za studea a pevostí charakteristiky korozivzdorých ocelí Ig. Ja Mařík Ig. Michal Jadera, Ph.D. ČVUT v Praze Fakulta stavebí Čláek uvádí výsledky tahových zkoušek

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů - 12.1 - Přehled Ifomace po odhad ákladů Míy po áklady dotazu Opeace výběu Řazeí Opeace spojeí Vyhodocováí výazů Tasfomace elačích výazů Výbě pláu po vyhodoceí Kapitola 12: Zpacováí dotazů Základí koky

Více

Pravděpodobnost a statistika - absolutní minumum

Pravděpodobnost a statistika - absolutní minumum Pravděpodobost a statistika - absolutí miumum Jaromír Šrámek 4108, 1.LF, UK Obsah 1. Základy počtu pravděpodobosti 1.1 Defiice pravděpodobosti 1.2 Náhodé veličiy a jejich popis 1.3 Číselé charakteristiky

Více

Základní princip regulace U v ES si ukážeme na definici statických charakteristik zátěže

Základní princip regulace U v ES si ukážeme na definici statických charakteristik zátěže Regulace apětí v ES Základí pricip regulace v ES si ukážeme a defiici statických charakteristik zátěže Je zřejmé, že výko odebíraý spotřebitelem je závislý a frekveci a apětí a přípojicích spotřebitelů.

Více

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu.

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu. KVALIMETRIE Miloslav Sucháek 16. Statistické metody v metrologii a aalytické chemii Řešeé příklady a CD-ROM v Excelu Eurachem ZAOSTŘENO NA ANALYTICKOU CHEMII V EVROPĚ Kvalimetrie 16 je zatím posledí z

Více

Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky ELEKTRICKÉ POHONY. pro kombinované a distanční studium

Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky ELEKTRICKÉ POHONY. pro kombinované a distanční studium Vysoká škola báňská - Techická uiverzita Ostrava Fakulta elektrotechiky a iformatiky ELEKTRICKÉ POHONY pro kombiovaé a distačí studium Ivo Neborák Václav Sládeček Ostrava 004 1 Doc. Ig. Ivo Neborák, CSc.,

Více

5. Výpočty s využitím vztahů mezi stavovými veličinami ideálního plynu

5. Výpočty s využitím vztahů mezi stavovými veličinami ideálního plynu . ýpočty s využití vztahů ezi stavovýi veličiai ideálího plyu Ze zkušeosti víe, že obje plyu - a rozdíl od objeu pevé látky ebo kapaliy - je vyeze prostore, v ěž je ply uzavře. Přítoost plyu v ádobě se

Více

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů Semárky, předášky, bakalářky, testy - ekoome, ace, účetctví, ačí trhy, maagemet, právo, hstore... PODNIKOVÁ EKONOMIKA 3. Cea ceých papírů Ceé papíry jsou jedím ze způsobů, jak podk může získat potřebý

Více

Úvod do korelační a regresní analýzy

Úvod do korelační a regresní analýzy Úvod do korelačí a regresí aalýz Bude ás zajímat, jak těsě spolu souvsí dva sledovaé jev Příklad: vztah mez rchlostí auta a brzdou dráhou vztah mez věkem žáka a rchlostí v běhu a 60 m vztah mez spotřebou

Více

2. Vícekriteriální a cílové programování

2. Vícekriteriální a cílové programování 2. Vícerterálí a cílové programováí Úlohy vícerterálího programováí jsou úlohy, ve terých se a možě přípustých řešeí optmalzuje ěol salárích rterálích fucí. Moža přípustých řešeí je přtom defováa podobě

Více

ÚROKOVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY

ÚROKOVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY ÚROKOVÁ SAZBA A VÝPOČET BUDOUÍ HODNOTY 1. Typy a druhy úročeí, budoucí hodota ivestice Úrok - odměa za získáí úvěru (cea za službu peěz) Ročí úroková sazba (míra)(r) úrok v % z hodoty kapitálu za časové

Více

Střední průmyslová škola zeměměřická GEODETICKÉ VÝPOČTY. 2. část. Ing. Danuše Mlčková

Střední průmyslová škola zeměměřická GEODETICKÉ VÝPOČTY. 2. část. Ing. Danuše Mlčková Středí průmslová škola zeměměřická GEODETICKÉ VÝPOČTY. část Ig. Dauše Mlčková Úvod Tet avazuje a. část, je urče pro studet. až 4. ročíku středích průmslových škol se zaměřeí a geodézii. Jedá se o přepracovaou

Více