2 EXPLORATORNÍ ANALÝZA

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "2 EXPLORATORNÍ ANALÝZA"

Transkript

1 Počet automobilů Ig. Martia Litschmaová EXPLORATORNÍ ANALÝZA.1. Níže uvedeá data představují částečý výsledek zazameaý při průzkumu zatížeí jedé z ostravských křižovatek, a to barvu projíždějících automobilů. Data vyhodoťte a graficky zázorěte. Řešeí: červeá modrá červeá zeleá modrá červeá červeá bílá zeleá zeleá modrá červeá Je zřejmé, že se jedá o kvalitativí (sloví) proměou a vzhledem k tomu, že barvy automobilů emá smysl seřazovat ai porovávat, můžeme kostatovat, že se jedá o proměou omiálí. Pro její popis tedy zvolíme tabulku četostí, určíme modus a barvu projíždějících automobilů zázoríme prostředictvím histogramu a výsečového grafu. TABULKA ROZDĚLENÍ ČETNOSTI Barvy Absolutí četost Relativí četost projíždějících automobilů i p i červeá , 4 modrá , 5 bílá , 08 zeleá , 5 Celkem 1 1,00 Modus = červeá (tj. v zazameaém vzorku se vyskytlo ejvíce červeých automobilů) Barvy projíždějících automobilů Barvy projíždějících automobilů zeleá 5% bílá 8% červeá 4% 0 červeá modrá bílá zeleá Barv y modrá 5% Celkem bylo sledováo 1 automobilů - 9 -

2 Řešeí daého problému ve Statgraphicsu: Zadáí proměé: Chceme-li zadávat ručě ovou proměou, provedeme DC (dvojklik) a hlavičku sloupce a zadáme parametry proměé (ázev, popis (epovié), šířku a typ). Předastaveý typ je Numeric, proto je uto astaveí typu proměé ohlídat zejméa při zadáváí proměé kategoriálí. Typ proměé Exploratorí aalýza pro kategoriálí proměou: Touto aalýzou získáme tabulku četosti, histogram a výsečový graf

3 Datový výstup aalýzy: ázvy kategorií četost relativí četost kumulativí četost kumulativí relativí četost Všiměte si, že Statgraphics automaticky určuje kumulativí četosti a kumulativí relativí četosti i pro omiálí proměou (je tedy a uživateli, aby určil, zda mají tyto charakteristiky v kokrétím případě smysl). Histogram:

4 Formát grafu změíme tak, že provedeme RC (klikeme pravým tlačítkem myši) a oblast grafu a zvolíme Pae Optio. V okě Barchart Optio pak volíme formátováí histogramu. Grafické parametry histogramu (adpisy, barvy ) astavíme v okě Graphics Optio, které získáme po RC a oblast grafu a volbě Graphics Optio

5 Výsečový graf: Při úpravě výsečového grafu postupujeme obdobě jako při úpravě histogramu. (Pae Optio, Graphics optio)... Následující data představují velikosti triček prodaých při výprodeji firmy TRIKO. Řešeí: S, M, L, S, M, L, XL, XL, M, XL, XL, L, M, S, M, L, L, XL, XL, XL, L, M a) Data vyhodoťte a graficky zázorěte. b) Určete kolik procet lidí si koupilo tričko velikosti ejvýše L. ada) Zřejmě se jedá o kvalitativí (sloví) proměou a vzhledem k tomu, že velikosti triček lze seřadit, jde o proměou ordiálí. Pro její popis proto použijeme tabulku četostí pro ordiálí proměou, v íž variaty velikosti triček budou seřazey od ejmeší po ejvětší (S, M. L, XL) a modus. Velikosti triček Absolutí četost TABULKA ROZDĚLENÍ ČETNOSTI Kumulativí četost Relativí četost Relativí kum.četost i m i p i F i S , , 14 M , 7 9 0, 41 L , , 68 XL , 3 1, 00 Celkem , Modus = XL (ejvíce lidí si koupilo tričko velikosti XL)

6 F(x) Ig. Martia Litschmaová Grafický výstup bude tvořit histogram, výsečový graf a polygo kumulativích četostí (jelikož se ejedá o techická data, Paretův graf vytvářet ebudeme). Grafický výstup: Prodaá trika XL 3% S 14% L 7% M 7% Histogram Celkem bylo prodáo triček Výsečo Empirická distribučí fukce Galtoova ogiva, S-křivka adb) Na tuto otázku ám dá odpověď relativí kumulativí četost pro variatu L, která určuje jaká část prodaých triček byla velikosti L a ižších. Tj. 68% ý graf zákazíků si koupilo tričko velikosti L a meší. x.3. Následující data představují věk hudebíků vystupujících a přehlídce dechových orchestrů. Proměou věk považujte za spojitou. Určete průměr, shorth a modus věku hudebíků Řešeí: a) Určeí průměru: V tomto případě jedozačě použijeme aritmetický průměr (zdůvoděí sad eí uté):

7 x i! x i ,7 let 11 Průměrý věk hudebíka vystupujícího a přehlídce dechových orchestrů je 38,7 let. Prohléděte si ještě jedou zadaá data a promyslete si akolik je průměrý věk reprezetativí statistikou daého výběru (odlehlá pozorováí). b) Určeí shorthu: Náš výběrový soubor má 11 hodot, z čehož vyplývá, že v shorthu bude ležet 6 z ich (rozsah souboru je 11 (lichý počet hodot), 50% z toho je 5,5 (5,5 hodoty se špatě určuje, že?) a ejbližší vyšší přirozeé číslo je 6 eboli: /+½ = 11/ +1/ = 1/ = 6). A další postup? Proměou seřadíme Určíme délky všech 6-ti čleých itervalů, v ichž xi xi 1 xi 5 Nejkratší z těchto itervalů prohlásíme za shorth (délka itervalu = xi xi 5 ) Origiálí data Seřazeá data Délky 6-ti čleých itervalů (= 35 19) 8 19 (= 41 ) (= 4 7) (= 43 34) (= 47 34) (= 8 35) Z tabulky je zřejmé, že ejkratší iterval má délku 9, čemuž odpovídá jediý iterval: 34 ; 43. Shorth = 34 ; 43, což můžeme iterpretovat apř. tak, že polovia hudebíků je ve věku 34 až 43 let (jde přitom o ejkratší iterval ze všech možých). c) Určeí modu: Modus je defiová jako střed shorthu: x ˆ 38,5 Modus = 38,5 let, tj. typický věk hudebíka vystupujícího a přehlídce dechových orchestrů je 38,5 let

8 .4. Pro data z předcházejícího příkladu určete: Řešeí: a) všechy kvartily, b) iterkvartilové rozpětí c) MAD d) zakreslete empirickou distribučí fukci ada) Naším úkolem je určit dolí kvartil x 0,5 ; mediá x 0,5 a horí kvartil x 0,75. Budeme-li dodržovat postup doporučeý pro určováí kvatilů, zameá to data seřadit a přiřadit jim pořadí. Splěí prvích dvou bodů postupu ukazuje ásledující tabulka: Origiálí data Seřazeá data Pořadí A můžeme přejít k bodu 3, tj. staovit pořadí hodot proměé pro jedotlivé kvartily a tím i jejich hodoty: Dolí kvartil x 0,5 : p 0, 5; 11 z p 11. 0, 5 0, 5 3, 5, Dolí kvartil je tedy průměrem prvků s pořadím 3 a 4 - x 0,5 = 7+34 = 30,5 let. Tj. 5% hudebíků vystupujících a přehlídce dechových orchestrů je mladších ež 30,5 let (75% z ich má 30,5 let a více). Mediá x 0,5 :,5; 11 z 11.0,5 0,5 6 x 35 p 0 p 0, 5 Tj. polovia hudebíků vystupujících a přehlídce dechových orchestrů je mladších ež 35 let (50% z ich má 35 let a více). Horí kvartil x 0,75 : p 0, 75; 11 z p 11. 0, 75 0, 5 8, 75 Horí kvartil je tedy průměrem prvků s pořadím 8 a 9 - x 0,75 = 4+43 = 4,5 let. Tj. 75% hudebíků vystupujících a přehlídce dechových orchestrů je mladších ež 4,5 let (5% z ich má 4,5 let a více)

9 adb) Iterkvartilové rozpětí IQR: IQR = x 0,75 x 0,5 = 4,5 30,5 = 1 adc) MAD Chceme-li určit tuto statistiku, budeme postupovat přesě podle toho co ám říká defiice (mediá absolutích odchylek od mediáu), tudíž dodržíme výše uvedeý postup, jehož aplikaci vám ukazuje ásledující tabulka. x 0,5 = 35 Origi álí data x i Seřaz eá data y i Absolutí hodoty odchylek seřazeých dat od jejich mediáu Seřazeé absolutí hodoty odchylek seřazeých dat od jejich mediáu y i x 0, M i MAD M 0,5 p 0,5; 11 z p 11.0,5 0,5 6 M 0, 5 8 (MAD je mediá absolutích odchylek od mediáu, tj. 6. hodota seřazeého souboru absolutích odchylek od mediáu). MAD = 8. add) Zbývá ám posledí úkol sestrojit empirickou distribučí fukci. Připomeňme si proto její defiici a postupujme podle í: F j x px i i1 0 1 pro x x pro x x x j j1 pro x x 1,1 j 1 - do tabulky si zapíšeme seřazeé hodoty proměé, jejich četosti, relativí četosti a z ich odvodíme empirickou distribučí fukci:

10 F(x) Ig. Martia Litschmaová Origi álí data x i Seřaz eé hodoty a i Absolutí četosti seřazeých hodot i Relativí četosti seřazeých hodot p i Empirická dist. fukce F(a i ) / /11 1/ /11 / /11 3/ /11 5/ /11 6/ /11 7/ /11 8/ /11 9/ /11 10/11 35 Z defiice emp. dist. fukce F(x) tedy plye, že pro všecha x meší ež 19 je F(x) rova ule, pro x větší ež 19 a meší ebo rova je F(x) rova 1/11, pro x větší ež a meší ebo rova 7 je F(x) rova 1/11 + 1/11, atd. x ; ; ; 7 7 ; ; 35 F(x) 0 1/11 /11 3/11 5/11 x 35 ; ; 4 4 ; ; 47 ; ; F(x) 6/11 7/11 8/11 9/11 10/11 11/11 Empirická distribučí fukce 1, 1,0 0,8 0,6 0,4 0, 0, x.5. Firma vyrábějící tabulové sklo vyviula méě ákladou techologii pro zlepšeí odolosti skla vůči žáru. Pro testováí bylo vybráo 5 tabulí skla a rozřezáo a poloviu. Jeda polovia pak byla ošetřea ovou techologií, zatímco druhá byla poecháa jako kotrolí. Obě poloviy pak byly vystavey zvyšujícímu se působeí tepla, dokud epraskly. Výsledky byly ásledující: Mezí teplota (sklo prasklo) [ o C] Stará techologie x i Nová techologie y i

11 Porovejte obě techologie pomocí základích charakteristik exploratorí (průměru a rozptylu, popř. směrodaté odchylky). statistiky Řešeí: - Nejprve se pokusíme porovat obě techologie pouze za pomocí průměru: Průměr pro starou techologii: x x i i ,0 o C Průměr pro ovou techologii: y y i i ,6 o C Na základě vypočteých průměrů bychom mohli říci, že ovou techologii doporučujeme, poěvadž mezí teplota je při ové techologii téměř o 6 o C vyšší. A co a to míry variability? Stará techologie: Výběrový rozptyl: s x x x i i , , ,0 Výběrová směrodatá odchylka: ,3 o C xi x i 1 s x s x 916,3 30, 3 1 Nová techologie: Výběrový rozptyl: o C s y y y i i , , , ,4 o C

12 Teplota Ig. Martia Litschmaová Výběrová směrodatá odchylka: Mezí teplota yi y i1 s x s y 384,4 48, 8 1 o C 600 Tady pozor. Výběrový rozptyl (výběrová směrodatá odchylka) vyšel pro ovou techologii mohem vyšší ež pro techologii starou. Co to zameá? Podívejte se a grafické zázorěí aměřeých dat. 300 Stará Techologie Nová Mezí teploty pro ovou techologii jsou mohem rozptýleější, tz. že tato techologie eí ještě dobře zvládutá a její použití ám ezaručí zkvalitěí výroby. V tomto případě může dojít k silému zvýšeí, ale také k silému sížeí mezí teploty proto by se měla ová techologie ještě vrátit do vývoje. Zdůrazěme, že tyto závěry jsou staovey pouze a základě exploratorí aalýzy, statistika ám abízí exaktější metody pro rozhodutí takovýchto případů (testováí hypotéz), s imiž se sezámíte později..6. Následující data představují dobu čekáí [mi] zákazíka a obsluhu. Proveďte exploračí aalýzu pomocí Statgraphicsu Zadáí proměé: Řešeí daého problému ve Statgraphicsu: Chceme-li zadávat ručě ovou proměou, provedeme DC (dvojklik) a hlavičku sloupce a zadáme parametry proměé (ázev, popis (epovié), šířku a typ). Předastaveý typ je Numeric, tudíž jej emusíme měit

13 Exploratorí aalýza pro umerickou proměou: Textové i grafické výstupy popisé (exploratorí) statistiky získáme obdobě jako u kategoriálí proměé. Opět si projdeme jedotlivé výstupy exploratorí aalýzy

14 Tabular Optio V levém dolím okě ajdeme souhrou statistiku tj. vybraé charakteristiky příslušé umerické proměé (doby čekáí). Výběr základích charakteristik, které mají být zobrazey ám umoží RC a oblast souhré statistiky. Po jeho provedeí se ám objeví ásledující oko, v ěmž zvolíme požadovaé charakteristiky. Slovík ázvů jedotlivých charakteristik: Cout Average Media Mode Rozsah souboru (počet hodot) Průměr Mediá Modus - -

15 Geo. Mea Variace Std. Deviatio Geometrický průměr Rozptyl (výběrový) Směrodatá odchylka (výběrová) Std. Error Stadardí chyba s Mi. Max. Rage Lower Quartile Upper Quartile Iterquartile rage Skewess Std. Skewess Kurtosis Std. Kurtosis Miimum Maximum Rozpětí (maximum miimum) Dolí kvartil Horí kvartil Iterkvartilové rozpětí (IQR) Šikmost Stadardizovaá šikmost Špičatost Stadardizovaá špičatost Coeff. Of Var. Variačí koeficiet s x Sum Součet hodot Klikutím a ikou Tabular Optios (žlutá ikoa,. řádek,. zleva) se ám objeví abídka dalších textových výstupu. Kvatily Číslicový histogram Při popisé statistice ás z této abídky zajímá pouze možost volby zobrazeí kvatilů a číslicového histogramu

16 Zvolíme-li si zobrazeí kvatilů, objeví se ám textový výstup s hodotami deseti předastaveých kvatilů. Jejich výběr můžeme změit provedeme li RC a oblast, v íž jsou kvatily zobrazey a zvolíme-li Pae Optio. RC Zvolíme-li v Tabular Optios - Stem ad Leaf Display, získáme Číslicový histogram. Nyí se zaměříme a pravé horí oko, v ěmž ajdeme tzv. Bodový graf (azývaý také rozptylogram, aglicky Scatterplot). Na ose x jsou v ěm vyesey hodoty umerické proměé, a ose y je pořadí, v ěmž byly hodoty proměé zapsáy. Je tedy zřejmé, že bodový graf ám umožňuje vizuálí posouzeí rozptylu proměé. Chceme-li změit grafické parametry bodového grafu, provedeme RC a oblast grafu a požadovaé parametry astavíme v meu Graphics Optio

17 V pravém dolím rohu ajdeme Krabicový graf. Jeho grafické parametry můžeme obdobě jako u Bodového grafu astavit v meu Graphics Optio. Použité zkratky: DC RC dvojklik levým tlačítkem myši klikutí pravým tlačítkem myši - 5 -

Příklad statistické zpracování dat z dotazníku

Příklad statistické zpracování dat z dotazníku Příklad statistické zpracováí dat z dotazíku Proměá POČET ČLENŮ DOMÁCNOSTI - kardiálí, espojitá proměá, - otázka otevřeá. Frequecy Table for pocet_cleu_dom Value Frequecy Frequecy Frequecy Frequecy,3667,3667

Více

z možností, jak tuto veličinu charakterizovat, je určit součet

z možností, jak tuto veličinu charakterizovat, je určit součet 6 Charakteristiky áhodé veličiy. Nejdůležitější diskrétí a spojitá rozděleí. 6.1. Číselé charakteristiky áhodé veličiy 6.1.1. Středí hodota Uvažujme ejprve diskrétí áhodou veličiu X s rozděleím {x }, {p

Více

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz:

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz: Ig. Marta Ltschmaová Statstka I., cvčeí 1 TESTOVÁNÍ NEPARAMETRICKÝCH HYPOTÉZ Dosud jsme se zabýval testováím parametrcký hypotéz, což jsou hypotézy o parametrech rozděleí (populace). Statstckým hypotézám

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Náhodá veličia Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 45/004. Náhodá veličia Většia áhodých pokusů má jako výsledky reálá čísla. Budeme tedy dále áhodou veličiou rozumět proměou, která

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 4. KAPITOLA STATISTICKÉ CHARAKTERISTIKY 16.10.2017 23.10.2017 Přehled témat 1. Pravděpodobost (defiice, využití, výpočet pravděpodobostí

Více

ÚLOHA ČÍNSKÉHO LISTONOŠE, MATEMATICKÉ MODELY PRO ORIENTOVANÝ A NEORIENTOVANÝ GRAF

ÚLOHA ČÍNSKÉHO LISTONOŠE, MATEMATICKÉ MODELY PRO ORIENTOVANÝ A NEORIENTOVANÝ GRAF Úloha číského listooše ÚLOHA ČÍNSKÉHO LISTONOŠE, MATEMATICKÉ MODELY PRO ORIENTOVANÝ A NEORIENTOVANÝ GRAF Uvažujme situaci, kdy exstuje ějaký výchozí uzel a další uzly spojeé hraami (může jít o cesty, ulice

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

P2: Statistické zpracování dat

P2: Statistické zpracování dat P: Statistické zpracováí dat Úvodem - Statistika: věda, zabývající se shromažďováím, tříděím a ásledým popisem velkých datových souborů. - Základem statistiky je teorie pravděpodobosti, založeá a popisu

Více

1. K o m b i n a t o r i k a

1. K o m b i n a t o r i k a . K o m b i a t o r i k a V teorii pravděpodobosti a statistice budeme studovat míru výskytu -pravděpodobostvýsledků procesů, které mají áhodý charakter, t.j. při opakováí za stejých podmíek se objevují

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení Odhad parametru p biomického rozděleí a test hypotézy o tomto parametru Test hypotézy o parametru p biomického rozděleí Motivačí úloha Předpokládejme, že v důsledku realizace jistého áhodého pokusu P dochází

Více

STATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson

STATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson STATISTIKA Statistika se těší pochybému vyzameáí tím, že je ejvíce epochopeým vědím oborem. H. Leviso Charakterizace statistického souboru Statistický soubor Prvek souboru Zak prvku kvatitativí teplota,

Více

Cvičení 3 - teorie. Teorie pravděpodobnosti vychází ze studia náhodných pokusů.

Cvičení 3 - teorie. Teorie pravděpodobnosti vychází ze studia náhodných pokusů. Cvičeí 3 - teorie Téma: Teorie pravděpodobosti Teorie pravděpodobosti vychází ze studia áhodých pokusů. Náhodý pokus Proces, který při opakováí dává ze stejých podmíek rozdílé výsledky. Výsledek pokusu

Více

Test hypotézy o parametru π alternativního rozdělení příklad

Test hypotézy o parametru π alternativního rozdělení příklad Test hypotézy o parametru π alterativího rozděleí příklad Podik předpokládá, že o jeho ový výrobek bude mít zájem 7 % osloveých domácostí. Proběhl předběžý průzkum, v ěmž bylo osloveo 4 áhodě vybraých

Více

17. Statistické hypotézy parametrické testy

17. Statistické hypotézy parametrické testy 7. Statistické hypotézy parametrické testy V této části se budeme zabývat statistickými hypotézami, pomocí vyšetřujeme jedotlivé parametry populace. K takovýmto šetřeím většiou využíváme ám již dobře zámé

Více

Pravděpodobnost a statistika - absolutní minumum

Pravděpodobnost a statistika - absolutní minumum Pravděpodobost a statistika - absolutí miumum Jaromír Šrámek 4108, 1.LF, UK Obsah 1. Základy počtu pravděpodobosti 1.1 Defiice pravděpodobosti 1.2 Náhodé veličiy a jejich popis 1.3 Číselé charakteristiky

Více

Úvod do zpracování měření

Úvod do zpracování měření Laboratorí cvičeí ze Základů fyziky Fakulta techologická, UTB ve Zlíě Cvičeí č. Úvod do zpracováí měřeí Teorie chyb Opakujeme-li měřeí téže fyzikálí veličiy za stejých podmíek ěkolikrát za sebou, dostáváme

Více

Popisná statistika. Zdeněk Janák 9. prosince 2007

Popisná statistika. Zdeněk Janák 9. prosince 2007 Popisá statistika Zdeěk Jaák jaak@physics.mui.cz 9. prosice 007 Výsledkem měřeí atmosférické extikce z pozorováí komet a observatoři Skalaté Pleso jsou tyto hodoty extikčích koeficietů ve vlové délce 46

Více

1. Základy počtu pravděpodobnosti:

1. Základy počtu pravděpodobnosti: www.cz-milka.et. Základy počtu pravděpodobosti: Přehled pojmů Jev áhodý jev, který v závislosti a áhodě může, ale emusí při uskutečňováí daého komplexu podmíek astat. Náhoda souhr drobých, ezjistitelých

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu.

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu. 2. URČITÝ INTEGRÁL 2. Určitý itegrál Průvodce studiem V předcházející kapitole jsme se sezámili s pojmem eurčitý itegrál, který daé fukci přiřazoval opět fukci (přesěji možiu fukcí). V této kapitole se

Více

Pro statistické šetření si zvolte si statistický soubor např. všichni žáci třídy (několika tříd, školy apod.).

Pro statistické šetření si zvolte si statistický soubor např. všichni žáci třídy (několika tříd, školy apod.). STATISTIKA Statistické šetřeí Proveďte a vyhodoťte statistické šetřeí:. Zvolte si statistický soubor. 2. Zvolte si určitý zak (zaky), které budete vyhodocovat. 3. Určete absolutí a relativí četosti zaků,

Více

Semestrální projekt. do předmětu Statistika. Vypracoval: Adam Mlejnek 2-36. Oponenti: Patrik Novotný 2-36. Jakub Nováček 2-36. Click here to buy 2

Semestrální projekt. do předmětu Statistika. Vypracoval: Adam Mlejnek 2-36. Oponenti: Patrik Novotný 2-36. Jakub Nováček 2-36. Click here to buy 2 Semestrální projekt do předmětu Statistika Vypracoval: Adam Mlejnek 2-36 Oponenti: Patrik Novotný 2-36 Jakub Nováček 2-36 Úvod Pro vypracování projektu do předmětu statistika jsem si zvolil průzkum kvality

Více

Statistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter.

Statistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter. Statistika Cíle: Chápat pomy statistický soubor, rozsah souboru, statistická edotka, statistický zak, umět sestavit tabulku rozděleí četostí, umět zázorit spoicový diagram a sloupcový diagram / kruhový

Více

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D.

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D. MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ PH.D. Obsah MNOŽINY.... ČÍSELNÉ MNOŽINY.... OPERACE S MNOŽINAMI... ALGEBRAICKÉ VÝRAZY... 6. OPERACE S JEDNOČLENY A MNOHOČLENY...

Více

Cvičení z termomechaniky Cvičení 5.

Cvičení z termomechaniky Cvičení 5. Příklad V kompresoru je kotiuálě stlačová objemový tok vzduchu [m 3.s- ] o teplotě 20 [ C] a tlaku 0, [MPa] a tlak 0,7 [MPa]. Vypočtěte objemový tok vzduchu vystupujícího z kompresoru, jeho teplotu a příko

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

4.5.9 Vznik střídavého proudu

4.5.9 Vznik střídavého proudu 4.5.9 Vzik střídavého proudu Předpoklady: 4508 Miulá hodia: Pokud se v uzavřeém závitu měí magetický idukčí tok, idukuje se v ěm elektrické apětí =. Př. 1: Vodorově orietovaá smyčka se pohybuje rovoměrě

Více

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují

Více

České vysoké učení technické v Praze. Fakulta dopravní. Semestrální práce. Statistika

České vysoké učení technické v Praze. Fakulta dopravní. Semestrální práce. Statistika České vysoké učeí techické v Praze Fakulta dopraví Semestrálí práce Statistika Čekáí vlaku ve staicích a trase Klado Ostrovec Praha Masarykovo ádraží Zouzalová Barbora 2 35 Michálek Tomáš 2 35 sk. 2 35

Více

DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROM

DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROM Difereciálí počet fukcí jedé reálé proměé - - DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ ÚVODNÍ POZNÁMKY I derivace podobě jako limity můžeme počítat ěkolikerým způsobem a to kokrétě pomocí: defiice vět o algebře

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

13 Popisná statistika

13 Popisná statistika 13 Popisá statistika 13.1 Jedorozměrý statistický soubor Statistický soubor je možia všech prvků, které jsou předmětem statistického zkoumáí. Každý z prvků je statistickou jedotkou. Prvky tvořící statistický

Více

Přednáška 5. Výběrová šetření, Exploratorní analýza

Přednáška 5. Výběrová šetření, Exploratorní analýza Přednáška 5 Výběrová šetření, Exploratorní analýza Pravděpodobnost vs. statistika Výběrová šetření aneb jak získat výběrový soubor Exploratorní statistika aneb jak popsat výběrový soubor Typy proměnných

Více

Vážeí zákazíci dovolujeme si Vás upozorit že a tuto ukázku kihy se vztahují autorská práva tzv. copyright. To zameá že ukázka má sloužit výhradì pro osobí potøebu poteciálího kupujícího (aby èteáø vidìl

Více

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly.

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly. 0. KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Dovedosti :. Chápat pojem faktoriál a ovládat operace s faktoriály.. Zát defiici kombiačího čísla a základí vlastosti kombiačích čísel. Ovládat jedoduché operace

Více

Matematika III. 27. listopadu Vysoká škola báňská - Technická univerzita Ostrava. Matematika III

Matematika III. 27. listopadu Vysoká škola báňská - Technická univerzita Ostrava. Matematika III Vysoká škola báňská - Technická univerzita Ostrava 27. listopadu 2017 Typy statistických znaků (proměnných) Typy proměnných: Kvalitativní proměnná (kategoriální, slovní,... ) Kvantitativní proměnná (numerická,

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

Vážeí zákazíci, dovolujeme si Vás upozorit, že a tuto ukázku kihy se vztahují autorská práva, tzv. copyright. To zameá, že ukázka má sloužit výhradì pro osobí potøebu poteciálího kupujícího (aby èteáø

Více

Úvod do lineárního programování

Úvod do lineárního programování Úvod do lieárího programováí ) Defiice úlohy Jedá se o optimalizaí problémy které jsou popsáy soustavou lieárích rovic a erovic. Kritéria optimalizace jsou rovž lieárí. Promé v této úloze abývají reálých

Více

Náhodný výběr 1. Náhodný výběr

Náhodný výběr 1. Náhodný výběr Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti

Více

0. 4b) 4) Je dán úhel 3450. Urči jeho základní velikost a převeď ji na radiány. 2b) Jasný Q Q ZK T D ZNÁMKA. 1. pololetí 2 3 1 2 2 3 5 2 3 1 1

0. 4b) 4) Je dán úhel 3450. Urči jeho základní velikost a převeď ji na radiány. 2b) Jasný Q Q ZK T D ZNÁMKA. 1. pololetí 2 3 1 2 2 3 5 2 3 1 1 ) Urči záladí veliost úhlu v radiáech, víš-li, že platí: a) si cos 0. b) cos, Opravá zouša z matematiy 3SD (druhé pololetí) c) cotg 3 5b) ) Na možiě R řeš rovici cos cos 0. 4b) 3) Vzdáleost bodů AB elze

Více

Závislost slovních znaků

Závislost slovních znaků Závislost slovích zaků Závislost slovích (kvalitativích) zaků Obměy slovího zaku Alterativí zaky Možé zaky Tříděí věcé sloví řady: seřazeí obmě je subjektiví záležitostí (podle abecedy), možé i objektiví

Více

3. Charakteristiky a parametry náhodných veličin

3. Charakteristiky a parametry náhodných veličin 3. Charateristiy a parametry áhodých veliči Úolem této apitoly je zavést pomocý aparát, terým budeme dále popisovat pomocí jedoduchých prostředů áhodé veličiy. Taovýmto aparátem jsou tzv. parametry ebo

Více

Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi.

Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. SEMINÁRNÍ PRÁCE Zadání: Data: Statistické metody: Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. Minimálně 6 proměnných o 30 pozorováních (z toho 2 proměnné

Více

ij m, velikosti n je tvořen (n m) rozměr-ným polem dat x 11 ... x 12 ... x 22 x n1 ... x n2 7.1 Druhy korelačních koeficientů

ij m, velikosti n je tvořen (n m) rozměr-ným polem dat x 11 ... x 12 ... x 22 x n1 ... x n2 7.1 Druhy korelačních koeficientů 1 7 KORELACE Pro vyádřeí itezity vztahů ezi složkai ξ ξ -rozěrého áhodého vektoru 1 ξ se používá korelačích koeficietů Data tvoří áhodý výběr z -rozěrého rozděleí áhodého vektoru ξ Neuvažue se obyčeě a

Více

2. část: Základy matematického programování, dopravní úloha. Ing. Michal Dorda, Ph.D.

2. část: Základy matematického programování, dopravní úloha. Ing. Michal Dorda, Ph.D. 2. část: Základy matematického programováí, dopraví úloha. 1 Úvodí pomy Metody a podporu rozhodováí lze obecě dělit a: Eaktí metody metody zaručuící alezeí optimálí řešeí, apř. Littlův algortimus, Hakimiho

Více

6 VYBRANÁ ROZDLENÍ DISKRÉTNÍ NÁHODNÉ VELIINY

6 VYBRANÁ ROZDLENÍ DISKRÉTNÍ NÁHODNÉ VELIINY 6 VYBRANÁ ROZDLENÍ DISKRÉTNÍ NÁHODNÉ VELIINY Rozdleí áhodé veliiy je edis, terým defiujeme ravdodobost jev, jež lze touto áhodou veliiou osat. Záladím rozdleím oisujícím výbry bez vraceí je hyergeometricé

Více

Číslicové filtry. Použití : Analogové x číslicové filtry : Analogové. Číslicové: Separace signálů Restaurace signálů

Číslicové filtry. Použití : Analogové x číslicové filtry : Analogové. Číslicové: Separace signálů Restaurace signálů Číslicová filtrace Použití : Separace sigálů Restaurace sigálů Číslicové filtry Aalogové x číslicové filtry : Aalogové Číslicové: + levé + rychlé + velký dyamický rozsah (v amplitudě i frekveci) - evhodé

Více

1 ROVNOMĚRNOST BETONU KONSTRUKCE

1 ROVNOMĚRNOST BETONU KONSTRUKCE ROVNOMĚRNOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí rovoměrosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA. Charakteristiky variability. Mgr. Jakub Němec. VY_32_INOVACE_M4r0120

KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA. Charakteristiky variability. Mgr. Jakub Němec. VY_32_INOVACE_M4r0120 KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Charakteristiky variability Mgr. Jakub Němec VY_32_INOVACE_M4r0120 CHARAKTERISTIKY VARIABILITY Charakteristika variability se určuje pouze u kvantitativních znaků.

Více

Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby.

Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby. ováí - Hru IV /6 ováí Hru IV Mila RůžR ůžička, Josef Jureka,, Zbyěk k Hrubý zbyek.hruby hruby@fs.cvut.cz ováí - Hru IV /6 ravděpodobostí úavové diagramy s uvažováím předpětí R - plocha ve čtyřrozměrém

Více

7. P o p i s n á s t a t i s t i k a

7. P o p i s n á s t a t i s t i k a 7. P o p i s á s t a t i s t i k a 7.. Pozámka: Při statistickém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákoitosti, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Bodové a itervalové odhady Nechť X je áhodá proměá, která má distribučí fukci F(x, ϑ). Předpokládejme, že záme tvar distribučí fukce (víme jaké má rozděleí) a ezáme parametr

Více

1.3. POLYNOMY. V této kapitole se dozvíte:

1.3. POLYNOMY. V této kapitole se dozvíte: 1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí

Více

Statistika. cílem je zjednodušit nějaká data tak, abychom se v nich lépe vyznali důsledkem je ztráta informací!

Statistika. cílem je zjednodušit nějaká data tak, abychom se v nich lépe vyznali důsledkem je ztráta informací! Statistika aneb známe tři druhy lži: úmyslná neúmyslná statistika Statistika je metoda, jak vyjádřit nejistá data s přesností na setinu procenta. den..00..00 3..00..00..00..00..00..00..00..00..00..00 3..00..00..00..00..00..00..00

Více

Intervalové odhady parametrů

Intervalové odhady parametrů Itervalové odhady parametrů Petr Pošík Části dokumetu jsou převzaty (i doslově) z Mirko Navara: Pravděpodobost a matematická statistika, https://cw.felk.cvut.cz/lib/ee/fetch.php/courses/a6m33ssl/pms_prit.pdf

Více

Pravděpodobnostní model doby setrvání ministra školství ve funkci

Pravděpodobnostní model doby setrvání ministra školství ve funkci Pravděpodobostí model doby setrváí miistra školství ve fukci Základí statistická iferece Data Zdro: http://www.msmt.cz/miisterstvo/miistri-skolstvi-od-roku-848. Ke statistickému zpracováí byla vzata pozorováí

Více

Intervalové odhady parametrů některých rozdělení.

Intervalové odhady parametrů některých rozdělení. 4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:

Více

Vyhledávání v tabulkách

Vyhledávání v tabulkách Vyhledáváí v tabulkách Tabulkou azveme možiu položek idetifikovatelých hodotou přístupového (idetifikačího) klíče (key, ID idetificator). Ve vodorovém směru se jedá o heterogeí pole, tz. že každá položka

Více

OPTIMÁLNÍ FILTRACE METALURGICKÝCH SIGNÁLŮ POMOCÍ INFORMAČNÍCH KRITÉRIÍ

OPTIMÁLNÍ FILTRACE METALURGICKÝCH SIGNÁLŮ POMOCÍ INFORMAČNÍCH KRITÉRIÍ OPTIMÁLNÍ FILTRACE METALURGICKÝCH SIGNÁLŮ POMOCÍ INFORMAČNÍCH KRITÉRIÍ Ja Morávka Třiecký ižeýrig, a.s. Abstract Příspěvek popisuje jede přístup k optimálí filtraci metalurgických sigálů pomocí růzých

Více

b c a P(A B) = c = 4% = 0,04 d

b c a P(A B) = c = 4% = 0,04 d Příklad 6: Z Prahy do Athé je 50 km V Praze byl osaze válec auta ovou svíčkou, jejíž životost má ormálí rozděleí s průměrem 0000 km a směrodatou odchylkou 3000 km Jaká je pravděpodobost, že automobil překoá

Více

Statistika. Diskrétní data. Spojitá data. Charakteristiky polohy. Charakteristiky variability

Statistika. Diskrétní data. Spojitá data. Charakteristiky polohy. Charakteristiky variability I Přednáška Statistika Diskrétní data Spojitá data Charakteristiky polohy Charakteristiky variability Statistika deskriptivní statistika ˆ induktivní statistika populace (základní soubor) ˆ výběr parametry

Více

pracovní list studenta Acidobazické rovnováhy Odměrná analýza acidobazická titrace

pracovní list studenta Acidobazické rovnováhy Odměrná analýza acidobazická titrace praoví list studeta Aidobaziké rovováhy dměrá aalýza aidobaziká titrae ýstup RP: Klíčová slova: Marti Krejčí experimet umožňuje žákům pohopit hováí slabýh protolytů (kyseli a zásad ve vodýh roztoíh; žái

Více

š š ě š š ňí ě Í Í š Ž Č ťí ň ú š Č ú Č ě ě Ž ě ď š š ě ě š š š ú š š ě Ž Č ě š ě ě ě ě ě š Žň š ě ě š ě Ž ě Ž ň ě Ž ě š Ž ě š Ž š š Ž š š ěí ě š ěí ě ě ň ě ě ě ě ě š š ě ě ě ě š š š š ě ě ě Í ď Í š ě

Více

6. Posloupnosti a jejich limity, řady

6. Posloupnosti a jejich limity, řady Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme

Více

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu Cvičeí 6: Výpočet středí hodoty a rozptylu, bodové a itervalové odhady středí hodoty a rozptylu Příklad 1: Postupě se zkouší spolehlivost čtyř přístrojů Další se zkouší je tehdy, když předchozí je spolehlivý

Více

Úkol měření. Použité přístroje a pomůcky. Tabulky a výpočty

Úkol měření. Použité přístroje a pomůcky. Tabulky a výpočty Úkol měřeí ) Na základě vějšího fotoelektrického pole staovte velikost Plackovy kostaty h. ) Určete mezí kmitočet a výstupí práci materiálu fotokatody použité fotoky. Porovejte tuto hodotu s výstupími

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1 Matice Matice Maticí typu m/ kde m N azýváme m reálých čísel a sestaveých do m řádků a sloupců ve tvaru a a a a a a M M am am am Prví idex i začí řádek a druhý idex j sloupec ve kterém prvek a leží Prvky

Více

Iterační výpočty projekt č. 2

Iterační výpočty projekt č. 2 Dokumetace k projektu pro předměty IZP a IUS Iteračí výpočty projekt č. 5..007 Autor: Václav Uhlíř, xuhlir04@stud.fit.vutbr.cz Fakulta Iformačích Techologii Vysoké Učeí Techické v Brě Obsah. Úvodí defiice.....

Více

VŠB Technická univerzita Ostrava

VŠB Technická univerzita Ostrava VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: PRAVDĚPODOBNOST A STATISTIKA Domácí úkoly Zadání 21 DATUM ODEVZDÁNÍ

Více

FINANČNÍ MATEMATIKA SBÍRKA ÚLOH

FINANČNÍ MATEMATIKA SBÍRKA ÚLOH FINANČNÍ MATEMATIKA SBÍRKA ÚLOH Zpracováo v rámci projektu " Vzděláváí pro kokureceschopost - kokureceschopost pro Třeboňsko", registračí číslo CZ.1.07/1.1.10/02.0063 Gymázium, Třeboň, Na Sadech 308 Autor:

Více

Á š š ý É Ř ě Í ý ý Í š ě ý š ý Ů š ý Í ž ý š ý ě Ž š ě ý ě ý ě ě ý Í Ž ě Í ÁŤ Ž š Í ý ěž ý Ů ý Ů ě Ž š Ť ě ěž ěž ěž ě ě Í ý š ý Í š ý Ž ý Ř š ň š Í ě ý ý ě š ě ý ý ě Ž ý ý ě ý Í ý ě Ž ý Ž ě ě Ž ý Ž ý

Více

8. cvičení 4ST201-řešení

8. cvičení 4ST201-řešení cvičící 8. cvičeí 4ST01-řešeí Obsah: Neparametricé testy Chí-vadrát test dobréshody Kotigečí tabuly Aalýza rozptylu (ANOVA) Vysoá šola eoomicá 1 VŠE urz 4ST01 Neparametricé testy Neparametricétesty využíváme,

Více

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti. 10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé

Více

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky Téma 6.: Základí pojmy matematické statistiky Vlastosti důležitých statistik odvozeých z jedorozměrého áhodého výběru: Nechť X,..., X je áhodý výběr z rozložeí se středí hodotou μ, rozptylem σ a distribučí

Více

ZÁKLADNÍ POJMY OPTIKY

ZÁKLADNÍ POJMY OPTIKY Záš pojmy A. Popiš aspoň jede fyzikálí experimet měřeí rychlosti světla. - viz apříklad Michelsoův, Fizeaův, Roemerův pokus. Defiuj a popiš fyzikálí veličiu idex lomu. - je to bezrozměrá fyzikálí veličia

Více

6. P o p i s n á s t a t i s t i k a

6. P o p i s n á s t a t i s t i k a 6. P o p i s á s t a t i s t i k a 6.. Pozámka: Při statistickém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákoitosti, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme

Více

Distribuční funkce je funkcí neklesající, tj. pro všechna

Distribuční funkce je funkcí neklesající, tj. pro všechna Téma: Náhodná veličina, distribuční funkce a její graf, pravděpodobnostní funkce a její graf, funkce hustoty pravděpodobnosti a její graf, výpočet střední hodnoty a rozptylu náhodné veličiny 1 Náhodná

Více

HYPOTEČNÍ ÚVĚR. , kde v = je diskontní faktor, Dl počáteční výše úvěru, a anuita, i roční úroková sazba v procentech vyjádřená desetinným číslem.

HYPOTEČNÍ ÚVĚR. , kde v = je diskontní faktor, Dl počáteční výše úvěru, a anuita, i roční úroková sazba v procentech vyjádřená desetinným číslem. HYPTEČNÍ ÚVĚR Spláceí úvěru stejým splátkam - kostatí auta ÚLHA 1: Mladý maželský pár s dostačujícím příjmy (tz. a získáí hypotéčího úvěru) se rozhodl postavt s meší rodý domek. Podle předběžé kalkulace

Více

Základy popisné statistiky. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek

Základy popisné statistiky. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek Základy popisné statistiky Anotace Realitu můžeme popisovat různými typy dat, každý z nich se specifickými vlastnostmi, výhodami, nevýhodami a vlastní sadou využitelných statistických metod -od binárních

Více

VÝMĚNA VZDUCHU A INTERIÉROVÁ POHODA PROSTŘEDÍ

VÝMĚNA VZDUCHU A INTERIÉROVÁ POHODA PROSTŘEDÍ ÝMĚNA ZDUCHU A INTERIÉROÁ POHODA PROSTŘEDÍ AERKA J. Fakulta architektury UT v Brě, Poříčí 5, 639 00 Bro Úvod Jedím ze základích požadavků k zabezpečeí hygieicky vyhovujícího stavu vitřího prostředí je

Více

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení.,

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení., Def: Vetorovým součiem vetorů u =(u, u, u 3 ) v = (v, v, v 3 ) zýváme vetor u v = (u v 3 u 3 v, u 3 v u v 3, u v u v ) Vět: Pro vetory i, j, ortoormálí báze pltí i i = j = i, i = j Vět: Nechť u v, w, jsou

Více

Ě Ř Ž ÁŘ Ě Ň Á Í Á ÁŽ ŮŽ ů Ž Ž ůž Ž ů ů Ž Ž Ž Ť Ž Ž Ž Ž ů ď ů ť ď ď Í Ž Ž Č ú ů Ž ď ú Ž Í ů Ž ú Ž Ž ů ů ů Ž ů Ž ů ť Ž Ž Ž Ž Ů ň ů ů Í Ž Ž ů ůž ť ÁŽ ť Í Ě Ř Č ů Ž Ž ů Ž ú Ž Í ÍÍ Ž Ž Ž Ž Ž Ž ů Ž Ž Ž Í Í

Více

Výsledky této ásti regresní analýzy jsou asto na výstupu z poítae prezentovány ve form tabulky analýzy rozptylu.

Výsledky této ásti regresní analýzy jsou asto na výstupu z poítae prezentovány ve form tabulky analýzy rozptylu. Ig. Marta Ltschmaová Statstka I., cveí 4 JEDNODUCHÁ LINEÁRNÍ REGRESE asto chceme prozkoumat vztah mez dvma velam, kde jeda z ch, tzv. ezávsle promá x, má ovlvovat druhou, tzv. závsle promou Y. edpokládá

Více

Periodicita v časové řadě, její popis a identifikace

Periodicita v časové řadě, její popis a identifikace Periodicita v časové řadě, její popis a idetifikace 1 Periodicita Některé časové řady obsahují periodickou složku. Pomocí vybraých ástrojů spektrálí aalýzy budeme tuto složku idetifikovat. Mějme fukci

Více

Měřící technika - MT úvod

Měřící technika - MT úvod Měřící techika - MT úvod Historie Už Galileo Galilei zavádí vědecký přístup k měřeí. Jeho výrok Měřit vše, co je měřitelé a co eí měřitelým učiit platí stále. - jedotá soustava jedotek fyz. veliči - símače

Více

} kvantitativní znaky. korelace, regrese. Prof. RNDr. Jana Zvárov. Obecné principy

} kvantitativní znaky. korelace, regrese. Prof. RNDr. Jana Zvárov. Obecné principy Měřeí statistické závislosti, korelace, regrese Prof. RNDr. Jaa Zvárov rová,, DrSc. MĚŘENÍZÁVISLOSTI Cílem statistické aalýzy vepidemiologii bývá eje staovit, zda oemocěí závisí a výskytu rizikového faktoru,

Více

Funkce. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Funkce. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Fukce RNDr. Yvetta Bartáková Gymázium, SOŠ a VOŠ Ledeč ad Sázavou Limita poslouposti a fukce VY INOVACE_0 9_M Gymázium, SOŠ a VOŠ Ledeč ad Sázavou A) Limita poslouposti Říkáme, že posloupost a je kovergetí,

Více

- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení.

- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení. MATEMATICKÁ STATISTIKA - a základě výběrových dat uuzujeme a obecější kutečot, týkající e základího ouboru; provádíme zevšeobecňující (duktví) úudek - duktví uuzováí pomocí matematcko-tattckých metod je

Více

DISKRÉTNÍ MATEMATIKA PRO INFORMATIKY

DISKRÉTNÍ MATEMATIKA PRO INFORMATIKY DISKRÉTNÍ MATEMATIKA PRO INFORMATIKY URČENO PRO VZDĚLÁVÁNÍ V AKREDITOVANÝCH STUDIJNÍCH PROGRAMECH IVAN KŘIVÝ ČÍSLO OPERAČNÍHO PROGRAMU: CZ..07 NÁZEV OPERAČNÍHO PROGRAMU: VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST

Více

Ý Á Í č š Ž Ž ž č č č ž č č Ž č ň č š š č č č č Ž š č ž š š Ž š š č Í žš š ž č č č č š š č Í č Ž ž Ž č ž Ž š Í š š č š č š č Ž č č č Á č š č č ž č č š Š š š č Ó č č š Ž č Ď ž š č č š ž ž š č č č š š ž

Více

STUDIUM MAXWELLOVA ZÁKONA ROZDĚLENÍ RYCHLSOTÍ MOLEKUL POMOCÍ DERIVE 6

STUDIUM MAXWELLOVA ZÁKONA ROZDĚLENÍ RYCHLSOTÍ MOLEKUL POMOCÍ DERIVE 6 Středoškolská techika 00 Setkáí a prezetace prací středoškolských studetů a ČVUT STUDIUM MAXWELLOVA ZÁKONA ROZDĚLENÍ RYCHLSOTÍ MOLEKUL POMOCÍ DERIVE 6 Pavel Husa Gymázium Jiřího z Poděbrad Studetská 66/II

Více

Nejčastější chyby v explorační analýze

Nejčastější chyby v explorační analýze Nejčastější chyby v explorační analýze Obecně doporučuju přečíst přednášku 5: Výběrová šetření, Exploratorní analýza http://homel.vsb.cz/~lit40/sta1/materialy/io.pptx Použití nesprávných charakteristik

Více

1. Nakreslete všechny kostry následujících grafů: nemá žádnou kostru, roven. roven n,

1. Nakreslete všechny kostry následujících grafů: nemá žádnou kostru, roven. roven n, DSM2 Cv 7 Kostry grafů Defiice kostry grafu: Nechť G = V, E je souvislý graf. Kostrou grafu G azýváme každý jeho podgraf, který má stejou možiu vrcholů a je zároveň stromem. 1. Nakreslete všechy kostry

Více

20. Eukleidovský prostor

20. Eukleidovský prostor 20 Eukleidovský prostor V této kapitole budeme pokračovat ve studiu dalších vlastostí afiích prostorů avšak s tím rozdílem že místo obecého vektorového prostoru budeme uvažovat prostor uitárí Proto bude

Více

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů: Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy

Více

Při sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací

Při sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací 3. Náhodý výběr Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých realizací

Více