2 EXPLORATORNÍ ANALÝZA

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "2 EXPLORATORNÍ ANALÝZA"

Transkript

1 Počet automobilů Ig. Martia Litschmaová EXPLORATORNÍ ANALÝZA.1. Níže uvedeá data představují částečý výsledek zazameaý při průzkumu zatížeí jedé z ostravských křižovatek, a to barvu projíždějících automobilů. Data vyhodoťte a graficky zázorěte. Řešeí: červeá modrá červeá zeleá modrá červeá červeá bílá zeleá zeleá modrá červeá Je zřejmé, že se jedá o kvalitativí (sloví) proměou a vzhledem k tomu, že barvy automobilů emá smysl seřazovat ai porovávat, můžeme kostatovat, že se jedá o proměou omiálí. Pro její popis tedy zvolíme tabulku četostí, určíme modus a barvu projíždějících automobilů zázoríme prostředictvím histogramu a výsečového grafu. TABULKA ROZDĚLENÍ ČETNOSTI Barvy Absolutí četost Relativí četost projíždějících automobilů i p i červeá , 4 modrá , 5 bílá , 08 zeleá , 5 Celkem 1 1,00 Modus = červeá (tj. v zazameaém vzorku se vyskytlo ejvíce červeých automobilů) Barvy projíždějících automobilů Barvy projíždějících automobilů zeleá 5% bílá 8% červeá 4% 0 červeá modrá bílá zeleá Barv y modrá 5% Celkem bylo sledováo 1 automobilů - 9 -

2 Řešeí daého problému ve Statgraphicsu: Zadáí proměé: Chceme-li zadávat ručě ovou proměou, provedeme DC (dvojklik) a hlavičku sloupce a zadáme parametry proměé (ázev, popis (epovié), šířku a typ). Předastaveý typ je Numeric, proto je uto astaveí typu proměé ohlídat zejméa při zadáváí proměé kategoriálí. Typ proměé Exploratorí aalýza pro kategoriálí proměou: Touto aalýzou získáme tabulku četosti, histogram a výsečový graf

3 Datový výstup aalýzy: ázvy kategorií četost relativí četost kumulativí četost kumulativí relativí četost Všiměte si, že Statgraphics automaticky určuje kumulativí četosti a kumulativí relativí četosti i pro omiálí proměou (je tedy a uživateli, aby určil, zda mají tyto charakteristiky v kokrétím případě smysl). Histogram:

4 Formát grafu změíme tak, že provedeme RC (klikeme pravým tlačítkem myši) a oblast grafu a zvolíme Pae Optio. V okě Barchart Optio pak volíme formátováí histogramu. Grafické parametry histogramu (adpisy, barvy ) astavíme v okě Graphics Optio, které získáme po RC a oblast grafu a volbě Graphics Optio

5 Výsečový graf: Při úpravě výsečového grafu postupujeme obdobě jako při úpravě histogramu. (Pae Optio, Graphics optio)... Následující data představují velikosti triček prodaých při výprodeji firmy TRIKO. Řešeí: S, M, L, S, M, L, XL, XL, M, XL, XL, L, M, S, M, L, L, XL, XL, XL, L, M a) Data vyhodoťte a graficky zázorěte. b) Určete kolik procet lidí si koupilo tričko velikosti ejvýše L. ada) Zřejmě se jedá o kvalitativí (sloví) proměou a vzhledem k tomu, že velikosti triček lze seřadit, jde o proměou ordiálí. Pro její popis proto použijeme tabulku četostí pro ordiálí proměou, v íž variaty velikosti triček budou seřazey od ejmeší po ejvětší (S, M. L, XL) a modus. Velikosti triček Absolutí četost TABULKA ROZDĚLENÍ ČETNOSTI Kumulativí četost Relativí četost Relativí kum.četost i m i p i F i S , , 14 M , 7 9 0, 41 L , , 68 XL , 3 1, 00 Celkem , Modus = XL (ejvíce lidí si koupilo tričko velikosti XL)

6 F(x) Ig. Martia Litschmaová Grafický výstup bude tvořit histogram, výsečový graf a polygo kumulativích četostí (jelikož se ejedá o techická data, Paretův graf vytvářet ebudeme). Grafický výstup: Prodaá trika XL 3% S 14% L 7% M 7% Histogram Celkem bylo prodáo triček Výsečo Empirická distribučí fukce Galtoova ogiva, S-křivka adb) Na tuto otázku ám dá odpověď relativí kumulativí četost pro variatu L, která určuje jaká část prodaých triček byla velikosti L a ižších. Tj. 68% ý graf zákazíků si koupilo tričko velikosti L a meší. x.3. Následující data představují věk hudebíků vystupujících a přehlídce dechových orchestrů. Proměou věk považujte za spojitou. Určete průměr, shorth a modus věku hudebíků Řešeí: a) Určeí průměru: V tomto případě jedozačě použijeme aritmetický průměr (zdůvoděí sad eí uté):

7 x i! x i ,7 let 11 Průměrý věk hudebíka vystupujícího a přehlídce dechových orchestrů je 38,7 let. Prohléděte si ještě jedou zadaá data a promyslete si akolik je průměrý věk reprezetativí statistikou daého výběru (odlehlá pozorováí). b) Určeí shorthu: Náš výběrový soubor má 11 hodot, z čehož vyplývá, že v shorthu bude ležet 6 z ich (rozsah souboru je 11 (lichý počet hodot), 50% z toho je 5,5 (5,5 hodoty se špatě určuje, že?) a ejbližší vyšší přirozeé číslo je 6 eboli: /+½ = 11/ +1/ = 1/ = 6). A další postup? Proměou seřadíme Určíme délky všech 6-ti čleých itervalů, v ichž xi xi 1 xi 5 Nejkratší z těchto itervalů prohlásíme za shorth (délka itervalu = xi xi 5 ) Origiálí data Seřazeá data Délky 6-ti čleých itervalů (= 35 19) 8 19 (= 41 ) (= 4 7) (= 43 34) (= 47 34) (= 8 35) Z tabulky je zřejmé, že ejkratší iterval má délku 9, čemuž odpovídá jediý iterval: 34 ; 43. Shorth = 34 ; 43, což můžeme iterpretovat apř. tak, že polovia hudebíků je ve věku 34 až 43 let (jde přitom o ejkratší iterval ze všech možých). c) Určeí modu: Modus je defiová jako střed shorthu: x ˆ 38,5 Modus = 38,5 let, tj. typický věk hudebíka vystupujícího a přehlídce dechových orchestrů je 38,5 let

8 .4. Pro data z předcházejícího příkladu určete: Řešeí: a) všechy kvartily, b) iterkvartilové rozpětí c) MAD d) zakreslete empirickou distribučí fukci ada) Naším úkolem je určit dolí kvartil x 0,5 ; mediá x 0,5 a horí kvartil x 0,75. Budeme-li dodržovat postup doporučeý pro určováí kvatilů, zameá to data seřadit a přiřadit jim pořadí. Splěí prvích dvou bodů postupu ukazuje ásledující tabulka: Origiálí data Seřazeá data Pořadí A můžeme přejít k bodu 3, tj. staovit pořadí hodot proměé pro jedotlivé kvartily a tím i jejich hodoty: Dolí kvartil x 0,5 : p 0, 5; 11 z p 11. 0, 5 0, 5 3, 5, Dolí kvartil je tedy průměrem prvků s pořadím 3 a 4 - x 0,5 = 7+34 = 30,5 let. Tj. 5% hudebíků vystupujících a přehlídce dechových orchestrů je mladších ež 30,5 let (75% z ich má 30,5 let a více). Mediá x 0,5 :,5; 11 z 11.0,5 0,5 6 x 35 p 0 p 0, 5 Tj. polovia hudebíků vystupujících a přehlídce dechových orchestrů je mladších ež 35 let (50% z ich má 35 let a více). Horí kvartil x 0,75 : p 0, 75; 11 z p 11. 0, 75 0, 5 8, 75 Horí kvartil je tedy průměrem prvků s pořadím 8 a 9 - x 0,75 = 4+43 = 4,5 let. Tj. 75% hudebíků vystupujících a přehlídce dechových orchestrů je mladších ež 4,5 let (5% z ich má 4,5 let a více)

9 adb) Iterkvartilové rozpětí IQR: IQR = x 0,75 x 0,5 = 4,5 30,5 = 1 adc) MAD Chceme-li určit tuto statistiku, budeme postupovat přesě podle toho co ám říká defiice (mediá absolutích odchylek od mediáu), tudíž dodržíme výše uvedeý postup, jehož aplikaci vám ukazuje ásledující tabulka. x 0,5 = 35 Origi álí data x i Seřaz eá data y i Absolutí hodoty odchylek seřazeých dat od jejich mediáu Seřazeé absolutí hodoty odchylek seřazeých dat od jejich mediáu y i x 0, M i MAD M 0,5 p 0,5; 11 z p 11.0,5 0,5 6 M 0, 5 8 (MAD je mediá absolutích odchylek od mediáu, tj. 6. hodota seřazeého souboru absolutích odchylek od mediáu). MAD = 8. add) Zbývá ám posledí úkol sestrojit empirickou distribučí fukci. Připomeňme si proto její defiici a postupujme podle í: F j x px i i1 0 1 pro x x pro x x x j j1 pro x x 1,1 j 1 - do tabulky si zapíšeme seřazeé hodoty proměé, jejich četosti, relativí četosti a z ich odvodíme empirickou distribučí fukci:

10 F(x) Ig. Martia Litschmaová Origi álí data x i Seřaz eé hodoty a i Absolutí četosti seřazeých hodot i Relativí četosti seřazeých hodot p i Empirická dist. fukce F(a i ) / /11 1/ /11 / /11 3/ /11 5/ /11 6/ /11 7/ /11 8/ /11 9/ /11 10/11 35 Z defiice emp. dist. fukce F(x) tedy plye, že pro všecha x meší ež 19 je F(x) rova ule, pro x větší ež 19 a meší ebo rova je F(x) rova 1/11, pro x větší ež a meší ebo rova 7 je F(x) rova 1/11 + 1/11, atd. x ; ; ; 7 7 ; ; 35 F(x) 0 1/11 /11 3/11 5/11 x 35 ; ; 4 4 ; ; 47 ; ; F(x) 6/11 7/11 8/11 9/11 10/11 11/11 Empirická distribučí fukce 1, 1,0 0,8 0,6 0,4 0, 0, x.5. Firma vyrábějící tabulové sklo vyviula méě ákladou techologii pro zlepšeí odolosti skla vůči žáru. Pro testováí bylo vybráo 5 tabulí skla a rozřezáo a poloviu. Jeda polovia pak byla ošetřea ovou techologií, zatímco druhá byla poecháa jako kotrolí. Obě poloviy pak byly vystavey zvyšujícímu se působeí tepla, dokud epraskly. Výsledky byly ásledující: Mezí teplota (sklo prasklo) [ o C] Stará techologie x i Nová techologie y i

11 Porovejte obě techologie pomocí základích charakteristik exploratorí (průměru a rozptylu, popř. směrodaté odchylky). statistiky Řešeí: - Nejprve se pokusíme porovat obě techologie pouze za pomocí průměru: Průměr pro starou techologii: x x i i ,0 o C Průměr pro ovou techologii: y y i i ,6 o C Na základě vypočteých průměrů bychom mohli říci, že ovou techologii doporučujeme, poěvadž mezí teplota je při ové techologii téměř o 6 o C vyšší. A co a to míry variability? Stará techologie: Výběrový rozptyl: s x x x i i , , ,0 Výběrová směrodatá odchylka: ,3 o C xi x i 1 s x s x 916,3 30, 3 1 Nová techologie: Výběrový rozptyl: o C s y y y i i , , , ,4 o C

12 Teplota Ig. Martia Litschmaová Výběrová směrodatá odchylka: Mezí teplota yi y i1 s x s y 384,4 48, 8 1 o C 600 Tady pozor. Výběrový rozptyl (výběrová směrodatá odchylka) vyšel pro ovou techologii mohem vyšší ež pro techologii starou. Co to zameá? Podívejte se a grafické zázorěí aměřeých dat. 300 Stará Techologie Nová Mezí teploty pro ovou techologii jsou mohem rozptýleější, tz. že tato techologie eí ještě dobře zvládutá a její použití ám ezaručí zkvalitěí výroby. V tomto případě může dojít k silému zvýšeí, ale také k silému sížeí mezí teploty proto by se měla ová techologie ještě vrátit do vývoje. Zdůrazěme, že tyto závěry jsou staovey pouze a základě exploratorí aalýzy, statistika ám abízí exaktější metody pro rozhodutí takovýchto případů (testováí hypotéz), s imiž se sezámíte později..6. Následující data představují dobu čekáí [mi] zákazíka a obsluhu. Proveďte exploračí aalýzu pomocí Statgraphicsu Zadáí proměé: Řešeí daého problému ve Statgraphicsu: Chceme-li zadávat ručě ovou proměou, provedeme DC (dvojklik) a hlavičku sloupce a zadáme parametry proměé (ázev, popis (epovié), šířku a typ). Předastaveý typ je Numeric, tudíž jej emusíme měit

13 Exploratorí aalýza pro umerickou proměou: Textové i grafické výstupy popisé (exploratorí) statistiky získáme obdobě jako u kategoriálí proměé. Opět si projdeme jedotlivé výstupy exploratorí aalýzy

14 Tabular Optio V levém dolím okě ajdeme souhrou statistiku tj. vybraé charakteristiky příslušé umerické proměé (doby čekáí). Výběr základích charakteristik, které mají být zobrazey ám umoží RC a oblast souhré statistiky. Po jeho provedeí se ám objeví ásledující oko, v ěmž zvolíme požadovaé charakteristiky. Slovík ázvů jedotlivých charakteristik: Cout Average Media Mode Rozsah souboru (počet hodot) Průměr Mediá Modus - -

15 Geo. Mea Variace Std. Deviatio Geometrický průměr Rozptyl (výběrový) Směrodatá odchylka (výběrová) Std. Error Stadardí chyba s Mi. Max. Rage Lower Quartile Upper Quartile Iterquartile rage Skewess Std. Skewess Kurtosis Std. Kurtosis Miimum Maximum Rozpětí (maximum miimum) Dolí kvartil Horí kvartil Iterkvartilové rozpětí (IQR) Šikmost Stadardizovaá šikmost Špičatost Stadardizovaá špičatost Coeff. Of Var. Variačí koeficiet s x Sum Součet hodot Klikutím a ikou Tabular Optios (žlutá ikoa,. řádek,. zleva) se ám objeví abídka dalších textových výstupu. Kvatily Číslicový histogram Při popisé statistice ás z této abídky zajímá pouze možost volby zobrazeí kvatilů a číslicového histogramu

16 Zvolíme-li si zobrazeí kvatilů, objeví se ám textový výstup s hodotami deseti předastaveých kvatilů. Jejich výběr můžeme změit provedeme li RC a oblast, v íž jsou kvatily zobrazey a zvolíme-li Pae Optio. RC Zvolíme-li v Tabular Optios - Stem ad Leaf Display, získáme Číslicový histogram. Nyí se zaměříme a pravé horí oko, v ěmž ajdeme tzv. Bodový graf (azývaý také rozptylogram, aglicky Scatterplot). Na ose x jsou v ěm vyesey hodoty umerické proměé, a ose y je pořadí, v ěmž byly hodoty proměé zapsáy. Je tedy zřejmé, že bodový graf ám umožňuje vizuálí posouzeí rozptylu proměé. Chceme-li změit grafické parametry bodového grafu, provedeme RC a oblast grafu a požadovaé parametry astavíme v meu Graphics Optio

17 V pravém dolím rohu ajdeme Krabicový graf. Jeho grafické parametry můžeme obdobě jako u Bodového grafu astavit v meu Graphics Optio. Použité zkratky: DC RC dvojklik levým tlačítkem myši klikutí pravým tlačítkem myši - 5 -

Příklad statistické zpracování dat z dotazníku

Příklad statistické zpracování dat z dotazníku Příklad statistické zpracováí dat z dotazíku Proměá POČET ČLENŮ DOMÁCNOSTI - kardiálí, espojitá proměá, - otázka otevřeá. Frequecy Table for pocet_cleu_dom Value Frequecy Frequecy Frequecy Frequecy,3667,3667

Více

z možností, jak tuto veličinu charakterizovat, je určit součet

z možností, jak tuto veličinu charakterizovat, je určit součet 6 Charakteristiky áhodé veličiy. Nejdůležitější diskrétí a spojitá rozděleí. 6.1. Číselé charakteristiky áhodé veličiy 6.1.1. Středí hodota Uvažujme ejprve diskrétí áhodou veličiu X s rozděleím {x }, {p

Více

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz:

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz: Ig. Marta Ltschmaová Statstka I., cvčeí 1 TESTOVÁNÍ NEPARAMETRICKÝCH HYPOTÉZ Dosud jsme se zabýval testováím parametrcký hypotéz, což jsou hypotézy o parametrech rozděleí (populace). Statstckým hypotézám

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Náhodá veličia Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 45/004. Náhodá veličia Většia áhodých pokusů má jako výsledky reálá čísla. Budeme tedy dále áhodou veličiou rozumět proměou, která

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

ÚLOHA ČÍNSKÉHO LISTONOŠE, MATEMATICKÉ MODELY PRO ORIENTOVANÝ A NEORIENTOVANÝ GRAF

ÚLOHA ČÍNSKÉHO LISTONOŠE, MATEMATICKÉ MODELY PRO ORIENTOVANÝ A NEORIENTOVANÝ GRAF Úloha číského listooše ÚLOHA ČÍNSKÉHO LISTONOŠE, MATEMATICKÉ MODELY PRO ORIENTOVANÝ A NEORIENTOVANÝ GRAF Uvažujme situaci, kdy exstuje ějaký výchozí uzel a další uzly spojeé hraami (může jít o cesty, ulice

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

1. K o m b i n a t o r i k a

1. K o m b i n a t o r i k a . K o m b i a t o r i k a V teorii pravděpodobosti a statistice budeme studovat míru výskytu -pravděpodobostvýsledků procesů, které mají áhodý charakter, t.j. při opakováí za stejých podmíek se objevují

Více

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení Odhad parametru p biomického rozděleí a test hypotézy o tomto parametru Test hypotézy o parametru p biomického rozděleí Motivačí úloha Předpokládejme, že v důsledku realizace jistého áhodého pokusu P dochází

Více

Test hypotézy o parametru π alternativního rozdělení příklad

Test hypotézy o parametru π alternativního rozdělení příklad Test hypotézy o parametru π alterativího rozděleí příklad Podik předpokládá, že o jeho ový výrobek bude mít zájem 7 % osloveých domácostí. Proběhl předběžý průzkum, v ěmž bylo osloveo 4 áhodě vybraých

Více

17. Statistické hypotézy parametrické testy

17. Statistické hypotézy parametrické testy 7. Statistické hypotézy parametrické testy V této části se budeme zabývat statistickými hypotézami, pomocí vyšetřujeme jedotlivé parametry populace. K takovýmto šetřeím většiou využíváme ám již dobře zámé

Více

Úvod do zpracování měření

Úvod do zpracování měření Laboratorí cvičeí ze Základů fyziky Fakulta techologická, UTB ve Zlíě Cvičeí č. Úvod do zpracováí měřeí Teorie chyb Opakujeme-li měřeí téže fyzikálí veličiy za stejých podmíek ěkolikrát za sebou, dostáváme

Více

Pravděpodobnost a statistika - absolutní minumum

Pravděpodobnost a statistika - absolutní minumum Pravděpodobost a statistika - absolutí miumum Jaromír Šrámek 4108, 1.LF, UK Obsah 1. Základy počtu pravděpodobosti 1.1 Defiice pravděpodobosti 1.2 Náhodé veličiy a jejich popis 1.3 Číselé charakteristiky

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

1. Základy počtu pravděpodobnosti:

1. Základy počtu pravděpodobnosti: www.cz-milka.et. Základy počtu pravděpodobosti: Přehled pojmů Jev áhodý jev, který v závislosti a áhodě může, ale emusí při uskutečňováí daého komplexu podmíek astat. Náhoda souhr drobých, ezjistitelých

Více

Cvičení 3 - teorie. Teorie pravděpodobnosti vychází ze studia náhodných pokusů.

Cvičení 3 - teorie. Teorie pravděpodobnosti vychází ze studia náhodných pokusů. Cvičeí 3 - teorie Téma: Teorie pravděpodobosti Teorie pravděpodobosti vychází ze studia áhodých pokusů. Náhodý pokus Proces, který při opakováí dává ze stejých podmíek rozdílé výsledky. Výsledek pokusu

Více

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu.

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu. 2. URČITÝ INTEGRÁL 2. Určitý itegrál Průvodce studiem V předcházející kapitole jsme se sezámili s pojmem eurčitý itegrál, který daé fukci přiřazoval opět fukci (přesěji možiu fukcí). V této kapitole se

Více

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D.

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D. MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ PH.D. Obsah MNOŽINY.... ČÍSELNÉ MNOŽINY.... OPERACE S MNOŽINAMI... ALGEBRAICKÉ VÝRAZY... 6. OPERACE S JEDNOČLENY A MNOHOČLENY...

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

Semestrální projekt. do předmětu Statistika. Vypracoval: Adam Mlejnek 2-36. Oponenti: Patrik Novotný 2-36. Jakub Nováček 2-36. Click here to buy 2

Semestrální projekt. do předmětu Statistika. Vypracoval: Adam Mlejnek 2-36. Oponenti: Patrik Novotný 2-36. Jakub Nováček 2-36. Click here to buy 2 Semestrální projekt do předmětu Statistika Vypracoval: Adam Mlejnek 2-36 Oponenti: Patrik Novotný 2-36 Jakub Nováček 2-36 Úvod Pro vypracování projektu do předmětu statistika jsem si zvolil průzkum kvality

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují

Více

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly.

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly. 0. KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Dovedosti :. Chápat pojem faktoriál a ovládat operace s faktoriály.. Zát defiici kombiačího čísla a základí vlastosti kombiačích čísel. Ovládat jedoduché operace

Více

Cvičení z termomechaniky Cvičení 5.

Cvičení z termomechaniky Cvičení 5. Příklad V kompresoru je kotiuálě stlačová objemový tok vzduchu [m 3.s- ] o teplotě 20 [ C] a tlaku 0, [MPa] a tlak 0,7 [MPa]. Vypočtěte objemový tok vzduchu vystupujícího z kompresoru, jeho teplotu a příko

Více

4.5.9 Vznik střídavého proudu

4.5.9 Vznik střídavého proudu 4.5.9 Vzik střídavého proudu Předpoklady: 4508 Miulá hodia: Pokud se v uzavřeém závitu měí magetický idukčí tok, idukuje se v ěm elektrické apětí =. Př. 1: Vodorově orietovaá smyčka se pohybuje rovoměrě

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

Přednáška 5. Výběrová šetření, Exploratorní analýza

Přednáška 5. Výběrová šetření, Exploratorní analýza Přednáška 5 Výběrová šetření, Exploratorní analýza Pravděpodobnost vs. statistika Výběrová šetření aneb jak získat výběrový soubor Exploratorní statistika aneb jak popsat výběrový soubor Typy proměnných

Více

6 VYBRANÁ ROZDLENÍ DISKRÉTNÍ NÁHODNÉ VELIINY

6 VYBRANÁ ROZDLENÍ DISKRÉTNÍ NÁHODNÉ VELIINY 6 VYBRANÁ ROZDLENÍ DISKRÉTNÍ NÁHODNÉ VELIINY Rozdleí áhodé veliiy je edis, terým defiujeme ravdodobost jev, jež lze touto áhodou veliiou osat. Záladím rozdleím oisujícím výbry bez vraceí je hyergeometricé

Více

Vážeí zákazíci dovolujeme si Vás upozorit že a tuto ukázku kihy se vztahují autorská práva tzv. copyright. To zameá že ukázka má sloužit výhradì pro osobí potøebu poteciálího kupujícího (aby èteáø vidìl

Více

Vážeí zákazíci, dovolujeme si Vás upozorit, že a tuto ukázku kihy se vztahují autorská práva, tzv. copyright. To zameá, že ukázka má sloužit výhradì pro osobí potøebu poteciálího kupujícího (aby èteáø

Více

ij m, velikosti n je tvořen (n m) rozměr-ným polem dat x 11 ... x 12 ... x 22 x n1 ... x n2 7.1 Druhy korelačních koeficientů

ij m, velikosti n je tvořen (n m) rozměr-ným polem dat x 11 ... x 12 ... x 22 x n1 ... x n2 7.1 Druhy korelačních koeficientů 1 7 KORELACE Pro vyádřeí itezity vztahů ezi složkai ξ ξ -rozěrého áhodého vektoru 1 ξ se používá korelačích koeficietů Data tvoří áhodý výběr z -rozěrého rozděleí áhodého vektoru ξ Neuvažue se obyčeě a

Více

7. P o p i s n á s t a t i s t i k a

7. P o p i s n á s t a t i s t i k a 7. P o p i s á s t a t i s t i k a 7.. Pozámka: Při statistickém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákoitosti, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme

Více

Úvod do lineárního programování

Úvod do lineárního programování Úvod do lieárího programováí ) Defiice úlohy Jedá se o optimalizaí problémy které jsou popsáy soustavou lieárích rovic a erovic. Kritéria optimalizace jsou rovž lieárí. Promé v této úloze abývají reálých

Více

0. 4b) 4) Je dán úhel 3450. Urči jeho základní velikost a převeď ji na radiány. 2b) Jasný Q Q ZK T D ZNÁMKA. 1. pololetí 2 3 1 2 2 3 5 2 3 1 1

0. 4b) 4) Je dán úhel 3450. Urči jeho základní velikost a převeď ji na radiány. 2b) Jasný Q Q ZK T D ZNÁMKA. 1. pololetí 2 3 1 2 2 3 5 2 3 1 1 ) Urči záladí veliost úhlu v radiáech, víš-li, že platí: a) si cos 0. b) cos, Opravá zouša z matematiy 3SD (druhé pololetí) c) cotg 3 5b) ) Na možiě R řeš rovici cos cos 0. 4b) 3) Vzdáleost bodů AB elze

Více

Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi.

Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. SEMINÁRNÍ PRÁCE Zadání: Data: Statistické metody: Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. Minimálně 6 proměnných o 30 pozorováních (z toho 2 proměnné

Více

b c a P(A B) = c = 4% = 0,04 d

b c a P(A B) = c = 4% = 0,04 d Příklad 6: Z Prahy do Athé je 50 km V Praze byl osaze válec auta ovou svíčkou, jejíž životost má ormálí rozděleí s průměrem 0000 km a směrodatou odchylkou 3000 km Jaká je pravděpodobost, že automobil překoá

Více

Číslicové filtry. Použití : Analogové x číslicové filtry : Analogové. Číslicové: Separace signálů Restaurace signálů

Číslicové filtry. Použití : Analogové x číslicové filtry : Analogové. Číslicové: Separace signálů Restaurace signálů Číslicová filtrace Použití : Separace sigálů Restaurace sigálů Číslicové filtry Aalogové x číslicové filtry : Aalogové Číslicové: + levé + rychlé + velký dyamický rozsah (v amplitudě i frekveci) - evhodé

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

Úkol měření. Použité přístroje a pomůcky. Tabulky a výpočty

Úkol měření. Použité přístroje a pomůcky. Tabulky a výpočty Úkol měřeí ) Na základě vějšího fotoelektrického pole staovte velikost Plackovy kostaty h. ) Určete mezí kmitočet a výstupí práci materiálu fotokatody použité fotoky. Porovejte tuto hodotu s výstupími

Více

8. cvičení 4ST201-řešení

8. cvičení 4ST201-řešení cvičící 8. cvičeí 4ST01-řešeí Obsah: Neparametricé testy Chí-vadrát test dobréshody Kotigečí tabuly Aalýza rozptylu (ANOVA) Vysoá šola eoomicá 1 VŠE urz 4ST01 Neparametricé testy Neparametricétesty využíváme,

Více

ZÁKLADNÍ POJMY OPTIKY

ZÁKLADNÍ POJMY OPTIKY Záš pojmy A. Popiš aspoň jede fyzikálí experimet měřeí rychlosti světla. - viz apříklad Michelsoův, Fizeaův, Roemerův pokus. Defiuj a popiš fyzikálí veličiu idex lomu. - je to bezrozměrá fyzikálí veličia

Více

1.3. POLYNOMY. V této kapitole se dozvíte:

1.3. POLYNOMY. V této kapitole se dozvíte: 1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí

Více

š š ě š š ňí ě Í Í š Ž Č ťí ň ú š Č ú Č ě ě Ž ě ď š š ě ě š š š ú š š ě Ž Č ě š ě ě ě ě ě š Žň š ě ě š ě Ž ě Ž ň ě Ž ě š Ž ě š Ž š š Ž š š ěí ě š ěí ě ě ň ě ě ě ě ě š š ě ě ě ě š š š š ě ě ě Í ď Í š ě

Více

Výsledky této ásti regresní analýzy jsou asto na výstupu z poítae prezentovány ve form tabulky analýzy rozptylu.

Výsledky této ásti regresní analýzy jsou asto na výstupu z poítae prezentovány ve form tabulky analýzy rozptylu. Ig. Marta Ltschmaová Statstka I., cveí 4 JEDNODUCHÁ LINEÁRNÍ REGRESE asto chceme prozkoumat vztah mez dvma velam, kde jeda z ch, tzv. ezávsle promá x, má ovlvovat druhou, tzv. závsle promou Y. edpokládá

Více

OPTIMÁLNÍ FILTRACE METALURGICKÝCH SIGNÁLŮ POMOCÍ INFORMAČNÍCH KRITÉRIÍ

OPTIMÁLNÍ FILTRACE METALURGICKÝCH SIGNÁLŮ POMOCÍ INFORMAČNÍCH KRITÉRIÍ OPTIMÁLNÍ FILTRACE METALURGICKÝCH SIGNÁLŮ POMOCÍ INFORMAČNÍCH KRITÉRIÍ Ja Morávka Třiecký ižeýrig, a.s. Abstract Příspěvek popisuje jede přístup k optimálí filtraci metalurgických sigálů pomocí růzých

Více

KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA. Charakteristiky variability. Mgr. Jakub Němec. VY_32_INOVACE_M4r0120

KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA. Charakteristiky variability. Mgr. Jakub Němec. VY_32_INOVACE_M4r0120 KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Charakteristiky variability Mgr. Jakub Němec VY_32_INOVACE_M4r0120 CHARAKTERISTIKY VARIABILITY Charakteristika variability se určuje pouze u kvantitativních znaků.

Více

Á š š ý É Ř ě Í ý ý Í š ě ý š ý Ů š ý Í ž ý š ý ě Ž š ě ý ě ý ě ě ý Í Ž ě Í ÁŤ Ž š Í ý ěž ý Ů ý Ů ě Ž š Ť ě ěž ěž ěž ě ě Í ý š ý Í š ý Ž ý Ř š ň š Í ě ý ý ě š ě ý ý ě Ž ý ý ě ý Í ý ě Ž ý Ž ě ě Ž ý Ž ý

Více

HYPOTEČNÍ ÚVĚR. , kde v = je diskontní faktor, Dl počáteční výše úvěru, a anuita, i roční úroková sazba v procentech vyjádřená desetinným číslem.

HYPOTEČNÍ ÚVĚR. , kde v = je diskontní faktor, Dl počáteční výše úvěru, a anuita, i roční úroková sazba v procentech vyjádřená desetinným číslem. HYPTEČNÍ ÚVĚR Spláceí úvěru stejým splátkam - kostatí auta ÚLHA 1: Mladý maželský pár s dostačujícím příjmy (tz. a získáí hypotéčího úvěru) se rozhodl postavt s meší rodý domek. Podle předběžé kalkulace

Více

pracovní list studenta Acidobazické rovnováhy Odměrná analýza acidobazická titrace

pracovní list studenta Acidobazické rovnováhy Odměrná analýza acidobazická titrace praoví list studeta Aidobaziké rovováhy dměrá aalýza aidobaziká titrae ýstup RP: Klíčová slova: Marti Krejčí experimet umožňuje žákům pohopit hováí slabýh protolytů (kyseli a zásad ve vodýh roztoíh; žái

Více

Měřící technika - MT úvod

Měřící technika - MT úvod Měřící techika - MT úvod Historie Už Galileo Galilei zavádí vědecký přístup k měřeí. Jeho výrok Měřit vše, co je měřitelé a co eí měřitelým učiit platí stále. - jedotá soustava jedotek fyz. veliči - símače

Více

Ě Ř Ž ÁŘ Ě Ň Á Í Á ÁŽ ŮŽ ů Ž Ž ůž Ž ů ů Ž Ž Ž Ť Ž Ž Ž Ž ů ď ů ť ď ď Í Ž Ž Č ú ů Ž ď ú Ž Í ů Ž ú Ž Ž ů ů ů Ž ů Ž ů ť Ž Ž Ž Ž Ů ň ů ů Í Ž Ž ů ůž ť ÁŽ ť Í Ě Ř Č ů Ž Ž ů Ž ú Ž Í ÍÍ Ž Ž Ž Ž Ž Ž ů Ž Ž Ž Í Í

Více

Měření na trojfázovém transformátoru naprázdno a nakrátko.

Měření na trojfázovém transformátoru naprázdno a nakrátko. Úol: Měřeí a trojfázovém trasformátoru aprázdo a aráto. 1. Změřte a areslete charateristiy aprázdo trojfázového trasformátoru 2,, P, cos = f ( 1) v rozmezí 4-1 V. Zdůvoděte průběh charateristi 2 = f (

Více

VÝMĚNA VZDUCHU A INTERIÉROVÁ POHODA PROSTŘEDÍ

VÝMĚNA VZDUCHU A INTERIÉROVÁ POHODA PROSTŘEDÍ ÝMĚNA ZDUCHU A INTERIÉROÁ POHODA PROSTŘEDÍ AERKA J. Fakulta architektury UT v Brě, Poříčí 5, 639 00 Bro Úvod Jedím ze základích požadavků k zabezpečeí hygieicky vyhovujícího stavu vitřího prostředí je

Více

Ý Á Í č š Ž Ž ž č č č ž č č Ž č ň č š š č č č č Ž š č ž š š Ž š š č Í žš š ž č č č č š š č Í č Ž ž Ž č ž Ž š Í š š č š č š č Ž č č č Á č š č č ž č č š Š š š č Ó č č š Ž č Ď ž š č č š ž ž š č č č š š ž

Více

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1 Matice Matice Maticí typu m/ kde m N azýváme m reálých čísel a sestaveých do m řádků a sloupců ve tvaru a a a a a a M M am am am Prví idex i začí řádek a druhý idex j sloupec ve kterém prvek a leží Prvky

Více

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,

Více

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení.,

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení., Def: Vetorovým součiem vetorů u =(u, u, u 3 ) v = (v, v, v 3 ) zýváme vetor u v = (u v 3 u 3 v, u 3 v u v 3, u v u v ) Vět: Pro vetory i, j, ortoormálí báze pltí i i = j = i, i = j Vět: Nechť u v, w, jsou

Více

Matematika I. Název studijního programu. RNDr. Jaroslav Krieg. 2014 České Budějovice

Matematika I. Název studijního programu. RNDr. Jaroslav Krieg. 2014 České Budějovice Matematika I Název studijího programu RNDr. Jaroslav Krieg 2014 České Budějovice 1 Teto učebí materiál vzikl v rámci projektu "Itegrace a podpora studetů se specifickými vzdělávacími potřebami a Vysoké

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

Periodicita v časové řadě, její popis a identifikace

Periodicita v časové řadě, její popis a identifikace Periodicita v časové řadě, její popis a idetifikace 1 Periodicita Některé časové řady obsahují periodickou složku. Pomocí vybraých ástrojů spektrálí aalýzy budeme tuto složku idetifikovat. Mějme fukci

Více

é é ž é é ěž é é ž é ž š ý ž ě š ý ž ž é ž ž éž ě é é ěž é ž ě é é é é ž ý ž š ě ý ž ý é é ě Š š š š ě é š ě ě ěš š é š Á Š Í ě Š Í ň š Í ď Š é Š Í ý š š ň š š š ň ý ň ú ň Š Í š Š ě é Š ď ň ý Š Í ýš Í

Více

Distribuční funkce je funkcí neklesající, tj. pro všechna

Distribuční funkce je funkcí neklesající, tj. pro všechna Téma: Náhodná veličina, distribuční funkce a její graf, pravděpodobnostní funkce a její graf, funkce hustoty pravděpodobnosti a její graf, výpočet střední hodnoty a rozptylu náhodné veličiny 1 Náhodná

Více

Návod pro výpočet základních induktorů s jádrem na síťové frekvenci pro obvody výkonové elektroniky.

Návod pro výpočet základních induktorů s jádrem na síťové frekvenci pro obvody výkonové elektroniky. Návod pro cvičeí předmětu Výkoová elektroika Návod pro výpočet základích iduktorů s jádrem a síťové frekveci pro obvody výkoové elektroiky. Úvod V obvodech výkoové elektroiky je možé většiu prvků vyrobit

Více

š ý ě éří Č Íý ň Ř Š Í É ř é ý ě é ř ý ě é Í š éú Ž Č Š ř ř ý ě Š Š Ž ý ř ě Ý ě é ř ř ě ý ě é ř č ý ě ř š é ř ě ý ě é ř č ý ý č ý é č ž ě ý ě é ř ň ě ř č ř ý č ě ě š č ř š é ě Š ř ř é š ý ř ř ě ř ě é č

Více

1. Nakreslete všechny kostry následujících grafů: nemá žádnou kostru, roven. roven n,

1. Nakreslete všechny kostry následujících grafů: nemá žádnou kostru, roven. roven n, DSM2 Cv 7 Kostry grafů Defiice kostry grafu: Nechť G = V, E je souvislý graf. Kostrou grafu G azýváme každý jeho podgraf, který má stejou možiu vrcholů a je zároveň stromem. 1. Nakreslete všechy kostry

Více

ý ž é é é ýš Í Č Á Ž ě é ěž ý ý Ž ěž ý ú ě é ý ě ý ý Ž Ž ěž é é Ž é é ě ěš ě ýš é é ý ý ě š š ě ě Č é ě ú ěš ě é Ž ě š ů ě Ů Ř Č Ž Ý ů é é Ž é Ž é ě Ž ň ů ý Ú Č Ž ý š Ž š ě é é Ú é ů ý ě Ž ě ů Ž Ž ě Ú

Více

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde POLYNOM Zákldí pojmy Polyomem stupě zveme fukci tvru y ( L +, P + + + + kde,,, R,, N Čísl,,, se zývjí koeficiety polyomu Číslo c zveme kořeem polyomu P(, je-li P(c výrz (-c pk zýváme kořeový čiitel Vlstosti

Více

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY Statitické metody ve veřejé právě ŘEŠENÉ PŘÍKLADY Ig. Václav Friedrich, Ph.D. 2013 1 Kapitola 2 Popi tatitických dat 2.1 Tabulka obahuje rozděleí pracovíků podle platových tříd: TARIF PLAT POČET TARIF

Více

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications)

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications) Základy datové aalýzy, modelového vývojářství a statistického učeí (Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applicatios) Lukáš Pastorek POZOR: Autor upozorňuje, že se jedá

Více

IAJCE Přednáška č. 12

IAJCE Přednáška č. 12 Složitost je úvod do problematiky Úvod praktická realizace algoritmu = omezeí zejméa: o časem o velikostí paměti složitost = vztah daého algoritmu k daým prostředkům: časová složitost každé možiě vstupích

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

8. Základy statistiky. 8.1 Statistický soubor

8. Základy statistiky. 8.1 Statistický soubor 8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě

Více

Charakteristiky kategoriálních veličin. Absolutní četnosti (FREQUENCY)

Charakteristiky kategoriálních veličin. Absolutní četnosti (FREQUENCY) Charakteristiky kategoriálních veličin Absolutní četnosti (FREQUENCY) Charakteristiky kategoriálních veličin Relativní četnosti Charakteristiky kategoriálních veličin Relativní četnosti Charakteristiky

Více

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR Ze serveru www.czso.cz jsme sledovali sklizeň obilovi v ČR. Sklizeň z ěkolika posledích let jsme vložili do tabulky 10.10. V kapitole 7. Idexy

Více

20. Eukleidovský prostor

20. Eukleidovský prostor 20 Eukleidovský prostor V této kapitole budeme pokračovat ve studiu dalších vlastostí afiích prostorů avšak s tím rozdílem že místo obecého vektorového prostoru budeme uvažovat prostor uitárí Proto bude

Více

Í Č Á č ý ú Á ě č š ž č ě č ý ě ě š ů š ě Í Í Í č š ž č ě ů č č ě ě š ů ů ý č ý š š ý č š č ůž č ž č ůž ý š ý ň č č ž ž ů č ý š ý ž ů ý ě ý č ž ž ž ý ž š ý ě ý č ž š ý ž č ž ý ě ď ě ě ě ě ň ž č ě č Í Í

Více

š ě š ě ř š í ě í č í ř ě ě ě ě š ý ř čí ří ž í é á é ě é éďíž Ž ť í á ě ě áš Ř ř áš ě ž Ó č ěč ž č ě š í ě ří ú ý ří é á á á ž ž ž ř ž ř ý ě ý á á í ž Ž á íř ě č ž á á Ž ý š é ý ž ě ř č ě ú ý ř š ě í

Více

Ý Č ě ř Í Š Ý č ý é č š é ř Ž č ř ý ý š š é é é č š č ě ú é ř ě é é é ě š é ě é ě é ř č ý ě ě é ě ř ě č é é ě Í ý ý š ě ý ý č ž š ř ý š ě ě š č ž ř ě ě ě Í ý č ň š ě š ě é ý Ž é ě č ý ý ěč ý č é č ý ý

Více

Interval spolehlivosti pro podíl

Interval spolehlivosti pro podíl Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této

Více

ť Č á ě š é é ú á ň á á ě ě ě á ě é Č á é á á é š á š á á á š á á ž áš ž á é á ž á á é é ů á Ž á é ě á ž é ě ž ů ý ě ý ý é á ú ý á š ě á ě é ý á ý á ý ě ě á á Í ů Ž š á é á ú ý á š ě á ú š ě žá é š é é

Více

ý Á Ť ó ú Ě Á Á Ř Á Í š ě é ý ě ž Š ě é ě éž éž ě ž é ě ý ě ě š ů ý Ř Ě Ě ý é ě ů ů š ý ý é ě ě é é ě ě é ě ě é š ž ě ě ě ý ž Š ý ž ě ě ě ě ú é éž ě ě ě ě ě ěž š é é é ž ě Ě Á Í ě ě ý é ě ý ý ě é é é ů

Více

ř ě é Č ě Č ú ě ý ý Š ž é Š ž ú ě ý Č ž Č é é ó ó Ý é é ý ě ý Ž ě ř Ý Ť ó ú ó ó ó ř ž ó ť ď Á ý É Ň É ž ý ú ě ž Ý ř ž é é é ěž ě ž ů é óé ó ž Ý Ý ě Ý ů ý ě ř ž Ů ř ů šž ř ž ě é é é ě é ú š ó š ě ó ó ó

Více

Parametry kvality elektrické energie ČÁST 6: OMEZENÍ ZPĚTNÝCH VLIVŮ NA HROMADNÉ DÁLKOVÉ OVLÁDÁNÍ

Parametry kvality elektrické energie ČÁST 6: OMEZENÍ ZPĚTNÝCH VLIVŮ NA HROMADNÉ DÁLKOVÉ OVLÁDÁNÍ Podiková orma eergetiky pro rozvod elektrické eergie ČEZ Distribuce, E.ON CZ, E.ON Distribuce, PRE Distribuce, ČEPS, ZSE Parametry kvality elektrické eergie ČÁST 6: OMEZENÍ ZPĚTNÝCH VLIVŮ NA HROMADNÉ DÁLKOVÉ

Více

í é ě é é é ř é í í ř ř é í í é š ř í ý í ř í ěž ý ř ě é č ř í é ř ž ě ě ý é š ř í ř é í í ž š í í í ý é ý í í č Í ř š ý ý í č ššíč é č í ě é ž ř č ěž ý ř ě é í é Í é í č ý í í é š č í ř í é ě šíř í í

Více

Směrnice 1/2011 Statistické vyhodnocování dat, verze 4 Verze 4 je shodná se Směrnicí 1/2011 verze 3, pouze byla rozšířena o robustní analýzu

Směrnice 1/2011 Statistické vyhodnocování dat, verze 4 Verze 4 je shodná se Směrnicí 1/2011 verze 3, pouze byla rozšířena o robustní analýzu Směrce /0 Stattcké vyhodocováí dat, verze 4 Verze 4 e hodá e Směrcí /0 verze 3, ouze byla rozšířea o robutí aalýzu. Stattcké metody ro zkoušeí zůoblot Cílem tattcké aalýzy výledků zkoušek ř zkouškách zůoblot

Více

Testy statistických hypotéz

Testy statistických hypotéz Úvod Testy statstckých hypotéz Václav Adamec vadamec@medelu.cz Testováí: kvalfkovaá procedura vedoucí v zamítutí ebo ezamítutí ulové hypotézy v podmíkách ejstoty Testy jsou vázáy a rozděleí áhodých velč

Více

Matematická statistika

Matematická statistika Matematická statistika Daniel Husek Gymnázium Rožnov pod Radhoštěm, 8. A8 Dne 12. 12. 2010 v Rožnově pod Radhoštěm Osnova Strana 1) Úvod 3 2) Historie matematické statistiky 4 3) Základní pojmy matematické

Více

ť ť Ť Č ú Č ň ů Ž ě ů ě ě ě ě š Č ě Ž Ž ě š Č š Č ě Ž ž Č ě Ž š Ž ň Ž Íž ě Á ÁŘ Á ů Č ě Č ě Ž š ě Ž Ž ě ň Č ě Ž ů š ů ě ů Č Š ě š ů ě Ž Ú ě Í ě ě Ú ě š ň ž Č š š Ú ě š ů Í ě Ž ú ň ň ž Ž Ý š š Ý ě š ů ě

Více

Á ý Ř Ů ó Í ř ř ě é Í ž óý Í š Č ň ř ř é ě ž ó Í ř ě ř ě é ř ž é ž ž ů ž ř ů é é ú ř ě é ř Í é é š ě ě ý ý žé ě ž ř é ě ř Í ž é ů ě ž ý ě é ů ý ů ň ů ú ú é ú Í ř ů ú é é ú ú ú ú ě ú ř ř ě ú ú ž š ě ú é

Více

ÚKOL 2 1886 22 5,77 5,00 5 2,531,003,056 -,869,113

ÚKOL 2 1886 22 5,77 5,00 5 2,531,003,056 -,869,113 ÚKOL 2 Jméno a příjmení: UČO: Imatrik. ročník: Úkol 2.1: V souboru EVS99_cvicny.sav zjistěte, zdali rozložení názoru na to, kdo by měl být odpovědný za zajištění bydlení (proměnná q54h), je normální. Řešte

Více

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník 3 hodiny týdně PC a dataprojektor Kombinatorika Řeší jednoduché úlohy

Více

Modelování ve výpočtových software

Modelování ve výpočtových software Modelováí ve výpočtových software. cvičeí vstup/výstup dat v růzých formátech, operace s maticemi, matematické fukce ) vstup/výstup dat (biárí MAT, textový ASCII) save fileame load fileame save fileame

Více

CHEMOMETRIKA a STATISTIKA. Prozatímní učební text (srpen 2012) Miloslav Suchánek

CHEMOMETRIKA a STATISTIKA. Prozatímní učební text (srpen 2012) Miloslav Suchánek CHEMOMETRIKA a STATISTIKA Prozatímí učebí text (srpe 01) Miloslav Sucháek 1. Základí pojmy Při hodoceí aalytických metod a výsledků ebo při formulaci fyzikálě-chemických modelů popisujících vztahy mezi

Více

ú Ý É Ě ň ú ó Ř Á ň ň ň ú ť ó ň ú ň ň ň Č ň ú ú ť ň ú ú Ý ú Ú Ó Č ď ó Žň ó Š Ť ó ď ť Č ú Ž ú ú ú Č ď ó ň ú Ú Č ň ú ď Č ď ď ú ó ť ť Ň ň ť ú ú ú ú ó ú ó Č ú ň ň Ž Ú ú ú ň ť ň ú ň ú ň ň Č ň ň ó ú ň ó ú ň

Více

Ě Ý Í Č ě ř Ř Í Ý ě ý ě á ý ý ě šř ý Č ě ž á ý šť á Ž ř á Žďá ý ů ý á á ř ý ž á ě Í ě ý á ý ě á ý ý ř á Ž ř šť ř ě ř ě š šť á ů ů ář ý á ý ď ý ů ř ž ý ů ž á Č š ě ě ý á ž ů ř ř šř ý ž ž ř ž ě áš ě ý ý

Více

Ý Í Á Š Á Č ÉŠ Š Š Í Č ó ú š š š š Ť Čš š é š Ť ó é š š ú š Ú é š Š é š š ž š é š š ů é ů Éš š é š Š Č ď š š Ý ó Š ď ó Č Ú é š é š š Š ž ů Í é š ž ů ž ů ď š Í éš ď Č Ú Ý ž ů ž ů š ž ů Í ó ž ů Í š žá ů

Více

Posloupnosti a číselné řady. n + 1. n + 1 + n n + 1 + n. n n + 1 + n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b 2 + + b n) = 1 b

Posloupnosti a číselné řady. n + 1. n + 1 + n n + 1 + n. n n + 1 + n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b 2 + + b n) = 1 b Najděte itu Poslouposti a číselé řady ) + Protože + = + x ) + + =, je + + + + ) + = = 0 + + Najděte itu 3 si! + Protože je si! a 3 = 0, je 3 si! = 0 Najděte itu + a + a + + a + b + b, a

Více

ů š Č Í Í ě ž ě ú ě Ž ů ů ž ž ě ú ě ě Č ů Č ů Č ž ů ů š Č ů š ů ě ů ě ů ů š Č ů Ť ě š ů Č ě ů ů Č Č ů š š ů š š š ú ů Č ě ě ě ě ů ů š Č Á ů ů ě Á Č ů ů Č Č ů Á ů Á Č ě ě ě ě ě Ž ž ž ě ú ů š ě ě Í ě ě ě

Více

Aktivita 1 Seminář základů statistiky a workshop (Prof. Ing. Milan Palát, CSc., Ing. Kristina Somerlíková, Ph.D.)

Aktivita 1 Seminář základů statistiky a workshop (Prof. Ing. Milan Palát, CSc., Ing. Kristina Somerlíková, Ph.D.) Aktvta Semář základů tattky a workhop (Prof. Ig. Mla Palát, CSc., Ig. Krta Somerlíková, Ph.D.) Stattcké tříděí Základí metoda tattckého zpracováí. Sekupováí hodot proměé, které jou z hledka klafkačího

Více