17. Statistické hypotézy parametrické testy

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "17. Statistické hypotézy parametrické testy"

Transkript

1 7. Statistické hypotézy parametrické testy V této části se budeme zabývat statistickými hypotézami, pomocí vyšetřujeme jedotlivé parametry populace. K takovýmto šetřeím většiou využíváme ám již dobře zámé statistické itervalové odhady. 7. Testy o parametrech ormálího rozděleí V této části se budeme zabývat studiem případů, kdy testujeme základí parametry rozděleí N(m,s ). Kokrétě budeme kostruovat testy pro středí hodotu a rozptyl takovéto áhodé veličiy. 7.. Středí hodota m Na základě áhodého výběru = ( x,,x ), které pochází z populace popsaé rozděleím N(m,s ) budeme testovat hypotézu H : m = m, m je předem zadaé reálé číslo. Z kapitoly o itervalových odhadech víme, že základem všech kostrukcí odhadů středí hodoty bývá výběrový průměr X a jeho vlastosti. Právě z vlastostí výběrového průměru jsme kostruovali itervalové odhady a z těchto vlastostí yí odvodíme příslušé testové statistiky pro kokrétí alterativí statistické hypotézy H. Protože jsme při tvorbě itervalových odhadů rozlišovali případ zda je ám zám rozptyl rozděleí provedeme takovéto rozděleí i yí Parametr s je zám V tomto případě použijeme jako testovací statistiku rozděleí U X µ =., (7.) o kterém je zámo, že při platosti hypotézy H je typu N(,). Budeme li tedy vyšetřovat ejdříve případ pravostraé alterativí hypotézy tedy: H : m > m a hladiě výzamosti p získáme kritický obor = { u; u u -p }, kde u α je α % kvatil rozděleí N(,) a u je vypočteá hodota testové statistiky. V případě levostraé alterativí hypotézy H : m < m s použitím stejé testovací statistiky a hladiě výzamosti p získáme kritický obor = { u; u c u -p }. V posledím případě oboustraé alterativí hypotézy H : m π m, s použitím stejé testovací statistiky získáme a hladiě výzamosti p kritický obor = u; u u p, kde opět u α je α% kvatil rozděleí N(,) a u je opět vypočteá hodota - testové statistiky. Dále uvedeme ěkolik modelových příkladů k presetaci postupů a ke staoveí silofukce těchto hypotéz. Příklad 7. Byl provede áhodý výběr o rozsahu =5 prvků z populace N(m,). Testujme hypotézu H : m = 8 proti alterativí hypotéze H: m 8 a hladiě výzamosti 5%.

2 Pomocí áhodého výběru byl aleze výběrový průměr X = 8,8. Rozhoděte o platosti hypotézy H! Řešeí: Vzhledem k hladiě výzamosti, je staove kritický obor = { u; u,96 }. X µ 8,88 8 Staovíme hodotu testové statistiky pro áš případ u =. =. 5 =,984. Protože hodota testové statistiky eí v kritickém oboru emůžeme hypotézu H zamítout. Hodota silofukce je v tomto případě rova : µ µ µ µ -ß( µ ) = Φ. + up +Φ. + up. Pro jedotlivé hodoty m vypočteme hodotu β, v ásledující tabulce jsou tyto hodoty uvedey: µ β(µ ) 5, ,8995 7,99 8,95 9,99,8995,676958, ,9458 4,496 5,6776 Samozřejmě, že pro hodotu m = 8 je hodota β rova 95%, celkově je vidět, že hodoty chyby druhého druhu jsou pro stávající hodoty velmi epřízivé, s rostoucí vzdáleostí od testovaé hodoty β klesá. Jedozačým viíkem těchto výsledků je malý počet čleů výběru. Příklad 7. Výrobce tvrdí, že výrobek má rozměry 56, jedotky se směrodatou odchylkou, jedotky. Odběratel tvrdí, že rozměry jsou větší, proto echal přeměřit 7 áhodě vybraých výrobků a zjistil, že jejich průměrý rozměr byl 58,9 jedotek. Je tato hodota výběrového průměru, za předpokladu ormálího rozděleí a směrodaté odchylky rozměrů, jedotky, statisticky výzamě větší ež tvrdí výrobce? Řešeí prove dte a hladiě výzamosti %. Řešeí: Staovme ejdříve základí hypotézy: H : m c 56, a H : m > 56,. Testová statistika je i v tomto případě stejá, zjistíme tedy její hodoty 58,9 56,, 7 u =. 7 =.8,37=,7,, V tomto případě je kritický obor = { u; u,36 }, protože vypočítaá hodota se achází v kritickém oboru a hladiě výzamosti zamítáme hypotézu H, výrobky jsou tedy statisticky výzamě větší ež tvrdí výrobce.

3 7... Parametr s je ezámý Při praktických úlohách se ve většiě případů setkáváme spíše s případem, kdy hodoty parametru s ejsou zámy a můžeme z aměřeých údajů je odhadovat jeho skutečou hodotu. V tomto případě ( již a základě ašich zalostí z části bodového odhadu ) se jako testová statistika volí áhodá veličia t X µ s =. (7.) o které již z dřívějších kapitol víme, že je typu studetova rozděleí s - stupi volosti. Takováto veličia se v souladu s tradicí ozačuje písmekem t. Výraz s je klasická hodota statistického rozptylu. Vypišme yí kritické obory pro jedotlivé případy jedostraých resp. oboustraých hypotéz: Pravostraá alterativí hypotéza m > m = { tt ; t p}, hodota t -p je rova (-p)% kvatilu studetova rozděleí s (-) stupi volosti. Levostraá alterativí hypotéza m < m = tt t, při stejém ozačeí. { ; p} Oboustraá alterativí hypotéza m π m = t; t t p, začeí jako v předchozím. Pozameejme, že stejě jako v prví části je jedím z podstatých předpokladů to, že daá data jsou získáváa z populace ormálí a způsob výběru je áhodý! Příklad 7.3 Na základě áhodého měřeí jsme zjistili ásledující hodoty 6;9;; ;;;;3;4;4;4;4;5;6;6;7. Zjistěte, zda můžeme a hladiě výzamosti 5% rozhodout o tom, že středí hodota populace erová 5. Řešeí: Staovíme ejdříve hypotézy H : m =5 a H : m π 5. Protože z daých dat vyplývají ásledující údaje : = 6; X =,65; s=,849. Můžeme dále zjistit kritický obor pomocí áhodé veličiy studetova rozděleí s 5 stupi volosti = { t; t,95}, dosadíme tedy do testové statistiky (7.) a získáme ásledující, 65 5,375 hodoty t =. 6 =.4= 3,33, protože tato hodota -3,33 leží v kritickém,849,849 oboru přijímáme alterativí hypotézu H.. Pokud bychom hledali tzv. p hodotu ( p-value ) těchto dat ( jde o hodotu hladiy výzamosti při které bude poprvé přijata hypotéza H ), získali bychom v tomto případě p=,45, tato hodota je více ež polovičí ež byla uvedea úvodí testovaá hladia výzamosti.

4 Příklad 7.4 Po staoveí měřeí hodot vzdáleostí mezi dvěma sazeicemi a záhoě jsme získali ásledující hodoty : Ověřte a hladiě výzamosti 5% zda vzdáleosti mezi jedotlivými sazeicemi jsou vzdáleé ejvýše jedotek. Řešeí: Nejdříve staovíme opět testovaou a alterativí hypotézu. Zřejmě tedy bude H : m c a H : m>. V ašem případě máme tedy staoveou pravostraou alterativí = tt ; t = tt ;,74. hypotézu, kritický obor je tedy staove jako { } { } Z uvedeých hodot získáme opět základí hodoty = 8; X =,; s= 3,63. Pro další postup je uté vypočítat hodotu testové statistiky pro tato čísla, její velikost je rova t=-,8. Pro staoveí odpovědi a aší otázku yí ověříme, zda hodota vypočteé testové statistiky patří či epatří do kritického oboru. Vypočteá hodota epatří do kritického oboru, emůžeme tedy a hraici výzamosti 5% zamítout možost, že mezi sazeicemi je vzdáleost ejvýše jedotek. Pokud bychom hledali p-hodotu zjistili bychom, že je a úrovi čísla, Směrodatá odchylka s Směrodatá odchylka má pro ormálí rozděleí stejý výzam jako středí hodota. Oba tyto parametry sice ovlivňují hodoty ormálího rozděleí každý jiak, ale celkově je toto rozděleí dvouparametrické, potřebujeme proto zát oba parametry stejě dobře Při zámém parametru m V kapitole o bodovém odhadu směrodaté odchylky populace popsaé pomocí ormálího rozděleí jsme rozlišovali zda záme středí hodotu ormálího rozděleí či zda je ezáma. Chceme tedy testovat a základě áhodého výběru o prvcích z populace hypotézu H : s = s Jestliže byla středí hodota m populace záma potom vybíráme jako testovací statistiku áhodou veličiu,95 χ ( X µ )., i = (7.3) která má při platosti hypotézy H rozděleí c ( chi kvadrát ) s stupi volosti. Podobě jako v předchozích případech můžeme staovovat kritické obory v závislosti a hodotách alterativí hypotézy. Pravostraá alterativí hypotéza s > s. = χ ; χ χ ( p; ) p% kvatilu rozděleí chi kvadrát s stupi volosti. Je zřejmé, že kritický obor je pak dá { } Levostraá alterativí hypotéza s < s. = χ ; χ χ ( p; ) Kritickým oborem v tomto případě je { }, kde c (p;) je rove

5 Oboustraá alterativí hypotéza s π s. Kritický obor je v tomto případě složitější, jde o dva disjuktí itervaly p p ; χ ; = χ ; ; Příklad 7.5 Při kotrolím měřeí byly zjištěy ásledující hodoty,6;,64;,57;,6;,59;,57;,6;,59 za platosti, že středí hodota je rova,5. Rozhoděte, zda je platá : a) H : s =,3 proti H : s π,3 b) H : s =,3 proti H : s <,3. Ověřeí proveďte a hladiě výzamosti 5%. Řešeí: Nejdříve staovíme základí hodoty = 8; X =, 65; s=, 539; s =, 64. Část a) je případem oboustraé hypotézy, staovíme tedy kritický obor pro teto případ. = ; χ p χ p; = ( ;,8) ( 7,535; ). Dále musíme ještě zjistit hodotu testovací statistiky (7.3), po dosazeí vychází c = 3,64. Protože se eachází v kritickém oboru emůžeme hypotézu H zamítout. V případě části b) staovíme opět kritický obor = { χ ; χ χ ( p; ) } = (;.733). Protože hodota testovací statistiky leží i v tomto případě mimo kritický obor emůžeme ai yí hypotézu H zamítout Při ezámém parametru m Při práci s ezámou populací většiou její středí hodotu m ezáme, proto je více reálý případ, který budeme vyšetřovat v této části. Podle kapitoly 8., v íž jsme probírali bodové odhady je áhodá veličia ( Xi X) χ = ( )., (7.4) typu c s (-) stupi volosti. Podobě jako v předchozí podkapitole tohoto tvrzeí využijeme ke kostrukci vhodé testovací statistiky. Chceme tedy testovat a základě áhodého výběru o prvcích z populace hypotézu H : s = s Jestliže byla středí hodota m populace záma potom vybíráme jako testovací statistiku áhodou veličiu ( Xi X) χ = ( )., (7.5) která má při platosti hypotézy H rozděleí c ( chi kvadrát ) s (-) stupi volosti. Proti předchozí části tedy získáváme statistiku stejého typu, ale protože musíme z dat získávat avíc iformaci o odhadu parametru m je počet stupňů volosti o jede meší.

6 Podobě jako v předchozích případech můžeme staovovat kritické obory v závislosti a hodotách alterativí hypotézy. Pravostraá alterativí hypotéza s > s. = χ ; χ χ ( p ; ) rove p% kvatilu rozděleí chi kvadrát s (-) stupi volosti. Je zřejmé, že kritický obor je pak dá { } Levostraá alterativí hypotéza s < s. = χ ; χ χ ( p ; ) Kritickým oborem v tomto případě je { } Oboustraá alterativí hypotéza s π s. Kritický obor je v tomto případě složitější, jde o dva disjuktí itervaly p p ; χ ; = χ ; ;, kde c (p;-) je Příklad 7.6 Měřeím jistého výrobku jsme získali ásledující hodoty: 5,5; 5,; 5,4; 5,4; 5,. Předpokládejme, že výsledky těchto měřeí jsou áhodé veličiy N(m,s ). Testujme ásledující případy : a) H : s =,3 a H : s <,3 b) H : s =,3 a H : s π,3 Řešeí: a) Alterativí hypotéza je levostraá, tedy jejím kritickým oborem je = { χ ; χ χ ( p ; ) } = (;,7). Musíme yí zjistit hodotu testovací statistiky z výrazu uvedeém v (7.5). Po dosazeí aměřeých hodot ( Xi X), 96 získáváme χ = ( ). = 7. = 4,5733. Protože tato hodota,3 eleží v kritickém oboru hypotézu H emůžeme zamítout. b) Alterativí hypotéza v tomto případě je oboustraá, kritický obor sestrojíme podle výše uvedeých pravidel. = ( ;,69) ( 6,3; ). Protože ai v tomto případě eleží hodota testovací statistiky v kritickém oboru hypotézu H ezamítáme. V další části se budeme zabývat srováváím dvou áhodých veliči typu N(m,s ). Osvojíme si metody, které se obecě azývají t-test a F-test. V rámci ich jsou velmi výzamým faktorem rozděleí studetovo a Fischer Sedecorovo Testy pro podíl rozptylů Nechť a jsou áhodé výběry z rozděleí N(m ;s ) a N(m ;s ) s počtem čleů výběru resp.. Chceme zjistit itervalový odhad pro podíl rozptylů áhodých veliči

7 tedy. Při staoveí tohoto itervalového odhadu budeme vycházet z kapitoly 3 ze vztahu (3.). Dále je uto rozlišovat dva růzé případy: Potom je áhodá veličia Středí hodoty m a m jsou zámé F = ( X µ ) i. i ( X µ ). je Fischer Sedecorovo rozděleí s ( ; ) stupi volosti. V tomto případě je proto oboustraý (-p) % iterval spolehlivosti rove: ( X i µ ) ( X i µ ).. p Fp ( Xi µ ) ( X i µ ) F < <, (7.6) kde hodoty F p jsou příslušé kvatily rozděleí F( ; ). Z těchto tvrzeí vyjdeme ve staoveí základích hypotéz. Staovujeme hypotézu H : s = s., alterativí hypotézu H staovujeme jako s π s. Za předpokladu, že platí hypotéza H je zřejmě podíl ( X µ ) i i ( X µ ) itervalu Fp; F p. Tedy kritickým oborem je v tomto případě sjedoceí itervalů: W = ; Fp F p;. prvkem

8 7..3. Středí hodoty m a m jsou ezámé Při tvorbě takového itervalu spolehlivosti vycházíme opět z vlastostí F- rozděleí. Náhodá veličia F = ( X X ) i ( ). s i ( X X ) ( ). s je potom Fischer Sedecorovo rozděleí s ( -; -) stupi volosti. Kostrukce oboustraého ( p )% itervalu spolehlivosti v tomto případě je velmi podobá kostrukci uvedeé v předchozí části : ( X i X) ( X i X) s s.. =. p p p p ( X ) ( i X X i X) =. < < (7.7), F F s F F s kde hodoty F p jsou kvatily F rozděleí s ( -; - ) stupi volosti. Podobě jako v předchozí části staovujeme hypotézu H : s = s., alterativí hypotézu H staovujeme jako s π s. Za předpokladu, že platí hypotéza H je zřejmě podíl ( X X ) i = s i X ( X ) s prvkem itervalu Fp; F p. Tedy kritickým oborem je i v tomto případě sjedoceí itervalů: W = ; Fp F p;. Oba případy se liší použitím áhodých veliči F- rozděleí o růzých stupích volosti. Práce s oběma předchozími hypotézami se obecě azývá F test. Rozhodujeme v ěm o tom, zda můžeme přijmout či vyvrátit rovost s = s a daé hladiě výzamosti. Teto test se užívá velmi často v regresí aalýze, v t testu a v aalýze rozptylu ( ANOVA ). Velmi důležitými parametrickými testy jsou tzv. t testy, pomocí ichž zjišťujeme, zda dvě áhodé veličiy mají stejé středí hodoty Testy o shodě středích hodot dvou ormálích rozděleí Jak už jsme uvedli dříve budeme v této části testovat základí hypotézu H :m = m. Jako alterativí hypotézu můžeme volit buď jedostraé ebo oboustraé hypotézy.

9 Nechť tedy podobě jako v předchozí části jsou a áhodé výběry z rozděleí N(m ;s ) a N(m ;s ) s počtem čleů výběru resp.. V celé této části budeme vyšetřovat hypotézy a hladiě výzamosti p. V dalším musíme rozlišovat ěkolik růzých případů Rozptyly populací s a s jsou zámé Již z předchozích kapitol je zámo, testové kritérium U = X X + (7.8), je typu N(;). Odtud můžeme odvodit kritické obory pro případy jedotlivých alterativích hypotéz :. H : m > m. W = < u p ; ). H : m < m. W = ( ; u p > 3. H : m m. W = ( ; u > < u ; ) p p Ovšem případy, kdy jsou zámy rozptyly populací jsou velmi řídké, proto větší uplatěí mají testy, kdy příslušé hodoty rozptylů populací ejsou zámy. Příklad 7.7 Rozhoděme a hladiě výzamosti, zda výsledky testů v jedé škole jsou ižší ež výsledky testů ve škole druhé. Provedli jsme áhodý výběr 5 studetů v prví škole a 4 studetů ve škole druhé. Průměré výsledky testů studetů prví školy byly 75 bodů a druhé školy 8 bodů. Z dřívějších testů jsou zámy rozptyly obou škol s = 48 a. Řešeí: Testovaá statistika H : m = m a zřejmě H : m < m. Dosadíme tedy do (7.8) a 75 8 u = = 3,549. Podle předchozího je pro teto případ alterativí hypotézy kritický obor W = ( ;,645 >. Hodota testové statistiky patří tedy do kritického oboru, takže zamítáme testovaou hypotézu H a přijímáme hypotézu alterativí tj. výsledky druhé školy mají větší bodové ohodoceí. Příklad 7.8 Rozhoděte a hladiě výzamosti %, zda jsou shodé vzdáleosti dojezdu dvou typů peumatik. Prví typ jsme testovali v 5 kusech a průměrá vzdáleost dojezdu čiila 5 km ; druhý typ jsme testovali 5 kusů s průměrým dojezdem 3 km. Rozptyl dojezdu prví peumatik s = 4 km a druhých peumatik s = 56 km.

10 Řešeí: Testovaá statistika H : m = m a zřejmě H : m πm. Opět dosadíme do vztahu 5 (7.8) u = = 95,85. Vzhledem k oboustraému testu je hodota 99,5% kvatilu N(,) rova,58. Tedy hodota leží v kritickém oboru ( leží v kritickém oboru i pro případ jedostraého testu, kdy m < m ). Proto hypotézu H zamítáme a přijímáme hypotézu H Rozptyly populací jsou ezámé, ale jsou si rovy V tomto případě použijeme opět metodu vedoucí a testovou statistiku: t = X X S ( x). + (7.9) Následující hodota S(x) se azývá společý výběrový rozptyl a je vážeým průměrem výběrových rozptylů S (x) a S (x) s vahami a -, tedy jeho hodota je rova ( ). S ( x) + ( ). S ( x) S( x) = (7.). + Náhodá veličia (7.9) je při platosti H studetovo rozděleí s + stupi volosti. Nyí již tedy můžeme určit kritické obory pro růzé formulace alterativích hypotéz H.. H : m > m. W = <t ; ) + ; p. H : m < m. 3. H : m m. W = ( ; t + p > ; W = ( ; t > < t ; ) p p + ; + ; K tomu abychom mohli rozhodout, že ezámé rozptyly s a s si jsou rovy musíme použít v tomto případě F test viz Uvedeme opět ěkolik příkladů pro tuto situaci. Příklad 7.9 Ve dvou prodejách jsme zjišťovali cey určitého typu produktu, získali jsme ásledující výsledky: = 8, x = 4, 74, s = 55,4 = 3, x = 7,97, s = 789,83 Předpokládáme ormalitu uvedeých dat, ověřte shodu středích hodot ce v obou prodejách. Řešeí:

11 Nejdříve použijeme F test a ověřeí shody rozptylů ce v obou prodejách. Hodota testovací statistiky pro F test je v ašem případě rova 55,4 F = =, ,83 Tato hodota eleží v kritickém oboru F testu. Na hladiě,5 jsme tedy eprokázali to, že by se rozptyly ce v obou prodejách lišily. Nyí tedy využijeme statistiku (7.9) ke staoveí rozdílu mezi středími hodotami. 4,74 7,97 t = =, , Kritické hodota pro oboustraý test je rova,3697. Tedy test eprokázal a hladiě výzamosti,5 mezi ceami žádý rozdíl. Příklad 7. V podiku byly zkoumáy dva odlišé techologické postupy. Máme a hladiě výzamosti,5 zjistit, zda se od sebe liší! Dále ásledují celkem tuy výroby prvím a druhým postupem vždy za jedu směu:.. techologický techologický postup postup 6,3 6,5 5,8 6, 4,9 6,7 5,3 5,8 6 4,5 5,7 5,6 5,4 4,8 6,3 5 5,8 4,9 4,8 4,6 6,7 3,8 5,6 6,3 Řešeí: Prvím krokem bude porováí rozptylů obou techologických postupů. Z daých hodot zjistíme, že s =,5744, = 4; s =, 658, =. Hodota testové,5744 statistiky je proto rova F = =, Tato hodota eleží opět v kritickém, 658 oboru F testu, emůžeme tedy zamítou hypotézu H o rovosti obou rozptylů. Postupujeme jako v předchozím případě, zjistíme hodotu testové statistiky t =,555. Ověříme si kritické hodoty studetova rozděleí s stupi volosti ( jde o oboustraý test ) :,7388. Z těchto hodot vyplývá, že a hladiě výzamosti,5 elze zamítout hypotézu o shodých výsledcích obou techologických postupů.

12 7..5 Rozptyly ejsou zámé a ejsou si rovy V tomto případě pro malé hodoty a použijeme ásledující postup. Místo předchozího dvouvýběrového t testu používáme jedé z alterativ :. Cochra Coxův test - vypočteme: s s S = +, dále * X Y T = a koečě t S H zamíteme, jestliže T * * s s. ( ). ( α) t α + t * = s s + t ( v tomto případě jde o oboustraý test ).. Hypotézu. Welchův test: Nejdříve určíme aproximaci stupňů volosti s s + NW =, toto číslo většiou zaokrouhlujeme dolu a ejbližší celé kladé s s + číslo. Vypočteme opět * T jako v předchozím způsobu a porováme s N W ( ) t α. 3. Satterthwaiteův test. Opět určíme aproximaci stupňů volosti s s + NS =. Výsledek opět zaokrouhlíme dolu a ejbližší celé kladé s s číslo. Vypočteme opět * T jako v předchozím způsobu a porováme s N S ( ) Hladia každého z těchto tří testů je přibližě rova a. t α. Příklad 7. Pole stejých rozměrů byla upravea dvěma růzými způsoby. Výsledé parametry sklizí jsou ásledující = 3, x = 3, s =, 78; = 59, x = 8,3, s =,56. Zjistěte, zda obě úpravy pole vedou ke stejým výsledkům! Řešeí : Nejdříve určíme hodotu F testu, číselě je rova, Pro daé stupě volosti leží toto číslo v kritickém oboru F testu. Tedy zamítáme hypotézu H o stejých rozptylech. ( p value =,35 ). Budeme tedy určovat hodotu statistiky T* = -78,545. Hodoty jedotlivých t* jsou postupě pro metodu.,95 ; pro metodu.,989 a koečě pro metodu 3.,988. Pokud bychom tedy zvolili libovolou z výše uvedeých metod, dospěli bychom k zamítutí možosti o stejých výsledcích.

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

Interval spolehlivosti pro podíl

Interval spolehlivosti pro podíl Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této

Více

8 Průzkumová analýza dat

8 Průzkumová analýza dat 8 Průzkumová aalýza dat Cílem průzkumové aalýzy dat (také zámé pod zkratkou EDA - z aglického ázvu exploratory data aalysis) je alezeí zvláštostí statistického chováí dat a ověřeí jejich předpokladů pro

Více

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika Co e to statistika? Statistické hodoceí výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Statistika e ako bikiy. Odhalí téměř vše, ale to edůležitěší ám zůstae skryto. (autor ezámý) Statistika uda e, má

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C) Přijímací řízeí pro akademický rok 24/ a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata C) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

Neparametrické metody

Neparametrické metody I. ÚVOD Neparametrické metody EuroMISE Cetrum v Neparametrické testy jsou založey a pořadových skórech, které reprezetují původí data v Data emusí utě splňovat určité předpoklady vyžadovaé u parametrických

Více

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY Statitické metody ve veřejé právě ŘEŠENÉ PŘÍKLADY Ig. Václav Friedrich, Ph.D. 2013 1 Kapitola 2 Popi tatitických dat 2.1 Tabulka obahuje rozděleí pracovíků podle platových tříd: TARIF PLAT POČET TARIF

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

7. P o p i s n á s t a t i s t i k a

7. P o p i s n á s t a t i s t i k a 7. P o p i s á s t a t i s t i k a 7.. Pozámka: Při statistickém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákoitosti, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme

Více

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ 4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ 77 4. ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu

Více

t-test, Studentův párový test Ing. Michael Rost, Ph.D.

t-test, Studentův párový test Ing. Michael Rost, Ph.D. Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se

Více

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti 1 Základí statistické zpracováí dat 1.1 Základí pojmy Populace (základí soubor) je soubor objektů (statistických jedotek), který je vymeze jejich výčtem ebo charakterizací jejich vlastostí, může být proto

Více

STATISTIKA PRO EKONOMY

STATISTIKA PRO EKONOMY EDICE UČEBNÍCH TEXTŮ STATISTIKA PRO EKONOMY EDUARD SOUČEK V Y S O K Á Š K O L A E K O N O M I E A M A N A G E M E N T U Eduard Souček Statistika pro ekoomy UČEBNÍ TEXT VYSOKÁ ŠKOLA EKONOMIE A MANAGEMENTU

Více

8. Základy statistiky. 8.1 Statistický soubor

8. Základy statistiky. 8.1 Statistický soubor 8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě

Více

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications)

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications) Základy datové aalýzy, modelového vývojářství a statistického učeí (Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applicatios) Lukáš Pastorek POZOR: Autor upozorňuje, že se jedá

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu.

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu. KVALIMETRIE Miloslav Sucháek 16. Statistické metody v metrologii a aalytické chemii Řešeé příklady a CD-ROM v Excelu Eurachem ZAOSTŘENO NA ANALYTICKOU CHEMII V EVROPĚ Kvalimetrie 16 je zatím posledí z

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu ÚROKVÁ SAZBA A VÝPOČET BUDOUÍ HODNOTY. Typy a druhy úročeí, budoucí hodota ivestice Úrok - odměa za získáí úvěru (cea za službu peěz) Ročí úroková sazba (míra)(i) úrok v % z hodoty kapitálu za časové období

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

AMC/IEM J - HMOTNOST A VYVÁŽENÍ

AMC/IEM J - HMOTNOST A VYVÁŽENÍ ČÁST JAR-OPS 3 AMC/IEM J - HMOTNOST A VYVÁŽENÍ ACJ OPS 3.605 Hodoty hmotostí Viz JAR-OPS 3.605 V souladu s ICAO Ae 5 a s meziárodí soustavou jedotek SI, skutečé a omezující hmotosti vrtulíků, užitečé zatížeí

Více

9.1.13 Permutace s opakováním

9.1.13 Permutace s opakováním 93 Permutace s opakováím Předpoklady: 906, 9 Pedagogická pozámka: Obsah hodiy přesahuje 45 miut, pokud emáte k dispozici další půlhodiu, musíte žáky echat projít posledí dva příklady doma Př : Urči kolik

Více

STUDIE METODIKY ZNALECKÉHO VÝPOČTU EKONOMICKÉHO NÁJEMNÉHO Z BYTU A NĚKTERÝCH PRINCIPŮ PŘI STANOVENÍ OBVYKLÉHO NÁJEMNÉHO Z BYTU. ČÁST 2 OBVYKLÉ NÁJEMNÉ

STUDIE METODIKY ZNALECKÉHO VÝPOČTU EKONOMICKÉHO NÁJEMNÉHO Z BYTU A NĚKTERÝCH PRINCIPŮ PŘI STANOVENÍ OBVYKLÉHO NÁJEMNÉHO Z BYTU. ČÁST 2 OBVYKLÉ NÁJEMNÉ Prof. Ig. Albert Bradáč, DrSc. STUDIE METODIKY ZNALECKÉHO VÝPOČTU EKONOMICKÉHO NÁJEMNÉHO Z BYTU A NĚKTERÝCH PRINCIPŮ PŘI STANOVENÍ OBVYKLÉHO NÁJEMNÉHO Z BYTU. ČÁST 2 OBVYKLÉ NÁJEMNÉ Příspěvek vazuje publikovaý

Více

1 Trochu o kritériích dělitelnosti

1 Trochu o kritériích dělitelnosti Meu: Úloha č.1 Dělitelost a prvočísla Mirko Rokyta, KMA MFF UK Praha Jaov, 12.10.2013 Růzé dělitelosti, třeba 11 a 7 (aeb Jak zfalšovat rodé číslo). Prvočísla: které je ejlepší, které je ejvětší a jak

Více

STATISTICKÉ TESTY VÝZNAMNOSTI

STATISTICKÉ TESTY VÝZNAMNOSTI STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená

Více

ř ú ú Š Í Á É ř ř ř é é ř ř š é ř ř š ř é ž é ž š é š é é ř ů ž ž ř é ř ů é é ž é ř é é ř é ú é é ž é é š ň é ř š é š é Ť é ř ů ž ž ď ř é é é ž ř é Š ů é ř é ř é Š ú ř Í ž ž ř ř Í é š ž é ř Ť š ř ř ř š

Více

ň ý ě ý ý ý ě ň ý ě ý Ú ú ň ň ý ě ý ó ž ý ň ě ě ě ú ú Ř ň ň ý ě ý ě ě ž ý ž ě ý ě ý ě ě ů ě Ů Č Í Ě Á Á Í ě ě ě ě Ž Ů ú ě ě ě Ú ě ů ě ý ě ě ú ň ý ě Ů ž ů ž ě ý ý ý ý ě Č Č ě Č ě ů ý ě ý ý ž ě ě ž ů ž ě

Více

ě ě ú ě ě ě ě ě ň ě ň ů ě ů Ý ě ě ů ň ě Í ě ň ě ě Ž ě ň ě ě ú ů ú ě ě ě ú ě ě ě ě ě ě ů ě ů ě ě ú ů ě ě ě Ž ů ě ě ú Ž Ž Ú ě ě ě ě Ž Ž ě ť Ž Í ě Ž ě Ž Ž ů ěž ů ěž ě Í Ú ů ě ů ě Ž Ž Ž ě ě ě ů ě ě ě ě ě ů

Více

9.1.12 Permutace s opakováním

9.1.12 Permutace s opakováním 9.. Permutace s opakováím Předpoklady: 905, 9 Pedagogická pozámka: Pokud echáte studety počítat samostatě příklad 9 vyjde tato hodia a skoro 80 miut. Uvažuji o tom, že hodiu doplím a rozdělím a dvě. Př.

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Veterinární a farmaceutická univerzita Brno. Základy statistiky. pro studující veterinární medicíny a farmacie

Veterinární a farmaceutická univerzita Brno. Základy statistiky. pro studující veterinární medicíny a farmacie Veteriárí a farmaceutická uiverzita Bro Základy statistiky pro studující veteriárí medicíy a farmacie Doc. RNDr. Iveta Bedáňová, Ph.D. Prof. MVDr. Vladimír Večerek, CSc. Bro, 007 Obsah Úvod.... 5 1 Základí

Více

POZN AMKA K V YPO CTU BAYESOVSKEHO RIZIKA Ales LINKA TU Liberec, KPDM Abstrakt. V teto praci porovame dva bayesovske odhady fukce spolehlivosti v expoecialm rozdele z pohledu bayesovskeho rizika vypo-

Více

Číselné řady. 1 m 1. 1 n a. m=2. n=1

Číselné řady. 1 m 1. 1 n a. m=2. n=1 Číselé řady Úvod U řad budeme řešit dva typy úloh: alezeí součtu a kovergeci. Nalezeí součtu (v případě, že řada koverguje) je obecě mohem těžší, elemetárě lze sečíst pouze ěkolik málo typů řad. Součet

Více

Systém intralaboratorní kontroly kvality v klinické laboratoři (SIKK)

Systém intralaboratorní kontroly kvality v klinické laboratoři (SIKK) Systém itralaboratorí kotroly kvality v kliické laboratoři (SIKK) Doporučeí výboru České společosti kliické biochemie ČLS JEP Obsah: 1. Volba systému... 2 2. Prováděí kotroly... 3 3. Dokumetace výsledků

Více

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů Semárky, předášky, bakalářky, testy - ekoome, ace, účetctví, ačí trhy, maagemet, právo, hstore... PODNIKOVÁ EKONOMIKA 3. Cea ceých papírů Ceé papíry jsou jedím ze způsobů, jak podk může získat potřebý

Více

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH ECHNICKÝ AUDI VODÁRENSKÝCH DISRIBUČNÍCH SYSÉMŮ Ig. Ladislav uhovčák, CSc. 1), Ig. omáš Kučera 1), Ig. Miroslav Svoboda 1), Ig. Miroslav Šebesta 2) 1) 2) Vysoké učeí techické v Brě, Fakulta stavebí, Ústav

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

É č š ó š ý ž č ý ý ó ó ó ó ě ó ě č ó č ě č ž ý č ý ý ž č ó š č ý Ý ý š š š č Ň š ý Ě ň ó ý ž ó ž Ť Ť ó ý ý ý Ť ý Ú ý ý č č ě ý š ý ž ž č č ó ž šš č ě ě ě ó ž Ý ý ý ó ě č š ě ý č ž š ý č ý š ě ý š ě ý

Více

-1- Finanční matematika. Složené úrokování

-1- Finanční matematika. Složené úrokování -- Fiačí ateatika Složeé úrokováí Při složeé úročeí se úroky přičítají k počátečíu kapitálu ( k poskytutí úvěru, k uložeéu vkladu ) a společě s í se úročí. Vzorec pro kapitál K po letech při složeé úročeí

Více

Téma 6: Indexy a diference

Téma 6: Indexy a diference dexy a dferece Téma 6: dexy a dferece ředáška 9 dvdálí dexy a dferece Základí ojmy Vedle elemetárího statstckého zracováí dat se hromadé jevy aalyzjí tzv. srováváím růzých kazatelů. Statstcký kazatel -

Více

APLIKOVANÁ STATISTIKA

APLIKOVANÁ STATISTIKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA MANAGEMENTU A EKONOMIKY VE ZLÍNĚ APLIKOVANÁ STATISTIKA FRANTIŠEK PAVELKA PETR KLÍMEK ZLÍN 000 Recezoval: Haa Lošťáková Fratšek Pavelka, Petr Klímek, 000 ISBN 80 4

Více

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty)

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty) (variata s odděleým hodoceím ivestičích ákladů vyaložeých a jedotlivé privatizovaé objekty) Vypracoval: YBN CONSULT - Zalecký ústav s.r.o. Ig. Bedřich Malý Ig. Yvetta Fialová, CSc. Václavské áměstí 1 110

Více

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh:

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh: Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT 5. temtický okruh: POSLOUPNOSTI A FINANČNÍ MATEMATIKA vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z

Více

Aplikace marginálních nákladů. Oceňování ztrát v distribučním rozvodu

Aplikace marginálních nákladů. Oceňování ztrát v distribučním rozvodu Apliace margiálích áladů Oceňováí ztrát v distribučím rozvodu Učebí text předmětu MES Doc. Ig. J. Vastl, CSc. Celové ročí álady a ztráty N P ( T ) z z sj z wj Kč de N z celové ročí álady a ztráty *Kč+

Více

Zobrazení čísel v počítači

Zobrazení čísel v počítači Zobraeí ísel v poítai, áklady algoritmiace Ig. Michala Kotlíková Straa 1 (celkem 10) Def.. 1 slabika = 1 byte = 8 bitů 1 bit = 0 ebo 1 (ve dvojkové soustavě) Zobraeí celých ísel Zobraeí ísel v poítai Ke

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Měření na D/A a A/D převodnících

Měření na D/A a A/D převodnících Měřeí a D/A a A/D převodících. Zadáí A. Na D/A převodíku ealizovaém pomocí MDAC 8: a) Změřte závislost výstupího apětí převodíku v ozsahu až V a zvoleé vstupí kombiaci sousedích kódových slov. Měřeí poveďte

Více

, jsou naměřené a vypočtené hodnoty závisle

, jsou naměřené a vypočtené hodnoty závisle Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,

Více

STATISTIKA. Základní pojmy

STATISTIKA. Základní pojmy Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci

Více

ZÁKLADY DISKRÉTNÍ MATEMATIKY

ZÁKLADY DISKRÉTNÍ MATEMATIKY ZÁKLADY DISKRÉTNÍ MATEMATIKY Michael Kubesa Text byl vytvoře v rámci realizace projektu Matematika pro ižeýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), a kterém se společě podílela Vysoká škola báňská

Více

PříkladykecvičenízMMA ZS2013/14

PříkladykecvičenízMMA ZS2013/14 PříkladykecvičeízMMA ZS203/4 (středa, M3, 9:50 :20) Pozámka( ):Pokudebudeuvedeojiakbudemevždypracovatsprostoryadtělesem T= R.Ve všech ostatích případech(tj. při T = C), bude těleso explicitě specifikováo.

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testování hypotéz na základě jednoho a dvou výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/004. Testování hypotéz Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru,

Více

ů Ť ě Á Ř ž ó ě Ž ž ž ž ě ě ž ě ž ž ě ě ž Č ůž ě ě ž ě ů ě ě ú ú ě ě ě ž ě ě ž ě ž Š Č ů ž ó ž ů ě ů ž ů ž ů ů ž ž ě ů ě ž ů ž ů ů ž ě ů Ž ž Ž ě ě ě Š ě ó ě ě ě ě ě ě ů ů Š ě Ó ú Ť ě ěž ž ě ú ěž úě ěž

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ČÍSELNÉ OBORY vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z mtemtiky školí rok 204/205

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

Statistická analýza dat

Statistická analýza dat INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Statstcká aalýza dat Učebí texty k semář Autor: Prof. RNDr. Mla Melou, DrSc. Datum: 5.. 011 Cetrum pro rozvoj výzkumu pokročlých řídcích a sezorckých techologí CZ.1.07/.3.00/09.0031

Více

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY. Přírodovědecká fakulta ANALÝZA DAT. 2. upravené vydání. Josef Tvrdík

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY. Přírodovědecká fakulta ANALÝZA DAT. 2. upravené vydání. Josef Tvrdík UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT. upraveé vydáí Josef Tvrdík OSTRAVSKÁ UNIVERZITA 008 OBSAH: Úvod... 3 Parametrcké testy o shodě středích hodot... 4. Jedovýběrový t-test...

Více

stavební obzor 1 2/2014 11

stavební obzor 1 2/2014 11 tavebí obzor /04 Exploratorí aalýza výběrového ouboru dat pevoti drátobetou v tlau Ig. Daiel PIESZKA Ig. Iva KOLOŠ, Ph.D. doc. Ig. Karel KUBEČKA, Ph.D. VŠB-TU Otrava Faulta tavebí Věrohodé vyhodoceí experimetálích

Více

ř ě é ř š ž ř ý é ů ý é š ž ř é ě ě ň ž ř é ř ř ý ř Ý é Ý Ý ú é ř ř ě é ž ů Á ž Č é ť Ú ýš é ž ž ú é ú š ý ž ž Ž é ě ě é ě ř ě ů ě é é ú ě Ť é ě é ě ý ř ž ý ž ř ě š Ť ž ě é ý ě é ž ž ť ě š é ě é š ě š

Více

BIVŠ. Pravděpodobnost a statistika

BIVŠ. Pravděpodobnost a statistika BIVŠ Pravděpodobost a statstka Úvod Skrpta Pravděpodobost a statstka jsou učebím tetem pro stejojmeý kurz magsterského studa Bakovího sttutu vysoké školy Kurzy Pravděpodobost a statstka a avazující kurz

Více

UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesné výchovy

UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesné výchovy UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesé výchovy VYBRANÉ NEPARAMETRICKÉ STATISTICKÉ POSTUPY V ANTROPOMOTORICE Zdeěk Havel Davd Chlář 0 VYBRANÉ NEPARAMETRICKÉ

Více

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY.

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY. OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY. Ig.Karel Hoder, ÚAMT-VUT Bro. 1.Úvod Optimálí rozděleí ákladů a vytápěí bytového domu mezi uživatele bytů v domě stále podléhá

Více

Matematicko-fyzikální fakulta Univerzita Karlova. Diplomová práce. Renata Sikorová

Matematicko-fyzikální fakulta Univerzita Karlova. Diplomová práce. Renata Sikorová Matematicko-fyzikálí fakulta Uiverzita Karlova Diplomová práce e Reata Sikorová Obor: Učitelství matematika - fyzika Katedra didaktiky matematiky Vedoucí práce: RNDr. Jiří Kottas, CSc. i Prohlašuji, že

Více

1.1 Definice a základní pojmy

1.1 Definice a základní pojmy Kaptola. Teore děltelost C. F. Gauss: Matematka je královou všech věd a teore čísel je králova matematky. Základím číselým oborem se kterým budeme v této kaptole pracovat jsou celá čísla a pouze v ěkterých

Více

pravděpodobnostn podobnostní jazykový model

pravděpodobnostn podobnostní jazykový model Pokročilé metody rozpozáváířeči Předáška 8 Rozpozáváí s velkými slovíky, pravděpodobost podobostí jazykový model Rozpozáváí s velkým slovíkem Úlohy zaměřeé a diktováíči přepis řeči vyžadují velké slovíky

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA RVDĚODONOST STTISTIK Gymázium Jiřího Wolkera v rostějově Výukové materiály z matematiky pro vyšší gymázia utoři projektu Studet a prahu. století - využití ICT ve vyučováí matematiky a gymáziu Teto projekt

Více

č úč ř ú úč é š ř úč ř ář ž úč úč ř ň á č á á á ř á ř ř ř úč Č ář é úč é á á ř á č úč š ř áš á á á č úč š ř úč ř č á úč é úč á č á á š ř á č Í š ř č úč č ž á é á é š é úč ď ž č Ýé ř á é ř úč úč ř ž ď š

Více

Biostatistika Cvičení 7

Biostatistika Cvičení 7 TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,

Více

5. Výpočty s využitím vztahů mezi stavovými veličinami ideálního plynu

5. Výpočty s využitím vztahů mezi stavovými veličinami ideálního plynu . ýpočty s využití vztahů ezi stavovýi veličiai ideálího plyu Ze zkušeosti víe, že obje plyu - a rozdíl od objeu pevé látky ebo kapaliy - je vyeze prostore, v ěž je ply uzavře. Přítoost plyu v ádobě se

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

Testy pro porovnání vlastností dvou skupin

Testy pro porovnání vlastností dvou skupin Testy pro porovnání vlastností dvou skupin Petr Pošík Části dokumentu jsou převzaty (i doslovně) z Mirko Navara: Pravděpodobnost a matematická statistika, https://cw.felk.cvut.cz/lib/exe/fetch.php/courses/a6m33ssl/pms_print.pdf

Více

Posloupnosti na střední škole Bakalářská práce

Posloupnosti na střední škole Bakalářská práce MASARYKOVA UNIVERZITA V BRNĚ Přírodovědecká fkult Ktedr mtemtiky Poslouposti středí škole Bklářská práce Bro 00 Kteři Rábová Prohlášeí Prohlšuji, že tto bklářská práce je mým původím utorským dílem, které

Více

I Z klad pojmy teorie pravd podobosti { eoci l u eb text pro p edm t MATEMATIKA V, FS,FM TUL, ( drob chyby ejsou vylou ey) P. Volf, b eze 999 N hod pokus, syst m jev P edm tem teorie pravd podobosti je

Více

ú Í ŤÍ ď š ě ě ř šť Á Š É Š Ě š ě Č Č š ě é éř Í ě éč éř É šť ř é ě ý é Ž ů ů ň Č Č Č Š ř ý Ó ý š ě ý ř é ě ý Í ž š é š ě ě š ě é é ý é ě ý Ž éř Ž Š Ž ř Šť éř Í ř Č Č Č ě ý éř Í Ž ě ě ý éř Í ř šť ěř é

Více

Ý úř ř é ř ř Č Ž Á Í ř ě ř ř ú ů ů ř ě é ř ěř ř ř ř ř Č ú ř ě ř ř ř ú ů ů ř ě ů ř é ř é é é ř ě é ř é é é é ř é ř é ě ú ě ú é ř ě é ú ř ě ě ř Ú š ú š ěž é ú é Č é ř ž ě ů ě š ě ř ů ž é ž ě ů ž ž é úř ř

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR Středí hodoty Artmetcý průměr vážeý ze tříděí Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR Výzam a užtí vážeého artmetcého průměru uážeme a ásledujících příladech Přílad 0 Ve frmě Gama Blatá máme soubor

Více

Optimalizace portfolia

Optimalizace portfolia Optmalzace portfola ÚVOD Problémy vestováí prostředctvím ákupu ceých papírů sou klasckým tématem matematcké ekoome. Celkový výos z portfola má v době rozhodováí o vestcích povahu áhodé velčy, eíž rozložeí

Více

Výroční zpráva fondů společnosti Pioneer investiční společnost, a.s. - neauditovaná

Výroční zpráva fondů společnosti Pioneer investiční společnost, a.s. - neauditovaná Výročí zpráva fodů společosti Pioeer ivestičí společost, a.s. - eauditovaá Obsah 1. Účetí závěrka: Pioeer Sporokoto, Pioeer obligačí fod, Pioeer růstový fod, Pioeer dyamický fod, Pioeer akciový fod, BALANCOVANÝ

Více

ď ž Č č č ě Ů š ž Ů Ů Ů ě Ů Ů ě ů Úč ě ě š Š ů Ů ú Ů ěž Ů ě ě Ů č ě Ů ÚČ Č ě č Úč č č š ě Ů ě ě úč č š č Č č Ů č č ÚČ ž š č ů č č Ž ň ž č ě ž ÚČ Č č č č š č ě Ú úč Ů ž ě š Ů ě Ů č š Ů č Í Ů č Ů ě č č ů

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad Metody vyhodoceí efektvost vestc Časová hodota peěz Metody vyhodoceí Časová hodota peěz Prostředky, které máme k dspozc v současost mají vyšší hodotu ež prostředky, které budeme mít k dspozc v budoucost.

Více

IV. CVIENÍ ZE STATISTIKY

IV. CVIENÍ ZE STATISTIKY IV. CVIENÍ ZE STATISTIKY Vážení studenti, úkolem dnešního cviení je nauit se analyzovat data kvantitativní povahy. K tomuto budeme opt používat program Excel 2007 MS Office. 1. Jak mžeme analyzovat kvantitativní

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků 1 Pops statstcých dat 1.1 Pops omálích a ordálích zaů K zobrazeí rozděleí hodot omálích ebo ordálích zaů lze použít tabulu ebo graf rozděleí četostí. Tuto formu zobrazeí lze dooce použít pro číselé zay,

Více

Laboratorní práce č. 4: Úlohy z paprskové optiky

Laboratorní práce č. 4: Úlohy z paprskové optiky Přírodí ědy moderě a iteraktiě FYZKA 4. ročík šestiletého a. ročík čtyřletého studia Laboratorí práce č. 4: Úlohy z paprskoé optiky G Gymázium Hraice Přírodí ědy moderě a iteraktiě FYZKA 3. ročík šestiletého

Více

5 Funkce. jsou si navzájem rovny právě tehdy, když se rovnají jejich.

5 Funkce. jsou si navzájem rovny právě tehdy, když se rovnají jejich. Fukce. Základí pojmy V kpt.. jsme mluvili o zobrazeí mezi možiami AB., Připomeňme, že se jedá o libovolý předpis, který každému prvku a A přiřadí ejvýše jede prvek b B. Jsou-li A, B číselé možiy, azýváme

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

Základní pojmy kombinatoriky

Základní pojmy kombinatoriky Základí pojy kobiatoriky Začee příklade Příklad Máe rozesadit lidí kole kulatého stolu tak, aby dva z ich, osoby A a B, eseděly vedle sebe Kolika způsoby to lze učiit? Pro získáí odpovědi budee potřebovat

Více