Vojtěch Janoušek: III. Statistické zpracování a interpretace analytických dat

Rozměr: px
Začít zobrazení ze stránky:

Download "Vojtěch Janoušek: III. Statistické zpracování a interpretace analytických dat"

Transkript

1 Vojěch Janoušek: III. Sascké zpracování a nerpreace analyckých da

2 Úvod III. Zpracování a nerpreace analyckých da Sascké vyhodnocení analyckých da Zdroje chyb, přesnos a správnos analýzy Sysemacké chyby, náhodné chyby Odhady sřední hodnoy a směrodané odchylky Grafcká prezenace da Zákon o šíření chyb Deekční lmy Sascké zpracování da

3 Sascké zpracování analyckých da Chyby měření sysemacké chyby (míra správnos měření accuracy) náhodné chyby (míra přesnos precson) hrubé chyby (odlehlé hodnoy oulers) Sascké zpracování da

4 Sascké zpracování analyckých da a) obě analýzy nesprávné, XRF nepřesná b) obě analýzy správné, XRF nepřesná Skuečná hodnoa je 40 ppm. (Pos, 987) Sascké zpracování da

5 Sascké zpracování analyckých da Sysemacké chyby lze esova pomocí sasckých esů, např. Dxonův, χ chyby meody (neadekvános použého modelu pro daný expermen, ) chyby měřdel (nepřesná kalbrace, nepřesný přísroj, ) chyby pozorování (nepřesnos v odečíání, ) chyby př vyhodnocování (zaokrouhlování, chyby použých konsan) Sascké zpracování da

6 Sascké zpracování analyckých da Náhodné chyby kolísají náhodně co do velkos znaménka nedají se předvída a jsou popsány určým pravděpodobnosním rozdělením náhodná velčna spojá/nespojá frekvenční křvka: graf hodno pozorování x versus jejch čenos (spojá/nespojá) odhad paramerů rozdělení pomocí sřední hodnoy (μ) a směrodané odchylky (S) Sascké zpracování da

7 Sascké zpracování analyckých da Normální rozdělení Inervaly spolehlvos pro μ ± 68.7 % ± % ± % Sascké zpracování da

8 Sascké zpracování analyckých da Odhady sřední hodnoy Armecký průměr x n n x Geomercký průměr n g n x Sascké zpracování da

9 Sascké zpracování analyckých da Odhady sřední hodnoy Medán hodnoa přesně uprosřed rozdělení čenosí (dělí frekvenční křvku na dvě polovny o sejném poču hodno, j. n/) Modus nejčasější hodnoa (maxmum frekvenční křvky) Sascké zpracování da

10 Sascké zpracování analyckých da Odhad směrodané odchylky Směrodaná odchylka pro malý poče měření se n nahrazuje n- S n n ( x x) Relavní směrodaná odchylka S r S x.00% Sascké zpracování da

11 Sascké zpracování analyckých da Odhad směrodané odchylky II. Směrodaná odchylka armeckého průměru (sandard error of he mean) S x S n n.( n ) n ( x x) Sascké zpracování da

12 Sascké zpracování analyckých da Hmoová spekromere (Thrlwall 99) odhad přesnos měření směrodaná odchylka armeckého průměru ( s.e.) odhad správnos měření opakovaná měření sandardu, jeho směrodaná odchylka Sascké zpracování da

13 Sascké zpracování analyckých da Grafcká prezenace Hsogramy absoluní (relavní) čenos Sascké zpracování da

14 Sascké zpracování analyckých da Grafcká prezenace Krabcový graf (boxplo, box and whskers plo) Box and percenle plo Sascké zpracování da

15 Sascké zpracování analyckých da Grafcká prezenace Srpplo... ad Sascký jazyk R (Ihaka a Genleman, 996) Sascké zpracování da

16 Sascké zpracování da Zákon o šíření chyb x f x f. Zákon o šíření chyb 3 3 * * + + ± + ± Sčíání, odčíání hodno zaížených chybou:

17 Sascké zpracování da Zákon o šíření chyb * * + + ± ± Násobení, dělení hodno zaížených chybou: Šíření chyb př násobení konsanou: c c.. * * ± ±

18 Zákon o šíření chyb Vážený průměr: ± w w ± w kde váha w : w Sascké zpracování da

19 Zákon o šíření chyb Porovnávání sáří, zaížených chybou: Porovnává se rozdíl obou sáří Δ a chyba ohoo rozdílu na zvolené hladně významnos k. Pokud: Δ k Δ lze považova obě sáří za sascky sejná Sascké zpracování da

20 Zákon o šíření chyb Z daného hornnového komplexu byla získána sáří 000 ± 00 a 00 ± 50 ml. le. Určee chybu jejch rozdílu a zda jsou sascky sejná na hladně významnos 95 % Spočěe jejch vážený průměr a jeho chybu Sascké zpracování da

21 Sascké zpracování da : Ma, ano : 60 ± 90 Ma () Zákon o šíření chyb ± ± w w w w x f x f. 3 3 * * + + ± + ± k Δ

22 Deekční lmy Sgnál pozadí je charakerzován sřední hodnoou a směrodanou odchylkou Poom: B x B xb xb xb xb B B B +0 B opmscký odhad spodního lmu sanovelnos je uváděný např. výrobc někerých analyckých přísrojů. spodní lm deekce je vhodný pro kvalavní nebo semkvanavní analýzu. spodní lm sanovelnos odpovídá nejmenšímu sgnálu, kerý je možno kvanavně měř. lm kvanfkace je používán míso spodního lmu sanovelnos např. př právních sporech nebo v komerčních posudcích. Sascké zpracování da

23 Použá a doporučená leraura IHAKA, R. & GENTLEMAN, R., 996. R: A language for daa analyss and graphcs. Journal of Compuaonal and Graphcal Sascs, 5, MELOUN, M. & MILITKÝ, J., 00. Sascké kompendum zpracování analyckých da. Academa Praha.. POTTS, P. J., 987. A Handbook of Slcae Rock Analyss:Blacke & Son Ld., Glasgow and London, -6. ROCK, N. M. S. e al Nonparamerc esmaon of averages and errors for small daa-ses n soope geoscence: a proposal. Chemcal Geology (Isoope Geoscence Secon), 66, ROCK, N. M. S., 988. Numercal Geology. A Source Gude, Gloassary and Selecve Bblography o Geologcal Uses of Compuers and Sascs. Lecure Noes n Earh Scences 8:Sprnger, Berln, -47. THIRLWALL, M. F., 99. Long-erm reproducbly of mulcollecor Sr and Nd soope rao analyss. Chemcal Geology (Isoope Geoscence Secon), 94, Sascké zpracování da

ANALÝZA ZPOŽDĚNÍ PŘI MODELOVÁNÍ VZTAHŮ MEZI ČASOVÝMI ŘADAMI

ANALÝZA ZPOŽDĚNÍ PŘI MODELOVÁNÍ VZTAHŮ MEZI ČASOVÝMI ŘADAMI Polcká ekonome 49:, sr. 58-73, VŠE Praha,. ISSN 3-333 Rukops ANALÝZA ZPOŽDĚNÍ PŘI MODELOVÁNÍ VZAHŮ MEZI ČASOVÝMI ŘADAMI Josef ARL, Šěpán RADKOVSKÝ, Vsoká škola ekonomcká, Praha, Česká národní banka, Praha.

Více

8. Měření kinetiky dohasínání fluorescence v časové doméně

8. Měření kinetiky dohasínání fluorescence v časové doméně 8. Měření kneky dohasínání fluorescence v časové doméně Kneka dohasínání fluorescence Po excac vzorku δ-pulsem se hladna S 1 depopuluje podle dn( ) = ( k k ) n( ) d F + N Pronegrováním a uvážením, že měřená

Více

Analýza časových řad. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p

Analýza časových řad. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p Analýza časových řad Informační a komunikační echnologie ve zdravonicví Definice Řada je posloupnos hodno Časová řada chronologicky uspořádaná posloupnos hodno určiého saisického ukazaele formálně je realizací

Více

5. MĚŘENÍ KMITOČTU a FÁZOVÉHO ROZDÍLU

5. MĚŘENÍ KMITOČTU a FÁZOVÉHO ROZDÍLU 5. MĚŘENÍ KMIOČU a FÁZOVÉHO ROZDÍLU Měření kmioč: zdroje ealonového kmioč, přímé měření osciloskopem, elekronické analogové kmioměry a vibrační kmioměr, číače (měření f přímo, měření, průměrování, možnos

Více

T t. S t krátkodobé náhodná složka. sezónní. Trend + periodická složka = deterministická složka

T t. S t krátkodobé náhodná složka. sezónní. Trend + periodická složka = deterministická složka Analýza časových řad Klasický přísup k analýze ČŘ dekompozice časové řady - rozklad ČŘ na složky charakerizující různé druhy pohybů v ČŘ, keré umíme popsa a kvanifikova rend periodické kolísání cyklické

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK Základy ekonomerie Heeroskedasicia Cvičení 7 Zuzana Dlouhá Gauss-Markovy předpoklady Náhodná složka: Gauss-Markovy předpoklady. E(u) = 0 náhodné vlivy se vzájemně vynulují. E(uu T ) = σ I n konečný

Více

Výkonnost a spolehlivost číslicových systémů

Výkonnost a spolehlivost číslicových systémů Výkonnos a spolehlivos číslicových sysémů Úloha Generování a zpracování náhodných čísel Zadání 9 Trojúhelníkové rozdělení Jan Kupka A65 kupka@sudens.zcu.cz . Zadání vyvoře generáor rozdělení jako funkci

Více

DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE. y y

DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE. y y Předmě: Ročník: Vvořil: Daum: MATEMATIKA ČTVRTÝ Mgr Tomáš MAŇÁK 5 srpna Název zpracovaného celku: DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE je monoónní na celém svém deiničním oboru D

Více

RŮSTOVÉ MODELY ČESKÉHO STRAKATÉHO SKOTU

RŮSTOVÉ MODELY ČESKÉHO STRAKATÉHO SKOTU RŮSTOVÉ MODELY ČESKÉHO STRAKATÉHO SKOTU Helena Nešeřilová 1, Jan Pulkrábek 2 1 Česká zemědělská universia v Praze 2 Výzkumný úsav živočišné výroby, Praha-Uhříněves Anoace: Na souboru býků českého srakaého

Více

STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ

STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ Saické a dnamické vlasnosi paří k základním vlasnosem regulovaných sousav, měřicích přísrojů, měřicích řeězců či jejich čásí. Zaímco saické vlasnosi se projevují

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Unverza Tomáše Ba ve Zlíně ABOATONÍ VIČENÍ EEKTOTEHNIKY A PŮMYSOVÉ EEKTONIKY Název úlohy: Zpracoval: Měření čnného výkonu sřídavého proudu v jednofázové sí wamerem Per uzar, Josef Skupna: IT II/ Moravčík,

Více

13. OSCILOSKOPY, DALŠÍ MĚŘICÍ PŘÍSTROJE A SENZORY

13. OSCILOSKOPY, DALŠÍ MĚŘICÍ PŘÍSTROJE A SENZORY 13. OSCILOSKOPY, DALŠÍ MĚŘICÍ PŘÍSTROJE A SENZORY analogový osciloskop (základní paramery, blokové schéma, spoušěná časová základna princip synchronizace, pasivní sonda k osciloskopu, dvoukanálový osciloskop

Více

UMĚLÉ NEURONOVÉ SÍTĚ V CHEMII

UMĚLÉ NEURONOVÉ SÍTĚ V CHEMII UMĚLÉ NEURONOVÉ SÍTĚ V CHEMII doc. RNDr. Vlasimil Dohnal, Ph.D. Podpora přednášky kurzu Mezioborové dimenze vědy doc. RNDr. Vlasimil Dohnal, Ph.D. Kaedra chemie PřF UHK Příklady aplikací ANN QSAR a QSPR

Více

Úloha V.E... Vypař se!

Úloha V.E... Vypař se! Úloha V.E... Vypař se! 8 bodů; průměr 4,86; řešilo 28 sudenů Určee, jak závisí rychlos vypařování vody na povrchu, kerý ao kapalina zaujímá. Experimen proveďe alespoň pro pě různých vhodných nádob. Zamyslee

Více

KINEMATIKA. 1. Základní kinematické veličiny

KINEMATIKA. 1. Základní kinematické veličiny KINEMATIKA. Základní kinemaické veličiny Tao čá fyziky popiuje pohyb ěle. VZTAŽNÁ SOUSTAVA je ěleo nebo ouava ěle, ke kerým vzahujeme pohyb nebo klid ledovaného ělea. Aboluní klid neexiuje, proože pohyb

Více

FINANČNÍ MATEMATIKA- ÚVĚRY

FINANČNÍ MATEMATIKA- ÚVĚRY Projek ŠABLONY NA GVM Gymnázium Velké Meziříčí regisrační číslo projeku: CZ.1.07/1.5.00/4.0948 IV- Inovace a zkvalinění výuky směřující k rozvoji maemaické gramonosi žáků sředních škol FINANČNÍ MATEMATIKA-

Více

Stochastické modelování úrokových sazeb

Stochastické modelování úrokových sazeb Sochasické modelování úrokových sazeb Michal Papež odbor řízení rizik 1 Sochasické modelování úrokových sazeb OBSAH PŘEDNÁŠKY Úvod do problemaiky sochasických procesů Brownův pohyb, Wienerův proces Ioovo

Více

Využijeme znalostí z předchozích kapitol, především z 9. kapitoly, která pojednávala o regresní analýze, a rozšíříme je.

Využijeme znalostí z předchozích kapitol, především z 9. kapitoly, která pojednávala o regresní analýze, a rozšíříme je. Pravděpodobnos a saisika 0. ČASOVÉ ŘADY Průvodce sudiem Využijeme znalosí z předchozích kapiol, především z 9. kapioly, kerá pojednávala o regresní analýze, a rozšíříme je. Předpokládané znalosi Pojmy

Více

( ) ( ) NÁVRH CHLADIČE VENKOVNÍHO VZDUCHU. Vladimír Zmrhal. ČVUT v Praze, Fakulta strojní, Ústav techniky prostředí Vladimir.Zmrhal@fs.cvut.

( ) ( ) NÁVRH CHLADIČE VENKOVNÍHO VZDUCHU. Vladimír Zmrhal. ČVUT v Praze, Fakulta strojní, Ústav techniky prostředí Vladimir.Zmrhal@fs.cvut. 21. konference Klimaizace a věrání 14 OS 01 Klimaizace a věrání STP 14 NÁVRH CHLADIČ VNKOVNÍHO VZDUCHU Vladimír Zmrhal ČVUT v Praze, Fakula srojní, Úsav echniky prosředí Vladimir.Zmrhal@fs.cvu.cz ANOTAC

Více

Dynamické systémy. y(t) = g( x(t), t ) kde : g(t) je výstupní fce. x(t) je hodnota vnitřních stavů

Dynamické systémy. y(t) = g( x(t), t ) kde : g(t) je výstupní fce. x(t) je hodnota vnitřních stavů Dynamcké sysémy spojé-dskréní, lneární-nelneární a jejch modely df. rovnce, přenos, savový pops. Tvorba a převody modelů. Lnearzace a dskrezace. Smulace. Analoge mez sysémy různé fyzkální podsay. Idenfkace

Více

Průzkumová analýza dat (Exploratory Data Analysis, EDA)

Průzkumová analýza dat (Exploratory Data Analysis, EDA) 19. února 2007 Přednáška 1 maeriály: přednášky zápoče: v průběhu semesr určiý projek na zápoče a na známku, kerá bude ke zkoušce zkouška: zadaný určiý problém, na něj zadaný určiý čas, zpracováván s využiím

Více

ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK

ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK Vzhledem ke skuečnosi, že způsob modelování elasomerových ložisek přímo ovlivňuje průběh vniřních sil v oblasi uložení, rozebereme v éo kapiole jednolivé možné

Více

Ž ř ú ř ř ř Šř ř ř ú ň Ž Ž ů ú ů šř ů ú ů ř ř Ž ř ř Č ř ř ř Č šř ů Ú Ř Ú ů ř ú ů š šř ř š ú š ř ř š š ř ř ú Ž Š ů š ř š ř Ž ů ú ů Ú Ž ř ú ř Ú ú šř ů š ů Ž Ž ř ů Ž Ú ů Ž ř ř ř ť ů ň ř ů Á ř ň ř ů Ř ú ó

Více

V EKONOMETRICKÉM MODELU

V EKONOMETRICKÉM MODELU J. Arl, Š. Radkovský ANALÝZA ZPOŽDĚNÍ V EKONOMETRICKÉM MODELU VP č. Praha Auoři: doc. Ing. Josef Arl, CSc. Ing. Šěpán Radkovský Názor a sanoviska v éo sudii jsou názor auorů a nemusí nuně odpovída názorům

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

Oceňování finančních investic

Oceňování finančních investic Oceňování finančních invesic A. Dluhopisy (bondy, obligace). Klasifikace obligací a) podle kupónu - konvenční obligace (sraigh, plain vanilla, bulle bond) vyplácí pravidelný (roční, pololení) kupón po

Více

Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík

Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012 Tutoriál č. 4: Exploratorní analýza Jan Kracík jan.kracik@vsb.cz Statistika věda o získávání znalostí z empirických dat empirická

Více

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN V dokumentu 7a_korelacn_a_regresn_analyza jsme řešl rozdíl mez korelační a regresní analýzou. Budeme se teď věnovat pouze lneárnímu vztahu dvou velčn, protože je nejjednodušší

Více

Řasový test toxicity

Řasový test toxicity Laboraorní návod č. Úsav hemie ohrany prosředí, VŠCHT v Praze Řasový es oxiiy. Účel Řasové esy oxiiy slouží k esování možnýh oxikýh účinků láek a vzorků na vodní produeny. Zelené řasy paří do skupiny neévnaýh

Více

12. MAGNETICKÁ MĚŘENÍ, OSCILOSKOPY

12. MAGNETICKÁ MĚŘENÍ, OSCILOSKOPY 2. MAGNETICKÁ MĚŘENÍ, OSCILOSKOPY měření magneické indukce a inenziy magneického pole (sejnosměrné pole - Hallova a feromagneická sonda, anizoropní magneorezisor; sřídavé pole - měřicí cívka) analogový

Více

ZÁKLADY ELEKTRICKÝCH POHONŮ (EP) Určeno pro posluchače bakalářských studijních programů FS

ZÁKLADY ELEKTRICKÝCH POHONŮ (EP) Určeno pro posluchače bakalářských studijních programů FS ZÁKLADY ELEKTRICKÝCH OHONŮ (E) Určeno pro posluchače bakalářských sudijních programů FS Obsah 1. Úvod (definice, rozdělení, provozní pojmy,). racovní savy pohonu 3. Základy mechaniky a kinemaiky pohonu

Více

5. MĚŘENÍ FÁZOVÉHO ROZDÍLU, MĚŘENÍ PROUDU A NAPĚTÍ

5. MĚŘENÍ FÁZOVÉHO ROZDÍLU, MĚŘENÍ PROUDU A NAPĚTÍ 5. MĚŘEÍ FÁZOVÉHO ROZDÍLU, MĚŘEÍ PROUDU A APĚÍ měření fázového rozdílu osciloskopem a číačem, další možnosi měření ϕ (přehled) měření proudu a napěí: ealony, referenční a kalibrační zdroje (včeně principu

Více

Induktivní statistika. z-skóry pravděpodobnost

Induktivní statistika. z-skóry pravděpodobnost Induktivní statistika z-skóry pravděpodobnost normální rozdělení Z-skóry umožňují najít a popsat pozici každé hodnoty v rámci rozdělení hodnot a také srovnávání hodnot pocházejících z měření na rozdílných

Více

ANALÝZA EKONOMICKÝCH ČASOVÝCH ŘAD S PŘÍKLADY

ANALÝZA EKONOMICKÝCH ČASOVÝCH ŘAD S PŘÍKLADY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Fakula informaiky a saisiky ANALÝZA EKONOMICKÝCH ČASOVÝCH ŘAD S PŘÍKLADY Josef Arl Markéa Arlová Eva Rublíková 00 Recenzeni: Prof. Ing. Franišek Fabian, CSc. Doc. Ing. Jiří

Více

1/77 Navrhování tepelných čerpadel

1/77 Navrhování tepelných čerpadel 1/77 Navrhování epelných čerpadel paramery epelného čerpadla provozní režimy, navrhování akumulace epla bilancování inervalová meoda sezónní opný fakor 2/77 Paramery epelného čerpadla opný výkon Q k [kw]

Více

Zpracování výsledků dotvarovací zkoušky

Zpracování výsledků dotvarovací zkoušky Zpracování výsledků dovarovací zkoušky 1 6 vývoj deformace za konsanního napěí 5,66 MPa ˆ J doba zaížení [dny] počáek zaížení čas [dny] Naměřené hodnoy funkce poddajnosi J 12 1 / Pa 75 6 45 3 15 doba zaížení

Více

Studie proveditelnosti (Osnova)

Studie proveditelnosti (Osnova) Sudie provedielnosi (Osnova) 1 Idenifikační údaje žadaele o podporu 1.1 Obchodní jméno Sídlo IČ/DIČ 1.2 Konakní osoba 1.3 Definice a popis projeku (max. 100 slov) 1.4 Sručná charakerisika předkladaele

Více

Měrné teplo je definováno jako množství tepla, kterým se teplota definované hmoty zvýší o 1 K

Měrné teplo je definováno jako množství tepla, kterým se teplota definované hmoty zvýší o 1 K 1. KAPITOLA TEPELNÉ VLASTNOSTI Tepelné vlasnosi maeriálů jsou charakerizovány pomocí epelných konsan jako měrné eplo, eploní a epelná vodivos, lineární a objemová rozažnos. U polymerních maeriálů má eploa

Více

10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI

10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI 0. Měření rozpylového magneického pole ransformáoru, měření ampliudové permeabiliy A3B38SME Úkol měření 0a. Měření rozpylového magneického pole ransformáoru s oroidním jádrem a jádrem EI. Změře indukci

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY Kaedra obecné elekroechniky Fakula elekroechniky a inormaiky, VŠB - T Osrava. TOJFÁZOVÉ OBVODY.1 Úvod. Trojázová sousava. Spojení ází do hvězdy. Spojení ází do rojúhelníka.5 Výkon v rojázových souměrných

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Řetězení stálých cen v národních účtech

Řetězení stálých cen v národních účtech Řeězení sálých cen v národních účech Michal Široký msiroky@gw.czso.cz Odbor čvrleních národních účů Na adesáém 8, 00 82 Praha 0 Řeězení sálých cen Podsaa řeězení Výhody a nevýhody řeězení Neadiivia objemů

Více

PRONTO. PRFA.../A Regulátor fancoilů pro jednotlivé místnosti Příklady aplikací 1/98

PRONTO. PRFA.../A Regulátor fancoilů pro jednotlivé místnosti Příklady aplikací 1/98 PRTO PRFA.../A Reguláor fancoilů pro jednolivé mísnosi Příklady aplikací 1/98 Obsah Sysém s elekroohřevem... Sysém s elekroohřevem a auomaickým řízením veniláoru... 9 Sysém s elekroohřevem a přímým chladičem...

Více

Stabilita radiometrických seřízení á uplatnění vlastni, chyby přístroje :

Stabilita radiometrických seřízení á uplatnění vlastni, chyby přístroje : 35 Sabla radomerckých seřízení á uplanění vlasn, chyby přísroje : ;".?' Olge Nováková, Teela VÚfJl. Před zahájena jakékolv expermenální práce je reba s uvědom možnos, keré měřící zařízen dává..přesnos

Více

Zrnitost. Zrnitost. MTF, rozlišovací schopnost. Zrnitost. Kinetika vyvolávání. Kinetika vyvolávání ( D) dd dt. Graininess vs.

Zrnitost. Zrnitost. MTF, rozlišovací schopnost. Zrnitost. Kinetika vyvolávání. Kinetika vyvolávání ( D) dd dt. Graininess vs. MTF, rozlišovací schopnos Zrnios Graininess vs. granulariy Zrnios Zrnios foografických maeriálů je definována jako prosorová změna opické husoy rovnoměrně exponované a zpracované plošky filmu měřená denziomerem

Více

Nejistota měř. ěření, návaznost a kontrola kvality. Miroslav Janošík

Nejistota měř. ěření, návaznost a kontrola kvality. Miroslav Janošík Nejistota měř ěření, návaznost a kontrola kvality Miroslav Janošík Obsah Referenční materiály Návaznost referenčních materiálů Nejistota Kontrola kvality Westgardova pravidla Unity Referenční materiál

Více

2.2.2 Měrná tepelná kapacita

2.2.2 Měrná tepelná kapacita .. Měrná epelná kapacia Předpoklady: 0 Pedagogická poznámka: Pokud necháe sudeny počía příklady samosaně, nesihnee hodinu za 45 minu. Můžee využí oho, že následující hodina je aké objemnější a použí pro

Více

Matematika v automatizaci - pro řešení regulačních obvodů:

Matematika v automatizaci - pro řešení regulačních obvodů: . Komplexní čísla Inegrovaná sřední škola, Kumburská 846, Nová Paka Auomaizace maemaika v auomaizaci Maemaika v auomaizaci - pro řešení regulačních obvodů: Komplexní číslo je bod v rovině komplexních čísel.

Více

3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT

3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT PROKAZOVÁNÍ SHODY VÝROBKŮ část 3, díl 8, kapitola 4, str. 1 3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT Vyjadřování standardní kombinované nejistoty výsledku zkoušky Výsledek zkoušky se vyjadřuje v

Více

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY Test z teorie 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový

Více

Vybrané metody statistické regulace procesu pro autokorelovaná data

Vybrané metody statistické regulace procesu pro autokorelovaná data XXVIII. ASR '2003 Seminar, Insrumens and Conrol, Osrava, May 6, 2003 239 Vybrané meody saisické regulace procesu pro auokorelovaná daa NOSKIEVIČOVÁ, Darja Doc., Ing., CSc. Kaedra konroly a řízení jakosi,

Více

POPIS OBVODŮ U2402B, U2405B

POPIS OBVODŮ U2402B, U2405B Novodvorská 994, 142 21 Praha 4 Tel. 239 043 478, Fax: 241 492 691, E-mail: info@asicenrum.cz ========== ========= ======== ======= ====== ===== ==== === == = POPIS OBVODŮ U2402B, U2405B Oba dva obvody

Více

Standard IAS 19 a výpočet výše rezervy na zaměstnanecké benefity. Šárka Hezoučká

Standard IAS 19 a výpočet výše rezervy na zaměstnanecké benefity. Šárka Hezoučká Sandard IAS 9 a výpoče výše rezervy na zaměsnanecké benefiy Šárka Hezoučká Agenda Rezerva na zaměsnanecké benefiy Typy zaměsnaneckých benefiů Moivace pro vorbu rezervy Sandard IAS 9 Výpoče rezervy Přírůsková

Více

Výroba a užití elektrické energie

Výroba a užití elektrické energie Výroba a užií elekrické energie Tepelné elekrárny Příklad 1 Vypočíeje epelnou bilanci a dílčí účinnosi epelné elekrárny s kondenzační urbínou dle schémau naznačeného na obr. 1. Sesave Sankeyův diagram

Více

Výpočty populačních projekcí na katedře demografie Fakulty informatiky a statistiky VŠE. TomášFiala

Výpočty populačních projekcí na katedře demografie Fakulty informatiky a statistiky VŠE. TomášFiala Výpočy populačních projekcí na kaedře demografie Fakuly informaiky a saisiky VŠE TomášFiala 1 Komponenní meoda s migrací Zpravidla zjednodušený model migrace předpokládá se pouze imigrace na úrovni migračního

Více

MULTIFUNKČNÍ ČASOVÁ RELÉ

MULTIFUNKČNÍ ČASOVÁ RELÉ N Elekrická relé a spínací hodiny MULIFUNKČNÍ ČASOVÁ RELÉ U Re 1 2 0 = 1+2 Ke spínání elekrických obvodů do 8 A podle nasaveného času, funkce a zapojení Především pro účely auomaizace Mohou bý využia jako

Více

Popis obvodu U2407B. Funkce integrovaného obvodu U2407B

Popis obvodu U2407B. Funkce integrovaného obvodu U2407B ASICenrum s.r.o. Novodvorská 994, 142 21 Praha 4 Tel. (02) 4404 3478, Fax: (02) 472 2164, E-mail: info@asicenrum.cz ========== ========= ======== ======= ====== ===== ==== === == = Popis obvodu U2407B

Více

REGULACE ČINNOSTI ELEKTRICKÝCH ZAŘÍZENÍ

REGULACE ČINNOSTI ELEKTRICKÝCH ZAŘÍZENÍ REGULACE ČINNOSTI ELEKTRICKÝCH ZAŘÍZENÍ Úvod Záporná zpěná vazba Úloha reguláoru Druhy reguláorů Seřízení reguláoru Snímaní informací o echnologickém procesu ELES11-1 Úvod Ovládání je řízení, při kerém

Více

Náhodná veličina X má Poissonovo rozdělení se střední hodnotou lambda. Poissonovo rozdělení je definováno jako. P(X=k) = 0,036

Náhodná veličina X má Poissonovo rozdělení se střední hodnotou lambda. Poissonovo rozdělení je definováno jako. P(X=k) = 0,036 Příklad : Statistika A, doc. Kropáč, str. 6, příklad 2 K benzínovému čerpadlu přijíždí průměrně 4 aut za hodinu. Určete pravděpodobnost, že během pěti minut přijede nejvýše jedno auto. Pokus: Zjištění,

Více

Zhodnocení historie predikcí MF ČR

Zhodnocení historie predikcí MF ČR E Zhodnocení hisorie predikcí MF ČR První experimenální publikaci, kerá shrnovala minulý i očekávaný budoucí vývoj základních ekonomických indikáorů, vydalo MF ČR v lisopadu 1995. Tímo byl položen základ

Více

Čísla přiřazená elementárním jevům tvoří obor hodnot M proměnné, kterou nazýváme náhodná veličina (označujeme X, Y, Z,...)

Čísla přiřazená elementárním jevům tvoří obor hodnot M proměnné, kterou nazýváme náhodná veličina (označujeme X, Y, Z,...) . NÁHODNÁ VELIČINA Průvodce studem V předchozích kaptolách jste se seznáml s kombnatorkou a pravděpodobností jevů. Tyto znalost použjeme v této kaptole, zavedeme pojem náhodná velčna, funkce, které náhodnou

Více

Vyučovací předmět: Matematika Ročník: 6.

Vyučovací předmět: Matematika Ročník: 6. Vyučovací předmět: Matematika Ročník: 6. Vzdělávací obsah Očekávané výstupy z RVP ZV Školní výstupy Učivo ZÁŘÍ užívá různé způsoby kvantitativního vyjádření vztahu celek část (zlomkem) PROSINEC využívá

Více

Počítání s neúplnými čísly 1

Počítání s neúplnými čísly 1 Aproximace čísla A: Počítání s neúplnými čísly 1 A = a ± nebo A a, a + Aproximace čísla B: B = b ± β nebo B b β, b + β nebo a A a+ nebo b β B b + β Součet neúplných čísel odvození: a + b β A + B a+ + (b

Více

Základní statistické charakteristiky

Základní statistické charakteristiky Základní statistické charakteristiky Základní statistické charakteristiky slouží pro vzájemné porovnávání statistických souborů charakteristiky = čísla, pomocí kterých porovnáváme Základní statistické

Více

Klasifikace, identifikace a statistická analýza nestacionárních náhodných procesů

Klasifikace, identifikace a statistická analýza nestacionárních náhodných procesů Proceedings of Inernaional Scienific Conference of FME Session 4: Auomaion Conrol and Applied Informaics Paper 26 Klasifikace, idenifikace a saisická analýza nesacionárních náhodných procesů MORÁVKA, Jan

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK Základy ekonomerie Modely simulánních rovnic Problém idenifikace srukurních simulánních rovnic Cvičení Zuzana Dlouhá Modely simulánních rovnic (MSR) eisence vzájemných vazeb mezi proměnnými v modelu,

Více

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Inferenční statistika - úvod z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Pravděpodobnost postupy induktivní statistiky vycházejí z teorie pravděpodobnosti pravděpodobnost, že

Více

Metodika zpracování finanční analýzy a Finanční udržitelnost projektů

Metodika zpracování finanční analýzy a Finanční udržitelnost projektů OPERAČNÍ PROGRAM ŽIVOTNÍ PROSTŘEDÍ EVROPSKÁ UNIE Fond soudržnosi Evropský fond pro regionální rozvoj Pro vodu, vzduch a přírodu Meodika zpracování finanční analýzy a Finanční udržielnos projeků PŘÍLOHA

Více

Ročník VI. Matematika. Období Učivo téma Metody a formy práce- kurzívou. Kompetence Očekávané výstupy. Průřezová témata. Mezipřed.

Ročník VI. Matematika. Období Učivo téma Metody a formy práce- kurzívou. Kompetence Očekávané výstupy. Průřezová témata. Mezipřed. Přirozená čísla Desetinná čísla IX. X. Přirozená čísla opakování všech početních výkonů, zobrazení čísel na číselné ose, porovnávání a zaokrouhlování čísel. Metody- slovní, názorně demonstrační a grafická.

Více

FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEI VUT BRNO

FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEI VUT BRNO FYZIKÁLNÍ PRAKIKUM Úsav fyziky FEI VU BRNO Spolupracoval Příprava Šuranský Radek Opravy méno Ročník 1 Škovran an Předn. skup. B Měřeno dne 5.4. Učiel Sud. skupina 1 Kód 17 Odevzdáno dne 16.5. Hodnocení

Více

1. Analytické váhy Meopta

1. Analytické váhy Meopta II. Návody k přísrojům 1. Analyické váhy Meopa Nezaížené a uzavřené váhy velmi oparně a pomalu odareujeme (areačním knoflíkem oočíme vlevo). Na osvělené supnici se objeví ryska, jejíž osros řídíme páčkou

Více

Částka 12 Ročník Vydáno dne 8. listopadu 2012 ČÁST OZNAMOVACÍ

Částka 12 Ročník Vydáno dne 8. listopadu 2012 ČÁST OZNAMOVACÍ Čáska 12 Ročník 2012 Vydáno dne 8. lsopadu 2012 O b s a h : ČÁST OZNAMOVACÍ 15. Úřední sdělení České národní banky ze dne 6. lsopadu 2012 k opaření České národní banky č. 3/2011 Věs. ČNB, kerým se sanoví

Více

Teorie obnovy. Obnova

Teorie obnovy. Obnova Teorie obnovy Meoda operačního výzkumu, kerá za pomocí maemaických modelů zkoumá problémy hospodárnosi, výměny a provozuschopnosi echnických zařízení. Obnova Uskuečňuje se až po uplynuí určiého času činnosi

Více

Signálky V. Signálky V umožňují světelnou signalizaci jevu.

Signálky V. Signálky V umožňují světelnou signalizaci jevu. Signalizace a měření Signálky V funkce echnické údaje Signálky V umožňují svěelnou signalizaci jevu. v souladu s normou: ČS E 60 947-5-1, ČS E 60 073 a IEC 100-4 (18327); jmenovié napěí n: 230 až 400 V

Více

4.4 Exploratorní analýza struktury objektů (EDA)

4.4 Exploratorní analýza struktury objektů (EDA) 4.4 Exploratorní analýza struktury objektů (EDA) Průzkumová analýza vícerozměrných dat je stejně jako u jednorozměrných dat založena na vyšetření grafckých dagnostk. K tomuto účelu se využívá různých technk

Více

EKONOMETRIE 6. přednáška Modely národního důchodu

EKONOMETRIE 6. přednáška Modely národního důchodu EKONOMETRIE 6. přednáška Modely národního důchodu Makroekonomické modely se zabývají modelováním a analýzou vzahů mezi agregáními ekonomickými veličinami jako je důchod, spořeba, invesice, vládní výdaje,

Více

Určování únavových vlastností při náhodné amplitudě zatížení

Určování únavových vlastností při náhodné amplitudě zatížení Úvod klapka podložka žvotnostní test spojení klapka-podložka Požadavek zákazníka: - navrhnout a provést zrychlené komponentní testy spoje klapka-podložka - provést objektvní srovnání různých varant z hledska

Více

Návod k obsluze. Vnitřní jednotka pro systém tepelných čerpadel vzduch-voda s příslušenstvím EKHBRD011ABV1 EKHBRD014ABV1 EKHBRD016ABV1

Návod k obsluze. Vnitřní jednotka pro systém tepelných čerpadel vzduch-voda s příslušenstvím EKHBRD011ABV1 EKHBRD014ABV1 EKHBRD016ABV1 Vniřní jednoka pro sysém epelných čerpadel vzduch-voda EKHBRD011ABV1 EKHBRD014ABV1 EKHBRD016ABV1 EKHBRD011ABY1 EKHBRD014ABY1 EKHBRD016ABY1 EKHBRD011ACV1 EKHBRD014ACV1 EKHBRD016ACV1 EKHBRD011ACY1 EKHBRD014ACY1

Více

REGULACE. Akční členy. Měřicí a řídicí technika přednášky LS 2006/07. Blokové schéma regulačního obvodu MRT-07-P4 1 / 13.

REGULACE. Akční členy. Měřicí a řídicí technika přednášky LS 2006/07. Blokové schéma regulačního obvodu MRT-07-P4 1 / 13. Měřicí a řídicí chnika přdnášky LS 26/7 REGULACE (pokračoání) přnosoé csy akční člny rguláory rgulační pochod Blokoé schéma rgulačního obodu z u rguloaná sousaa y akční čln měřicí čln úsřdní čln rguláoru

Více

Otázky k měření centrální tendence. 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení?

Otázky k měření centrální tendence. 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení? Otázky k měření centrální tendence 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení? 2. Určete průměr, medián a modus u prvních čtyř rozložení (sad dat): a.

Více

Různé metody manažerství kvality. Práce č.11: Analýza měřicího systému (MSA)

Různé metody manažerství kvality. Práce č.11: Analýza měřicího systému (MSA) - Různé metody manažerství kvality - Práce č.11: Analýza měřicího systému (MSA) Datum: 5-6-015 Martin Bažant Obsah Obsah... 1 Úvod... 3 1.1 Měřící systém... 3 Analýza měřícího systému - Measurement system

Více

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů - 1 - Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika 6.ročník Výstup Učivo Průřezová témata - čte, zapisuje a porovnává přirozená čísla s přirozenými čísly - zpaměti a písemně

Více

Úloha VI.3... pracovní pohovor

Úloha VI.3... pracovní pohovor Úloha VI.3... pracovní pohovor 4 body; průměr,39; řešilo 36 sudenů Jedna z pracoven lorda Veinariho má kruhový půdorys o poloměru R a je umísěna na ložiscích, díky nimž se může oáče kolem své osy. Pro

Více

Příloha: Elektrická práce, příkon, výkon. Příklad: 4 varianta: Př. 4 var: BEZ CHYBY

Příloha: Elektrická práce, příkon, výkon. Příklad: 4 varianta: Př. 4 var: BEZ CHYBY říloha: Elekrická práce, příkon, výkon říklad: 4 variana: onorné čerpadlo vyčerpá axiálně 22 lirů za inuu do axiální výšky 1,5 erů Jaká je jeho účinnos, když jeho příkon je 9 Husoa vody je 1 ř 4 var: BEZ

Více

Detekce a stanovení aktivity 90 Sr ve vzorcích životního prostředí měřením brzdného záření

Detekce a stanovení aktivity 90 Sr ve vzorcích životního prostředí měřením brzdného záření Cerifikovaná meodika Deekce a sanovení akiviy 90 Sr ve vzorcích živoního prosředí Vypracoval Ing. Karin Fanínová Výsledek projeku Bezpečnosního výzkumu České republiky, Projek MV ČR BV Výzkum pokročilých

Více

Modelování volatility akciového indexu FTSE 100

Modelování volatility akciového indexu FTSE 100 ISSN 805-06X 805-0638 (online) ETTN 07--0000-09-4 Modelování volailiy akciového indexu FTSE 00 Adam Borovička Vysoká škola ekonomická v Praze Fakula informaiky a saisiky Kaedra ekonomerie; nám. W. Churchilla

Více

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY Test z teorie 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový

Více

Diagnostika regrese pomocí grafu 7krát jinak

Diagnostika regrese pomocí grafu 7krát jinak StatSoft Diagnostika regrese pomocí grafu 7krát jinak V tomto článečku si uděláme exkurzi do teorie regresní analýzy a detailně se podíváme na jeden jediný diagnostický graf. Jedná se o graf Předpovědi

Více

VYSOKONAPĚŤOVÉ ZKUŠEBNICTVÍ. #2 Nejistoty měření

VYSOKONAPĚŤOVÉ ZKUŠEBNICTVÍ. #2 Nejistoty měření VYSOKONAPĚŤOVÉ ZKUŠEBNICTVÍ # Nejistoty měření Přesnost měření Klasický způsob vyjádření přesnosti měření chyba měření: Absolutní chyba X = X M X(S) Relativní chyba δ X = X(M) X(S) - X(M) je naměřená hodnota

Více

Hlavní body. Úvod do nauky o kmitech Harmonické kmity

Hlavní body. Úvod do nauky o kmitech Harmonické kmity Harmonické kmiy Úvod do nauky o kmiech Harmonické kmiy Hlavní body Pohybová rovnice a její řešení Časové závislosi výchylky, rychlosi, zrychlení, Poenciální, kineická a celková energie Princip superpozice

Více

9 Viskoelastické modely

9 Viskoelastické modely 9 Viskoelasické modely Polymerní maeriály se chovají viskoelasicky, j. pod vlivem mechanického namáhání reagují současně jako pevné hookovské láky i jako viskózní newonské kapaliny. Viskoelasické maeriály

Více

Tematický plán pro školní rok 2015/16 Předmět: Matematika Vyučující: Mgr. Marta Klimecká Týdenní dotace hodin: 5 hodin Ročník: třetí

Tematický plán pro školní rok 2015/16 Předmět: Matematika Vyučující: Mgr. Marta Klimecká Týdenní dotace hodin: 5 hodin Ročník: třetí ČASOVÉ OBDOBÍ Září KONKRÉTNÍ VÝSTUPY KONKRÉTNÍ UČIVO PRŮŘEZOVÁ TÉMATA rozezná, pojmenuje, vymodeluje úsečku a lomenou čáru porovnává velikost útvarů, měří a odhaduje délku úsečky užívá a zapisuje vztah

Více

Přednáška kurzu MPOV. Klasifikátory, strojové učení, automatické třídění 1

Přednáška kurzu MPOV. Klasifikátory, strojové učení, automatické třídění 1 Přednáška kurzu MPOV Klasifikáory, srojové učení, auomaické řídění 1 P. Peyovský (email: peyovsky@feec.vubr.cz), kancelář E530, Inegrovaný objek - 1/25 - Přednáška kurzu MPOV... 1 Pojmy... 3 Klasifikáor...

Více

Časová analýza (Transient Analysis) = analýza časových průběhů obvodových veličin

Časová analýza (Transient Analysis) = analýza časových průběhů obvodových veličin Časová analýza (Transien Analysis) = analýza časových průběhů obvodových veličin - napodobování činnosi ineligenního osciloskopu, - různé způsoby dalšího zpracování analyzovaných signálů (zejména FFT).

Více

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011 Evropský sociální fond Praha & EU: Invesujeme do vaší budoucnosi Ekonomika podniku Kaedra ekonomiky, manažersví a humaniních věd Fakula elekroechnická ČVUT v Praze Ing. Kučerková Blanka, 2011 Kriéria efekivnosi

Více

ČVUT FEL X36PAA - Problémy a algoritmy. 4. úloha - Experimentální hodnocení algoritmů pro řešení problému batohu

ČVUT FEL X36PAA - Problémy a algoritmy. 4. úloha - Experimentální hodnocení algoritmů pro řešení problému batohu ČVUT FEL X36PAA - Problémy a algoritmy 4. úloha - Experimentální hodnocení algoritmů pro řešení problému batohu Jméno: Marek Handl Datum: 3. 2. 29 Cvičení: Pondělí 9: Zadání Prozkoumejte citlivost metod

Více

MODELY PREDIKUJÍCÍ INCIDENCI ZHOUBNÝCH NÁDORŮ NA PŘÍKLADU ZHOUBNÉHO MELANOMU V ČR

MODELY PREDIKUJÍCÍ INCIDENCI ZHOUBNÝCH NÁDORŮ NA PŘÍKLADU ZHOUBNÉHO MELANOMU V ČR MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA CENTRUM PRO VÝZKUM TOXICKÝCH LÁTEK V ŽIVOTNÍM PROSTŘEDÍ INSTITUT BIOSTATISTIKY A ANALÝZ MODELY PREDIKUJÍCÍ INCIDENCI ZHOUBNÝCH NÁDORŮ NA PŘÍKLADU ZHOUBNÉHO

Více