3.3.3 Rovinná soustava sil a momentů sil

Rozměr: px
Začít zobrazení ze stránky:

Download "3.3.3 Rovinná soustava sil a momentů sil"

Transkript

1 3.3.3 Rová soustava s a oetů s Předpoady Všechy síy soustavy eží v edé rově. Všechy oety sou oé a tuto rovu. *) Souřadý systé voíe ta, že rova - e totožá s rovou s. y O *) Po.: Sový oet ůžee ahradt dvocí s působících v rově oé a vetor tohoto oetu. y O Petr Kabee 25-29

2 Rová soustava s a oetů e váští případe prostorové soustavy. Všechy vtahy (výsedý úče, podíy rovováhy a evvaece) odvoeé pro obecou prostorovou soustavu s a oetů patí taé pro soustavu rovou. Tyto vtahy vša ůžee edodušt uvážeí, že sožy všech s soustavy ve sěru osy y sou uové a sožy všech oetů soustavy ve sěrech os a sou uové. O 2 Petr Kabee 25-29

3 Určeí sože vetoru síy v rově ) obecé defce pro 3D poocí osů sěrových úhů cosα cosγ Všěe s, že a) aéa fuce cos pro růé úhy autoatcy určí aéa sože, apř. o < γ < 9 o <, > 9 o < α < 8 o γ 8 o < γ < 27 o α cos α >, < 27 o < α < 36 o α Petr Kabee 25-29

4 b) protože cos α, cos (36 o -α) cos(α) cos(36 o -α) a cos(γ) cos(36 o -γ)... eáeží a oretac sěrového úhu (poue usí být ěře od adé souřadcové pooosy oretovaéu paprsu síy) α γ α α γ γ α Petr Kabee 25-29

5 2) poocí úhu α ěřeého od adé pooosy po sěru pohybu hodových ručče (př pohedu prot ose y) Pa pro sěrové úhy patí: α α, γ ±(9 o - α ) α α cosα cos α ' γ γ ± ( α ) cos cos 9 ' s α ' s α cos α Všěe s, že aéa fucí cos a s pro růé úhy autoatcy určí aéa sože, apř. α <, > 9 o < α < 8 o >, < 27 o < α < 36 o Petr Kabee 25-29

6 3) poocí ostrého úhu ω ( o ω 9 o ) ěřeého od osy sω cosω ω Poor: protože cos ω a s ω... aéa sože e uté určt pode oretace vetoru, apř.: s ω cos ω ω cosω sω ω cosω sω ω Petr Kabee 25-29

7 Výsedý úče (reducí počátu) r... sový (posouvaící) r ry r y (sía působící v počátu O) ( ) y -y O r... oetový (otáčvý) y y ( - ) ( ) y - y Otáčvý úče popsue edá euová soža oetu : y Patí: ( ) - O y y Petr Kabee

8 protože, rovu - protože ry, r eží v rově - r r y Soustavu s ožo ahradt edou sou r, pro terou patí: r a - O r r - O r O r Určue veost, sěr a oretac výsedce Určue paprse výsedce: O r r r r... rovce paprsu posuuté výsedce tv. haví osy soustavy s Petr Kabee

9 Zváští případy: r, O výsedý úče e edá sía r působící paprsu procháeící počáte r, O výsedý úče e dvoce s působící v rově -y a otáčeící oete d O r, O soustava s e v rovováe 9 Petr Kabee 25-29

10 Podíy rovováhy Soustava s { } e v rovováe, estže e eí výsedý úče uový: y spěo detcy y ( ) y -y ( ) y - y ( - ) spěo detcy 3 podíy Petr Kabee 25-29

11 Petr Kabee Úoha rovováhy OR O R R Je dáa soustava s { } a oetů { }. Uveďte tuto soustavu do rovováhy soustavou s { }. OR O R Ve sožách: Podíy řešteost: 3 rovce - 3 eáé deterat soustavy

12 Petr Kabee Úoha evvaece Je dáa soustava s { }a oetů { }. Nahraďte tuto soustavu soustavou s { } ta, aby úče obou soustav by steý. Ve sožách: Podíy řešteost: 3 rovce - 3 eáé deterat soustavy Příady úoh rovováhy/evvaece rové soustavy s - v cvčeí OR O R R OR O R

13 3.3.4 Rová soustava rovoběžých s e váští případe obecé prostorové soustavy, dy paprsy všech s soustavy sou váeě rovoběžé a eží v edé rově. O α { } { } {f,, f } {cos α,, s α } Po.: poud á sía opačou oretac ež edotový vetor, uvažuee se aée íus. Petr Kabee

14 Výsedý úče cos α ' cos α ' cos α ' r r s α ' s α ' s α ' r r ( cos α ' s α ') O O O r Veost a oretace výsedce: r Paprse výsedce (h. osy): O r - r r 4 Petr Kabee 25-29

15 Příad: Určete výsedý úče rové soustavy rovoběžých s { } působících v paprscích rovoběžých s osou Pro všechy síy soustavy: α π/2 (cos α, s α ), Pa: r O r r ( α α ) cos ' s ' O O r Petr Kabee

16 Paprse výsedce: O r - r - r... t. přía s osou ve vdáeost - O / r od počátu O. O / r r Petr Kabee

17 Teto douet e urče výhradě ao dopě předášá předětu Stavebí echaa pro studety Stavebí fauty ČVUT v Prae. Douet e průběžě dopňová, opravová a atuaová a přes vešerou sahu autora ůže obsahovat epřesost a chyby. Datu posedí reve: Petr Kabee 25-29

3.3 Soustavy sil a silových momentů. soustava sil a momentů = seskupení sil a momentů sil působících na těleso

3.3 Soustavy sil a silových momentů. soustava sil a momentů = seskupení sil a momentů sil působících na těleso 3.3 Soustav s a sových oetů soustava s a oetů sesupeí s a oetů s působících a těeso váští případ: svae s (paps všech s soustav se potíají v jedo bodě) soustava ovoběžých s (paps všech s soustav jsou aváje

Více

Téma 11 Prostorová soustava sil

Téma 11 Prostorová soustava sil Stavebí statka,.ročík bakalářského studa Téma Prostorová soustava sl Prostorový svazek sl Statcký momet síly a dvojce sl v prostoru Obecá prostorová soustava sl Prostorová soustava rovoběžých sl Katedra

Více

š š Ť ř ň š ú ř ý ž š ř ě Š ě š ř ň š ú ř ý ž ř ý ě ř š ř ň š ú ý ř ý ž ě ě š š ě ě ě ž ž š ě ř ý ěž ů ň ů ý š ř ý ř ě ž ř ě ž ý ž ý ř š ř š ě ř ý š ý ě ž ř ě ž ě ř ěž ř ž ř ň ř ý ý š ě ě ž ň ř ý ř ě ý

Více

ZÁKLADY STAVEBNÍ MECHANIKY

ZÁKLADY STAVEBNÍ MECHANIKY VYSOKÉ UČENÍ TECHNICKÉ V BNĚ AKULTA STAVEBNÍ ING. JIŘÍ KYTÝ, CSc. ING. ZBYNĚK KEŠNE, CSc. ING. OSTISLAV ZÍDEK ING. ZBYNĚK VLK ZÁKLADY STAVEBNÍ ECHANIKY ODUL BD0-O SILOVÉ SOUSTAVY STUDIJNÍ OPOY PO STUDIJNÍ

Více

2. Směsi, směšování a ředění roztoků, vylučování látek z roztoků

2. Směsi, směšování a ředění roztoků, vylučování látek z roztoků 2. Sě ěšováí a ředěí roztoů vyučováí áte z roztoů Sožeí ě áte ůžee vyadřovat poocí hototích zoů edotvých áte (ože ě). Hototí zoe -té ožy e defová ao poěr eí hotot hotot ě : (2) Pode záoa zachováí hotot

Více

2. Matice a determinanty

2. Matice a determinanty Mtce deterty Defce : Odélíové sche (řádů) (sloupců) čísel zvee tce typu : [ ] M Je-l luvíe o čtvercové tc Prvy ( ) tvoří hlví dgoálu Zčíe ovyle : [ ] O - všechy prvy ulové - ulová tce I - edotová tce (

Více

1. Stanovení modulu pružnosti v tahu přímou metodou

1. Stanovení modulu pružnosti v tahu přímou metodou . Stanovení moduu pružnost v tahu přímou metodou.. Zadání úohy. Určte modu pružnost v tahu přímou metodou pro dva vzorky různých materáů a výsedky porovnejte s tabukovým hodnotam.. Z naměřených hodnot

Více

ř ú ú Š Í Á É ř ř ř é é ř ř š é ř ř š ř é ž é ž š é š é é ř ů ž ž ř é ř ů é é ž é ř é é ř é ú é é ž é é š ň é ř š é š é Ť é ř ů ž ž ď ř é é é ž ř é Š ů é ř é ř é Š ú ř Í ž ž ř ř Í é š ž é ř Ť š ř ř ř š

Více

ň ý ě ý ý ý ě ň ý ě ý Ú ú ň ň ý ě ý ó ž ý ň ě ě ě ú ú Ř ň ň ý ě ý ě ě ž ý ž ě ý ě ý ě ě ů ě Ů Č Í Ě Á Á Í ě ě ě ě Ž Ů ú ě ě ě Ú ě ů ě ý ě ě ú ň ý ě Ů ž ů ž ě ý ý ý ý ě Č Č ě Č ě ů ý ě ý ý ž ě ě ž ů ž ě

Více

ě ě ú ě ě ě ě ě ň ě ň ů ě ů Ý ě ě ů ň ě Í ě ň ě ě Ž ě ň ě ě ú ů ú ě ě ě ú ě ě ě ě ě ě ů ě ů ě ě ú ů ě ě ě Ž ů ě ě ú Ž Ž Ú ě ě ě ě Ž Ž ě ť Ž Í ě Ž ě Ž Ž ů ěž ů ěž ě Í Ú ů ě ů ě Ž Ž Ž ě ě ě ů ě ě ě ě ě ů

Více

í ž ý š í ď ý í ě í í ť Ž ě š ěž ě í í ě í ě í ů Ž ěž ý ů ě í ě í í í ě Ž Ú í í í Ť í í í í ť í í í í š í íť ó í ý í ý í ó í í ů ů ě í ů ů ě í ů ě ěž ů ě ěž ě ě í í í ó í í í ó í í í í í í í í ů í í š

Více

ň Š ý ě ý Ě Á ý ý ě ň Š ý ě ý ú ň ň ý ě ý ó ě ž ý ň ě ě Š ú Š ú Š ň Á ň Š ň ý ě ý Š ž ý ě ý ů ě ě ž ý ě Š ě ě ě Ů Č Í Ě Á Á Í ě ě ě ě Ž Ů ú ě ě ě Ú ó ě ů ě ý Š ě ě ú ň ý ě Ů ž ů ž ě ý ý ý ě Č Č ě Š Č ě

Více

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254 Evropský socálí fod Prh & EU: Ivestuee do vší udoucost eto terál vkl díky Operčíu progru Prh dptlt CZ..7/3..00/3354 Mžerské kvtttví etody II - předášk č. - eore her eore her 96 vo Neu, Morgester kldtelé

Více

β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra:

β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra: GONIOMETRIE Veliost úhlu v oblouové a stupňové míře: Stupňová míra: Jednota (stupeň) 60 600 jeden stupeň 60 minut 600 vteřin Př. 5,4 5 4 0,4 0,4 60 4 Oblouová míra: Jednota radián radián je veliost taového

Více

ij m, velikosti n je tvořen (n m) rozměr-ným polem dat x 11 ... x 12 ... x 22 x n1 ... x n2 7.1 Druhy korelačních koeficientů

ij m, velikosti n je tvořen (n m) rozměr-ným polem dat x 11 ... x 12 ... x 22 x n1 ... x n2 7.1 Druhy korelačních koeficientů 1 7 KORELACE Pro vyádřeí itezity vztahů ezi složkai ξ ξ -rozěrého áhodého vektoru 1 ξ se používá korelačích koeficietů Data tvoří áhodý výběr z -rozěrého rozděleí áhodého vektoru ξ Neuvažue se obyčeě a

Více

Agregace vzájemné spojování destabilizovaných částic ve větší celky, případně jejich adheze na povrchu jiných materiálů

Agregace vzájemné spojování destabilizovaných částic ve větší celky, případně jejich adheze na povrchu jiných materiálů Agregace - úvod 1 Agregace vzáemné spoování destablzovaných částc ve větší cely, případně ech adheze na povrchu ných materálů Částce mohou agregovat, poud vyazuí adhezní schopnost a poud e umožněno ech

Více

Nepředvídané události v rámci kvantifikace rizika

Nepředvídané události v rámci kvantifikace rizika Nepředvídaé událost v rác kvatfkace rzka Jří Marek, ČVUT, Stavebí fakulta {r.arek}@rsk-aageet.cz Abstrakt Z hledska úspěchu vestce ohou být krtcké právě ty zdroe ebezpečí, které esou detfkováy. Vzhlede

Více

ZÁKLADNÍ POJMY OPTIKY

ZÁKLADNÍ POJMY OPTIKY Záš pojmy A. Popiš aspoň jede fyzikálí experimet měřeí rychlosti světla. - viz apříklad Michelsoův, Fizeaův, Roemerův pokus. Defiuj a popiš fyzikálí veličiu idex lomu. - je to bezrozměrá fyzikálí veličia

Více

Í Č ú Č Š Í Á É Č Č ú š š Ž ž š Ť Ť Ž ž Ó ó Ž ž ž Í ú ž Ť ž ž š ň ž š š Í ž Í ň Ž ň š ó š Ž Ž Í Š ú Í ž ž Í š ž ž Ť š š Ž Ž Á ž ó ž Ť š ž ť š Í ň ť ž Ž ž Ž ž Ť ž šť š ž Ž ň ú ž š ž ú ú ť Ž ň ú š ú ž Ž

Více

Stabilita svahu Mechanika hornin a zemin - cvičení 05

Stabilita svahu Mechanika hornin a zemin - cvičení 05 Iovace studjího oboru eotechka reg. č. CZ..07/2.2.00/28.0009 Stablta svahu Mechaka hor a zem - cvčeí 05 Iovace studjího oboru eotechka reg. č. CZ..07/2.2.00/28.0009 Slové metody (metody mezí rovováhy)

Více

Určení geometrických a fyzikálních parametrů čočky

Určení geometrických a fyzikálních parametrů čočky C Určení geoetrickýc a yzikálníc paraetrů čočky Úkoly :. Určete poloěry křivosti ploc čočky poocí séroetru. Zěřte tloušťku čočky poocí digitálnío posuvnéo ěřítka 3. Zěřte oniskovou vzdálenost spojné čočky

Více

= T = 2π ω = 2π 12 s. =0,52s. =1,9Hz.

= T = 2π ω = 2π 12 s. =0,52s. =1,9Hz. XIII Mechanicé itání Příad 1 Těeso itá haronicy s periodou 0,80 s, jeho apituda je 5,0 c a počátečnífáze nuová Napište rovnici itavého pohybu /y = 0,05 sin, 5πt) / Stručné řešení: Patí T = 0,8 s = ω =

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

ý ý ý íú í ě Á ý ž ů ěí ě ž ý ó ý ý ú í ý ž ý ě í ýě ýýš í ú íú ěž ý ý íě ň ě í š ě ý íů ě ý ž ý ý í ě ý íí ě ý Á ý ě í ý ě ý í í ý í ě Č ď ů ě š ě ě ň í ú í ýě í í ě í š ě í í í ě ě ý š ý ž ěž ě ší ňž

Více

1. Základy měření neelektrických veličin

1. Základy měření neelektrických veličin . Základ měřeí eelektrckých velč.. Měřcí řetězec Měřcí řetězec (měřcí soustava) je soubor měřcích čleů (jedotek) účelě uspořádaých tak, ab blo ožě splt požadovaý úkol měřeí, tj. získat formac o velkost

Více

Ý ÚŘ Č Ý Č É Ý ó Ě Ř Ř Ý é Ú ú Č é é ě ě š ů Ú Í ů ů ě ě š ů ú é é é ě ň ě é ú ě é ě ě ů Š ú Ú Ž Č é ě ě ě é é Ú ů ě ů ě Ú Ó ě ú é ň é Ú ě ě é ů ě ě ě Í ň Ú ů ů Š š ě ě Š Ů š ě é é Ž ě š ě Ů ť Š ě é ž

Více

Š Ě É ě ě ů ď č ě ě Č Á č ě ě ě é ě é ř ů č ě ý ř ů ě é ř é é ř ú č é ý é ů é č ř ě Ť ů ý ý ů č ě ď é ě ý é é é ř ď ý ř ť ř é ě ň ť č ďě č ě ý é č ě ř ň ů ě ř ě ě ě é ů é é č ě ů é č ě é ě ď č ý ě ů ů

Více

ř ě č ř ě Ý účé ěř Ý é É Ě Ýý ď ý úč č č ú ě é É ť ú Ě óý É ý ó É ý ý ň Ýý ú ť ý úý ó ý ý é ýď é ý ň É ý úú ý ý ó É É ý ý ň É ó Á É Ť ý ě Í É É Ý ě ý č é č Ý ř ó ó ó ó Ý é ó ž é ú Á ď é ď ú ý éž éé Ž É

Více

ť ť ť ó ť Ž ť ť ó Č ň ů ť ť ť ť ů ňť ť ů ť ť ť ť ť Č Č Č Í Ý Ý ť Č Č ť Š Č ď ť Ý Ú ť ó ť ó ď ů ň Ó ť ť ó ň Ř ó Ó É ď ó Ň ň ť Č ň ó Ý Ý ť Ý Ý ó Ž Ý Č Ř Ý ť Ý ť Ň ť ť Č Á Š Č Ž Č ť ť ů Č ů Č Č ť Č Ú ď ó

Více

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY NOSNÍKY

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY NOSNÍKY Předmět: Ročník: Vytvořil: Datum: MECHANIKA PRVNÍ ŠČERBOVÁ M. PAVELKA V. 16. ČERVNA 2012 Název zpracovaného celku: NOSNÍKY NOSNÍKY Nosníky jsou zpravidla přímá tělesa (pruty) uloţená na podporách nebo

Více

3.1.3 Rychlost a zrychlení harmonického pohybu

3.1.3 Rychlost a zrychlení harmonického pohybu 3.1.3 Rychlost a zrychlení haronického pohybu Předpoklady: 312 Kroě dráhy (výchylky) popisujee pohyb i poocí dalších dvou veličin: rychlosti a zrychlení. Jak budou vypadat jejich rovnice? Společný graf

Více

FYZIKA 3. ROČNÍK. Vlastní kmitání oscilátoru. Kmitavý pohyb. Kinematika kmitavého pohybu. y m

FYZIKA 3. ROČNÍK. Vlastní kmitání oscilátoru. Kmitavý pohyb. Kinematika kmitavého pohybu. y m Vlastní itání oscilátoru Kitavý pohb Kitání periodicý děj zařízení oná opaovaně stejný pohb a periodic se vrací do určitého stavu. oscilátor zařízení, teré ůže volně itat (závaží na pružině, vadlo) it

Více

Ž č éří š é š ří í č ó Ž ří š é š ó Ě Ě É Ě Ě ě š čů čů ó ý ů í č ó š ý ó ě ó í Ž ě ó í ř čí Ú á č é ó č éš é č ě ž ó í íš ó ó ý ó ý č ó ě Ť ý ě íř í ě č č ó ý é ů ó é ó á í ě Ť ó ó í ě ý ý ó í íč ó ó

Více

Křivky 2D. Klasifikace křivek (1) Klasifikace křivek (2) Navazování a spojitost křivek. Přednáška 8

Křivky 2D. Klasifikace křivek (1) Klasifikace křivek (2) Navazování a spojitost křivek. Přednáška 8 Předáš 8 Křv D Žár, J., Beeš, B., Felel, P. Moderí počíčová grf. Compuer Press, Bro, 998. ISBN 8-76-49-9. Cee, P. Počíčová grf. Srp Uverz Prdubce, 999. ISBN 8-794-9-4. Klsfce řve ( Podle prosoru D D Podle

Více

Ř í č ň é á Í ů é ž é ú ý ř čá í ý í é ý ů í í ů á é č ý ý š ý ý ř í é ž š ý ý ž ý ý ů ý á Ž č š č ý č ř é ž é ší ý ý ř ý ý é ř é ř Ž í ě š ě í á í Ž ý č á ů ř ý š ý á é ý í ř ů ří é á á ů á ů á ů á ý

Více

2.5.7 Šetříme si svaly I (kladka)

2.5.7 Šetříme si svaly I (kladka) 2.5.7 Šetříme si svay I (kadka) Předpokady: 020501 Pomůcky: kadky, akoěá rovia, šroub, smotateá akoěá rovia, švihada (ao), dvě košťata Př. 1: Uveď příkad situace, ve které se používá páka a: a) většeí

Více

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0 Komplexní čísl Pojem komplexní číslo zvedeme př řešení rovnce: x 0 x 0 x - x Odmocnn ze záporného čísl reálně neexstuje. Z toho důvodu se oor reálných čísel rozšíří o dlší číslo : Všechny dlší odmocnny

Více

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení.,

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení., Def: Vetorovým součiem vetorů u =(u, u, u 3 ) v = (v, v, v 3 ) zýváme vetor u v = (u v 3 u 3 v, u 3 v u v 3, u v u v ) Vět: Pro vetory i, j, ortoormálí báze pltí i i = j = i, i = j Vět: Nechť u v, w, jsou

Více

9 Kombinatorika, teorie pravděpodobnosti a matematická statistika

9 Kombinatorika, teorie pravděpodobnosti a matematická statistika 9 Kombatora, teore pravděpodobost a matematcá statsta Te, do argumetue průměrým platem, e s velou pravděpodobostí vysoce adprůměrý vůl s hluboce podprůměrým vzděláím (Mloslav Drucmüller) 9. Kombatora Kombatora

Více

č š é ž č é č ž é é é č é š š ř š ř Č é ř š ř ů Ž ř š é š č ř ž š š č ř č Úč ř č č č č ř č Á č č é éř Š ř ř é č č Ř Á č ž é Č ř ž č ů Úč ř č Š ř ů ž Ř Ě Á č ř é ž Á č č ř č Č é č č č ř Č é č č č č é ř

Více

ď ř š ř š ř š ř ř ů ř š ž ó š ř ě Ž Í č ř ó ó ž ó Ž Ž ě ó ó š ř ž š ó š ě ó č š ř Ó ó Ž ó Č č ř ě Ž ř ě Ó š ě č ř ň ě Ž ó č ř čó ř Ů ěž ě Ó ó ó Č č ř š ů č ř ř ó ó ř Ó Ú č š Ž óš č Ó ó š š ř ř Ž ě č č

Více

Technická mechanika - Statika

Technická mechanika - Statika Technická mechanika - Statika Elektronická učebnice Ing. Jaromír Petr Tento materiál byl vytvořen v rámci projektu CZ.1.07/1.1.07/03.0027 Tvorba elektronických učebnic O B S A H 1 Statika tuhých těles...

Více

Téma 5: Analýza závislostí

Téma 5: Analýza závislostí Aalýza závlotí Téma 5: Aalýza závlotí Předáša 5 Závlot mez ev Záladí pom Předmětem této aptol ude zoumáí závlotí ouvlotí mez dvěma a více ev. Jedá e o proutí do vztahů mez ledovaým ev a tím přlížeí tzv.

Více

Zápis ze společného jednání odborných pracovních skupin a místních aktérů Venkovské hospodářství

Zápis ze společného jednání odborných pracovních skupin a místních aktérů Venkovské hospodářství MAS Pobeskydí, z. s. 739 53 Třanovice č. p. 1 IČ: 71212612 Zápis ze společného jednání odborných pracovních skupin a místních aktérů Venkovské hospodářství k přípravě strategie komunitně vedeného místního

Více

PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úlohač.19 Název: Měření s torzním magnetometrem

PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úlohač.19 Název: Měření s torzním magnetometrem Odděení fyzikáních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II. úohač.19 Název: Měření s torzním magnetometrem Pracova: Lukáš Ledvina stud.skup.14 dne:16.10.2009 Odevzdadne: Možný počet

Více

8. cvičení 4ST201-řešení

8. cvičení 4ST201-řešení cvičící 8. cvičeí 4ST01-řešeí Obsah: Neparametricé testy Chí-vadrát test dobréshody Kotigečí tabuly Aalýza rozptylu (ANOVA) Vysoá šola eoomicá 1 VŠE urz 4ST01 Neparametricé testy Neparametricétesty využíváme,

Více

)a ezpeče í aktiv v ISSS 2015. Igor Št erka

)a ezpeče í aktiv v ISSS 2015. Igor Št erka )a ezpeče í aktiv v aplikač í h systé e h ISSS 2015 Hrade Králo é,.. Igor Št erka Legislativa ČR )áko o Ky er eti ké ezpeč osti )áko č. / S. Pro ádě í předpis.go ert. z )áko o o hra ě oso í h údajů )áko

Více

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATED RA F YZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméo TUREČEK Daiel Datum měřeí 8.11.2006 Stud. rok 2006/2007 Ročík 2. Datum odevzdáí 15.11.2006 Stud.

Více

Řešení testu 1b. Fyzika I (Mechanika a molekulová fyzika) NOFY021. 19. listopadu 2015

Řešení testu 1b. Fyzika I (Mechanika a molekulová fyzika) NOFY021. 19. listopadu 2015 Řešení testu b Fyzika I (Mechanika a olekulová fyzika) NOFY0 9. listopadu 05 Příklad Zadání: Kulička byla vystřelena vodorovně rychlostí 0 /s do válcové roury o průěru a koná pohyb naznačený na obrázku.

Více

Teoretický souhrn k 2. až 4. cvičení

Teoretický souhrn k 2. až 4. cvičení SYSTÉMOVÁ ANALÝZA A MODELOVÁNÍ Teoretcký souhrn k 2. ž 4. cvčení ZS 2009 / 200 . Vyezení zákldních poů.. Systé e Systé e účelově defnovná nožn prvků vze ez n, která spolu se svý vstupy výstupy vykzue ko

Více

Hlavní druhy ochrany proti malwaru. Antivir Firewall AntiSpyware ZDRAVÝ ROZUM!

Hlavní druhy ochrany proti malwaru. Antivir Firewall AntiSpyware ZDRAVÝ ROZUM! Antiviry Hlavní druhy ochrany proti malwaru Antivir Firewall AntiSpyware ZDRAVÝ ROZUM! Jak ojo at proti irů Mějte nainstalovaný kvalitní antivirový program Udržujte antivirový systém aktualizovaný (databázi

Více

ú ú ň Ž Ž Ť ú Č ň ť ď ú Č ň Č Ť Ž Ť Ť ť Ť Ž ď Č Š Ž ň ť ú ď ú ň Ť Ž ú ď ú ť Ť Ť Ž ú Č ň Ž Č ú Ž ť Ž ť Ž ť ť Š ó ť É ť ť ť ť ó ť ú Ž ó Ž ú ú Ť ň Ť Č Ý Ť Ť Ž Ž ť Ž Ž Ž ú ň ň ó ť Ž Ž Ú Č Ť Ž ň ó ú Ž ď ň Á

Více

ó ň ó ý ý é š é ň é ž éž ý é ě ý ž ó ž é ě ě é é ý ý ů é š ž ě ó ž ě ů ú ů ě é ž ě é é š š ž ě ž ě ú ž é ž ú ě ý ž é ě ý é ý ý é é é é ý ž ž š ě ž é ú š ů ú ů ú š ů ý ú ů ž ů ž ě ý ýš ý ú ý ě ěš ý ě ě

Více

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ převody. Přednáška 8

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ převody. Přednáška 8 akulta strojího ižeýrství VUT v Brě Ústav kostruováí KONSTRUOVÁNÍ STROJŮ převody Předáška 8 Šeková soukolí http://www.survivigworldsteam.com/ Kdo sleduje dějiy filosofie a přírodích věd, zjistí, že ejvětší

Více

3.9. Energie magnetického pole

3.9. Energie magnetického pole 3.9. nergie agnetického poe 1. Uět odvodit energii agnetického poe cívky tak, aby bya vyjádřena poocí paraetrů obvodu (I a L).. Znát vztah pro energii agnetického poe cívky jako funkci veičin charakterizujících

Více

ČÉ Á ŠŤ šť š Č ř ž š ý Š Č Ú š ú š Ž š š š ř ž ž š š š š ý ř š š ů ř š š š š š ú Í ú ř š š ů š š Ž ř ž ů ý Ě É Ú Í Í Š Ě ÍÚ Í š š Ý ý š Ó Č ř ř ř š ř ý ř ž ř š Č Š ÉŽ š Ě Í š Ř Ě Š Ě Á Á ČÁ š ý ž ž š ý

Více

2. Vícekriteriální a cílové programování

2. Vícekriteriální a cílové programování 2. Vícerterálí a cílové programováí Úlohy vícerterálího programováí jsou úlohy, ve terých se a možě přípustých řešeí optmalzuje ěol salárích rterálích fucí. Moža přípustých řešeí je přtom defováa podobě

Více

š č š ě Ú č ě ú š č Úň ě ž Ú ě ň ž ň ě Ý š ů š ž úč č Š ň ď Ž č š ě ň ů č Ž č Ž ú ň č š ž Ž ů č ů Š ú š ě č š ě ů š ů ě šť ě š š Ž č ě ě š ď Š ž ď ě š ě ě š ě ě š š ě Ě č ó ů ě ů ů ě š ě ů č ž š č Š ó

Více

DISKRÉTNÍ MATEMATIKA II

DISKRÉTNÍ MATEMATIKA II Faulta pedagogcá Techcá uverzta v Lberc DISKRÉTNÍ MATEMATIKA II Doc. RNDr. Mroslav Koucý CSc. Lberec 4 Úvod Dsrétí ateata resp. její zálady patří jž tradčě ez stadardí téata předášeá a Techcé uverztě v

Více

Š ŠŠ ě Š ě ř š š š š ř ě ó č ý š ý š ě ř ě Š ž š ě ů ě ř š ř šš š ý ě š ř ů č ý ě ě ě Ů č úč ě ý ě ý ú ý ý Š ý ě ý č š ý ú ě ě š Ů š ě ý ž š Š ý ý Ť š č š ě ý Ů Č ý ů ý ě ž Ů Š Í ž ě ý č ý ě ý ě ž Ů Ů

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í STŘÍDAVÝ POUD N V E S T E D O O Z V O J E V Z D Ě L Á V Á N Í. Sřídavý prod a jeho efekvní hodnoy sejnosěrný prod (d. c.) prod eče poze v jedno sěr sřídavý prod (a. c.) elekrcký prod, jehož časový průběhe

Více

Kdo jsme? Jak se k nám dostat? U ás ikdy estuduješ sá! Studia nových médií

Kdo jsme? Jak se k nám dostat? U ás ikdy estuduješ sá! Studia nových médií De otevře ý h dveří, 6.. 6 Pojďte k á studovat o or Kdo jsme? Co u ás ůžeš studovat? Jak se k nám dostat? U ás ikdy estuduješ sá! Ústa i for ač í h studií a k iho i t í & Studia nových médií. století!

Více

Dokončovací práce na soustruhu

Dokončovací práce na soustruhu Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Dokončovací práce na soustruhu Účelem dokončovacích prací na soustruhu je dosáhnout dokonalé jakosti obrobených

Více

Školní kolo soutěže Baltík 2007, kategorie C

Školní kolo soutěže Baltík 2007, kategorie C Úloha č. 1: Pyramida (Režim 3D programovací s Baltíkem) V 3D prostoru bude vytvořená pyramida s rozměry podstavy 7x7 políček. Jednotlivé vrstvy budou tvořené modely SGP.47.sgpm boční stěny a SGP.7.sgpm

Více

Obyčejné diferenciální rovnice. Cauchyova úloha Dirichletova úloha

Obyčejné diferenciální rovnice. Cauchyova úloha Dirichletova úloha Občejé erecálí rovce Caucova úloa Drcletova úloa Občejé erecálí rovce - Caucova úloa Úlo: I. = s omíou = jea rovce. řáu II. soustava rovc. řáu III. = - jea rovce -téo řáu = = = - = - Hleáme uc res. uce

Více

ŠKOLNÍ ŘÁD. Sídlo: Ide tifikač í číslo 00852333 Zřizovatel Olo ou ký kraj IČO 60609460. V itř í předpis č.: VP12/2015. Vypracoval ředitel školy:

ŠKOLNÍ ŘÁD. Sídlo: Ide tifikač í číslo 00852333 Zřizovatel Olo ou ký kraj IČO 60609460. V itř í předpis č.: VP12/2015. Vypracoval ředitel školy: Základ í u ěle ká škola, Šu perk, Žerotí ova 11 Sídlo: Šu perk, Žerotí ova Ide tifikač í číslo 00852333 Zřizovatel Olo ou ký kraj IČO 60609460 V itř í předpis č.: VP12/2015 ŠKOLNÍ ŘÁD Vypracoval ředitel

Více

Téma 4 Výpočet přímého nosníku

Téma 4 Výpočet přímého nosníku Stavební statika, 1.ročník bakaářského studia Téma 4 Výpočet přímého nosníku Výpočet nosníku v osové úoze Výpočet nosníku v příčné úoze ve svisé a vodorovné havní rovině Výpočet nosníku v krutové úoze

Více

9. Umělé osvětlení. 9.1 Základní veličiny. e. (9.1) I =. (9.6)

9. Umělé osvětlení. 9.1 Základní veličiny. e. (9.1) I =. (9.6) 9. Umělé osvětlení Umělé osvětlení vhodně doplňuje nebo cela nahrauje denní osvětlení v případě jeho nedostatku a tím přispívá ke lepšení rakové pohody člověka. Umělé osvětlení ale potřebuje droj energie,

Více

ZÁKLADNÍ ŠKOLA a MATE SKÁ ŠKOLA STRUP ICE, okres Chomutov

ZÁKLADNÍ ŠKOLA a MATE SKÁ ŠKOLA STRUP ICE, okres Chomutov ZÁKLADNÍ ŠKOLA a MATE SKÁ ŠKOLA STRUP ICE, okres Chomutov Autor výukového Materiáu Datum (období) vytvo ení materiáu Ro ník, pro který je materiá ur en Vzd ávací obor tématický okruh Název materiáu, téma,

Více

ŠŘ Í Č Á ú Á Á ó Ě Á š š ý ě ž Ě š ý ů ž ý ě ě š ů ý š Ž Ž ú ě ů ů ě ž ň Ě ú Č š š ý š ě Č Č š ý š ý ě ž ě ě ž ě š ý ě ž Č ž ů ý ž ý ě ý ě ž Í ž ň ý ž ž ž ý ž ů ý ž Ž ě ž š š ý Ř Š Ť Č Á Á Á ó Ě Á Á š

Více

MONTÁŽE PUŠKOHLEDŮ 1

MONTÁŽE PUŠKOHLEDŮ 1 MONTÁŽE PUŠKOHLEDŮ 1 Montáže puškohledů FOMEI Montáže FOMEI pro instalaci zaměřovacích dalekohledů jsou vyvinuty s důrazem na maximální jednoduchost, vysokou tuhost a spolehlivost. Hlavní znaky montáží

Více

RUČNÍ PROGRAMOVÁNÍ FRÉZOVÁNÍ UOV Petr Svoboda

RUČNÍ PROGRAMOVÁNÍ FRÉZOVÁNÍ UOV Petr Svoboda RUČNÍ PROGRAMOVÁNÍ FRÉZOVÁNÍ UOV Petr Svoboda Přípravné funkce G VY_32_INOVACE_OVS_2_16 OPVK 1.5 EU peníze středním školám CZ.1.07/1.500/34.0116 Modernizace výuky na učilišti 6.3.2014 1 Název školy Název

Více

1 Identifikace případo é studie

1 Identifikace případo é studie PŘÍPADOVÁ STUDIE: zhod o e í pří osů projektu DOBROVOLNICTVÍ A VEŘEJNÁ SLUŽBA V OBCI - JAK NA TO? - VYUŽITÍ DOBROVOLNICTVÍ A VEŘEJNÉ SLUŽBY K RO)VOJI OBCE, KOMUNITY I JEDNOTLIVCE 1 Identifikace případo

Více

ANC Oblasti s přírodními nebo jinými zvláštními omezeními od r. 2018 Ing. Marie Perglerová Odbor environmentálních podpor PRV

ANC Oblasti s přírodními nebo jinými zvláštními omezeními od r. 2018 Ing. Marie Perglerová Odbor environmentálních podpor PRV ANC Oblasti s přírodními nebo jinými zvláštními omezeními od r. 2018 Ing. Marie Perglerová Odbor environmentálních podpor PRV Charakteristika stavu od roku 2018 Redefinice se netýká se horských LFA Povi

Více

6.2.1 Zobrazení komplexních čísel v Gaussově rovině

6.2.1 Zobrazení komplexních čísel v Gaussově rovině 6.. Zobraení komplexních čísel v Gaussově rovině Předpoklad: 605 Pedagogická ponámka: Stihnout obsah hodin je poměrně náročné. Při dostatku času je lepší dojít poue k příkladu 7 a btek hodin spojit s úvodem

Více

Definice tolerování. Technická dokumentace Ing. Lukáš Procházka

Definice tolerování. Technická dokumentace Ing. Lukáš Procházka Technická dokumentace Ing. Lukáš Procházka Téma: geometrické tolerance 1) Definice geometrických tolerancí 2) Všeobecné geometrické tolerance 3) Základny geometrických tolerancí 4) Druhy geometrických

Více

Kótování na strojnických výkresech 1.část

Kótování na strojnických výkresech 1.část Kótování na strojnických výkresech 1.část Pro čtení výkresů, tj. určení rozměrů nebo polohy předmětu, jsou rozhodující kóty. Z tohoto důvodu je kótování jedna z nejzodpovědnějších prací na technických

Více

postele / technická příloha

postele / technická příloha postele / technická příloha 2 / POSTELE / TECHNICKÁ PŘÍLOHA Postele rozměry AUXÓ AUXÓ AUXÓ 10 AUXÓ 2 10 21 20 240 220 LÉTÓ LÉTÓ LÉTÓ 10 LÉTÓ 2 10 21 20 240 220 DAFNÉ DAFNÉ DAFNÉ 10 DAFNÉ 3 2 211 191 171

Více

í ý á ř ů ř ě í Ď ě ě ě á ě á ří ý ě í á ř ů ň á ó Š á ř ů ř ě í ě ě ě á ě á íí ý í á á ř ů ř ě í ě ě ě á ě á ří ý ě í Ó ří á ř ů ř ě í ě ě ě á ě á ří ý á ř ů ř ě í ř ý ří í á ř ů ř ě í ě ě ě á ě á ý ě

Více

I Mechanika a molekulová fyzika

I Mechanika a molekulová fyzika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I Mechanika a molekulová fyzika Úloha č.: XVII Název: Studium otáčení tuhého tělesa Pracoval: Pavel Brožek stud. skup. 12

Více

Lehké střešní konstrukce ze dřeva

Lehké střešní konstrukce ze dřeva Worshop 5 VZ Uržiteá výstavba Lehé střeší ostruce ze řeva Petr Kuí ioš Vooa Cíem tohoto jetu je popsat chováí ehých střeších ostrucí veeých pomocí oceových ese s isovaými tr při běžé tepotě a za požáru.

Více

Přímková a rovinná soustava sil

Přímková a rovinná soustava sil STAVEBNÍ STATIKA Ing. Lenka Lausová LH 47/1 tel. 59 73 136 římková a ovinná soustava sil lenka.lausova@vsb.c http://fast1.vsb.c/lausova Základní pojmy: Jednotková kužnice 1) Souřadný systém 1 sin potilehlá

Více

Ě ů ý š ř ť š š š Ú š š š š š š Č š ť šš ť š š ť ň š Č š ť ó ť Č š š ó ň ň Š Č Č ť Č ň Š ť Š š š š š š š ň š š š š š š š š š š š š ň š š š ů Š Í ň š š Š š ť š Ž š š š š š š š š š ť ť š Š š ň š š š š ď

Více

ř ó š ř č ř ř Č Č č ú Š Á É ř Č Č úč ř ř é ř ů é é ř é ř č ř š ř é č ž é ž č č šť é š ý é ň é ř ů ý ž Ž ď ý ř é ř ó ů é é ž é ž ř é é ř č ž é é ú ý é ů é é Ž Ť ž ž č č č é é š ň é ž ř š é š ý é ř é é ř

Více

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Projekt realoaý a SPŠ Noé Město ad Metují s fačí podporou Operačím programu Vdělááí pro kokureceschopost Králoéhradeckého kraje Modul - Techcké předměty Ig. Ja Jemelík - fukčí soustay součástí, které slouží

Více

JAK VELKÉ HROZÍ PROBLÉMY?. Vliv de ografie a alého záj u o učňovské o or

JAK VELKÉ HROZÍ PROBLÉMY?. Vliv de ografie a alého záj u o učňovské o or Témata 1. Proč se vů e o NSK zají at? 2. Co je NSK 3. Souhr á čísla stav NSK, kdo to dělá 4. NSK, NSP a kompetence - ož osti v užití v personálních systémech 1 JAK VELKÉ HROZÍ PROBLÉMY?. Vliv de ografie

Více

Ú Ú Ť Ť Ú Ú Ž Ť Ť Ť ť ď ť ď Č ď Č Ť Ť Ú Ď Ú ď ĚŽ ť ť Č Ý Č Ý Ů ď Č Ť Ř Ď Ř Č Ř ť ť Ď Ď ĚŽ ď ď Ú Ď Ť Č Ť Ř Ý Ž Ž Ú Ý ÉŽ Ú Ú Ú ď ť ď ť ď Č ĚŽ Ž Ě Ž Č Ř Ř Ž Č Ý Ž Č Ě Ě Ň Ž Ň Ť Ě ŤŘ Ě Ě Ý Ě Ě Ě Ý Ě Ý ď ď

Více

D i f r a k c e s v ě t l a n a š t ě r b i n ě a d v o j š t ě r b i n ě

D i f r a k c e s v ě t l a n a š t ě r b i n ě a d v o j š t ě r b i n ě D i f r a k c e s v ě t l a n a š t ě r b i n ě a d v o j š t ě r b i n ě Ú k o l : 1. Pozorujte difrakci na štěrbině a dvojštěrbině. 2. Z difrakčního obrazce (štěrbina) určete šířku štěrbiny. 3. Z difrakčního

Více

MĚŘENÍ NA ASYNCHRONNÍM MOTORU

MĚŘENÍ NA ASYNCHRONNÍM MOTORU MĚŘENÍ NA ASYNCHRONNÍM MOTORU Základní úkole ěření je seznáit posluchače s vlastnosti asynchronního otoru v různých provozních stavech a s ožnosti využití provozu otoru v generátorické chodu a v režiu

Více

5 DISKRÉTNÍ ROZDĚLENÍ PRAVDĚPODOBNOSTI. Čas ke studiu kapitoly: 120 minut. Cíl: Po prostudování tohoto odstavce budete umět:

5 DISKRÉTNÍ ROZDĚLENÍ PRAVDĚPODOBNOSTI. Čas ke studiu kapitoly: 120 minut. Cíl: Po prostudování tohoto odstavce budete umět: 5 DISKRÉTNÍ ROZDĚLENÍ RAVDĚODOBNOSTI Čas e sudiu aioly: 0 miu Cíl: o rosudováí ohoo odsavce budee umě: charaerizova hyergeomericé rozděleí charaerizova Beroulliho ousy a z ich odvozeé jedolivé yy disréích

Více

ě Á Á é é ě ě ě ú é é é ě é é ď ď ď š š Č Á ě ú Á ď š ě Č ě š ěž ě é ě ě ě ě ě ě Č Á ě Á é ú Ž é š ě š š é Ž ě é š é Š ť Ž ě Č Á ú Á Ť é ě é š ě ě š š ď ď Č é š š Č ě ě ú ě ú Ť é ě š ě ě š ě š ě ě ú ě

Více

Jestliže nějaký objekt A můžeme vybrat m způsoby a jiný objekt B lze vybrat n způsoby, potom výběr buď A nebo B je možné provést m+n způsoby.

Jestliže nějaký objekt A můžeme vybrat m způsoby a jiný objekt B lze vybrat n způsoby, potom výběr buď A nebo B je možné provést m+n způsoby. V kapitole Ituitiví kobiatorika jse řešili příklady více éě stejý způsobe a stejých pricipech. Nyí si je zobecíe a adefiujee obvyklou teriologii. pravidlo součtu: Jestliže ějaký objekt A ůžee vybrat způsoby

Více

ZÁPISKY Z ANALYTICKÉ GEOMETRIE 1 SOUŘADNICE, BODY

ZÁPISKY Z ANALYTICKÉ GEOMETRIE 1 SOUŘADNICE, BODY 1 Souřadnice, body 1.1 Prostor prostor můžeme chápat jako nějaké prostředí, ve kterém můžeme mít různé věci na různých místech místo, poloha - tohle potřebujeme nějak popsat abychom mohli změřit nebo říci,

Více

Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky

Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky Úloha 6 02PRA2 Fyzikální praktikum II Ohniskové vzdálenosti čoček a zvětšení optických přístrojů Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky a principy optických přístrojů.

Více

Stavební statika. Cvičení 1 Přímková a rovinná soustava sil. Goniometrické funkce. Přímková a rovinná soustava sil. 1) Souřadný systém

Stavební statika. Cvičení 1 Přímková a rovinná soustava sil. Goniometrické funkce. Přímková a rovinná soustava sil. 1) Souřadný systém Vysoká škola báňskb ská Technická univeita Ostava Stavební statika Cvičení 1 římková a ovinná soustava sil římková soustava sil ovinný svaek sil Statický moment síly k bodu a dvojice sil v ovině Obecná

Více

Pojistné v životním pojištění

Pojistné v životním pojištění Poisté žiotí poištěí Obecé pricipy Poisté žiotí poištěí se obye počítá zádě tzého pricipu eiece dy se předpoádá roost ezi středí hodotou pteb poišťoy ietoi iet poišťoě V pré řdě se teto zth piue pouze

Více

plá a role OHA I g. O dřej Feli CSc, Digitál í ša pio ČR Hla í ar hitekt )R, MVČR I g. Petr Ku hař ředitel od oru Hla ího architekta eg, MVČR

plá a role OHA I g. O dřej Feli CSc, Digitál í ša pio ČR Hla í ar hitekt )R, MVČR I g. Petr Ku hař ředitel od oru Hla ího architekta eg, MVČR Národ í ar hitekto i ký plá a role OHA I g. O dřej Feli CSc, Digitál í ša pio ČR Hla í ar hitekt )R, MVČR I g. Petr Ku hař ředitel od oru Hla ího architekta eg, MVČR Proč NAP a o je íle Národ í ar hitekto

Více

/ P ře d m lu v a...11. / Úvod... 14. / Vysoký krevn í tla k, definice, rozdělení, p rim árn í a sekundární h y p e r te n z e...

/ P ře d m lu v a...11. / Úvod... 14. / Vysoký krevn í tla k, definice, rozdělení, p rim árn í a sekundární h y p e r te n z e... Obsah / P ře d m lu v a...11 / Úvod... 14 1. O k re v n ím tla k u se stále m lu v í a m lu v í... M á sm ysl se z a jím a t o k re v n í tla k, když n e m á m ž á d n é p o tíže? Je a le fa k t, že d

Více

Úloha č. 5. Měření zvětšení lupy a mikroskopu

Úloha č. 5. Měření zvětšení lupy a mikroskopu Fzikání praktikum IV. Měření zvětšení up a mikroskopu - verze 01 Úoha č. 5 Měření zvětšení up a mikroskopu 1) Pomůck: Stojan upa měřítka mikroskop průhedné měřítko do mikroskopu stojan s měřítkem osvětovací

Více

Montážní návod. SEVi 160/SEVi 160 PLUS větra í systé. Distri u e pro Českou Repu liku a Slovensko: SEVentilation.cz. Jan Filip

Montážní návod. SEVi 160/SEVi 160 PLUS větra í systé. Distri u e pro Českou Repu liku a Slovensko: SEVentilation.cz. Jan Filip Montážní návod SEVi 60/SEVi 60 PLUS větra í systé (I telige t í s sté větrá í se zpět ý ziske tepla) Distri u e pro Českou Repu liku a Slovensko: SEVentilation.cz Jan Filip Pod Nádraží, 33 Plas Telefon:

Více