IV. MKP vynucené kmitání

Rozměr: px
Začít zobrazení ze stránky:

Download "IV. MKP vynucené kmitání"

Transkript

1 Jří Máca - katedra mechaky - B35 - tel IV. MKP vyuceé kmtáí. Rovce vyuceého kmtáí. Modálí aalýza rozklad do vlastích tvarů 3. Přímá tegrace pohybových rovc 3. Metoda cetrálích dferecí 3. Newmarkova metoda 3.3 Wlsoova metoda 3.4 Stablta a chyby umercké tegrace 3.5 Příklad metoda cetrálích dferecí 4. Aalýza ve frekvečí oblast 4. Ustáleé kmtáí přímé řešeí 4. Ustáleé kmtáí rozklad do vlastích tvarů 5. Příklady 5. Odezva základu turbosoustrojí a harmocké zatížeí 5. Zavěšeý most áhlé přerušeí závěsu 3DY0 Dyamka stavebích kostrukcí

2 IV. MKP vyuceé kmtáí. Rovce vyuceého kmtáí Soustava je zatížea budcím sílam p(t) Cílem je staovt dyamckou odezvu systému pohybové rovce počátečí podm. K u( t) C u( t) M u( t) p( t) u(0) u u(0) u 0 0 soustava N dferecálích rovc II. řádu (N počet st. volost) ezámé: u(t) časový průběh posuutí (MKP: u(t) ~ r(t) vektor uzlových posuutí) řešeí - modálí aalýza (rozklad do vlastích tvarů) - přímá tegrace pohybových rovc - aalýza ve frekvečí oblast 3DY0 Dyamka stavebích kostrukcí

3 IV. MKP vyuceé kmtáí 3. Modálí aalýza rozklad do vlastích tvarů základí dea: odezva se staoví jako kombace vlastích tvarů kmtáí pomocí modálích souřadc q (t) ( =, N) N u( t) q ( t) Φq( t) dosazeí do pohybových rovc K u( t) C u( t) M u( t) p( t) K Φ q( t) C Φ q( t) M Φ q( t) p( t) Φ K Φ q( t) Φ C Φ q( t) Φ M Φ q( t) Φ p( t) pro ormovaé vlastí tvary dále platí Ω q Φ C Φ q I q Φ p ( t) ( t) ( t) ( t) obecě eí dagoálí matce 3DY0 Dyamka stavebích kostrukcí

4 IV. MKP vyuceé kmtáí 4. Modálí aalýza rozklad do vlastích tvarů Klascký útlum Φ C Φ je dagoálí matce, jejíž prvky jsou tj. vlastí tvary jsou ortogoálí též k matc útlumu - koefcet poměrého útlumu -tého vlast. tvaru - -tá vlastí frekvece ( ) Ω q t Φ C Φ q( t) I q( t) Φ p( t) q ( t) q ( t) q ( t) p( t) soustava N ezávslých rovc pro q (t) řešeí - apř. Duhamelův tegrál (vz soustava s SV). výhoda obvykle =, P P N. výhoda počet uvažovaých vl. tvarů P je dá frekvečím složeím zatížeí 3DY0 Dyamka stavebích kostrukcí

5 IV. MKP vyuceé kmtáí 5. Modálí aalýza rozklad do vlastích tvarů Rayleghův útlum klascký, proporcoálí útlum C M K leárí kombace matc tuhost a hmotost Φ C Φ Φ M Φ Φ K Φ koefcety α, β lze určt, záme-l součtele poměrého útlumu ξ a ξ j pro dvě rozdílé vlastí frekvece ω a ω j /, / j j j záme-l součtel útlumu ξ pouze pro prví vl. frekvec ω a předpokládáme-l, že ejméě je tlume. tvar, platí: 3DY0 Dyamka stavebích kostrukcí

6 IV. MKP vyuceé kmtáí 6. Modálí aalýza rozklad do vlastích tvarů Neklascký útlum Iterakce kostrukce a podloží Sestaveí matc pro systém kostrukce - podloží C M K C M K f f f f f Jý příklad eklasckého útlumu dskrétí tlumče (matce útlumu může být dagoálí) 3DY0 Dyamka stavebích kostrukcí

7 IV. MKP vyuceé kmtáí 7. Modálí aalýza rozklad do vlastích tvarů Volé kmtáí útlum klascký, ormovaé tvary kmtáí K u( t) C u( t) M u( t) 0 u(0) u0 u(0) u0 N u( t) q ( t) q ( t) q ( t) q ( t) 0 q (0) q q (0) q 0 0 řešeí modálí rovce vz soustavy s SV: q (0) (0) ( ) t q q t e q (0)cosDt sdt D D 3DY0 Dyamka stavebích kostrukcí

8 IV. MKP vyuceé kmtáí 8. Modálí aalýza rozklad do vlastích tvarů Počátečí podmíky pro modálí souřadce q (0) ; q (0) N u( t) q ( t) M N M u t M ( ) q ( t) vzhledem k podmíkám ortogoalty platí: Mu( t) Μ q ( t) q () t Mu() t Μ pro ormovaé tvary platí: q ( t) Mu( t) q q (0) Mu(0) (0) Mu(0) 3DY0 Dyamka stavebích kostrukcí

9 IV. MKP vyuceé kmtáí 9 3. Přímá tegrace pohybových rovc základí dea: pohybové rovce se postupě řeší jedotlvých okamžcích t, t +, časová osa se rozdělí pomocí délky tegračího kroku t t t dervace se ahradí dferecem, soustava dferecálích rovc se převede a rovce algebracké ozačeí: p p( t ) u u( t ) u u( t ) u u( t ) Μu Cu Ku p Mu Cu Ku p ezámé: u u u metody řešeí: eplctí pohybová rovce se používá v čase t mplctí pohybová rovce se používá v čase t + 3DY0 Dyamka stavebích kostrukcí

10 IV. MKP vyuceé kmtáí 0 3. Přímá tegrace pohybových rovc stejý postup se použje pro modálí aalýzu pro obecý eklascký útlum K u( t) C u( t) M u( t) p( t) N u( t) q ( t) Φq( t) Φ K Φ q( t) Φ C Φ q( t) Φ M Φ q( t) Φ p( t) ˆK Ĉ ˆM pˆ( t) Kˆ q( t) Cˆ q( t) Mˆ q( t) pˆ ( t) Mˆ q Cˆ q Kˆ q pˆ Mˆ q Cˆ q Kˆ q pˆ ezámé: q q q modálí rovce výhoda řešeí: obvykle malý počet modálích rovc P ( =, P) příklad eklasckého útlumu: terakce kostrukce s podložím 3DY0 Dyamka stavebích kostrukcí

11 IV. MKP vyuceé kmtáí 3. Přímá tegrace pohybových rovc 3. Metoda cetrálích dferecí eplctí metoda pohybové rovce přímá tegrace u f p M, C, K M, C, K modálí aalýza q f pˆ M, C, K Mˆ, Cˆ, Kˆ t t apromace rychlost a zrychleí M C K f M C K f t t pohybová rovce v čase t M C f K M M C t t t t t soustava N algebrackých rovc 3DY0 Dyamka stavebích kostrukcí

12 IV. MKP vyuceé kmtáí 3. Přímá tegrace pohybových rovc 3. Metoda cetrálích dferecí pro dagoálí matce M a C (C=0 ebo C=αM) se soustava rozpadá a ezávslé rovce výhoda délka tegračího kroku. metoda je podmíěě stablí délka tegračího kroku je omezea ejkratší perodou M (závsí a rozměru ejtužšího prvku) t M. v modálí aalýze délka je též závslá a perodě J ejvyššího uvažovaého vl.tvaru t J 0 3. je uté správě apromovat zatížeí, apř. akcelerogramy jsou obvykle udáváy pro časový krok 0.0 s. 3DY0 Dyamka stavebích kostrukcí

13 IV. MKP vyuceé kmtáí 3 3. Přímá tegrace pohybových rovc 3. Newmarkova metoda mplctí metoda t 0.5 t t t t apromace posuutí a rychlost M C K f pohybová rovce v čase t t M t C t K f C t K t 0.5 t soustava N algebrackých rovc délka tegračího kroku metoda je stablí pro vhodou volbu parametrů γ = / a β = /4 (metoda průměrého zrychleí) délka tegračího kroku je však omezea M t ejkratší perodou M zatížeí 0 3DY0 Dyamka stavebích kostrukcí

14 IV. MKP vyuceé kmtáí 4 3. Přímá tegrace pohybových rovc 3.3 Wlsoova metoda mplctí metoda délka tegračího kroku t t t metoda je epodmíěě stablí pro,37 t t 6 t apromace posuutí a rychlost M C K f pohybová rovce v čase tt soustava N algebrackých rovc metoda zavádí tzv. umercký útlum - v případě etlumeého kmtáí se v čase výchylky sžují - potlačuje se (ežádoucí) vlv vysokých vlastích tvarů a frekvecí a odezvu systému 3DY0 Dyamka stavebích kostrukcí

15 IV. MKP vyuceé kmtáí 5 3. Přímá tegrace pohybových rovc 3.4 Stablta a chyby umercké tegrace J t more accurate tha ( t 0.55 J ) J t 3DY0 Dyamka stavebích kostrukcí

16 IV. MKP vyuceé kmtáí 6 3. Přímá tegrace pohybových rovc 3.4 Stablta a chyby umercké tegrace volé kmtáí: 0 (0) ad (0) 0 ( ) cos mu ku u u u t t ( t 0. ) Chyby: sžováí ampltudy (AD) prodlužováí perody (PE) PE 3DY0 Dyamka stavebích kostrukcí

17 IV. MKP vyuceé kmtáí 7 3. Přímá tegrace pohybových rovc 3.5 Příklad metoda cetrálích dferecí 7 E 3.43*0 kn / m, I 3 bh 0.3* * m m a g ( t) / g k m 3.0m m /0. 30m 3.0m k 3.0m sec 7 EI *3.43*0 *6.75*0 k * * 3 4 L 3. m 60kN sec / m k k K k k 0.58sec 0.sec kN / m m M m DY0 Dyamka stavebích kostrukcí

18 IV. MKP vyuceé kmtáí 3DY0 Dyamka stavebích kostrukcí Příklad metoda cetrálích dferecí Eplctí metoda tegrace etlumeé kmtáí * (,)* (,)* (,) * (,)* (,)* (,) (,) (,) (,) (,) (,) 0 0 (,) K K f M t K K f M t K K K K f f M M t K f M t M f K M M t t t

19 IV. MKP vyuceé kmtáí 3DY0 Dyamka stavebích kostrukcí 9 sezmcké zatížeí zrychleí v základové spáře ) a(t * (,)* (,)* (,)* (,) * (,)* (,)* (,)* (,) K K a M M t K K a M M t * 3780* 8640* 60* 60 * 8640* 8640* 60* 60 a t a t pro daou úlohu ezámé 3.5 Příklad metoda cetrálích dferecí

20 IV. MKP vyuceé kmtáí 3.5 Příklad metoda cetrálích dferecí t 0.0sec 0 3DY0 Dyamka stavebích kostrukcí

21 IV. MKP vyuceé kmtáí 3.5 Příklad metoda cetrálích dferecí t 0.05sec 3DY0 Dyamka stavebích kostrukcí

22 IV. MKP vyuceé kmtáí 3.5 Příklad metoda cetrálích dferecí m 0. t 0.08sec t crt 0.07 esprávé řešeí esprávé řešeí 3DY0 Dyamka stavebích kostrukcí

23 IV. MKP vyuceé kmtáí Příklad metoda cetrálích dferecí t 0.09sec t crt establí řešeí establí řešeí 3DY0 Dyamka stavebích kostrukcí

24 IV. MKP vyuceé kmtáí 4 4. Aalýza ve frekvečí oblast základí dea: ) zatížeí se převede z časové oblast pomocí Fourerovy trasformace do oblast frekvečí ) provede se výpočet odezvy a jedotlvé harmocké složky zatížeí 3) pomocí verzí Fourerovy trasformace se odezva převede z frekvečí oblast do časové oblast p(t) Fourerova trasformace zatížeí p(ω) harmocká odezva u(t) verzí Fourerova trasformace odezvy u(ω) 3DY0 Dyamka stavebích kostrukcí

25 IV. MKP vyuceé kmtáí 5 4. Aalýza ve frekvečí oblast Odezva a harmocké zatížeí ustáleé kmtáí: - přímé řešeí vyjádřeím odezvy pomocí ampltudy a fáze - řešeí rozkladem do vlastích tvarů kmtáí 4. Ustáleé kmtáí přímé řešeí p( t) ps st pc cost K u( t) Cu( t) M u( t) p( t) u( t) u st u cost ( ) K M u Cu p S C S Cu K M u p S ( ) C C k-tá složka vektoru u(t) u S ; u u ( t) u st u cost u s( t ) k Sk Ck k k výhoda: lbovolá matce útlumu C S C soustava N algebrackých rovc (N = počet st. volost) u u u k Sk Ck k arcta u u Ck Sk 3DY0 Dyamka stavebích kostrukcí

26 IV. MKP vyuceé kmtáí 6 4. Aalýza ve frekvečí oblast 4. Ustáleé kmtáí rozklad do vlastích tvarů Pro ormovaé vlastí tvary a klascký útlum platí: K u( t) Cu( t) M u( t) p( t) q ( t) q ( t) q ( t) p( t) q q S C S q q S C C q t q t q t q t ( ) s cos s S C výhoda: obvykle P N p p u( t) q ( t) q N p( t) p st p cost S q ( t) q st q cost S S C ; q C C N soustav algebrackých rovc pro ezámé (N = počet st. volost) q q q S C soustav rovc pro ez. arcta q q C S 3DY0 Dyamka stavebích kostrukcí

27 IV. MKP vyuceé kmtáí 7 5. Příklady 5. Odezva základu turbosoustrojí a harmocké zatížeí rezoačí křvka 3DY0 Dyamka stavebích kostrukcí

28 IV. MKP vyuceé kmtáí 8 5. Příklady 5. Zavěšeý most áhlé přerušeí závěsu statcká hodota časový průběh ohybového mometu v bodě A 3DY0 Dyamka stavebích kostrukcí

1. DYNAMIKA A DEFORMAČNÍ VARIANTA METODY KONEČNÝCH PRVKŮ

1. DYNAMIKA A DEFORMAČNÍ VARIANTA METODY KONEČNÝCH PRVKŮ . DYNAMIKA A DEFOMAČNÍ VAIANTA METODY KONEČNÝCH PVKŮ Př řešeí statckých úloh pomocí deformačí varaty metody koečých prvků jsme zjstl, že pro pops dskretzovaého systému potřebujeme zát pouze jedu jeho charakterstku

Více

Spolehlivost a diagnostika

Spolehlivost a diagnostika Spolehlvost a dagostka Složté systémy a jejch spolehlvost: Co je spolehlvost? Vlv spolehlvost kompoetů systému Návrh systému z hledska spolehlvost Aplkace - žvotě důležté systémy - vojeské aplkace Teore

Více

Téma 2 Přímková a rovinná soustava sil

Téma 2 Přímková a rovinná soustava sil Stavebí statka,.ročík bakalářského studa Téma 2 Přímková a rová soustava sl Přímková soustava sl ový svazek sl Statcký momet síly k bodu a dvojce sl v rově Obecá rová soustava sl ová soustava rovoběžých

Více

Lineární a adaptivní zpracovní dat. 5. Lineární filtrace: FIR, IIR

Lineární a adaptivní zpracovní dat. 5. Lineární filtrace: FIR, IIR Leárí a adaptví zpracoví dat 5. Leárí fltrace: FIR, IIR Dael Schwarz Ivestce do rozvoje vzděláváí Opakováí 2 Co je to fltrace? Co je to fltr? A jak ho popsujeme? Jaký je vztah Z trasformace a Fourerovy

Více

Odhady parametrů základního. Ing. Michal Dorda, Ph.D.

Odhady parametrů základního. Ing. Michal Dorda, Ph.D. Odhady parametrů základího souboru Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt celou populac, provádíme

Více

Hartre-Fock method (HF)

Hartre-Fock method (HF) Cofgurato Iteracto (CI) Coupled Clusters (CC) Perturbato Theory (PT, MP) Electro correlato H Ψ = EΨ Bor-Oppehemer approxmato Model of depedet electros Product wave fucto (Slater determat) MO LCAO Hartre-Fock

Více

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D. Odhady parametrů základího souboru Ig. Mchal Dorda, Ph.D. Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl σ atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt

Více

Téma 11 Prostorová soustava sil

Téma 11 Prostorová soustava sil Stavebí statka,.ročík bakalářského studa Téma Prostorová soustava sl Prostorový svazek sl Statcký momet síly a dvojce sl v prostoru Obecá prostorová soustava sl Prostorová soustava rovoběžých sl Katedra

Více

Generování dvojrozměrných rozdělení pomocí copulí

Generování dvojrozměrných rozdělení pomocí copulí Pravděpodobost a matematcká statstka eerováí dvojrozměrých rozděleí pomocí copulí umbelova copule PRAHA 005 Vpracoval: JAN ZÁRUBA OBSAH: CÍL PRÁCE TEORIE Metoda verzí trasformace O copulích Sklarova věta

Více

5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC

5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC 5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC V této kaptole se dozvíte: jak je defováa fukce přrozeá odmoca v kompleím oboru a jaké má vlastost včetě odlšostí od odmocy v reálém

Více

II. Soustavy s konečným počtem stupňů volnosti

II. Soustavy s konečným počtem stupňů volnosti Jiří Máca - atedra echaiy - B35 - tel. 435 4500 aca@fsv.cvut.cz. Pohybové rovice. Vlastí etlueé itáí 3. Vyuceé etlueé itáí 4. Volé etlueé itáí 5. Metoda ostat poddajosti 6. Přílady 7. Staticá odezace 8.

Více

3. Hodnocení přesnosti měření a vytyčování. Odchylky a tolerance ve výstavbě.

3. Hodnocení přesnosti měření a vytyčování. Odchylky a tolerance ve výstavbě. 3. Hodoceí přesost měřeí a vytyčováí. Odchylky a tolerace ve výstavbě. 3.1 Úvod o měřeí obecě 3.2 Chyby měřeí a jejch děleí 3.2.1 Omyly a hrubé chyby 3.2.2 Systematcké chyby 3.2.3 Náhodé chyby 3.3 Výpočet

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

2 CHARAKTERISTIKA VÝPOČTOVÉHO PROGRAMU A MODELOVÉ STU- DIE

2 CHARAKTERISTIKA VÝPOČTOVÉHO PROGRAMU A MODELOVÉ STU- DIE Sborík vědeckých prací Vysoké školy báňské - Techcké uverzty Ostrava číslo, rok 7, ročík VII, řada stavebí arbara LUŇÁČKOVÁ, Eva HRUEŠOVÁ * VLIV DYNMIKÝH PRMETRŮ ERNĚNÉ PILOTY N SEIZMIKOU ODEZVU ZÁKLDOVÉ

Více

11. Časové řady. 11.1. Pojem a klasifikace časových řad

11. Časové řady. 11.1. Pojem a klasifikace časových řad . Časové řad.. Pojem a klasfkace časových řad Specfckým statstckým dat jsou časové řad pomocí chž můžeme zkoumat damku jevů v čase. Časovou řadou (damcká řada, vývojová řada) rozumíme v čase uspořádaé

Více

Předmět: SM 01 ROVINNÉ PŘÍHRADOVÉ KONSTRUKCE

Předmět: SM 01 ROVINNÉ PŘÍHRADOVÉ KONSTRUKCE Přdmět: SM 0 ROVIÉ PŘÍHRADOVÉ KOSTRUKCE doc. Ig. Michl POLÁK, CSc. Fkult stvbí, ČVUT v Prz ROVIÉ PŘÍHRADOVÉ KOSTRUKCE: KOSTRUKCE JE VYTVOŘEA Z PŘÍMÝCH PRUTŮ, PRUTY JSOU AVZÁJEM POSPOJOVÁY V BODECH STYČÍCÍCH,

Více

Ing. Vladimíra Michalcová, Ph.D. Katedra stavební mechaniky (228)

Ing. Vladimíra Michalcová, Ph.D. Katedra stavební mechaniky (228) Stavebí statka - vyučující Dooručeá lteratura Ig. Vladmíra chalcová, h.d. Katedra stavebí mechaky (228) místost: LH 47/ tel.: (59 732) 348 e mal: vladmra.mchalcova@vsb.c www: htt://fast.vsb.c/mchalcova

Více

Téma: 11) Dynamika stavebních konstrukcí

Téma: 11) Dynamika stavebních konstrukcí Počítačová podpora statických výpočtů Téma: ) Dyamika stavebích kostrukcí Katedra stavebí mechaiky Fakulta stavebí, VŠB V Techická uiverzita Ostrava Rozděleí mechaiky Statika Zabývá se problematikou působeí

Více

Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i

Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i : ometové míry polohy zahrují růzé druhy průměrů pomocí kterých můžeme charakterzovat cetrálí tedec dat ometové míry polohy jsou jedoduché číselé charakterstky které se vyčíslují ze všech prvků výběru

Více

1.1 Rozdělení pravděpodobnosti dvousložkového náhodného vektoru

1.1 Rozdělení pravděpodobnosti dvousložkového náhodného vektoru Lekce Normálí rozděleí v rově V této lekc se udeme věovat měřeí korelačí závslost dvojce áhodých velč (dvousložkového áhodého vektoru) Vcházet udeme z ormálího rozděleí pravděpodoost áhodého vektoru v

Více

Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby.

Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby. ováí - Hru IV /6 ováí Hru IV Mila RůžR ůžička, Josef Jureka,, Zbyěk k Hrubý zbyek.hruby hruby@fs.cvut.cz ováí - Hru IV /6 ravděpodobostí úavové diagramy s uvažováím předpětí R - plocha ve čtyřrozměrém

Více

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota

Více

ANALÝZA A KLASIFIKACE DAT

ANALÝZA A KLASIFIKACE DAT ANALÝZA A KLASIFIKACE DA prof. Ig. Jří Holčík, CSc. INVESICE Isttut DO bostatstky ROZVOJE VZDĚLÁVÁNÍ a aalýz IV. LINEÁRNÍ KLASIFIKACE pokračováí Isttut bostatstky a aalýz (SUPPOR VECOR MACHINE SVM) SEPARABILNÍ

Více

Lineární regrese ( ) 2

Lineární regrese ( ) 2 Leárí regrese Častým úolem je staoveí vzájemé závslost dvou (č více) fzálích velč a její matematcé vjádřeí. K tomuto účelu se používají růzé regresí metod, pomocí chž hledáme vhodou fuc f (), apromující

Více

Přednáška č. 2 náhodné veličiny

Přednáška č. 2 náhodné veličiny Předáša č. áhodé velčy Pozámy záladím pojmům z počtu pravděpodobost Pozáma 1: Př výpočtu pravděpodobost áhodého jevu dle lascé defce je uté věovat pozorost způsobu formulace vybraého jevu. V ásledující

Více

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů: Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 4. KAPITOLA STATISTICKÉ CHARAKTERISTIKY 16.10.2017 23.10.2017 Přehled témat 1. Pravděpodobost (defiice, využití, výpočet pravděpodobostí

Více

Interpolační křivky. Interpolace pomocí spline křivky. f 1. f 2. f n. x... x 2

Interpolační křivky. Interpolace pomocí spline křivky. f 1. f 2. f n. x... x 2 Iterpolace pomocí sple křvky dáo: bodů v rově úkol: alézt takovou křvku, která daým body prochází y f f 2 f 0 f x0 x... x 2 x x Iterpolace pomocí sple křvky evýhodou polyomálí terpolace změa ěkterého z

Více

ck f Podmínka pro nalezení nejvhodnější variační funkce (minimální energie): = 0

ck f Podmínka pro nalezení nejvhodnější variační funkce (minimální energie): = 0 Varačí teorém W Φ H Φ = ΦΦ E 0 Aproxmatví vlová fukce dává eerg, která je vždy větší (ebo rova) E 0 Leárí varačí fukce: Φ = k k W Podmíka pro alezeí ejvhodější varačí fukce (mmálí eerge): = 0 ck f c =>

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA Matematka IV PRAVDĚPODOBNOT A TATITIKA Lbor Žák Matematka IV Lbor Žák Regresí aalýza Regresí aalýza zkoumá závslost mez ezávslým proměým X ( X,, X k a závsle proměou Y. Tato závslost se vjadřuje ve tvaru

Více

USTÁLENÉ PROUDĚNÍ V OTEVŘENÝCH KORYTECH

USTÁLENÉ PROUDĚNÍ V OTEVŘENÝCH KORYTECH USTÁLENÉ POUDĚNÍ V OTEVŘENÝCH KOYTECH ovoměré prouděí Charakterstka:. Hloubka vod v kortě, průtočá plocha a průřezová rchlost jsou v každém příčém řezu kostatí.. Čára eerge, vodí hlada a do korta jsou

Více

Intervalové odhady parametrů některých rozdělení.

Intervalové odhady parametrů některých rozdělení. 4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:

Více

Odhady parametrů 1. Odhady parametrů

Odhady parametrů 1. Odhady parametrů Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:

Více

Stabilita svahu Mechanika hornin a zemin - cvičení 05

Stabilita svahu Mechanika hornin a zemin - cvičení 05 Iovace studjího oboru eotechka reg. č. CZ..07/2.2.00/28.0009 Stablta svahu Mechaka hor a zem - cvčeí 05 Iovace studjího oboru eotechka reg. č. CZ..07/2.2.00/28.0009 Slové metody (metody mezí rovováhy)

Více

, jsou naměřené a vypočtené hodnoty závisle

, jsou naměřené a vypočtené hodnoty závisle Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,

Více

Výstup a n. Vstup. obrázek 1: Blokové schéma a graf paralelní soustavy

Výstup a n. Vstup. obrázek 1: Blokové schéma a graf paralelní soustavy Paralelí soustava Vstup a a Výstup a Vstup a Výstup a a obrázek : Blokové schéma a graf paralelí soustavy paralelí soustava je v bezporuchovém stavu je-l v bezporuchovém stavu prvek (tzv. adbytečé spojeí

Více

IAJCE Přednáška č. 12

IAJCE Přednáška č. 12 Složitost je úvod do problematiky Úvod praktická realizace algoritmu = omezeí zejméa: o časem o velikostí paměti složitost = vztah daého algoritmu k daým prostředkům: časová složitost každé možiě vstupích

Více

Chyby přímých měření. Úvod

Chyby přímých měření. Úvod Chyby přímých měřeí Úvod Př zjšťováí velkost sledovaé velčy dochází k růzým chybám, které ovlvňují celkový výsledek. V pra eestuje žádá metoda měřeí a měřcí zařízeí, které by bylo absolutě přesé, což zameá,

Více

Lineární a adaptivní zpracovní dat. 4. Lineární filtrace II: FIR, IIR

Lineární a adaptivní zpracovní dat. 4. Lineární filtrace II: FIR, IIR Leárí a adaptví zpracoví dat 4 Leárí fltrace II: FIR, IIR Dael Schwarz Ivestce do rozvoje vzděláváí Opakováí 2 Co je to fltrace? Co je to fltr? A jak ho popsujeme? Jaký je vztah Z trasformace a Fourerovy

Více

III. METODY MĚŘENÍ A ZPRACOVÁNÍ MĚŘENÍ

III. METODY MĚŘENÍ A ZPRACOVÁNÍ MĚŘENÍ III. METODY MĚŘENÍ A ZPRACOVÁNÍ MĚŘENÍ Způsob, jímž se provádí fzkálí měřeí, závsí jedak a povaze měřeé velč, jedak a tom, ze kterých vztahů pro měřeou velču vjdeme a jakých přístrojů použjeme. Všech měřcí

Více

Optimalizace portfolia

Optimalizace portfolia Optmalzace portfola ÚVOD Problémy vestováí prostředctvím ákupu ceých papírů sou klasckým tématem matematcké ekoome. Celkový výos z portfola má v době rozhodováí o vestcích povahu áhodé velčy, eíž rozložeí

Více

V. Normální rozdělení

V. Normální rozdělení V. Normálí rozděleí 1. Náhodá veličia X má ormovaé ormálí rozděleí N(0; 1). Určete: a) P (X < 1, 5); P (X > 0, 3); P ( 1, 135 < x ); P (X < 3X + ). c) číslo ε takové, že P ( X < ε) = 0,

Více

Regrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n

Regrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n Regrese Aproxmace metodou ejmeších čtverců v v ( ) = f x v v x x x x Je dáo bodů [x, ], =,,, předpoládáme závslost a x a chceme ajít fuc, terá vsthuje teto tred - Sažíme se proložt fuc = f x ta, ab v =

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

a další charakteristikou je četnost výběrového souboru n.

a další charakteristikou je četnost výběrového souboru n. Předáška č. 8 Testováí rozptylu, testy relatví četost, testy dobré shody, test ezávslost kvaltatvích zaků Testy rozptylu Testy se používají k ověřeí hypotézy o určté velkost rozptylu a k ověřeí vztahu

Více

TĚŽIŠTĚ A STABILITA. Těžiště tělesa = bod, kterým stále prochází výslednice tíhových sil všech jeho hmotných bodů, ať těleso natáčíme jakkoli

TĚŽIŠTĚ A STABILITA. Těžiště tělesa = bod, kterým stále prochází výslednice tíhových sil všech jeho hmotných bodů, ať těleso natáčíme jakkoli SAIKA - těžště ĚŽIŠĚ A SABILIA ěžště tělesa bod, kterým stále prochází výsledce tíhových sl všech jeho hmotých bodů, ať těleso atáčíme jakkol bod, ke kterému astává rovováha mometů způsobeých tíhou jedotlvých

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroky, formatky a meoborových studí Číslcové měřcí systémy Číslcové fltry Učebí text Iva Jaksch Lberec 2012 Materál vkl v rámc projektu ESF (CZ.1.07/2.2.00/07.0247)

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor SP Náhodý vektor PRAVDĚPODOBNOS A SAISIKA Náhodý vektor SP Náhodý vektor Náhodý vektor Náhodý vektor slouží k popsu výsledku pokusu kdy měříme více údaů o procesu. Před provedeím pokusu eho výsledek a

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA SP4 Přpomeutí pojmů PRAVDĚPODOBNOST A STATISTIKA SP4 Přpomeutí pojmů SP4 Přpomeutí pojmů Pravděpodobost Náhodý jev: - základí prostor - elemetárí áhodý jev A - áhodý jev, - emožý jev, jstý jev podjev opačý

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ KATEDRA SPECIÁLNÍ GEODÉZIE DIPLOMOVÁ PRÁCE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ KATEDRA SPECIÁLNÍ GEODÉZIE DIPLOMOVÁ PRÁCE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ KATEDRA SPECIÁLNÍ GEODÉZIE DIPLOMOVÁ PRÁCE Praha 8 Pavel Třasák ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ KATEDRA SPECIÁLNÍ GEODÉZIE DIPLOMOVÁ

Více

ZÁKLADY STAVEBNÍ MECHANIKY

ZÁKLADY STAVEBNÍ MECHANIKY VYSOKÉ UČENÍ TECHNICKÉ V BNĚ AKULTA STAVEBNÍ ING. JIŘÍ KYTÝ, CSc. ING. ZBYNĚK KEŠNE, CSc. ING. OSTISLAV ZÍDEK ING. ZBYNĚK VLK ZÁKLADY STAVEBNÍ ECHANIKY ODUL BD0-O SILOVÉ SOUSTAVY STUDIJNÍ OPOY PO STUDIJNÍ

Více

III. MKP vlastní kmitání

III. MKP vlastní kmitání Jiří Máca - katedra mechaniky - B325 - tel. 2 2435 4500 maca@fsv.cvut.cz III. MKP vlastní kmitání 1. Rovnice vlastního kmitání 2. Rayleighova Ritzova metoda 3. Jacobiho metoda 4. Metoda inverzních iterací

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA SP esty dobré shody PRAVDĚPODOBNOS A SAISIKA Lbor Žá SP esty dobré shody Lbor Žá Přpomeutí - estováí hypotéz o rozděleí Ch-vadrát test Chí-vadrát testem terý e založe a tříděém statstcém souboru. SP esty

Více

Náhodný výběr 1. Náhodný výběr

Náhodný výběr 1. Náhodný výběr Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti

Více

Analytická geometrie

Analytická geometrie MATEMATICKÝ ÚSTAV Slezská uverzta Na Rybíčku, 746 0 Opava DENNÍ STUDIUM Aalytcká geometre Téma 3.: Aí zobrazeí Dece 3.. Zobrazeí aího prostoru A do aího prostoru A se azývá aí zobrazeí, estlže má ásleduící

Více

Střední průmyslová škola, Uherské Hradiště, Kollárova 617 MECHANIKA I M.H. 2003 MECHANIKA I STATIKA, PRUŽNOST A PEVNOST - 1 -

Střední průmyslová škola, Uherské Hradiště, Kollárova 617 MECHANIKA I M.H. 2003 MECHANIKA I STATIKA, PRUŽNOST A PEVNOST - 1 - Středí průmyslová škola, Uherské Hradště, Kollárova 67 MECHANIKA I M.H. 00 MECHANIKA I STATIKA, PRUŽNOST A PEVNOST Studjí obor (kód a ázev): -4-M/00 Strojíreství - - Středí průmyslová škola, Uherské Hradště,

Více

Mechanika soustavy hmotných bodů a tuhého tělesa

Mechanika soustavy hmotných bodů a tuhého tělesa Mechaka soustavy hmotých bodů a tuhého tělesa Učebí text pro výuku předmětu Fyzka pro KME, letí semestr školího roku 00/ Autor: Mart Žáček, katedra fyzky, Fakulta Elektrotechcká, ČVUT Vymezeí a souvslost

Více

14. B o d o v é o d h a d y p a r a m e t r ů

14. B o d o v é o d h a d y p a r a m e t r ů 4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

UPLATNĚNÍ ZKOUŠEK PŘI PROHLÍDKÁCH MOSTŮ

UPLATNĚNÍ ZKOUŠEK PŘI PROHLÍDKÁCH MOSTŮ 3..- 4.. 2009 DIVYP Bro, s.r.o., Filipova, 635 00 Bro, http://www.divypbro.cz UPLATNĚNÍ ZKOUŠEK PŘI PROHLÍDKÁCH MOSTŮ autoři: prof. Ig. Mila Holický, PhD., DrSc., Ig. Karel Jug, Ph.D., doc. Ig. Jaa Marková,

Více

NMAF063 Matematika pro fyziky III Zkoušková písemná práce 17. ledna 2019

NMAF063 Matematika pro fyziky III Zkoušková písemná práce 17. ledna 2019 Jméo: Příklad 2 3 Celkem bodů Bodů 0 8 2 30 Získáo 0 Uvažujte posloupost distribucí {f } + = D (R defiovaou jako f (x = ( δ x m, kde δ ( x m začí Diracovu distribuci v bodě m Najděte limitu f = lim + f

Více

3. Lineární diferenciální rovnice úvod do teorie

3. Lineární diferenciální rovnice úvod do teorie 3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor SP Náhodý vektor PRAVDĚPODOBNOS A SAISIKA Náhodý vektor Lbor Žák SP Náhodý vektor Lbor Žák Náhodý vektor Náhodý vektor slouží k popsu výsledku pokusu kdy měříme více údaů o procesu. Před provedeím pokusu

Více

JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH PEDAGOGICKÁ FAKULTA - KATEDRA FYZIKY

JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH PEDAGOGICKÁ FAKULTA - KATEDRA FYZIKY JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH PEDAGOGICKÁ FAKULTA - KATEDRA FYZIKY NÁVRH SBÍRKY PŘÍKLADŮ PRO PŘEDMĚT POČÍTAČOVÁ FYZIKA BAKALÁŘSKÁ PRÁCE Vedoucí práce: RNDr. Petr Bartoš, Ph. D. Autor: Jaa

Více

Dynamická analýza rámu brdového listu

Dynamická analýza rámu brdového listu Dacá aalýza ráu rovéo lstu MODELOVÁNÍ MECHANICKÝCH SOUSTAV Šo Kovář 0..0 Brový lst 8..0 Brový lst průřez čů. orí če. olí če. Postrace. áě Tp závěsů těe 8..0 Použté ozačeí sol pops jeota sč oefcet tlueí

Více

Poznámky k přednášce Kvantová mechanika. PřF MU v Brně, únor - květen (upraveno v prosinci 2003) Michal Lenc

Poznámky k přednášce Kvantová mechanika. PřF MU v Brně, únor - květen (upraveno v prosinci 2003) Michal Lenc Pozámky k předášce Kvatová mechaka PřF MU v Brě úor - květe 997 (upraveo v prosc 3) Mchal Lec Prcp superposce 4 Feymaova formulace4 Formulace Ladaua a Lfšce4 Matematcký pops5 Základí pops5 Axomy 5 3 Reprezetace

Více

Komplexní čísla. Definice komplexních čísel

Komplexní čísla. Definice komplexních čísel Komplexí čísla Defiice komplexích čísel Komplexí číslo můžeme adefiovat jako uspořádaou dvojici reálých čísel [a, b], u kterých defiujeme operace sčítáí, ásobeí, apod. Stadardě se komplexí čísla zapisují

Více

6. FUNKCE A POSLOUPNOSTI

6. FUNKCE A POSLOUPNOSTI 6. FUNKCE A POSLOUPNOSTI Fukce Dovedosti:. Základí pozatky o fukcích -Chápat defiici fukce,obvyklý způsob jejího zadáváí a pojmy defiičí obor hodot fukce. U fukcí zadaých předpisem umět správě operovat

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI Ekoomcká fakulta Semestrálí ráce S kua Jméa: Leka Pastorová, Davd arha, Ja Vtásek a Fl Urbačík Ročík: 0/06 Učtel: gr. Jří Rozkovec Obor: Podková ekoomka Datum:.. 06 Obsah

Více

Vytápění BT01 TZB II - cvičení

Vytápění BT01 TZB II - cvičení CZ..07/2.2.00/28.030 Středoevropské cetrum pro vytvářeí a realizaci iovovaých techicko-ekoomických studijích programů Vytápěí BT0 TZB II - cvičeí Zadáí Pro vytápěé místosti vašeho objektu avrhěte otopá

Více

Geodézie 3 (154GD3) Téma č. 9: Hodnocení a rozbory přesnosti výškových měření.

Geodézie 3 (154GD3) Téma č. 9: Hodnocení a rozbory přesnosti výškových měření. Geodéze 3 (54GD3) Téma č. 9: Úvod o měřeí obecě. V geodéz měříme především déky, úhy, a dáe také apř. čas, vekost síy tíže apod. Výsedek měřeí je charakterzová čísem, závsým též a vobě jedotek. Ze zkušeost

Více

8. Odhady parametrů rozdělení pravděpodobnosti

8. Odhady parametrů rozdělení pravděpodobnosti Pozámky k předmětu Aplikovaá statistika, 8 téma 8 Odhady parametrů rozděleí pravděpodobosti Zaměříme se a odhad středí hodoty a rozptylu a to dvěma způsoby Předpokládejme, že máme áhodý výběr X 1,, X z

Více

1. Čím se zabývá 4PP? zabývá se určováním deformace a porušováním celistvých těles v závislosti na vnějším zatížení

1. Čím se zabývá 4PP? zabývá se určováním deformace a porušováním celistvých těles v závislosti na vnějším zatížení . Čím se zabývá 4PP? zabývá se určováím deformace a porušováím celstvých těles v závslost a vějším zatížeí. Defce obecého apětí + apjatost v bodě tělesa -apětí - je to apětí v určtém bodě určtého tělesa.

Více

P1: Úvod do experimentálních metod

P1: Úvod do experimentálních metod P1: Úvod do epermetálích metod Chyby a ejstoty měřeí - Každé měřeí je zatížeo určtou epřesostí, která je způsobea ejrůzějším egatvím vlvy, vyskytujícím se v procesu měřeí. - Výsledek měřeí se díky tomu

Více

1.3. ORTOGONÁLNÍ A ORTONORMÁLNÍ BÁZE

1.3. ORTOGONÁLNÍ A ORTONORMÁLNÍ BÁZE ORTOGONÁLNÍ A ORTONORMÁLNÍ BÁZE V této kaptole se dozvíte: jak je oecě defováa kolmost (ortogoalta) vektorů; co rozumíme ortogoálí a ortoormálí ází; co jsou to tzv relace ortoormalty a Croeckerovo delta;

Více

14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou

14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou 4. Testováí statistických hypotéz Úvod Při práci s daty se mohdy spokojujeme s itervalovým či bodovým odhadem parametrů populace. V mohých případech se však uchylujeme k jiému postupu, většiou jde o případy,

Více

8. Zákony velkých čísel

8. Zákony velkých čísel 8 Zákoy velkých čísel V této část budeme studovat velm často užívaá tvrzeí o součtech posloupost áhodých velč Nedříve budeme vyšetřovat tvrzeí azývaá souhrě ako slabé zákoy velkých čísel Veškeré úvahy

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresí a korelačí aalýza Závslost příčá (kauzálí). Závslostí pevou se ozačuje případ, kdy výskytu jedoho jevu utě odpovídá výskyt druhé jevu (a často aopak). Z pravděpodobostího hledska jde o vztah, který

Více

Stísněná plastická deformace PLASTICITA

Stísněná plastická deformace PLASTICITA Stísěá asticá deformace PLASTICITA STÍSNĚNÁ PLASTICKÁ DEORACE VE STATICKY NEURČITÝCH ÚLOHÁCH Elasticé řešeí: N cos, N N cos. Největší síla, tero může prt přeést: N S. Prt přejde do ast. stav prví při zatěž.síle

Více

Jednoduchá lineární regrese

Jednoduchá lineární regrese Jedoduchá leárí regrese Motvace: Cíl regresí aalýz - popsat závslost hodot velč Y a hodotách velč X. Nutost vřešeí dvou problémů: a) jaký tp fukce se použje k popsu daé závslost; b) jak se staoví kokrétí

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

Digitální filtrace a signálové procesory

Digitální filtrace a signálové procesory Dgtálí fltrace a sgálové procesory Petr Skalcký Praha 995 Teto text byl uvolě pouze pro potřeby studetů v předmětech KN a ASP a katedře Radoelektroky ČVUT v Praze pro rok jako doplňující lteratura. Text

Více

4. B o d o v é o d h a d y p a r a m e t r ů

4. B o d o v é o d h a d y p a r a m e t r ů 4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž

Více

jsou varianty znaku) b) při intervalovém třídění (hodnoty x

jsou varianty znaku) b) při intervalovém třídění (hodnoty x Výběr z eřeštelých příkladů ze zkouškových testů Jde o výběr z tpů příkladů, jejchž úspěšost řešeí u zkoušek se blíží ule. Itervalové versus bodové tříděí V tabulce je uvedeo rozděleí četostí a) př bodovém

Více

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad Metody vyhodoceí efektvost vestc Časová hodota peěz Metody vyhodoceí Časová hodota peěz Prostředky, které máme k dspozc v současost mají vyšší hodotu ež prostředky, které budeme mít k dspozc v budoucost.

Více

Při sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací

Při sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací 3. Náhodý výběr Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých realizací

Více

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,

Více

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost Dráha [m] 9. Měřeí závslostí ve statstce Měřeí závslostí ve statstce se zývá především zkoumáím vzájemé závslost statstckých zaků vícerozměrých souborů. Závslost přtom mohou být apříklad pevé, volé, jedostraé,

Více

Nálitky. Obr. 1 Schematický přehled typů nálitků

Nálitky. Obr. 1 Schematický přehled typů nálitků Nálitky Hlaví požadavky pro výpočet álitku: 1. doba tuhutí álitku > doba tuhutí odlitku 2. objem álitku(ů) musí být větší ež objem stažeiy v odlitku 3. musí být umožěo prouděí kovu z álitku do odlitku

Více

[ jednotky ] Chyby měření

[ jednotky ] Chyby měření Chyby měřeí Provedeme-l určté měřeí za stejých podmíek vícekrát, jedotlvá měřeí se mohou odlšovat (z důvodu koečé rozlšovací schopost měř. přístrojů, áhodých vlvů apod.). Chyba měřeí: e = x x x...přesá

Více

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n Petra Suryková Modelováí křivek základím prvkem teorie křivek v počítačové grafice křivky polyomiálí Q( t) a a t... a t polyomiálí křivky můžeme sado vyčíslit sado diferecovatelé lze z ich skládat křivky

Více

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13).

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13). 37 Metrické vlastosti lieárích útvarů v E 3 Výklad Mějme v E 3 přímky p se směrovým vektorem u a q se směrovým vektorem v Zvolme libovolý bod M a veďme jím přímky p se směrovým vektorem u a q se směrovým

Více

2.4. Rovnováhy v mezifází

2.4. Rovnováhy v mezifází 2.4. Rovováhy v mezfází Mezfázím se rozumí teká vrstv (tloušťk řádově odpovídá molekulárím dmezím) rozhrí dvou fází, která se svým složeím lší od složeí stýkjících se fází. Je-l styčá ploch fází mlá, lze

Více

6 Reprezentace křivek v CAD systémech

6 Reprezentace křivek v CAD systémech 6 Reprezetace křvek v CAD systémech ÚM FSI VUT v Brě Studjí text 6 Reprezetace křvek v CAD systémech Naprostá větša křvek a ploch, které se užvatel jeví jako velm růzorodé, je v moderích CAD systémech

Více

Základní teoretický aparát a další potřebné znalosti pro úspěšné studium na strojní fakultě a k řešení technických problémů

Základní teoretický aparát a další potřebné znalosti pro úspěšné studium na strojní fakultě a k řešení technických problémů Základí teoretický aarát a další otřebé zalosti ro úsěšé studium a strojí fakultě a k řešeí techických roblémů MATEMATIKA: logické uvažováí, matematické ástroje - elemetárí matematika (algebra, geometrie,

Více

Testování statistických hypotéz

Testování statistických hypotéz Testováí statstckých hypotéz - Testováí hypotéz je postup, sloužící k ověřeí předpokladů o ZS (hypotéz a základě výběrových dat (tj. hodot z výběrového souboru. - ypotéza = určtý předpoklad o základím

Více

Matematická statistika

Matematická statistika Matematcká statstka 1/1 M:um Náhodá velèa pøøazuje ka¾dému mo¾ému jevu (z urèté mo¾y jevù) pravdìpodobost (hustotu pravdìpodobost) dskrétí, apø. hod kostkou: p = 1/6 pro {,,,,, } spojtá, apø. èas rozpadu

Více

Pojem času ve finančním rozhodování podniku

Pojem času ve finančním rozhodování podniku Pojem času ve fiačím rozhodováí podiku 1.1. Výzam faktoru času a základí metody jeho vyjádřeí Fiačí rozhodováí podiku je ovlivěo časem. Peěží prostředky získaé des mají větší hodotu ež tytéž peíze získaé

Více

1. Základy měření neelektrických veličin

1. Základy měření neelektrických veličin . Základ měřeí eelektrckých velč.. Měřcí řetězec Měřcí řetězec (měřcí soustava) je soubor měřcích čleů (jedotek) účelě uspořádaých tak, ab blo ožě splt požadovaý úkol měřeí, tj. získat formac o velkost

Více