NÁVRH DECENTRALIZOVANÉHO ŘÍZENÍ METODOU DYNAMICKÉ KOMPENZACE. Milan Cepák, Branislav Rehák, Vladimír Havlena ČVUT FEL, katedra řídicí techniky

Rozměr: px
Začít zobrazení ze stránky:

Download "NÁVRH DECENTRALIZOVANÉHO ŘÍZENÍ METODOU DYNAMICKÉ KOMPENZACE. Milan Cepák, Branislav Rehák, Vladimír Havlena ČVUT FEL, katedra řídicí techniky"

Transkript

1 ÁVR DECETRALIZVAÉ ŘÍZEÍ METDU DYAMICÉ MPEZACE Mlan Cepák, ranslav Rehák, Vladír avlena ČVUT FEL, katedra řídcí technky Abstrakt: Tento příspěvek se zabývá návrhe decentralzovaného řízení rozlehlých systéů etodou dynacké kopenzace. Rozdíl tohoto řešení oprot centralzovanéu spočívá v to, že ke vše výpočtů a ěření systéových velčn nedochází v jedné ístě, ale daný problé se rozkládá do jednotlvých, vzájeně se ovlvňujících subsystéů. Tak lze redukovat výpočetní časové náročnost řešení a nalzovat strukturu regulátoru. Algortus etody byl pleentován v Matlabu s využtí sybolckého toolboxu a získané výsledky porovnány s klascký návrhe.. Úvod Většna rozlehlých systéů obsahuje velké nožství ěřených vstupů a výstupů způsobující značnou rozsáhlost nashroážděných dat. Jedna z ožností, jak tento obje nforace jednodušej a rychlej zpracovávat, spočívá v pleentac decentralzované řídcí struktury. Její hlavní prvky tvoří regulátory generující akční zásahy na základě j přřazené nožny vstupů. aždý kontrolér tak obsluhuje určtou část soustavy, přčež přenos dat ez vznklý podsystéy je dost oezován. 2. Decentralzované řízení 2. Stablzace decentralzovaný řízení br.. Příklad decentralzovaného systéu Předpokládeje rozlehlý lneární časově nvarantní systé s regulátory, x& ( = Ax( + u (, y ( = C x(, =, 2,..., () = kde x je vektor stavu (n ), u vstupní ( ) a y výstupní vektor ( r ) odpovídající -téu subsystéu. Stablzace decentralzování spočívá v nalezení atc ( n ), ( r ), F ( n n ), S ( n r ), =,2,..., v rovncích kopenzátoru u ( = z ( y (, z& ( = F z ( S y ( (2) + + tak, aby se póly uzavřené syčky systéu () nacházely v nožně M, tj. neprázdné syetrcké otevřené podnožně koplexní rovny []. Sybol z v rovnc (2) představuje stavový vektor regulátoru ( n ).

2 Rovnce (), (2) se dají přepsat do kopaktního tvaru x &( = Ax( + u(, y ( = Cx( (3) z &( = Fz( + Sy(, u ( = z( + y( (4) kde vektory u( = { u (... u ( }, y( = { y (... y ( }, z( { z (... z ( } T = [ ], C [ C... C ]... ( S,..., S ), (,..., ) =, atce = a F, S,, jsou blokově dagonální atce F,..., F ), (, (,..., ). Pokud se regulátor (4) zapojí k soustavě (3), získá se rozšířený systé s uzavřenou syčkou x& ( A+ C = z& ( SC x( F z( (5) který je stablní, leží-l jeho póly v levé polorovně koplexní rovny. Př stablzac soustav hrají velkou rol fxní ódy. Ty se původně defnují pro etodu pole placeent v centralzovaných systéech, kde odpovídají neřdtelný a nepozorovatelný ódů. Zobecnění tohoto postupu lze použít př decentralzované řízení. Fxní ódy představují nožnu vlastních čísel atce (A + C), které pro různé atce zpětnovazebních zesílení zůstávají neěnné. jejch nacházení se používá například Davsonův algortus []. Poloha ódů poskytuje nforace o stablzovatelnost uzavřené syčky. Jak se dá najít v [2], systé (3) lze asyptotcky stablzovat řízení (4) tehdy a jen tehdy, je-l nožna fxních ódů systéu se zavedenou zpětnou vazbou obsažena v levé polovně koplexní rovny. ( A C) x( ) 2.2 Decentralzace etodou dynackého kopenzátoru x &( = + t (6) Měje řdtelnou a pozorovatelnou soustavu (3), k níž hledáe dynacký kopenzátor (4), přčež póly uzavřené syčky systéu ají předepsanou polohu. x &( = ( A + C) x( + z( (7) Algortus etody kopenzace vychází z ndexů řdtelnost a pozorovatelnost určujících, o kolk bude daný centralzovaný systé rozšířen. echť tedy hod [ b A b b A b ] nc nc = n, hod[ c A c c A c ] no Tno T = n (8) kde n je hodnost atce A, c n a o n ndexy řdtelnost a pozorovatelnost systéu. odnota enšího z nch určuje řád rozšíření systéu, číž vznknou následující trplety:

3 A = A 0 n, n I = 0 n, C I = C 0 r n (9) exstenc zpětnovazební atce zajštující žádanou polohu pólů λ = { λ,..., λn} uzavřené syčky A + C pojednává [3]. ásledně lze defnovat atc (atce rozšířená vzhlede k trpletů (9)) o rozěrech ( + ) ( r + ), popsující kopenzátor, s blokovou strukturou F = F S r L S r M M (0) o subatcích F, S, = = r =, r =, s rozěry ( ), ( r ), ( ), ( r ), pro něž platí a =. Detalnější pops algortu lze například nalézt v [3], [4]. = 3. Dynacký kopenzátor v Matlabu Základe vytvořené atlabské funkce jsou dva kroky. První spočívá v řešení soustavy rovnc vzhlede k neznáý koefcentů atce, kdy levé strany obsahují paraetrcké vyjádření vlastních čísel atce (A+C) a pravé požadované póly. Lze získat tř ožné varanty výsledku: první, jednoznačnou, kdy hledaný neznáý odpovídají vždy jedné hodnoty; druhou, víceznačnou, reprezentovanou enší počte rovnc než je proěnných, takže se dané paraetry dají lbovolně volt; a třetí, nedávající žádné řešení. Toto ůže nastat v případě, že algortus k zadaný pólů nenalezne odpovídající koefcenty atce. Druhý krok představuje určování nenulových prvků atc, S, F, a to tak, aby byly splněny požadavky na hodnotu rozšířených pólů. Postup vede na jednu rovnc o více neznáých, takže hledané paraetry lze kroě jednoho lbovolně zvolt (většnou u atc a S) a poslední dopočítat (atce F). ejvětší problé představovalo zobecnění etody pro různé řády vstupních atc. Vzhlede k tou, že Matlab neuožňuje vytvořt paraetrckou atc požadované velkost an se nedá plctně defnovat určté nožství sybolckých proěnných, bylo nezbytně nutné vytvořt funkc, která by toto prováděla. Ta je založena na sestavení atce s řetězcově reprezentovaný paraetry a číselný označení jejch lokace. becnou využtelnost algortu také ztěžovalo používání atlabského příkazu solve, řešící soustavy algebrackých rovnc. Decentralzované řízení systéů o odlšných řádech vyžaduje proěnné nožství těchto rovnc, resp. arguentů funkce solve. Proto vznkla funkce uožňující flexblně ěnt počet a pořadí paraetrů, které navíc není třeba zadávat v řetězcové podobě, ale například jako prvky vektoru. Její podstatou jsou strngové operace, který se jednotlvé rovnce soustavy upravují, aby se daly použít jako arguenty solve. Získané výsledky se ukládají do odpovídajících proěnných a používají se pro další výpočty v algortu.

4 4. Sulační schéa Pro odelování decentralzovaného řízení byl použt Sulnk. Jeho schéa pro soustavu se dvěa vstupy a dvěa výstupy se nachází na obr. (). lok syste odpovídá stavovéu popsu zadané soustavy, kterou je nutné decentralzovat. Další část nákresu (regulátor, regulátor 2) spočívá ze dvou kontrolérů provádějících vlastní decentralzac. Jejch struktura ůže být lbovolná; záleží na vstupní systéu, zda dojde k pleentac standardního dynackého kopenzátoru nebo obyčejného zpětnovazebního regulátoru s proporconální zesílení. 5. Výsledky brázek Sulační schéa Pro sulace se používal systé druhého řádu s popse x& = x + u, y = x () Vlastní čísla soustavy jsou λ(a) = (0, -2). Systé se tedy nachází na ez stablty. Úkole je najít pro něj takové decentralzované řízení, aby všechny póly uzavřené syčky ležely v levé koplexní polorovně. Soustava neá podle Davsonova algortu [] fxní ódy, lze tedy přkročt k návrhu řízení etodou kopenzátoru. Rozšířený systé á tř řádky a tř sloupce; z této struktury plyne počet požadovaných pólů. V první kroku etody se volbou pólů λ(a + C) = (- ± 2j) získá plctní řešení soustavy rovnc; jeden paraetr se lbovolně zadává. ásleduje volba rozšířeného pólu λ = -. Výsledke je jedna rovnce se tře neznáý, opět se tedy odpovídající proěnné volí. Fnální atce kopenzátoru ají následující tvar.25 0 z& = z + y, u = z + y (2) Ze stavových rovnc (2) lze vyvodt, že v obecné schéatu (obr. ) tvoří regulátor dynacký kopenzátor a regulátor 2 zpětnovazební regulátor. Průběhy jednotlvých výstupů decentralzované a centralzované soustavy regulované zpětnou vazbou od stavu (žádané póly ± 2j) jsou zobrazeny na obr. 2. Počáteční podínky ntegrátorů ají hodnoty (0., 0.2).

5 brázek 2 Decentralzované a centralzované řízení tavost odezvy př decentralzované řízení souvsí s žádanou polohou pólů. Př zenšování jejch agnárních částí bude docházet k nalzac přektů průběhu. ezení je jedné: aby soustav rovnc ěla př hledání atce řešení, reálné část pólů usí ít velkost -. Algortus byl také testován pro neřídké atce větších rozěrů. Př řešení sybolckých soustav rovnc se však vyskytovaly výpočetní probléy, neboť se v jch nacházely vel koplkované nelneární vztahy. Současná aplkovatelnost etody je tak oezena; lze j používat jen na enší atce, obsahující nulové prvky. Zvýšení její použtelnost bude předěte další práce. 6. Závěr V Matlabu byla pro řešení úlohy decentralzovaného řízení systéů pleentována a na příkladě otestována etoda dynackého kopenzátoru. Reference [] Davson, E. J. (976). Decentralzed stablzaton and regulaton n large ultvarable systes. In: o, Y. C., Mtter S.. Drectons n Large-Scale Systes. Plenu Press, ew York. s [2] Wang, S.., Davson, E. J. (973b). n the stablzaton of decentralzed control systes. In.: IEEE Transactons on Autoatc Control. AC-8: [3] rasch, F. M., Pearson, J.. (970). Pole placeent usng dynac copensators. In.: IEEE Transactons on Autoatc Control. AC-5: [4] Jashd, M. (983). Large-Scale Systes Modelng and Control. Elsever orth olland, ew York. [5] Jashd, M. (996). Large-Scale Systes: Modelng, Control and Fuzzy logc. Prentce all, ew York. ontakt Mlan Cepák ČVUT, katedra řídcí technky arlovo náěstí Praha 2 tel. 2/ cepak@control.felk.cvut.cz

P i= Od každého obrázku sady odečteme průměrný obraz (provedeme centrování dat): (2)

P i= Od každého obrázku sady odečteme průměrný obraz (provedeme centrování dat): (2) METODA PCA A JEJÍ IMPLEMENTACE V JAZYCE C++ Lukáš Frtsch, Ing. ČVUT v Praze, Fakulta elektrotechncká, Katedra radoelektronky Abstrakt Metoda PCA (Prncpal Coponent Analyss- analýza hlavních koponent) ůže

Více

2 Struktura ortogonální neuronové sítě

2 Struktura ortogonální neuronové sítě XXXII. Senar ASR '7 Instruents and Control, Farana, Sutný, Kočí & Babuch (eds) 7, VŠB-UO, Ostrava, ISBN 978-8-48-7-4 Neural Netork Usng Orthogonal Actvaton Functon Využtí ortogonální aktvační funkce v

Více

PŘÍLOHY NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI

PŘÍLOHY NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI EVROPSKÁ KOMISE V Bruselu dne 27.4.2018 C(2018) 2460 fnal ANNEXES 1 to 2 PŘÍLOHY NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI o zěně a opravě nařízení v přenesené pravooc (EU) 2017/655, který se doplňuje nařízení

Více

SIMULACE A ŘÍZENÍ PNEUMATICKÉHO SERVOPOHONU POMOCÍ PROGRAMU MATLAB SIMULINK. Petr NOSKIEVIČ Petr JÁNIŠ

SIMULACE A ŘÍZENÍ PNEUMATICKÉHO SERVOPOHONU POMOCÍ PROGRAMU MATLAB SIMULINK. Petr NOSKIEVIČ Petr JÁNIŠ bstrakt SIMULCE ŘÍZENÍ PNEUMTICKÉHO SERVOPOHONU POMOCÍ PROGRMU MTL SIMULINK Petr NOSKIEVIČ Petr JÁNIŠ Katedra automatzační technky a řízení Fakulta stroní VŠ-TU Ostrava Příspěvek popsue sestavení matematckého

Více

MODELOVÁNÍ A SIMULACE

MODELOVÁNÍ A SIMULACE MODELOVÁNÍ A SIMULACE základní pojmy a postupy vytváření matematckých modelů na základě blancí prncp numerckého řešení dferencálních rovnc základy práce se smulačním jazykem PSI Základní pojmy matematcký

Více

27 Systémy s více vstupy a výstupy

27 Systémy s více vstupy a výstupy 7 Systémy s více vstupy a výstupy Mchael Šebek Automatcké řízení 017 4-5-17 Stavový model MIMO systému Automatcké řízení - Kybernetka a robotka Má obecně m vstupů p výstupů x () t = Ax() t + Bu() t y()

Více

SIMULACE VAZEB MEZI VÁLCOVACÍMI STOLICEMI

SIMULACE VAZEB MEZI VÁLCOVACÍMI STOLICEMI SIMULACE VAZEB MEZI VÁLCOVACÍMI STOLICEMI Ing. Aleš Galuška VŠB-TU Ostrava Astract Tento řísěvek se zaývá sulací vaze ez válcovací stolce. Vycházeje ze tří vaze, kde uvažuje tyto: konace vazy ružné a lastcké,

Více

Měření příkonu míchadla při míchání suspenzí

Měření příkonu míchadla při míchání suspenzí U8 Ústav procesní a zpracovatelské technky FS ČVUT v Praze Měření příkonu rotačních íchadel př íchání suspenzí I. Úkol ěření V průyslu téěř 60% všech operacích, kdy je íchání používáno, představuje íchání

Více

u (x i ) U i 1 2U i +U i+1 h 2. Na hranicích oblasti jsou uzlové hodnoty dány okrajovými podmínkami bud přímo

u (x i ) U i 1 2U i +U i+1 h 2. Na hranicích oblasti jsou uzlové hodnoty dány okrajovými podmínkami bud přímo Metoda sítí základní schémata h... krok sítě ve směru x, tj. h = x x q... krok sítě ve směru y, tj. q = y j y j τ... krok ve směru t, tj. τ = j... hodnota přblžného řešení v uzlu (x,y j ) (Possonova rovnce)

Více

Teoretický souhrn k 2. až 4. cvičení

Teoretický souhrn k 2. až 4. cvičení SYSTÉMOVÁ ANALÝZA A MODELOVÁNÍ Teoretcký souhrn k 2. ž 4. cvčení ZS 2009 / 200 . Vyezení zákldních poů.. Systé e Systé e účelově defnovná nožn prvků vze ez n, která spolu se svý vstupy výstupy vykzue ko

Více

KOMPLEXNÍ ČÍSLA. Algebraický tvar komplexního čísla

KOMPLEXNÍ ČÍSLA. Algebraický tvar komplexního čísla KOMPLEXNÍ ČÍSLA Příklad Řešte na množně reálných čísel rovnc: x + = 0. x = Rovnce nemá v R řešení. Taková jednoduchá rovnce a nemá na množně reálných čísel žádné řešení! Co s tím? Zavedeme tzv. magnární

Více

2.5. MATICOVÉ ŘEŠENÍ SOUSTAV LINEÁRNÍCH ROVNIC

2.5. MATICOVÉ ŘEŠENÍ SOUSTAV LINEÁRNÍCH ROVNIC 25 MATICOVÉ ŘEŠENÍ SOUSTAV LINEÁRNÍCH ROVNIC V této kaptole se dozvíte: jak lze obecnou soustavu lneárních rovnc zapsat pomocí matcového počtu; přesnou formulac podmínek řeštelnost soustavy lneárních rovnc

Více

Matematika I A ukázkový test 1 pro 2018/2019

Matematika I A ukázkový test 1 pro 2018/2019 Matematka I A ukázkový test 1 pro 2018/2019 1. Je dána soustava rovnc s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napšte Frobenovu větu (předpoklady + tvrzení). b) Vyšetřete

Více

Normalizace fyzikálních veličin pro číslicové zpracování

Normalizace fyzikálních veličin pro číslicové zpracování Noralzace fyzkálních velčn pro číslcové zpracování Vypracoval: Petr Kaaník Aktualzace: 15. října 2003 Kažý realzovaný říící systé usel projít vě hlavní stá. Nejprve je to vlastní návrh. Na záklaě ostupných

Více

1 CHYBY, VARIABILITA A NEJISTOTY INSTRUMENTÁLNÍCH MĚŘENÍ

1 CHYBY, VARIABILITA A NEJISTOTY INSTRUMENTÁLNÍCH MĚŘENÍ 1 CHYBY, VARIABILITA A NEJISTOTY INSTRUMENTÁLNÍCH MĚŘENÍ Účele ěření je stanovení velkost ěřené velčny, charakterzující určtou specfckou vlastnost. Specfkace ěřené velčny ůže vyžadovat údaje o dalších

Více

Iterační výpočty. Dokumentace k projektu pro předměty IZP a IUS. 22. listopadu projekt č. 2

Iterační výpočty. Dokumentace k projektu pro předměty IZP a IUS. 22. listopadu projekt č. 2 Dokumentace k projektu pro předměty IZP a IUS Iterační výpočty projekt č.. lstopadu 1 Autor: Mlan Setler, setl1@stud.ft.vutbr.cz Fakulta Informačních Technologí Vysoké Učení Techncké v Brně Obsah 1 Úvod...

Více

Rekonstrukce objektu a pozice pozorovatele z 2D pohledů

Rekonstrukce objektu a pozice pozorovatele z 2D pohledů Západočeská unverzta v Plzn Fakulta aplkovaných věd Katedra nforatky a výpočetní technky Dploová práce Rekonstrukce objektu a pozce pozorovatele z D pohledů Plzeň 004 Ladslav Lang Abstrakt Anotace v češtně

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Závslost příčnná (kauzální). Závslostí pevnou se označuje případ, kdy výskytu jednoho jevu nutně odpovídá výskyt druhé jevu (a často naopak). Z pravděpodobnostního hledska

Více

1 Elektrotechnika 1. 11:00 hod. R. R = = = Metodou postupného zjednodušování vypočtěte proudy všech větví uvedeného obvodu. U = 60 V. Řešení.

1 Elektrotechnika 1. 11:00 hod. R. R = = = Metodou postupného zjednodušování vypočtěte proudy všech větví uvedeného obvodu. U = 60 V. Řešení. A : hod. Elektrotechnika Metodou postupného zjednodušování vypočtěte proudy všech větví uvedeného obvodu. R I I 3 R 3 R = 5 Ω, R = Ω, R 3 = Ω, R 4 = Ω, R 5 = Ω, = 6 V. I R I 4 I 5 R 4 R 5 R. R R = = Ω,

Více

KOMPLEXNÍ ČÍSLA. Algebraický tvar komplexního čísla

KOMPLEXNÍ ČÍSLA. Algebraický tvar komplexního čísla KOMPLEXNÍ ČÍSLA Příklad 1 Řešte na množně reálných čísel rovnc: x + = 0. x = Rovnce nemá v R řešení. Taková jednoduchá rovnce a nemá na množně reálných čísel žádné řešení! Co s tím? Zavedeme tzv. magnární

Více

2. Určete optimální pracovní bod a účinnost solárního článku při dané intenzitě osvětlení, stanovte R SH, R SO, FF, MPP

2. Určete optimální pracovní bod a účinnost solárního článku při dané intenzitě osvětlení, stanovte R SH, R SO, FF, MPP FP 5 Měření paraetrů solárních článků Úkoly : 1. Naěřte a poocí počítače graficky znázorněte voltapérovou charakteristiku solárního článku. nalyzujte vliv různé intenzity osvětlení, vliv sklonu solárního

Více

Základy elektrotechniky

Základy elektrotechniky Základy elektrotechniky 3. přednáška Řešení obvodů napájených haronický napětí v ustálené stavu ZÁKADNÍ POJMY Časový průběh haronického napětí: kde: U u U. sin( t ϕ ) - axiální hodnota [V] - úhlový kitočet

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY Katedra obecné elektrotechnky Fakulta elektrotechnky a noratky, VŠB - T Otrava 4. TROJFÁOVÉ OBVODY 4. Úvod 4. Trojázová outava 4. Spojení ází do hvězdy 4.4 Spojení ází do trojúhelníka 4.5 Výkon v trojázových

Více

7.3.2 Parametrické vyjádření přímky II

7.3.2 Parametrické vyjádření přímky II 7 Paraetriké vyjádření příky II Předpoklady 07001 Pedagogiká poznáka V podstatě pro elou hodinu platí že příklady by neěly působit žáků větší probléy Pokud se probléy objeví (stává se to často) je třeba

Více

je nutná k tomu, aby byl odhad takto pořízený je potřebná k tomu, aby proměnné-instrumenty vysvětlující veličiny v rovnici je nahrazovaly co

je nutná k tomu, aby byl odhad takto pořízený je potřebná k tomu, aby proměnné-instrumenty vysvětlující veličiny v rovnici je nahrazovaly co Obecná etod nstruentálních proěnných (G)IV (Generl Instruentl Vrbles ethod) v soustvě sultánních regresních rovnc utor etody: J.D. Srgn [958] Metod nstruentálních proěnných je jstý zobecnění dvoustupňové

Více

Algoritmus určování rovnice roviny pro laserové skenování

Algoritmus určování rovnice roviny pro laserové skenování Algortus určování rovnce rovny pro lserové skenování Úvod Ing Bronslv Kosk, Ing Mrtn Štroner, PhD, Doc Ing Jří Pospíšl, CSc, ČVU - Fkult stvební, Prh V rác řešení projektu GA ČR Moderní optoelektroncké

Více

Bakalářská práce. Řízení tlumení vibrací mechanických soustav

Bakalářská práce. Řízení tlumení vibrací mechanických soustav Bakalářská práce Řízení tluení vibrací echanických soustav Praha 26 . Úvod...4 2. Popis odelů...5 2.. Čtvrtinový odel Autoobilu... 5 2... Diferenciální rovnice...6 2..2. Stavový popis...6 2..3. Chování

Více

Zpětná vazba, změna vlastností systému. Petr Hušek

Zpětná vazba, změna vlastností systému. Petr Hušek Zpětná vazba, změna vlastností systému etr Hušek Zpětná vazba, změna vlastností systému etr Hušek husek@fel.cvut.cz katedra řídicí techniky Fakulta elektrotechnická ČVUT v raze MAS 2012/13 ČVUT v raze

Více

1A Impedance dvojpólu

1A Impedance dvojpólu 1A pedance dvojpólu Cíl úlohy Na praktických příkladech procvičit výpočty odulů a arguentů ipedancí různých dvojpólů. Na základních typech prakticky užívaných obvodů ověřit ěření příou souvislost ezi ipedancí

Více

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 SIMULACE numercké řešení dferencálních rovnc smulační program dentfkace modelu Numercké řešení obyčejných dferencálních rovnc krokové metody pro řešení lneárních dferencálních rovnc 1.řádu s počátečním

Více

Vybrané vlastnosti obvodů pracujících v proudovém módu a napěťovém módu

Vybrané vlastnosti obvodů pracujících v proudovém módu a napěťovém módu Vybrané vlastnosti obvodů pracujících v proudové ódu a napěťové ódu Vratislav Michal, DTEE Brno University of Technology Vratislav.ichal@gail.co, www.postreh.co/vichal Teoretický úvod: Označení obvodů

Více

1. Spektrální rozklad samoadjungovaných operátorů 1.1. Motivace Vlastní čísla a vlastní vektory symetrické matice 1 1 A = 1 2.

1. Spektrální rozklad samoadjungovaných operátorů 1.1. Motivace Vlastní čísla a vlastní vektory symetrické matice 1 1 A = 1 2. . Spektrální rozklad samoadjungovaných operátorů.. Motvace Vlastní čísla a vlastní vektory symetrcké matce A = A λe = λ λ = λ 3λ + = λ 3+ λ 3 Vlastní čísla jsou λ = 3+, λ = 3. Pro tato vlastní čísla nalezneme

Více

Spojité regulátory - 1 -

Spojité regulátory - 1 - Spojté regulátory - 1 - SPOJIÉ EGULÁOY Nespojté regulátory mají většnou jednoduchou konstrukc a jsou levné, ale jsou nevhodné tím, že neudržují regulovanou velčnu přesně na žádané hodnotě, neboť regulovaná

Více

4. Trojúhelníkový rozklad p. 1/20

4. Trojúhelníkový rozklad p. 1/20 4. Trojúhelníkový rozklad 4. Trojúhelníkový rozklad p. 1/20 4. Trojúhelníkový rozklad p. 2/20 Trojúhelníkový rozklad 1. Permutační matice 2. Trojúhelníkové matice 3. Trojúhelníkový (LU) rozklad 4. Výpočet

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ ŘÍZENÍ TROJFÁZOVÉHO ASYNCHRONNÍHO MOTORU

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ ŘÍZENÍ TROJFÁZOVÉHO ASYNCHRONNÍHO MOTORU VYOKÉ UČENÍ TECHNICKÉ V BNĚ BNO UNIVEITY OF TECHNOLOGY FAKULTA TOJNÍHO INŽENÝTVÍ ÚTAV MECHANIKY TĚLE, MECHATONIKY A BIOMECHANIKY FACULTY OF MECHANICAL ENGINEEING INTITUTE OF OLID MECHANIC, MECHATONIC AND

Více

3.2.2 Rovnice postupného vlnění

3.2.2 Rovnice postupného vlnění 3.. Rovnice postupného vlnění Předpoklady: 310, 301 Chcee najít rovnici, která bude udávat výšku vlny v libovolné okažiku i libovolné bodě (v jedno okažiku je v různých ístech různá výška vlny). Veličiny

Více

Statika soustavy těles v rovině

Statika soustavy těles v rovině Statka soustavy těles v rovně Zpracoval: Ing. Mroslav yrtus, Ph.. U mechancké soustavy s deálním knematckým dvojcem znázorněné na obrázku určete: počet stupňů volnost početně všechny reakce a moment M

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

7. ZÁKLADNÍ TYPY DYNAMICKÝCH SYSTÉMŮ

7. ZÁKLADNÍ TYPY DYNAMICKÝCH SYSTÉMŮ 7. ZÁKADNÍ TYPY DYNAMICKÝCH SYSTÉMŮ 7.. SPOJITÉ SYSTÉMY Téměř všechny fyzálně realzovatelné spojté lneární systémy (romě systémů s dopravním zpožděním lze vytvořt z prvů tří typů: proporconálních členů

Více

ROBUSTNÍ ŘÍZENÍ DVOUROZMĚROVÉ SOUSTAVY ROBUST CONTROL OF TWO INPUTS -TWO OUTPUTS SYSTEM

ROBUSTNÍ ŘÍZENÍ DVOUROZMĚROVÉ SOUSTAVY ROBUST CONTROL OF TWO INPUTS -TWO OUTPUTS SYSTEM ROBUTNÍ ŘÍZENÍ DVOUROZMĚROVÉ OUTAVY ROBUT CONTROL OF TWO INPUT -TWO OUTPUT YTEM Jiří Macháček Anotace: Návrh decentralizovaných regulátorů je založen na podínkách robustní stability a robustní kvality

Více

Návody na cvičení. Prof. Ing. Jiří Militký CSc. EUR ING Ing. Miroslava Maršálková

Návody na cvičení. Prof. Ing. Jiří Militký CSc. EUR ING Ing. Miroslava Maršálková VLASTNOSTI VLÁKEN Návody na cvčení Pro. Ing. Jří Mltký CSc. EUR ING Ing. Mroslava Maršálková TU Lberec 3 Náplň cvčení z předětu VLASTNOSTI VLÁKEN NÁPLŇ CVIČENÍ:. týden Úvod, bezpečnostní předpsy, poůcky.

Více

Numerická matematika A

Numerická matematika A Numercká matematka A 5615 A1 Máme dánu soustava lneárních rovnc tvaru AX = B, kde 4 1 A = 1 4 1, B = 1 a Zapíšeme soustavu rovnc AX = B ve tvaru upravíme a následně (L + D + P X = B, DX = (L + P X + B,

Více

( ) ( ) Newtonův zákon II. Předpoklady:

( ) ( ) Newtonův zákon II. Předpoklady: 6 Newtonův zákon II Předpoklady: 0005 Př : Autoobil zrychlí z 0 k/h na 00 k/h za 8 s Urči velikost síly, která auto uvádí do pohybu, pokud autoobil váží,6 tuny Předpokládej rovnoěrně zrychlený pohybu auta

Více

Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s.

Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s. 3.4. Výklad Předpokládejme, že v prostoru E 3 jsou dány body A, B, C neležící na jedné přímce. Těmito body prochází jediná rovina, kterou označíme ABC. Určíme vektory u = B - A, v = C - A, které jsou zřejmě

Více

Ladění regulátorů v pokročilých strategiích řízení

Ladění regulátorů v pokročilých strategiích řízení KONTAKT 2010 Ladění regulátorů v pokročilých strategiích řízení Autor: Petr Procházka (prochp16@fel.cvut.cz) Vedoucí: Vladimír Havlena (Vladimir.Havlena@Honeywell.com) Katedra řídicí techniky FEL ČVUT

Více

Osově namáhaný prut základní veličiny

Osově namáhaný prut základní veličiny Pružnost a pevnost BD0 Osově namáhaný prut základní velčny ormálová síla půsoící v průřezu osově namáhaného prutu se získá ntegrací normálového napětí po ploše průřezu. da A Vzhledem k rovnoměrnému rozložení

Více

1 Elektrotechnika 1. 11:00 hod. = + Δ= = 8

1 Elektrotechnika 1. 11:00 hod. = + Δ= = 8 :00 hod. Elektrotechnika a) Metodou syčkových proudů (MSP) vypočtěte proudy všech větví uvedeného obvodu. R = Ω, R = Ω, R 3 = Ω, U = 5 V, U = 3 V. b) Uveďte obecný vztah pro výpočet počtu nezávislých syček

Více

Popis fyzikálního chování látek

Popis fyzikálního chování látek Popis fyzikálního chování látek pro vysvětlení noha fyzikálních jevů již nevystačíe s pouhý echanický popise Terodynaika oblast fyziky, která kroě echaniky zkouá vlastnosti akroskopických systéů, zejéna

Více

Úloha syntézy čtyřčlenného rovinného mechanismu

Úloha syntézy čtyřčlenného rovinného mechanismu Úloha syntézy čtyřčlenného rovnného mechansmu Zracoval: Jaroslav Beran Pracovště: Techncká unverzta v Lberc katedra textlních a ednoúčelových stroů Tento materál vznkl ako součást roektu In-TECH 2, který

Více

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí: Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se

Více

4.4 Exploratorní analýza struktury objektů (EDA)

4.4 Exploratorní analýza struktury objektů (EDA) 4.4 Exploratorní analýza struktury objektů (EDA) Průzkumová analýza vícerozměrných dat je stejně jako u jednorozměrných dat založena na vyšetření grafckých dagnostk. K tomuto účelu se využívá různých technk

Více

definovat pojmy: PI člen, vnější a vnitřní omezení, přenos PI členu popsat činnost PI regulátoru samostatně změřit zadanou úlohu

definovat pojmy: PI člen, vnější a vnitřní omezení, přenos PI členu popsat činnost PI regulátoru samostatně změřit zadanou úlohu . PI regulátor Čas ke studu: 5 mnut Cíl Po rostudování tohoto odstavce budete umět defnovat ojmy: PI člen, vnější a vntřní omezení, řenos PI členu osat čnnost PI regulátoru samostatně změřt zadanou úlohu

Více

( x ) 2 ( ) 10.2.15 Úlohy na hledání extrémů. Předpoklady: 10211

( x ) 2 ( ) 10.2.15 Úlohy na hledání extrémů. Předpoklady: 10211 10..15 Úlohy na hledání etrémů Předpoklady: 1011 Pedagogcká poznámka: Kromě příkladů a není pro studenty problém vypočítat dervace funkcí. Problémem je hlavně nalezení těchto funkčních závslostí, tam postupujeme

Více

Řešení: Odmocninu lze vždy vyjádřit jako mocninu se zlomkovým exponentem. A pro práci s mocninami = = = 2 0 = 1.

Řešení: Odmocninu lze vždy vyjádřit jako mocninu se zlomkovým exponentem. A pro práci s mocninami = = = 2 0 = 1. Varianta A Př.. Zloek 3 3 je roven číslu: a), b) 3, c), d), e) žádná z předchozích odpovědí není Řešení: Odocninu lze vždy vyjádřit jako ocninu se zlokový exponente. A pro práci s ocninai již áe jednoduchá

Více

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN V dokumentu 7a_korelacn_a_regresn_analyza jsme řešl rozdíl mez korelační a regresní analýzou. Budeme se teď věnovat pouze lneárnímu vztahu dvou velčn, protože je nejjednodušší

Více

Obslužné sítě. Jacksonova síť systémů hromadné obsluhy. Sériové propojení dvou front

Obslužné sítě. Jacksonova síť systémů hromadné obsluhy. Sériové propojení dvou front Obsužné sítě Jacksonova síť systéů hroadné obsuhy Teekounkační síť Počítačová síť Doravní síť Unversa Mobe Teecouncatons Syste Sérové roojení dvou front Queue Queue Stav systéu je osán usořádanou dvojící

Více

Numerická matematika 1. t = D u. x 2 (1) tato rovnice určuje chování funkce u(t, x), která závisí na dvou proměnných. První

Numerická matematika 1. t = D u. x 2 (1) tato rovnice určuje chování funkce u(t, x), která závisí na dvou proměnných. První Numercká matematka 1 Parabolcké rovnce Budeme se zabývat rovncí t = D u x (1) tato rovnce určuje chování funkce u(t, x), která závsí na dvou proměnných. První proměnná t mívá význam času, druhá x bývá

Více

Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s

Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s Kapitola 13 Kvadratické formy Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru f(x 1,..., x n ) = a ij x i x j, kde koeficienty a ij T. j=i Kvadratická forma v n proměnných

Více

3.2.2 Rovnice postupného vlnění

3.2.2 Rovnice postupného vlnění 3.. Rovnice postupného vlnění Předpoklady: 310, 301 Chcee najít rovnici, která bude udávat výšku vlny v libovolné okažiku i libovolné bodě (v jedno okažiku je v různých ístech různá výška vlny). Veličiny

Více

Ivana Linkeová SPECIÁLNÍ PŘÍPADY NURBS REPREZENTACE. 2 NURBS reprezentace křivek

Ivana Linkeová SPECIÁLNÍ PŘÍPADY NURBS REPREZENTACE. 2 NURBS reprezentace křivek 25. KONFERENCE O GEOMETRII A POČÍTAČOVÉ GRAFICE Ivana Lnkeová SPECIÁLNÍ PŘÍPADY NURBS REPREZENTACE Abstrakt Příspěvek prezentuje B-splne křvku a Coonsovu, Bézerovu a Fergusonovu kubku jako specální případy

Více

VYUŽITÍ METOD PŘÍMÉHO HLEDÁNÍ OPTIMA PŘI PREDIKTIVNÍM ŘÍZENÍ

VYUŽITÍ METOD PŘÍMÉHO HLEDÁNÍ OPTIMA PŘI PREDIKTIVNÍM ŘÍZENÍ VYUŽITÍ METOD PŘÍMÉHO HLEDÁNÍ OPTIMA PŘI PREDIKTIVNÍM ŘÍZENÍ P. Chalupa, J. Novák Univerzita Tomáše Bati ve Zlíně Fakulta aplikované informatiky Centrum aplikované kybernetiky Abstrakt Příspěvek se zabývá

Více

Metodický pokyn pro urení optimální velikosti fakturaního vodomru a profilu vodovodní pípojky.

Metodický pokyn pro urení optimální velikosti fakturaního vodomru a profilu vodovodní pípojky. Metodcký pokyn pro urení optální velkost fakturaního vodoru a proflu vodovodní pípojky. Ureno: Vodoprávní úad K využtí : Vlastník a provozovatel vodovod a odbratel ptné vody Mnsterstvo zedlství.j.: 0 535/00-6000

Více

teorie elektronických obvodů Jiří Petržela analýza obvodů s regulárními prvky

teorie elektronických obvodů Jiří Petržela analýza obvodů s regulárními prvky Jiří Petržela příklad pro příčkový filtr na obrázku napište aditanční atici etodou uzlových napětí zjistěte přenos filtru identifikujte tp a řád filtru Obr. : Příklad na příčkový filtr. aditanční atice

Více

P ehled a stav výtahové techniky, pohony pro výtahy a jejich ízení

P ehled a stav výtahové techniky, pohony pro výtahy a jejich ízení Pehled a stav výtahové technky, pohony pro výtahy a jejch ízení Pohled do hstore Antka 1853 Elsh Graves Ots 1867 Léon Edoux (France) 1870 Anton Fressler (Wen) 1880 Werner von Seens (Mannhe) 1883 Anton

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometre Specální případy použtí MNČ Cvčení 8 Zuzana Dlouhá Specální případy použtí MNČ cvčení 1 7 = ekonometrcký model, který byl lneární v proměnných v parametrech MNČ můžeme použít,

Více

REGRESNÍ ANALÝZA. 13. cvičení

REGRESNÍ ANALÝZA. 13. cvičení REGRESNÍ ANALÝZA 13. cvčení Závslost náhodných velčn Závslost mez kvanttatvním proměnným X a Y: Funkční závslost hodnotam nezávsle proměnných je jednoznačně dána hodnota závslé proměnné. Y=f(X) Stochastcká

Více

LOGICKÉ OBVODY J I Ř Í K A L O U S E K

LOGICKÉ OBVODY J I Ř Í K A L O U S E K LOGICKÉ OBVODY J I Ř Í K A L O U S E K Ostrava 2006 Obsah předmětu 1. ČÍSELNÉ SOUSTAVY... 2 1.1. Číselné soustavy - úvod... 2 1.2. Rozdělení číselných soustav... 2 1.3. Polyadcké číselné soustavy... 2

Více

Vysokoúčinná kapalinová chromatografie

Vysokoúčinná kapalinová chromatografie MC30P14 Vysokoúčnná kapalnová chroatografe, 010/011 Vysokoúčnná kapalnová chroatografe Josef Cvačka, 311011 3.11.011 1 MC30P14 Vysokoúčnná kapalnová chroatografe, 010/011 Základy chroatografckého procesu

Více

Příloha. Externí stabilita. Obr. 11 Výpočetní schéma opěrné stěny pro potřeby externí stability. Výška opěrné stěny

Příloha. Externí stabilita. Obr. 11 Výpočetní schéma opěrné stěny pro potřeby externí stability. Výška opěrné stěny Příloha PŘÍKLAD VÝPOČTU Pro doplnění vedené teore je veden praktcký výpočetní příklad. Jedná se o návrh vyztžené opěrné stěny s betonový prvky Gravty Stone a s výztží z geoříží Mragrd. Výškový rozdíl terénů,

Více

Katedra elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava

Katedra elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava Katedra elektrotechnky Faklta elektrotechnky a nforatky, VŠB - Ostrava 3. EEKKÉ OBVODY SŘÍDAVÉHO POD 3.. Úvod 3.. Základní pojy z teore střídavého prod 3.3. Sybolcko - koplexní etoda, fázory 3.4. Výkon

Více

í ž ý š í ď ý í ě í í ť Ž ě š ěž ě í í ě í ě í ů Ž ěž ý ů ě í ě í í í ě Ž Ú í í í Ť í í í í ť í í í í š í íť ó í ý í ý í ó í í ů ů ě í ů ů ě í ů ě ěž ů ě ěž ě ě í í í ó í í í ó í í í í í í í í ů í í š

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometre Specální případy použtí MNČ Cvčení 9 Zuzana Dlouhá Specální případy použtí MNČ cvčení 1 8 = ekonometrcký model, který byl lneární v proměnných v parametrech MNČ můžeme použít,

Více

6 LINEÁRNÍ REGRESNÍ MODELY

6 LINEÁRNÍ REGRESNÍ MODELY 1 6 LINEÁRNÍ REGRESNÍ MODELY Př budování regresních modelů se běžně užívá metody nejmenších čtverců. Metoda nejmenších čtverců poskytuje postačující odhady parametrů jenom př současném splnění všech předpokladů

Více

VEKTORY. Obrázek 1: Jediný vektor. Souřadnice vektoru jsou jeho průměty do souřadných os x a y u dvojrozměrného vektoru, AB = B A

VEKTORY. Obrázek 1: Jediný vektor. Souřadnice vektoru jsou jeho průměty do souřadných os x a y u dvojrozměrného vektoru, AB = B A VEKTORY Vektorem se rozumí množina všech orientovaných úseček, které mají stejnou velikost, směr a orientaci, což vidíme na obr. 1. Jedna konkrétní orientovaná úsečka se nazývá umístění vektoru na obr.

Více

V xv x V V E x. V nv n V nv x. S x S x S R x x x x S E x. ln ln

V xv x V V E x. V nv n V nv x. S x S x S R x x x x S E x. ln ln Souhrn 6. přednášky: 1) Terodynaka sěsí a) Ideální sěs: adtvta objeů a entalpí, Aagatův zákon b) Reálná sěs: pops poocí dodatkových velčn E Def. Y Y Y, d Aplkace: - př. obje reálné dvousložkové sěs V xv

Více

DIPLOMOVÁ PRÁCE UNIVERZITA PALACKÉHO V OLOMOUCI KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY

DIPLOMOVÁ PRÁCE UNIVERZITA PALACKÉHO V OLOMOUCI KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY DIPLOMOVÁ PRÁCE Mateatka úvěrů Vedoucí dploové práce: Mgr Eva Bohanesová, PhD Rok odevzdání: 2010

Více

ANALÝZA VÍCEROZMĚRNÝCH DAT

ANALÝZA VÍCEROZMĚRNÝCH DAT ANALÝZA VÍCEROZMĚRNÝCH DAT JIŘÍ MILITKÝ, Katedra textilních ateriálů, Technická universita v Liberci, Hálkova 6 461 17 Liberec, e- ail: jiri.iliky@vslib.cz Motto: Všechno není jinak MILAN MELOUN, Katedra

Více

Identifikace systémů

Identifikace systémů Identifikace systémů Přednáška 2 Osvald Modrlák, Lukáš Hubka TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

Úvod do lineární algebry

Úvod do lineární algebry Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky

Více

Numerická integrace konstitučních vztahů

Numerická integrace konstitučních vztahů Numercká ntegrace konsttučních vztahů Po výočtu neznámých deformačních uzlových arametrů v každé terac NR metody je nutné stanovt naětí a deformace na rvcích. Nař. Jednoosý tah (vz obr. vravo) Pro nterval

Více

Mechatronické systémy s elektronicky komutovanými motory

Mechatronické systémy s elektronicky komutovanými motory Mechatroncké systémy s elektroncky komutovaným motory 1. EC motor Uvedený motor je zvláštním typem synchronního motoru nazývaný též bezkartáčovým stejnosměrným motorem (anglcky Brushless Drect Current

Více

Náklady výroby elektrické energie

Náklady výroby elektrické energie Náklady výroby elektrické energie Marginální náklady (arginální ezní, přírůstkové) Marginální náklady jsou definovány jako přírůstek nákladů vyvolaných ezní přírůstke poptávky (produkce). MC = dtc dq TC

Více

Ivan Švarc. Radomil Matoušek. Miloš Šeda. Miluše Vítečková. c..~"f~ AKADEMICKÉ NAKlADATEL.STVf. Brno 20 I I

Ivan Švarc. Radomil Matoušek. Miloš Šeda. Miluše Vítečková. c..~f~ AKADEMICKÉ NAKlADATEL.STVf. Brno 20 I I Ivan Švarc. Radomil Matoušek Miloš Šeda. Miluše Vítečková AUTMATICKÉ RíZENí c..~"f~ AKADEMICKÉ NAKlADATEL.STVf Brno 0 I I n ~~ IU a ~ o ~e ~í ru ly ry I i ~h ~" BSAH. ÚVD. LGICKÉ RÍZENÍ. ""''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''oooo

Více

Soustavy linea rnı ch rovnic

Soustavy linea rnı ch rovnic [1] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení a) soustavy, 10, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l.

Více

Numerické metody a programování. Lekce 4

Numerické metody a programování. Lekce 4 Numerické metody a programování Lekce 4 Linarní algebra soustava lineárních algebraických rovnic a 11 a 12 x 2 a 1, N x N = b 1 a 21 a 22 x 2 a 2, N x N = b 2 a M,1 a M,2 x 2 a M,N x N = b M zkráceně A

Více

x 2 = a 2 + tv 2 tedy (a 1, a 2 ) T + [(v 1, v 2 )] T A + V Příklad. U = R n neprázdná množina řešení soustavy Ax = b.

x 2 = a 2 + tv 2 tedy (a 1, a 2 ) T + [(v 1, v 2 )] T A + V Příklad. U = R n neprázdná množina řešení soustavy Ax = b. 1. Afinní podprostory 1.1. Motivace. Uvažujme R 3. Jeho všechny vektorové podprostory jsou počátek, přímky a roviny procházející počátkem a celé R 3. Chceme-li v R 3 dělat geometrii potřebujeme i jiné

Více

4/3.3. bodem v rovině (tvoří rovinný svazek sil), jsou vždy. rovnice z-ová. Pro rovnováhu takové soustavy

4/3.3. bodem v rovině (tvoří rovinný svazek sil), jsou vždy. rovnice z-ová. Pro rovnováhu takové soustavy STROJNICKÁ PŘÍRUČKA čá s t 4, d íl 3, k a p to la 3, str. 1 díl 3, Statka 4/3.3 ROVNOVÁHA TĚLESA Procházejí-l po uvolnění tělesa všechny síly jedním bodem v rovně (tvoří rovnný svazek sl), jsou vždy splněny

Více

Obrázek 2. Rozdělení motoru na jednotlivé funkční části

Obrázek 2. Rozdělení motoru na jednotlivé funkční části ODELOVÁNÍ HNACÍHO ÚSTROJÍ OSOBNÍCH AUTOOBILŮ V ATLAB / SIULINK Ing. chal Jurák VŠB TU Ostrava, Fakulta Strojní, Katedra Automatzační technky a řízení 35 ODEL OTORU odel motoru je vytvořen v smulačním programu

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 3. ELEKTRICKÉ OBVODY STŘÍDAVÉHO PROUDU

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 3. ELEKTRICKÉ OBVODY STŘÍDAVÉHO PROUDU 3.. Úvod Katedra obecné elektrotechnky Faklta elektrotechnky a nforatky, VŠB - Ostrava 3. EEKKÉ OBVODY SŘÍDAVÉHO POD rčeno pro stdenty bakalářských stdjních prograů 3.. Základní pojy z teore střídavého

Více

Lineární algebra : Metrická geometrie

Lineární algebra : Metrická geometrie Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních

Více

ELEKTRICKÝ POHON S ASYNCHRONNÍM MOTOREM

ELEKTRICKÝ POHON S ASYNCHRONNÍM MOTOREM 4 EEKTCKÝ POHON AYNCHONNÍ OTOE Asynchronní otory (A), zvláště pa s otvou naráto, jsou jž řadu let nejrozšířenější eletrootory na naší planetě. talo se ta díy jejch onstruční jednoduchost, nízé ceně, vysoé

Více

Porovnání GUM a metody Monte Carlo

Porovnání GUM a metody Monte Carlo Porovnání GUM a metody Monte Carlo Ing. Tomáš Hajduk Nejstota měření Parametr přřazený k výsledku měření Vymezuje nterval, o němž se s určtou úrovní pravděpodobnost předpokládá, že v něm leží skutečná

Více

IV120 Spojité a hybridní systémy. Jana Fabriková

IV120 Spojité a hybridní systémy. Jana Fabriková IV120 Spojité a hybridní systémy Základní pojmy teorie řízení David Šafránek Jiří Barnat Jana Fabriková Problém řízení IV120 Základní pojmy teorie řízení str. 2/25 Mějme dynamický systém S definovaný stavovou

Více

VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku

VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku VI Maticový počet VI1 Základní operace s maticemi Definice Tabulku a 11 a 12 a 1n a 21 a 22 a 2n, a m1 a m2 a mn kde a ij R, i = 1,, m, j = 1,, n, nazýváme maticí typu m n Zkráceně zapisujeme (a ij i=1m

Více

Verifikace modelu VT přehříváků na základě provozních měření

Verifikace modelu VT přehříváků na základě provozních měření Verifikace modelu VT přehříváků na základě provozních měření Jan Čejka TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF

Více

CITLIVOSTNÍ ANALÝZA DYNAMICKÝCH SYSTÉMŮ I

CITLIVOSTNÍ ANALÝZA DYNAMICKÝCH SYSTÉMŮ I Informačné a automatizačné technológie v riadení kvality produkcie Vernár,.-4. 9. 005 CITLIVOSTNÍ ANALÝZA DYNAMICKÝCH SYSTÉMŮ I KÜNZEL GUNNAR Abstrakt Příspěvek uvádí základní definice, fyzikální interpretaci

Více

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n [1] Základní pojmy [2] Matice mezi sebou sčítáme a násobíme konstantou (lineární prostor) měníme je na jiné matice eliminační metodou násobíme je mezi sebou... Matice je tabulka čísel s konečným počtem

Více

Hlavní body. Úvod do dynamiky. Dynamika translačních pohybů Dynamika rotačních pohybů

Hlavní body. Úvod do dynamiky. Dynamika translačních pohybů Dynamika rotačních pohybů Mechanka dynaka Hlavní body Úvod do dynaky. Dynaka tanslačních pohybů Dynaka otačních pohybů Úvod do dynaky Mechanka by byla neúplná, kdyby se nezabývala, důvody poč se tělesa dávají do pohybu, zychlují,

Více

AVDAT Vektory a matice

AVDAT Vektory a matice AVDAT Vektory a matice Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Vektory x = x 1 x 2. x p y = y 1 y 2. y p Řádkový vektor dostaneme transpozicí sloupcového vektoru x

Více

Elektrotechnika 1. Garant předmětu: doc. Ing. Jiří Sedláček, CSc. Autoři textu:

Elektrotechnika 1. Garant předmětu: doc. Ing. Jiří Sedláček, CSc. Autoři textu: Elektrotechnka arant předětu: doc ng Jří Sedláček, CSc Autoř textu: doc ng Jří Sedláček, CSc doc ng Mloslav Stenbauer, PhD Brno, leden Elektrotechnka Předluva Předkládaná skrpta slouží jako základní studjní

Více