STATISTIKA. Základní pojmy

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "STATISTIKA. Základní pojmy"

Transkript

1 Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci v úvahu přicházejících statisticých jedote výběrové statisticé soubory obsahují část jedote záladího statisticého souboru Poud sledujeme ějaé jevy a malém počtu objetů, mohou být zísaé údaje začě zreslující, s jejich rostoucím počtem tedy roste vypovídací schopost statisticých údajů Statisticé zjišťováí úplé (vyčerpávající) zaměřeé a všechy jedoty záladího souboru, výběrové používá se, poud je záladí soubor příliš rozsáhlý Při áhodém výběru pa můžeme použít teorii pravděpodobosti dostatečě spolehlivým a přesým úsudům o charateru záladího souboru Statisticé jedoty prvy statisticého souboru, prvy možiy M Rozsah statisticého souboru počet prvů možiy M, M = Statisticý za - ohodoceí statisticé jedoty (je předmětem zoumáí), začí se x - jedotlivé údaje zau se azývají hodoty zau, začí se x, x,, x zay vatitativí hodoty zaů jsou vyjádřey čísly, zay valitativí hodoty zau jsou vyjádřey zpravidla slovím popisem Vždy je uté dopředu staovit (byť pouze ituitivě), jaých hodot mohou tyto zay abývat (taé tím usadíme zpracováí zísaých údajů) Př : Uvažujme statisticý soubor žáů třídy, sledovaé zay jejich tělesou výšu, počet sourozeců a barvu očí Prví dva zay jsou vatitativí, posledí je valitativí K jedotlivým zaům musíme ejdříve staovit možiy přípustých hodot: tělesá výša v celých cm, tedy přirozeá čísla; počet sourozeců přirozeá čísla a ula; barva očí hědá (H), modrá (M), zeleá (Z), šedá (Š), ostatí (O) Za/jedota ( Petr) (Pavel) 3(Eva) (Mila) 5(Klára) Tělesá výša Počet sourozeců 0 3 Barva očí H Z O H M Četosti a jejich rozděleí Uvažujme statisticý za, jež abývá hodot x, x,, x, de je rozsah uvažovaého statisticého souboru Nechť celový počet růzých hodot zau x je Absolutí četost hodoty zau x j počet statisticých jedote, jimž přísluší stejá hodota zau x j pro j =,,,, - ozačujeme ji j j= j = Relativí četost hodoty zau x j - podíl četosti j hodoty zau x j a rozsahu souboru, - ozačujeme ji ν j, - v praxi se vyjadřuje v procetech j= j =

2 Statistia /7 Př : Při zjišťováí počtu ezletilých dětí ve třiceti vybraých rodiách byly zísáy tyto výsledy:,, 0,, 3,,,, 3, 0,,,,, 3, 3, 0,,,,,, 0,,,,, 3, 3, Uspořádejte zísaé údaje do tabuly rozděleí četostí, vypočítejte relativí četosti a vyjádřete je v procetech Řešeí: Tabula rozděleí četostí a relativích četostí j 3 5 součet x j sledovaý za - počet dětí j ν j ν j [%] abs četost hodoty zau x j relat četost hodoty zau x j relat četost hodoty zau x j v procetech Supiové rozděleí četostí - používá se, poud je počet zjištěých hodot vatitativího statisticého zau začý Proto se blízé hodoty zau sdružují do supi (tříd) tvořeých obvyle itervaly (třídími itervaly) Hodoty zau, jež se dostaly do téhož itervalu, lze potom reprezetovat jediou hodotou středem itervalu (třídím zaem) Poz: K určeí vhodého počtu itervalů se užívá apřílad tzv Sturgesův vzorec: 3,3 log, de je rozsah statisticého souboru Př 3: Byly aměřey výšy 300 osob v mezích od 53 do 97 cm Navrhěte jejich rozděleí do supi (itervalů) a sestavte tabulu supiového (itervalového) rozděleí četostí Řešeí: Tabula supiového rozděleí četostí Itervaly výšy x (v cm) součet četostí Středy itervalů Četost (absolutí) Graficá zázorěí rozděleí četostí Pro velou ázorost a přehledost se pro zázorěí četostí používají ejrůzější grafy Uvedeme si ěoli ejběžějších typů (s dalšími se lze sezámit prostředictvím tabulových procesorů, apř MS Excel) Pro všechy uvedeé grafy budeme uvažovat ásledující datovou tabulu, ve teré je zazameáo rozložeí záme z matematiy: Záma z matematiy 3 5 Počet žáů Výsečový graf 8 Paprsový graf Počet žáů 5 3

3 Statistia 3/ Histogram - sloupcový graf Počet žáů Polygo - spojicový graf Počet žáů Polygo četosti eboli spojicový diagram zísáme spojeím bodů, jejichž prví (x-ová) souřadice je hodota zau, resp středu itervalu a druhá (y-ová) souřadice odpovídající četost Histogram četosti eboli sloupový diagram tvoří možia obdélíů (se záladami a ose x), jejichž obsahy jsou přímo úměré zázorňovaým četostem Je vhodý zejméa pro zázorěí supiového (itervalového) rozděleí četostí V ruhovém diagramu růzým hodotám zau odpovídají ruhové výseče, jejichž plošé obsahy jsou úměré četostem Př : Sestroj histogram a polygo četosti pro údaje z př 3 Charateristiy statisticého souboru A Charateristiy polohy (úrově) hodot zau eboli jeho středí hodoty - čísla, terá určitým způsobem charaterizují průměrou hodotu sledovaého zau Představují hodotu, olem íž je v jistém smyslu ejvíce soustředěo rozděleí četostí hodot zau - patří mezi ě aritmeticý průměr, mediá, modus, harmoicý průměr a geometricý průměr Aritmeticý průměr x hodot vatitativího zau x, x,, x určujeme jao podíl součtu hodot zau a jejich počtu (rozsahu souboru) x= x x x = x i Zvláštím případem je vážeý aritmeticý průměr, terý aždé hodotě zau přiřazuje určitou váhu (výzam), terá je reprezetováa oeficietem, jímž aždou hodotu ásobíme Často touto vahou bývá počet výsytů příslušé hodoty x= x x x = i x i Př 5: V laboratoři měřili apětí v eletricém obvodu s těmito výsledy (V):,7;,8; 3,0;,7; 3,0;,6;,8;,7;,7;,9 Určete průměrou hodotu apětí v obvodu x=,6,7,8,9 3,0 =,79 V 0 Př 6: Studet zísal v prvím pololetí z matematiy ásledující zámy: z průběžých testů,, 3, ; ze zoušeí, 5; ze čtvrtletích písemých prací, a za ativitu,, 5, 3, 5 Vyučující považuje zámy z průběžých testů a ze zoušeí dvarát výzamější ež za ativitu, zámy za čtvrtlety dvarát výzamější ež z průběžých testů Určete studetův studijí průměr x= =,76 5 Vlastosti aritmeticého průměru: přičteím, odečteím, vyásobeím ebo vyděleím všech hodot zau eulovým číslem se odpovídajícím způsobem změí taé aritmeticý průměr (apř zvětšíme-li všechy hodoty o, zvětší se aritmeticý průměr taé o ); rozdělíme-li soubor do supi, pa průměr celého souboru je vážeým průměrem supiových průměrů, přičemž jao váhy vystupují počty jedote v jedotlivých supiách

4 Statistia /7 Př 7: V 6 ročíu ZŠ jsou čtyři třídy; počty žáů a třídí průměry záme z matematiy jsou uvedey v tabulce Určete průměrou zámu z matematiy celého ročíu Třída 6A 6B 6C 6D Průměrá záma z matematiy,,8,33, Počet žáů x=, 8,8,33 3, 30 = 3, =, Geometricý průměr x G hodot vatitativího zau x, x,, x určíme jao -tou odmociu ze součiu hodot: x G = x x x Geometricý průměr se ve statistice užívá apř výpočtu oeficietů růstu ebo řetězových idexů V časových řadách, de data vyazují určitý tred, je zajímavějším uazatelem průměrý přírůste (úbyte) během sledovaého období Te bychom určovali jao aritmeticý průměr přírůstů jedotlivých úseů x i x i = x x 0 V praxi je vša výzamějším uazatelem průměré tempo růstu, tedy geometricý průměr podílů hodot za dvě po sobě jdoucí období: x G = x x x = x 0 x x x x 0 Př 8: Nezaměstaost se v Česé republice (resp v ČSFR) vyvíjela podle ásledující tabuly Určete průměré tempo růstu míry ezaměstaosti v ČR v letech Ro Míra ezaměstaosti 0,7%,07%,59% 3,5% 3,%,96% 3,58% 5,5% 7,39% 9,3% x G = 0 0,7,07,59 3,5 3,,96 3,58 5,5 7,39 9,3= 3,56 Harmoicý průměr x H hodot vatitativího zau x, x,, x určíme jao podíl rozsahu souboru a součtu převráceých hodot zau: x H = =: x x i, vážeý harmoicý průměr H = =: i x x x x x x i x Harmoicý průměr se používá pro měřeí úrově poměrých čísel, jao je rychost, výo, produtivita práce apod Vážeý harmoicý průměr pa použijeme vždy, dyž jao váha vystupuje veličia, terá v poměrém čísle figuruje v čitateli zlomu (uražeá dráha, objem produce, objem tržeb) Př 9: V určité dílě, v íž vyrábějí stejé výroby, byly aměřey šesti dělíům tyto časy potřebé e zhotoveí jedoho výrobu: 3,, 5, 6, 0, miut Určete dobu, teré je v průměru třeba e zhotoveí jedoho výrobu Řešeí: Výoy jedotlivých dělíů jsou velmi rozdílé, apřílad prví vyrobí za tutéž dobu čtyřirát více výrobů ež posledí, proto postrádá věcý smysl počítat aritmeticý průměr aměřeých časů Avša součet jejich převráceých hodot udává celovou část produce všech dělíů za miutu a tedy průměrá doba potřebá e zhotoveí jedoho výrobu je dáa harmoicým průměrem x H =6: =6: = = 5,3 mi Modus zau je hodota s ejvětší četostí Začíme Mod(x) Modus lze vhodě použít apřílad při určováí hodiy s dopraví špičou Mediá je prostředí hodota zau, jsou-li hodoty uspořádáy podle veliosti Při sudém počtu hodot se bere aritmeticý průměr dvou prostředích hodot Začíme Med(x) Mediá je užívá zejméa tehdy, dyž jsou v souboru zastoupey prvy s hodotami zau mimořádě odlišými oproti ostatím hodotám zau V těchto případech je mediá lepší charateristiou polohy hodot zau ež aritmeticý průměr Př 0: Družstvo má 0 čleů s ročími příjmy podle ásledující tabuly Ročí příjem v tisících Kč Počet čleů družstva Řešeí: Aritmeticým průměrem bychom určili průměrý ročí příjem 89 tis Kč Avša romě jediého člea mají všichi příjem mohem ižší, taže použití této veličiy asi eí příliš vhodé Vhodější charateristiou je mediá Med x = x 0 x =50 tis Kč

5 Statistia 5/7 B Charateristiy variability (mělivosti, rozptýleí) - čísla, terá charaterizují, ja se hodoty zau prvů souboru liší od zvoleé charateristiy polohy ( středí hodoty), resp od sebe avzájem - patří mezi ě variačí rozpětí, průměrá absolutí odchyla, rozptyl, směrodatá odchyla a variačí oeficiet Ja uazuje ásledující přílad, charateristiy polohy mohou ědy být zavádějící ebo alespoň zreslující Př : Mějme dvě řady čísel: 7, 7, 7, 8, 8, 8, 8, 9, 9, 9 a,,, 8, 8, 8, 8, 5, 5, 5 Obě mají aprosto stejý aritmeticý průměr, mediá i modus, avša prví má hodoty mohem vyrovaější Čím větší je variabilita hodot zau, tím méě reprezetativí je aritmeticý průměr či jiá charateristia polohy (Lze říci, že charateristiy variability určují spolehlivost charateristi polohy; čím jsou meší, tím charateristiy polohy výstižěji popisují celý soubor) Iformaci o rozptýleí hodot zau olem aritmeticého průměru podává průměrá absolutí odchyla ebo lépe rozptyl, resp směrodatá odchyla Rozdíl mezi hodotou zau x j a zvoleou středí hodotou, apř aritmeticým průměrem x, se azývá odchyla hodoty zau x j od středí hodoty Je-li charateristiou polohy aritmeticý průměr, pa za charateristiu variability volíme zpravidla rozptyl Rozptyl je aritmeticý průměr druhých moci odchyle hodot zau od aritmeticého průměru (průměrá čtvercová odchyla od aritmeticého průměru): s x = x i x = x i x Druhá mocia v uvedeém vzorci je utá, eboť součet odchyle od aritmeticého průměru je ulový: x i x =0 Resp pro supiové rozděleí četostí poz ve vážeém tvaru s x = i x i x = i x i x Nevýhodou rozptylu je, že jeho jedoty eodpovídají jedotám hodot zau, ale jsou jejich druhými mociami Teto edostate odstraňuje směrodatá odchyla Směrodatá odchyla s x je druhá odmocia z rozptylu Výhodou směrodaté odchyly je, že charaterizuje variabilitu hodot zau v měřicích jedotách zau s x = x i x = x i x, resp s x = i x i x = C Charateristiy variability relativí (poměré) i x i x Chceme-li porovávat ěoli statisticých souborů, vedou absolutí charateristiy jao rozptyl ebo směrodatá odchyla epřehledým závěrům Jao bezrozměrá charateristia se ejčastěji používá variačí oeficiet Variačí oeficiet x je defiová jao podíl směrodaté odchyly a aritmeticého průměru sledovaého zau x = s x x, respetive v procetech = s x x 00% má-li hodota x i četost i,, hodota x četost, i =

6 Statistia 6/7 Př : Deset opaovaých měřeí jedé fyziálí ostaty dalo tyto výsledy:,;,0;,09;,;,0;,03;,03;,0;,05;,05 Určete aritmeticý průměr, směrodatou odchylu a variačí oeficiet Řešeí: x=,06; s x =0,0036 s x =0,037 ;v x =,8% Př 3: Porovejte difereciaci (vaiabilitu) mezd pracovíů dvou podiů a záladě údajů o jejich příjmech v tabulce: podi podi Měsíčí příjem x i (v Kč) Počet pracovíů i Hodiová mzda x i (v Kč) Počet pracovíů i Řešeí: Sledovaý statisticý za x (příjem pracovía) je vyjádře v obou podicích v růzých jedotách (měsíčí a hodiová mzda) K porováí variability mezd užijeme proto variačí oeficiety Postupě dostáváme pro podi x=775, s x = 558,6, =0,0, pro podi x=6,, s x = 5,9056, =0,367 Závěr: Difereciace (variabilita) mezd v podiu je ižší ež ve podiu D Koeficiet orelace Koeficiet orelace r popisuje míru závislosti dvou zaů x a y Nechť x, x,, x jsou hodoty zau x, y, y,, y hodoty zau y, pa oeficiet orelace r zaů x a y je r =, de = s x s y x i x y i y, s x= x i x, s y = y i y V defiici oeficietu orelace vystupují ve jmeovateli směrodaté odchyly s x, s y Aby defiice měla smysl, musí být s x 0, s y 0, což astává právě tehdy, dyž za x i za y ejsou ostatí Koeficiet orelace je bezrozměré číslo Vždy platí x Čím více se hodota r blíží, tím považujeme závislost x a y za větší ( V případě r = s rostoucími hodotami zau x rostou i hodoty zau y, v případě r = - aopa s rostoucími hodotami zau x lesají hodoty zau y) Př : Na oci a ročíu byli v matematice žáci lasifiovái zámami, jež jsou uvedey v tabulce Vypočtěte oeficiet orelace mezi těmito zámami Počty žáů Záma a oci ročíu 3 Záma a oci ročíu Řešeí: Výpočtem podle uvedeého vzorce vychází r = 0,6

7 Statistia 7/7 Průměr, modus, mediá, grafy P 75/68 V testu při zoušce dostalo 5 studetů zámu, dalších 35 studetů dostalo zámu, zámu 3 dostalo 30 studetů, 5 studetů dostalo zámu a zbylých 5 studetů dostalo zámu 5 Vypočítejte průměrou zámu z testu, modus, mediá Výsledy testu zázorěte graficy [průměr,6, modus, mediá,5] P 75/66 Ve třídě A je 5 chlapců Údaje o výšce chlapců udává ásledující tabula: Výša (cm) Počet žáů 5 3 Vypočítejte průměrou výšu žáa, určete modus, mediá [průměr 5/3 cm, modus 67 cm, mediá 7 cm] P 75/67 Pa Dvořá jel automobilem prvích 0 m rychlostí 80 m/h, dalších 30 m rychlostí 90 m/h Vypočítejte průměrou rychlost jeho jízdy [85,7 m/h] 7/33 Házíme micí, až pade poprvé líc; za x udává, v oliátém hodu se ta stalo Opaováí tohoto pousu 00 rát dalo ásledující rozděleí četostí: čeáí a líc četost a) Vypočítej aritmeticý průměr, modus a mediá [průměr,95, modus, mediá ] b) Porovej relativí četosti s příslušými pravděpodobostmi (Návod: Pravděpodobost, že líc pade hed v prvím hodu, je /, že pade až v druhém hodu, / atd) [relativí četosti: 0,53; 0,; 0,3; ; pravděpodobosti: 0,50; 0,5; 0,5; ] Pravděpodobost opaováí P 7/57 V tombole je 30 ce (vyhrává 30 losů) Bylo prodáo 500 losů Pa Nová si oupil 3 losy Jaá je pravděpodobost, že a) a všechy tři losy vyhraje, [0,0006] b) vyhraje alespoň jedu ceu? [0,7] P 70/ a) Jaá je pravděpodobost, že při třech hodech jedou micí pade alespoň dvarát líc? [/] b) Jaá je pravděpodobost, že při hodu třemi micemi ajedou pade alespoň a dvou micích líc? [/] P 7/0 S jaou pravděpodobostí pade při deseti hodech jedou ostou alespoň třirát šesta? [0,5] Průměr, modus, mediá, grafy P 75/68 V testu při zoušce dostalo 5 studetů zámu, dalších 35 studetů dostalo zámu, zámu 3 dostalo 30 studetů, 5 studetů dostalo zámu a zbylých 5 studetů dostalo zámu 5 Vypočítejte průměrou zámu z testu, modus, mediá Výsledy testu zázorěte graficy [průměr,6, modus, mediá,5] P 75/66 Ve třídě A je 5 chlapců Údaje o výšce chlapců udává ásledující tabula: Výša (cm) Počet žáů 5 3 Vypočítejte průměrou výšu žáa, určete modus, mediá [průměr 5/3 cm, modus 67 cm, mediá 7 cm] P 75/67 Pa Dvořá jel automobilem prvích 0 m rychlostí 80 m/h, dalších 30 m rychlostí 90 m/h Vypočítejte průměrou rychlost jeho jízdy [85,7 m/h] 7/33 Házíme micí, až pade poprvé líc; za x udává, v oliátém hodu se ta stalo Opaováí tohoto pousu 00 rát dalo ásledující rozděleí četostí: čeáí a líc četost a) Vypočítej aritmeticý průměr, modus a mediá [průměr,95, modus, mediá ] b) Porovej relativí četosti s příslušými pravděpodobostmi (Návod: Pravděpodobost, že líc pade hed v prvím hodu, je /, že pade až v druhém hodu, / atd) [relativí četosti: 0,53; 0,; 0,3; ; pravděpodobosti: 0,50; 0,5; 0,5; ] Pravděpodobost opaováí P 7/57 V tombole je 30 ce (vyhrává 30 losů) Bylo prodáo 500 losů Pa Nová si oupil 3 losy Jaá je pravděpodobost, že a) a všechy tři losy vyhraje, [0,0006] b) vyhraje alespoň jedu ceu? [0,7] P 70/ a) Jaá je pravděpodobost, že při třech hodech jedou micí pade alespoň dvarát líc? [/] b) Jaá je pravděpodobost, že při hodu třemi micemi ajedou pade alespoň a dvou micích líc? [/] P 7/0 S jaou pravděpodobostí pade při deseti hodech jedou ostou alespoň třirát šesta? [0,5]

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

8. Základy statistiky. 8.1 Statistický soubor

8. Základy statistiky. 8.1 Statistický soubor 8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků 1 Pops statstcých dat 1.1 Pops omálích a ordálích zaů K zobrazeí rozděleí hodot omálích ebo ordálích zaů lze použít tabulu ebo graf rozděleí četostí. Tuto formu zobrazeí lze dooce použít pro číselé zay,

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

9.1.12 Permutace s opakováním

9.1.12 Permutace s opakováním 9.. Permutace s opakováím Předpoklady: 905, 9 Pedagogická pozámka: Pokud echáte studety počítat samostatě příklad 9 vyjde tato hodia a skoro 80 miut. Uvažuji o tom, že hodiu doplím a rozdělím a dvě. Př.

Více

9.1.13 Permutace s opakováním

9.1.13 Permutace s opakováním 93 Permutace s opakováím Předpoklady: 906, 9 Pedagogická pozámka: Obsah hodiy přesahuje 45 miut, pokud emáte k dispozici další půlhodiu, musíte žáky echat projít posledí dva příklady doma Př : Urči kolik

Více

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti 1 Základí statistické zpracováí dat 1.1 Základí pojmy Populace (základí soubor) je soubor objektů (statistických jedotek), který je vymeze jejich výčtem ebo charakterizací jejich vlastostí, může být proto

Více

STATISTIKA PRO EKONOMY

STATISTIKA PRO EKONOMY EDICE UČEBNÍCH TEXTŮ STATISTIKA PRO EKONOMY EDUARD SOUČEK V Y S O K Á Š K O L A E K O N O M I E A M A N A G E M E N T U Eduard Souček Statistika pro ekoomy UČEBNÍ TEXT VYSOKÁ ŠKOLA EKONOMIE A MANAGEMENTU

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR Středí hodoty Artmetcý průměr vážeý ze tříděí Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR Výzam a užtí vážeého artmetcého průměru uážeme a ásledujících příladech Přílad 0 Ve frmě Gama Blatá máme soubor

Více

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS.

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS. Dopraví stroje a zařízeí odborý zálad AR 04/05 Idetifiačí číslo: Počet otáze: 6 Čas : 60 miut Počet bodů Hodoceí OTÁZKY: ) Vypočtěte eálí poměr rozděleí brzdých sil a ápravy dvouápravového vozla bez ABS.

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ 4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ 77 4. ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu

Více

Máme dotazníky. A co dál? Martina Litschmannová

Máme dotazníky. A co dál? Martina Litschmannová Máme dotazíy. A co dál? Martia Litschmaová. Úvod S dotazíy se setáváme běžě. Vídáme je v oviách, v časopisech, jsou součásti evaluačích zpráv (sebehodoceí šol, ), výzumých zpráv, Využívají se v sociologii,

Více

1 Trochu o kritériích dělitelnosti

1 Trochu o kritériích dělitelnosti Meu: Úloha č.1 Dělitelost a prvočísla Mirko Rokyta, KMA MFF UK Praha Jaov, 12.10.2013 Růzé dělitelosti, třeba 11 a 7 (aeb Jak zfalšovat rodé číslo). Prvočísla: které je ejlepší, které je ejvětší a jak

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA RVDĚODONOST STTISTIK Gymázium Jiřího Wolkera v rostějově Výukové materiály z matematiky pro vyšší gymázia utoři projektu Studet a prahu. století - využití ICT ve vyučováí matematiky a gymáziu Teto projekt

Více

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications)

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications) Základy datové aalýzy, modelového vývojářství a statistického učeí (Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applicatios) Lukáš Pastorek POZOR: Autor upozorňuje, že se jedá

Více

7. P o p i s n á s t a t i s t i k a

7. P o p i s n á s t a t i s t i k a 7. P o p i s á s t a t i s t i k a 7.. Pozámka: Při statistickém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákoitosti, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme

Více

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ČÍSELNÉ OBORY vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z mtemtiky školí rok 204/205

Více

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY Statitické metody ve veřejé právě ŘEŠENÉ PŘÍKLADY Ig. Václav Friedrich, Ph.D. 2013 1 Kapitola 2 Popi tatitických dat 2.1 Tabulka obahuje rozděleí pracovíků podle platových tříd: TARIF PLAT POČET TARIF

Více

pravděpodobnostn podobnostní jazykový model

pravděpodobnostn podobnostní jazykový model Pokročilé metody rozpozáváířeči Předáška 8 Rozpozáváí s velkými slovíky, pravděpodobost podobostí jazykový model Rozpozáváí s velkým slovíkem Úlohy zaměřeé a diktováíči přepis řeči vyžadují velké slovíky

Více

-1- Finanční matematika. Složené úrokování

-1- Finanční matematika. Složené úrokování -- Fiačí ateatika Složeé úrokováí Při složeé úročeí se úroky přičítají k počátečíu kapitálu ( k poskytutí úvěru, k uložeéu vkladu ) a společě s í se úročí. Vzorec pro kapitál K po letech při složeé úročeí

Více

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu ÚROKVÁ SAZBA A VÝPOČET BUDOUÍ HODNOTY. Typy a druhy úročeí, budoucí hodota ivestice Úrok - odměa za získáí úvěru (cea za službu peěz) Ročí úroková sazba (míra)(i) úrok v % z hodoty kapitálu za časové období

Více

KOMBINATORIKA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMBINATORIKA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMBINATORIKA Gymázium Jiřího Wolera v Prostějově Výuové materiály z matematiy pro vyšší gymázia Autoři projetu Studet a prahu. století - využití ICT ve vyučováí matematiy a gymáziu INVESTICE DO ROZVOJE

Více

P(n) = n * (n - 1) * (n - 2) *... 2 * 1 To odpovídá zápisu, ve kterém využíváme faktoriál:

P(n) = n * (n - 1) * (n - 2) *... 2 * 1 To odpovídá zápisu, ve kterém využíváme faktoriál: PERMUTACE a VARIACE 2.1 Permutace P() = * ( - 1) * ( - 2) *... 2 * 1 To odpovídá zápisu, ve kterém využíváme faktoriál: ( )! P = Jedá se o vzorec pro počet permutací z prvků bez opakováí. 2.2 Variace bez

Více

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ALGEBRAICKÉ VÝRAZY vtvořil: RNDr. Věr Effeberger epertk olie příprvu SMZ z mtemtik školí rok 04/05

Více

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika Co e to statistika? Statistické hodoceí výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Statistika e ako bikiy. Odhalí téměř vše, ale to edůležitěší ám zůstae skryto. (autor ezámý) Statistika uda e, má

Více

stavební obzor 1 2/2014 11

stavební obzor 1 2/2014 11 tavebí obzor /04 Exploratorí aalýza výběrového ouboru dat pevoti drátobetou v tlau Ig. Daiel PIESZKA Ig. Iva KOLOŠ, Ph.D. doc. Ig. Karel KUBEČKA, Ph.D. VŠB-TU Otrava Faulta tavebí Věrohodé vyhodoceí experimetálích

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

5 Funkce. jsou si navzájem rovny právě tehdy, když se rovnají jejich.

5 Funkce. jsou si navzájem rovny právě tehdy, když se rovnají jejich. Fukce. Základí pojmy V kpt.. jsme mluvili o zobrazeí mezi možiami AB., Připomeňme, že se jedá o libovolý předpis, který každému prvku a A přiřadí ejvýše jede prvek b B. Jsou-li A, B číselé možiy, azýváme

Více

, jsou naměřené a vypočtené hodnoty závisle

, jsou naměřené a vypočtené hodnoty závisle Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,

Více

Optimalizace portfolia

Optimalizace portfolia Optmalzace portfola ÚVOD Problémy vestováí prostředctvím ákupu ceých papírů sou klasckým tématem matematcké ekoome. Celkový výos z portfola má v době rozhodováí o vestcích povahu áhodé velčy, eíž rozložeí

Více

11. Časové řady. 11.1. Pojem a klasifikace časových řad

11. Časové řady. 11.1. Pojem a klasifikace časových řad . Časové řad.. Pojem a klasfkace časových řad Specfckým statstckým dat jsou časové řad pomocí chž můžeme zkoumat damku jevů v čase. Časovou řadou (damcká řada, vývojová řada) rozumíme v čase uspořádaé

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

SOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO. Statistika I. distanční studijní opora. Milan Křápek

SOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO. Statistika I. distanční studijní opora. Milan Křápek SOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO Statstka I dstačí studjí opora Mla Křápek Soukromá vysoká škola ekoomcká Zojmo Dube 3 Statstka I Vydala Soukromá vysoká škola ekoomcká Zojmo. vydáí Zojmo, 3 ISBN

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

Číselné řady. 1 m 1. 1 n a. m=2. n=1

Číselné řady. 1 m 1. 1 n a. m=2. n=1 Číselé řady Úvod U řad budeme řešit dva typy úloh: alezeí součtu a kovergeci. Nalezeí součtu (v případě, že řada koverguje) je obecě mohem těžší, elemetárě lze sečíst pouze ěkolik málo typů řad. Součet

Více

AMC/IEM J - HMOTNOST A VYVÁŽENÍ

AMC/IEM J - HMOTNOST A VYVÁŽENÍ ČÁST JAR-OPS 3 AMC/IEM J - HMOTNOST A VYVÁŽENÍ ACJ OPS 3.605 Hodoty hmotostí Viz JAR-OPS 3.605 V souladu s ICAO Ae 5 a s meziárodí soustavou jedotek SI, skutečé a omezující hmotosti vrtulíků, užitečé zatížeí

Více

8 Průzkumová analýza dat

8 Průzkumová analýza dat 8 Průzkumová aalýza dat Cílem průzkumové aalýzy dat (také zámé pod zkratkou EDA - z aglického ázvu exploratory data aalysis) je alezeí zvláštostí statistického chováí dat a ověřeí jejich předpokladů pro

Více

ZÁKLADNÍ ICHTYOLOGICKÉ METODY

ZÁKLADNÍ ICHTYOLOGICKÉ METODY ZÁKLADNÍ ICHTYOLOGICKÉ METODY Určováí věku a staoveí růstu ryb Ryby jsou poikilotermí obratlovci, u ichž jsou všechy biologické fukce zásadím způsobem ovlivňováy teplotou vody. To platí v plém rozsahu

Více

1. KOMBINATORIKA. Příklad 1.1: Mějme množinu A a. f) uspořádaných pětic množiny B a. Řešení: a)

1. KOMBINATORIKA. Příklad 1.1: Mějme množinu A a. f) uspořádaných pětic množiny B a. Řešení: a) 1. KOMBINATORIKA Kombinatoria je obor matematiy, terý zoumá supiny prvů vybíraných z jisté záladní množiny. Tyto supiny dělíme jedna podle toho, zda u nich záleží nebo nezáleží na pořadí zastoupených prvů

Více

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů Semárky, předášky, bakalářky, testy - ekoome, ace, účetctví, ačí trhy, maagemet, právo, hstore... PODNIKOVÁ EKONOMIKA 3. Cea ceých papírů Ceé papíry jsou jedím ze způsobů, jak podk může získat potřebý

Více

BIVŠ. Pravděpodobnost a statistika

BIVŠ. Pravděpodobnost a statistika BIVŠ Pravděpodobost a statstka Úvod Skrpta Pravděpodobost a statstka jsou učebím tetem pro stejojmeý kurz magsterského studa Bakovího sttutu vysoké školy Kurzy Pravděpodobost a statstka a avazující kurz

Více

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu.

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu. KVALIMETRIE Miloslav Sucháek 16. Statistické metody v metrologii a aalytické chemii Řešeé příklady a CD-ROM v Excelu Eurachem ZAOSTŘENO NA ANALYTICKOU CHEMII V EVROPĚ Kvalimetrie 16 je zatím posledí z

Více

Determinanty Opakování: Permutace na n prvcích je zobrazení p:{1,..., n} {1,..., n}, které je prosté a na.

Determinanty Opakování: Permutace na n prvcích je zobrazení p:{1,..., n} {1,..., n}, které je prosté a na. Li algebra determiaty, polyomy, vlast čísla a vetory, charateristicý mohočle, salárí souči, posdef matice, bilieárí a vadraticé formy Lieárí algebra II láta z II semestru iformatiy MFF UK dle předáše Jiřího

Více

Veterinární a farmaceutická univerzita Brno. Základy statistiky. pro studující veterinární medicíny a farmacie

Veterinární a farmaceutická univerzita Brno. Základy statistiky. pro studující veterinární medicíny a farmacie Veteriárí a farmaceutická uiverzita Bro Základy statistiky pro studující veteriárí medicíy a farmacie Doc. RNDr. Iveta Bedáňová, Ph.D. Prof. MVDr. Vladimír Večerek, CSc. Bro, 007 Obsah Úvod.... 5 1 Základí

Více

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY.

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY. OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY. Ig.Karel Hoder, ÚAMT-VUT Bro. 1.Úvod Optimálí rozděleí ákladů a vytápěí bytového domu mezi uživatele bytů v domě stále podléhá

Více

Asynchronní motory Ing. Vítězslav Stýskala, Ph.D., únor 2006

Asynchronní motory Ing. Vítězslav Stýskala, Ph.D., únor 2006 8 ELEKTRCKÉ STROJE TOČVÉ říklad 8 Základí veličiy Určeo pro poluchače akalářkých tudijích programů FS Aychroí motory g Vítězlav Stýkala, hd, úor 006 Řešeé příklady 3 fázový aychroí motor kotvou akrátko

Více

MODELY HROMADNÉ OBSLUHY Models of queueing systems

MODELY HROMADNÉ OBSLUHY Models of queueing systems MODELY HROMADNÉ OBSLUHY Models of queueig systems Prof. RNDr. Ig. Miloš Šeda, Ph.D. Vysoé učeí techicé v Brě, Faulta strojího ižeýrství, Ústav automatizace a iformatiy e-mail: seda@fme.vutbr.cz Abstrat

Více

Obyčejné diferenciální rovnice. Cauchyova úloha Dirichletova úloha

Obyčejné diferenciální rovnice. Cauchyova úloha Dirichletova úloha Občejé erecálí rovce Caucova úloa Drcletova úloa Občejé erecálí rovce - Caucova úloa Úlo: I. = s omíou = jea rovce. řáu II. soustava rovc. řáu III. = - jea rovce -téo řáu = = = - = - Hleáme uc res. uce

Více

ZÁKLADY DISKRÉTNÍ MATEMATIKY

ZÁKLADY DISKRÉTNÍ MATEMATIKY ZÁKLADY DISKRÉTNÍ MATEMATIKY Michael Kubesa Text byl vytvoře v rámci realizace projektu Matematika pro ižeýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), a kterém se společě podílela Vysoká škola báňská

Více

Základy teorie chyb a zpracování fyzikálních měření Jiří Novák

Základy teorie chyb a zpracování fyzikálních měření Jiří Novák Zálad eore chb a zpracováí zálích měřeí Jří ová Teo e je zamýšle jao pomůca pro vpracováí laboraorích úloh z z Je urče pouze pro sudjí účel a jeho účelem je objas meod zpracováí měřeí Chb měřeí Druh chb

Více

Interval spolehlivosti pro podíl

Interval spolehlivosti pro podíl Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této

Více

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad Metody vyhodoceí efektvost vestc Časová hodota peěz Metody vyhodoceí Časová hodota peěz Prostředky, které máme k dspozc v současost mají vyšší hodotu ež prostředky, které budeme mít k dspozc v budoucost.

Více

Pracovní list č. 3 Charakteristiky variability

Pracovní list č. 3 Charakteristiky variability 1. Při zjišťování počtu nezletilých dětí ve třiceti vybraných rodinách byly získány tyto výsledky: 1, 1, 0, 2, 3, 4, 2, 2, 3, 0, 1, 2, 2, 4, 3, 3, 0, 1, 1, 1, 2, 2, 0, 2, 1, 1, 2, 3, 3, 2. Uspořádejte

Více

Téma 6: Indexy a diference

Téma 6: Indexy a diference dexy a dferece Téma 6: dexy a dferece ředáška 9 dvdálí dexy a dferece Základí ojmy Vedle elemetárího statstckého zracováí dat se hromadé jevy aalyzjí tzv. srováváím růzých kazatelů. Statstcký kazatel -

Více

Aplikace marginálních nákladů. Oceňování ztrát v distribučním rozvodu

Aplikace marginálních nákladů. Oceňování ztrát v distribučním rozvodu Apliace margiálích áladů Oceňováí ztrát v distribučím rozvodu Učebí text předmětu MES Doc. Ig. J. Vastl, CSc. Celové ročí álady a ztráty N P ( T ) z z sj z wj Kč de N z celové ročí álady a ztráty *Kč+

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzta Karlova v Praze Pedagogcká fakulta SEMINÁRNÍ PRÁCE Z OBECNÉ ALGEBRY DĚLITELNOST CELÝCH ČÍSEL V SOUSTAVÁCH O RŮZNÝCH ZÁKLADECH / Cfrk C. Zadáí: Najděte pět krtérí pro děltelost v jých soustavách

Více

5. Výpočty s využitím vztahů mezi stavovými veličinami ideálního plynu

5. Výpočty s využitím vztahů mezi stavovými veličinami ideálního plynu . ýpočty s využití vztahů ezi stavovýi veličiai ideálího plyu Ze zkušeosti víe, že obje plyu - a rozdíl od objeu pevé látky ebo kapaliy - je vyeze prostore, v ěž je ply uzavře. Přítoost plyu v ádobě se

Více

1.1 Definice a základní pojmy

1.1 Definice a základní pojmy Kaptola. Teore děltelost C. F. Gauss: Matematka je královou všech věd a teore čísel je králova matematky. Základím číselým oborem se kterým budeme v této kaptole pracovat jsou celá čísla a pouze v ěkterých

Více

Petr Otipka Vladislav Šmajstrla

Petr Otipka Vladislav Šmajstrla VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA PRAVDĚPODOBNOST A STATISTIKA Petr Otipka Vladislav Šmajstrla Vytv ořeo v rámci projektu Operačího programu Rozv oje lidských zdrojů CZ.04..03/3..5./006

Více

Atomová hmotnostní jednotka, relativní atomové a molekulové hmotnosti Atomová hmotnostní jednotka u se používá k relativnímu porovnání hmotností

Atomová hmotnostní jednotka, relativní atomové a molekulové hmotnosti Atomová hmotnostní jednotka u se používá k relativnímu porovnání hmotností . Základí cheické výpočty toová hotostí jedotka, relativí atoové a olekulové hotosti toová hotostí jedotka u se používá k relativíu porováí hotostí ikročástic, atoů a olekul a je defiováa jako hotosti

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C) Přijímací řízeí pro akademický rok 24/ a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata C) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

Posloupnosti na střední škole Bakalářská práce

Posloupnosti na střední škole Bakalářská práce MASARYKOVA UNIVERZITA V BRNĚ Přírodovědecká fkult Ktedr mtemtiky Poslouposti středí škole Bklářská práce Bro 00 Kteři Rábová Prohlášeí Prohlšuji, že tto bklářská práce je mým původím utorským dílem, které

Více

1 STATISTICKÁ ŠETŘENÍ

1 STATISTICKÁ ŠETŘENÍ STATISTICKÁ ŠETŘENÍ Záladem aždého tattcého zoumáí jou údaje (data). Lze je zíat v záadě dvěma způoby. Buď je převzít z ějaého zdroje ebo je am zjtt. Seudárí data údaje, teré převezmeme z růzých zdrojů;

Více

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost Dráha [m] 9. Měřeí závslostí ve statstce Měřeí závslostí ve statstce se zývá především zkoumáím vzájemé závslost statstckých zaků vícerozměrých souborů. Závslost přtom mohou být apříklad pevé, volé, jedostraé,

Více

Střední hodnoty. Aritmetický průměr prostý Aleš Drobník strana 1

Střední hodnoty. Aritmetický průměr prostý Aleš Drobník strana 1 Středí hodoty. Artmetcký průměr prostý Aleš Drobík straa 0. STŘEDNÍ HODNOTY Př statstckém zjšťováí často zpracováváme statstcké soubory s velkým možstvím statstckých jedotek. Např. soubor pracovíků orgazace,

Více

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty)

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty) (variata s odděleým hodoceím ivestičích ákladů vyaložeých a jedotlivé privatizovaé objekty) Vypracoval: YBN CONSULT - Zalecký ústav s.r.o. Ig. Bedřich Malý Ig. Yvetta Fialová, CSc. Václavské áměstí 1 110

Více

Využití Markovových řetězců pro predikování pohybu cen akcií

Využití Markovových řetězců pro predikování pohybu cen akcií Využití Markovových řetězců pro predikováí pohybu ce akcií Mila Svoboda Tredy v podikáí, 4(2) 63-70 The Author(s) 2014 ISSN 1805-0603 Publisher: UWB i Pilse http://www.fek.zcu.cz/tvp/ Úvod K vybudováí

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

Zobrazení čísel v počítači

Zobrazení čísel v počítači Zobraeí ísel v poítai, áklady algoritmiace Ig. Michala Kotlíková Straa 1 (celkem 10) Def.. 1 slabika = 1 byte = 8 bitů 1 bit = 0 ebo 1 (ve dvojkové soustavě) Zobraeí celých ísel Zobraeí ísel v poítai Ke

Více

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh:

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh: Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT 5. temtický okruh: POSLOUPNOSTI A FINANČNÍ MATEMATIKA vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z

Více

Výroční zpráva fondů společnosti Pioneer investiční společnost, a.s. - neauditovaná

Výroční zpráva fondů společnosti Pioneer investiční společnost, a.s. - neauditovaná Výročí zpráva fodů společosti Pioeer ivestičí společost, a.s. - eauditovaá Obsah 1. Účetí závěrka: Pioeer Sporokoto, Pioeer obligačí fod, Pioeer růstový fod, Pioeer dyamický fod, Pioeer akciový fod, BALANCOVANÝ

Více

Neparametrické metody

Neparametrické metody I. ÚVOD Neparametrické metody EuroMISE Cetrum v Neparametrické testy jsou založey a pořadových skórech, které reprezetují původí data v Data emusí utě splňovat určité předpoklady vyžadovaé u parametrických

Více

STUDIE METODIKY ZNALECKÉHO VÝPOČTU EKONOMICKÉHO NÁJEMNÉHO Z BYTU A NĚKTERÝCH PRINCIPŮ PŘI STANOVENÍ OBVYKLÉHO NÁJEMNÉHO Z BYTU. ČÁST 2 OBVYKLÉ NÁJEMNÉ

STUDIE METODIKY ZNALECKÉHO VÝPOČTU EKONOMICKÉHO NÁJEMNÉHO Z BYTU A NĚKTERÝCH PRINCIPŮ PŘI STANOVENÍ OBVYKLÉHO NÁJEMNÉHO Z BYTU. ČÁST 2 OBVYKLÉ NÁJEMNÉ Prof. Ig. Albert Bradáč, DrSc. STUDIE METODIKY ZNALECKÉHO VÝPOČTU EKONOMICKÉHO NÁJEMNÉHO Z BYTU A NĚKTERÝCH PRINCIPŮ PŘI STANOVENÍ OBVYKLÉHO NÁJEMNÉHO Z BYTU. ČÁST 2 OBVYKLÉ NÁJEMNÉ Příspěvek vazuje publikovaý

Více

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH ECHNICKÝ AUDI VODÁRENSKÝCH DISRIBUČNÍCH SYSÉMŮ Ig. Ladislav uhovčák, CSc. 1), Ig. omáš Kučera 1), Ig. Miroslav Svoboda 1), Ig. Miroslav Šebesta 2) 1) 2) Vysoké učeí techické v Brě, Fakulta stavebí, Ústav

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

ZÁKLADY PRAVDĚPODOBNOSTI A STATISTIKY

ZÁKLADY PRAVDĚPODOBNOSTI A STATISTIKY UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ZÁKLADY PRAVDĚPODOBNOSTI A STATISTIKY Josef Tvrdík OSTRAVSKÁ UNIVERZITA 00 OBSAH: ÚVOD... 4. CO JE STATISTIKA?... 4. STATISTICKÁ DATA... 5.3 MĚŘENÍ

Více

8.2.10 Příklady z finanční matematiky I

8.2.10 Příklady z finanční matematiky I 8..10 Příklady z fiačí matematiky I Předoklady: 807 Fiačí matematika se zabývá ukládáím a ůjčováím eěz, ojišťováím, odhady rizik aod. Poměrě důležitá a výosá discilía. Sořeí Při sořeí vkladatel uloží do

Více

Základní pojmy kombinatoriky

Základní pojmy kombinatoriky Základí pojy kobiatoriky Začee příklade Příklad Máe rozesadit lidí kole kulatého stolu tak, aby dva z ich, osoby A a B, eseděly vedle sebe Kolika způsoby to lze učiit? Pro získáí odpovědi budee potřebovat

Více

Téma 3: Popisná statistika

Téma 3: Popisná statistika Popá tatta Téma : Popá tatta Předáša 7 Záladí tattcé pojmy Pojem a úoly tatty Statta je věda, teá e zabývá zíáváím, zpacováím a aalýzou dat po potřeby ozhodováí. Zoumá tav a vývoj homadých jevů a vztahů

Více

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/.5./34.948 IV-2 Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- JEDNODCHÉ

Více

STATISTICKÉ MINIMUM PRO STUDENTY BAKALÁŘSKÉHO STUDIA NA TECHNICKÝCH OBORECH BOHUMIL MINAŘÍK

STATISTICKÉ MINIMUM PRO STUDENTY BAKALÁŘSKÉHO STUDIA NA TECHNICKÝCH OBORECH BOHUMIL MINAŘÍK STATISTICKÉ MINIMUM PRO STUDENTY BAKALÁŘSKÉHO STUDIA NA TECHNICKÝCH OBORECH BOHUMIL MINAŘÍK 04 prof. Ig. Bohuml Mařík, CSc. STATISTICKÉ MINIMUM PRO STUDENTY BAKALÁŘSKÉHO STUDIA NA TECHNICKÝCH OBORECH.

Více

Laboratorní práce č. 4: Úlohy z paprskové optiky

Laboratorní práce č. 4: Úlohy z paprskové optiky Přírodí ědy moderě a iteraktiě FYZKA 4. ročík šestiletého a. ročík čtyřletého studia Laboratorí práce č. 4: Úlohy z paprskoé optiky G Gymázium Hraice Přírodí ědy moderě a iteraktiě FYZKA 3. ročík šestiletého

Více

a 1 = 2; a n+1 = a n + 2.

a 1 = 2; a n+1 = a n + 2. Vyjářeí poloupoti Poloupot můžeme určit ěkolik růzými způoby. Prvím je protý výčet prvků. Npříkl jeouchá poloupot uých číel by e výčtem l zpt tkto:,, 6,,... Dlší možotí je vzorec pro tý čle. Stejá poloupot

Více

1. ČÍSELNÉ OBORY 10. Kontrolní otázky 24. Úlohy k samostatnému řešení 25. Výsledky úloh k samostatnému řešení 25. Klíč k řešení úloh 26

1. ČÍSELNÉ OBORY 10. Kontrolní otázky 24. Úlohy k samostatnému řešení 25. Výsledky úloh k samostatnému řešení 25. Klíč k řešení úloh 26 Zákld mtemtik Číselé oor ČÍSELNÉ OBORY 0 Některé pojm z mtemtické logik 0 Výroková logik 0 Moži vzth mezi imi Možiové operce Grfické zázorěí moži Číselé oor Čísl ázv jejich chrkteristik Chrkteristik číselých

Více

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů - 12.1 - Přehled Ifomace po odhad ákladů Míy po áklady dotazu Opeace výběu Řazeí Opeace spojeí Vyhodocováí výazů Tasfomace elačích výazů Výbě pláu po vyhodoceí Kapitola 12: Zpacováí dotazů Základí koky

Více

Aritmetická posloupnost

Aritmetická posloupnost /65 /65 Obsh Obsh... Aritmetická posloupost.... Soustv rovic, součet.... AP - předpis... 5. AP - součet... 6. AP - prvoúhlý trojúhelík... 7. Součet čísel v itervlu... 8 Geometrická posloupost... 0. Soustv

Více

UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesné výchovy

UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesné výchovy UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesé výchovy VYBRANÉ NEPARAMETRICKÉ STATISTICKÉ POSTUPY V ANTROPOMOTORICE Zdeěk Havel Davd Chlář 0 VYBRANÉ NEPARAMETRICKÉ

Více

Téma 5: Analýza závislostí

Téma 5: Analýza závislostí Aalýza závlotí Téma 5: Aalýza závlotí Předáša 5 Závlot mez ev Záladí pom Předmětem této aptol ude zoumáí závlotí ouvlotí mez dvěma a více ev. Jedá e o proutí do vztahů mez ledovaým ev a tím přlížeí tzv.

Více

APLIKOVANÁ STATISTIKA

APLIKOVANÁ STATISTIKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA MANAGEMENTU A EKONOMIKY VE ZLÍNĚ APLIKOVANÁ STATISTIKA FRANTIŠEK PAVELKA PETR KLÍMEK ZLÍN 000 Recezoval: Haa Lošťáková Fratšek Pavelka, Petr Klímek, 000 ISBN 80 4

Více