STATISTIKA. Základní pojmy

Rozměr: px
Začít zobrazení ze stránky:

Download "STATISTIKA. Základní pojmy"

Transkript

1 Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci v úvahu přicházejících statisticých jedote výběrové statisticé soubory obsahují část jedote záladího statisticého souboru Poud sledujeme ějaé jevy a malém počtu objetů, mohou být zísaé údaje začě zreslující, s jejich rostoucím počtem tedy roste vypovídací schopost statisticých údajů Statisticé zjišťováí úplé (vyčerpávající) zaměřeé a všechy jedoty záladího souboru, výběrové používá se, poud je záladí soubor příliš rozsáhlý Při áhodém výběru pa můžeme použít teorii pravděpodobosti dostatečě spolehlivým a přesým úsudům o charateru záladího souboru Statisticé jedoty prvy statisticého souboru, prvy možiy M Rozsah statisticého souboru počet prvů možiy M, M = Statisticý za - ohodoceí statisticé jedoty (je předmětem zoumáí), začí se x - jedotlivé údaje zau se azývají hodoty zau, začí se x, x,, x zay vatitativí hodoty zaů jsou vyjádřey čísly, zay valitativí hodoty zau jsou vyjádřey zpravidla slovím popisem Vždy je uté dopředu staovit (byť pouze ituitivě), jaých hodot mohou tyto zay abývat (taé tím usadíme zpracováí zísaých údajů) Př : Uvažujme statisticý soubor žáů třídy, sledovaé zay jejich tělesou výšu, počet sourozeců a barvu očí Prví dva zay jsou vatitativí, posledí je valitativí K jedotlivým zaům musíme ejdříve staovit možiy přípustých hodot: tělesá výša v celých cm, tedy přirozeá čísla; počet sourozeců přirozeá čísla a ula; barva očí hědá (H), modrá (M), zeleá (Z), šedá (Š), ostatí (O) Za/jedota ( Petr) (Pavel) 3(Eva) (Mila) 5(Klára) Tělesá výša Počet sourozeců 0 3 Barva očí H Z O H M Četosti a jejich rozděleí Uvažujme statisticý za, jež abývá hodot x, x,, x, de je rozsah uvažovaého statisticého souboru Nechť celový počet růzých hodot zau x je Absolutí četost hodoty zau x j počet statisticých jedote, jimž přísluší stejá hodota zau x j pro j =,,,, - ozačujeme ji j j= j = Relativí četost hodoty zau x j - podíl četosti j hodoty zau x j a rozsahu souboru, - ozačujeme ji ν j, - v praxi se vyjadřuje v procetech j= j =

2 Statistia /7 Př : Při zjišťováí počtu ezletilých dětí ve třiceti vybraých rodiách byly zísáy tyto výsledy:,, 0,, 3,,,, 3, 0,,,,, 3, 3, 0,,,,,, 0,,,,, 3, 3, Uspořádejte zísaé údaje do tabuly rozděleí četostí, vypočítejte relativí četosti a vyjádřete je v procetech Řešeí: Tabula rozděleí četostí a relativích četostí j 3 5 součet x j sledovaý za - počet dětí j ν j ν j [%] abs četost hodoty zau x j relat četost hodoty zau x j relat četost hodoty zau x j v procetech Supiové rozděleí četostí - používá se, poud je počet zjištěých hodot vatitativího statisticého zau začý Proto se blízé hodoty zau sdružují do supi (tříd) tvořeých obvyle itervaly (třídími itervaly) Hodoty zau, jež se dostaly do téhož itervalu, lze potom reprezetovat jediou hodotou středem itervalu (třídím zaem) Poz: K určeí vhodého počtu itervalů se užívá apřílad tzv Sturgesův vzorec: 3,3 log, de je rozsah statisticého souboru Př 3: Byly aměřey výšy 300 osob v mezích od 53 do 97 cm Navrhěte jejich rozděleí do supi (itervalů) a sestavte tabulu supiového (itervalového) rozděleí četostí Řešeí: Tabula supiového rozděleí četostí Itervaly výšy x (v cm) součet četostí Středy itervalů Četost (absolutí) Graficá zázorěí rozděleí četostí Pro velou ázorost a přehledost se pro zázorěí četostí používají ejrůzější grafy Uvedeme si ěoli ejběžějších typů (s dalšími se lze sezámit prostředictvím tabulových procesorů, apř MS Excel) Pro všechy uvedeé grafy budeme uvažovat ásledující datovou tabulu, ve teré je zazameáo rozložeí záme z matematiy: Záma z matematiy 3 5 Počet žáů Výsečový graf 8 Paprsový graf Počet žáů 5 3

3 Statistia 3/ Histogram - sloupcový graf Počet žáů Polygo - spojicový graf Počet žáů Polygo četosti eboli spojicový diagram zísáme spojeím bodů, jejichž prví (x-ová) souřadice je hodota zau, resp středu itervalu a druhá (y-ová) souřadice odpovídající četost Histogram četosti eboli sloupový diagram tvoří možia obdélíů (se záladami a ose x), jejichž obsahy jsou přímo úměré zázorňovaým četostem Je vhodý zejméa pro zázorěí supiového (itervalového) rozděleí četostí V ruhovém diagramu růzým hodotám zau odpovídají ruhové výseče, jejichž plošé obsahy jsou úměré četostem Př : Sestroj histogram a polygo četosti pro údaje z př 3 Charateristiy statisticého souboru A Charateristiy polohy (úrově) hodot zau eboli jeho středí hodoty - čísla, terá určitým způsobem charaterizují průměrou hodotu sledovaého zau Představují hodotu, olem íž je v jistém smyslu ejvíce soustředěo rozděleí četostí hodot zau - patří mezi ě aritmeticý průměr, mediá, modus, harmoicý průměr a geometricý průměr Aritmeticý průměr x hodot vatitativího zau x, x,, x určujeme jao podíl součtu hodot zau a jejich počtu (rozsahu souboru) x= x x x = x i Zvláštím případem je vážeý aritmeticý průměr, terý aždé hodotě zau přiřazuje určitou váhu (výzam), terá je reprezetováa oeficietem, jímž aždou hodotu ásobíme Často touto vahou bývá počet výsytů příslušé hodoty x= x x x = i x i Př 5: V laboratoři měřili apětí v eletricém obvodu s těmito výsledy (V):,7;,8; 3,0;,7; 3,0;,6;,8;,7;,7;,9 Určete průměrou hodotu apětí v obvodu x=,6,7,8,9 3,0 =,79 V 0 Př 6: Studet zísal v prvím pololetí z matematiy ásledující zámy: z průběžých testů,, 3, ; ze zoušeí, 5; ze čtvrtletích písemých prací, a za ativitu,, 5, 3, 5 Vyučující považuje zámy z průběžých testů a ze zoušeí dvarát výzamější ež za ativitu, zámy za čtvrtlety dvarát výzamější ež z průběžých testů Určete studetův studijí průměr x= =,76 5 Vlastosti aritmeticého průměru: přičteím, odečteím, vyásobeím ebo vyděleím všech hodot zau eulovým číslem se odpovídajícím způsobem změí taé aritmeticý průměr (apř zvětšíme-li všechy hodoty o, zvětší se aritmeticý průměr taé o ); rozdělíme-li soubor do supi, pa průměr celého souboru je vážeým průměrem supiových průměrů, přičemž jao váhy vystupují počty jedote v jedotlivých supiách

4 Statistia /7 Př 7: V 6 ročíu ZŠ jsou čtyři třídy; počty žáů a třídí průměry záme z matematiy jsou uvedey v tabulce Určete průměrou zámu z matematiy celého ročíu Třída 6A 6B 6C 6D Průměrá záma z matematiy,,8,33, Počet žáů x=, 8,8,33 3, 30 = 3, =, Geometricý průměr x G hodot vatitativího zau x, x,, x určíme jao -tou odmociu ze součiu hodot: x G = x x x Geometricý průměr se ve statistice užívá apř výpočtu oeficietů růstu ebo řetězových idexů V časových řadách, de data vyazují určitý tred, je zajímavějším uazatelem průměrý přírůste (úbyte) během sledovaého období Te bychom určovali jao aritmeticý průměr přírůstů jedotlivých úseů x i x i = x x 0 V praxi je vša výzamějším uazatelem průměré tempo růstu, tedy geometricý průměr podílů hodot za dvě po sobě jdoucí období: x G = x x x = x 0 x x x x 0 Př 8: Nezaměstaost se v Česé republice (resp v ČSFR) vyvíjela podle ásledující tabuly Určete průměré tempo růstu míry ezaměstaosti v ČR v letech Ro Míra ezaměstaosti 0,7%,07%,59% 3,5% 3,%,96% 3,58% 5,5% 7,39% 9,3% x G = 0 0,7,07,59 3,5 3,,96 3,58 5,5 7,39 9,3= 3,56 Harmoicý průměr x H hodot vatitativího zau x, x,, x určíme jao podíl rozsahu souboru a součtu převráceých hodot zau: x H = =: x x i, vážeý harmoicý průměr H = =: i x x x x x x i x Harmoicý průměr se používá pro měřeí úrově poměrých čísel, jao je rychost, výo, produtivita práce apod Vážeý harmoicý průměr pa použijeme vždy, dyž jao váha vystupuje veličia, terá v poměrém čísle figuruje v čitateli zlomu (uražeá dráha, objem produce, objem tržeb) Př 9: V určité dílě, v íž vyrábějí stejé výroby, byly aměřey šesti dělíům tyto časy potřebé e zhotoveí jedoho výrobu: 3,, 5, 6, 0, miut Určete dobu, teré je v průměru třeba e zhotoveí jedoho výrobu Řešeí: Výoy jedotlivých dělíů jsou velmi rozdílé, apřílad prví vyrobí za tutéž dobu čtyřirát více výrobů ež posledí, proto postrádá věcý smysl počítat aritmeticý průměr aměřeých časů Avša součet jejich převráceých hodot udává celovou část produce všech dělíů za miutu a tedy průměrá doba potřebá e zhotoveí jedoho výrobu je dáa harmoicým průměrem x H =6: =6: = = 5,3 mi Modus zau je hodota s ejvětší četostí Začíme Mod(x) Modus lze vhodě použít apřílad při určováí hodiy s dopraví špičou Mediá je prostředí hodota zau, jsou-li hodoty uspořádáy podle veliosti Při sudém počtu hodot se bere aritmeticý průměr dvou prostředích hodot Začíme Med(x) Mediá je užívá zejméa tehdy, dyž jsou v souboru zastoupey prvy s hodotami zau mimořádě odlišými oproti ostatím hodotám zau V těchto případech je mediá lepší charateristiou polohy hodot zau ež aritmeticý průměr Př 0: Družstvo má 0 čleů s ročími příjmy podle ásledující tabuly Ročí příjem v tisících Kč Počet čleů družstva Řešeí: Aritmeticým průměrem bychom určili průměrý ročí příjem 89 tis Kč Avša romě jediého člea mají všichi příjem mohem ižší, taže použití této veličiy asi eí příliš vhodé Vhodější charateristiou je mediá Med x = x 0 x =50 tis Kč

5 Statistia 5/7 B Charateristiy variability (mělivosti, rozptýleí) - čísla, terá charaterizují, ja se hodoty zau prvů souboru liší od zvoleé charateristiy polohy ( středí hodoty), resp od sebe avzájem - patří mezi ě variačí rozpětí, průměrá absolutí odchyla, rozptyl, směrodatá odchyla a variačí oeficiet Ja uazuje ásledující přílad, charateristiy polohy mohou ědy být zavádějící ebo alespoň zreslující Př : Mějme dvě řady čísel: 7, 7, 7, 8, 8, 8, 8, 9, 9, 9 a,,, 8, 8, 8, 8, 5, 5, 5 Obě mají aprosto stejý aritmeticý průměr, mediá i modus, avša prví má hodoty mohem vyrovaější Čím větší je variabilita hodot zau, tím méě reprezetativí je aritmeticý průměr či jiá charateristia polohy (Lze říci, že charateristiy variability určují spolehlivost charateristi polohy; čím jsou meší, tím charateristiy polohy výstižěji popisují celý soubor) Iformaci o rozptýleí hodot zau olem aritmeticého průměru podává průměrá absolutí odchyla ebo lépe rozptyl, resp směrodatá odchyla Rozdíl mezi hodotou zau x j a zvoleou středí hodotou, apř aritmeticým průměrem x, se azývá odchyla hodoty zau x j od středí hodoty Je-li charateristiou polohy aritmeticý průměr, pa za charateristiu variability volíme zpravidla rozptyl Rozptyl je aritmeticý průměr druhých moci odchyle hodot zau od aritmeticého průměru (průměrá čtvercová odchyla od aritmeticého průměru): s x = x i x = x i x Druhá mocia v uvedeém vzorci je utá, eboť součet odchyle od aritmeticého průměru je ulový: x i x =0 Resp pro supiové rozděleí četostí poz ve vážeém tvaru s x = i x i x = i x i x Nevýhodou rozptylu je, že jeho jedoty eodpovídají jedotám hodot zau, ale jsou jejich druhými mociami Teto edostate odstraňuje směrodatá odchyla Směrodatá odchyla s x je druhá odmocia z rozptylu Výhodou směrodaté odchyly je, že charaterizuje variabilitu hodot zau v měřicích jedotách zau s x = x i x = x i x, resp s x = i x i x = C Charateristiy variability relativí (poměré) i x i x Chceme-li porovávat ěoli statisticých souborů, vedou absolutí charateristiy jao rozptyl ebo směrodatá odchyla epřehledým závěrům Jao bezrozměrá charateristia se ejčastěji používá variačí oeficiet Variačí oeficiet x je defiová jao podíl směrodaté odchyly a aritmeticého průměru sledovaého zau x = s x x, respetive v procetech = s x x 00% má-li hodota x i četost i,, hodota x četost, i =

6 Statistia 6/7 Př : Deset opaovaých měřeí jedé fyziálí ostaty dalo tyto výsledy:,;,0;,09;,;,0;,03;,03;,0;,05;,05 Určete aritmeticý průměr, směrodatou odchylu a variačí oeficiet Řešeí: x=,06; s x =0,0036 s x =0,037 ;v x =,8% Př 3: Porovejte difereciaci (vaiabilitu) mezd pracovíů dvou podiů a záladě údajů o jejich příjmech v tabulce: podi podi Měsíčí příjem x i (v Kč) Počet pracovíů i Hodiová mzda x i (v Kč) Počet pracovíů i Řešeí: Sledovaý statisticý za x (příjem pracovía) je vyjádře v obou podicích v růzých jedotách (měsíčí a hodiová mzda) K porováí variability mezd užijeme proto variačí oeficiety Postupě dostáváme pro podi x=775, s x = 558,6, =0,0, pro podi x=6,, s x = 5,9056, =0,367 Závěr: Difereciace (variabilita) mezd v podiu je ižší ež ve podiu D Koeficiet orelace Koeficiet orelace r popisuje míru závislosti dvou zaů x a y Nechť x, x,, x jsou hodoty zau x, y, y,, y hodoty zau y, pa oeficiet orelace r zaů x a y je r =, de = s x s y x i x y i y, s x= x i x, s y = y i y V defiici oeficietu orelace vystupují ve jmeovateli směrodaté odchyly s x, s y Aby defiice měla smysl, musí být s x 0, s y 0, což astává právě tehdy, dyž za x i za y ejsou ostatí Koeficiet orelace je bezrozměré číslo Vždy platí x Čím více se hodota r blíží, tím považujeme závislost x a y za větší ( V případě r = s rostoucími hodotami zau x rostou i hodoty zau y, v případě r = - aopa s rostoucími hodotami zau x lesají hodoty zau y) Př : Na oci a ročíu byli v matematice žáci lasifiovái zámami, jež jsou uvedey v tabulce Vypočtěte oeficiet orelace mezi těmito zámami Počty žáů Záma a oci ročíu 3 Záma a oci ročíu Řešeí: Výpočtem podle uvedeého vzorce vychází r = 0,6

7 Statistia 7/7 Průměr, modus, mediá, grafy P 75/68 V testu při zoušce dostalo 5 studetů zámu, dalších 35 studetů dostalo zámu, zámu 3 dostalo 30 studetů, 5 studetů dostalo zámu a zbylých 5 studetů dostalo zámu 5 Vypočítejte průměrou zámu z testu, modus, mediá Výsledy testu zázorěte graficy [průměr,6, modus, mediá,5] P 75/66 Ve třídě A je 5 chlapců Údaje o výšce chlapců udává ásledující tabula: Výša (cm) Počet žáů 5 3 Vypočítejte průměrou výšu žáa, určete modus, mediá [průměr 5/3 cm, modus 67 cm, mediá 7 cm] P 75/67 Pa Dvořá jel automobilem prvích 0 m rychlostí 80 m/h, dalších 30 m rychlostí 90 m/h Vypočítejte průměrou rychlost jeho jízdy [85,7 m/h] 7/33 Házíme micí, až pade poprvé líc; za x udává, v oliátém hodu se ta stalo Opaováí tohoto pousu 00 rát dalo ásledující rozděleí četostí: čeáí a líc četost a) Vypočítej aritmeticý průměr, modus a mediá [průměr,95, modus, mediá ] b) Porovej relativí četosti s příslušými pravděpodobostmi (Návod: Pravděpodobost, že líc pade hed v prvím hodu, je /, že pade až v druhém hodu, / atd) [relativí četosti: 0,53; 0,; 0,3; ; pravděpodobosti: 0,50; 0,5; 0,5; ] Pravděpodobost opaováí P 7/57 V tombole je 30 ce (vyhrává 30 losů) Bylo prodáo 500 losů Pa Nová si oupil 3 losy Jaá je pravděpodobost, že a) a všechy tři losy vyhraje, [0,0006] b) vyhraje alespoň jedu ceu? [0,7] P 70/ a) Jaá je pravděpodobost, že při třech hodech jedou micí pade alespoň dvarát líc? [/] b) Jaá je pravděpodobost, že při hodu třemi micemi ajedou pade alespoň a dvou micích líc? [/] P 7/0 S jaou pravděpodobostí pade při deseti hodech jedou ostou alespoň třirát šesta? [0,5] Průměr, modus, mediá, grafy P 75/68 V testu při zoušce dostalo 5 studetů zámu, dalších 35 studetů dostalo zámu, zámu 3 dostalo 30 studetů, 5 studetů dostalo zámu a zbylých 5 studetů dostalo zámu 5 Vypočítejte průměrou zámu z testu, modus, mediá Výsledy testu zázorěte graficy [průměr,6, modus, mediá,5] P 75/66 Ve třídě A je 5 chlapců Údaje o výšce chlapců udává ásledující tabula: Výša (cm) Počet žáů 5 3 Vypočítejte průměrou výšu žáa, určete modus, mediá [průměr 5/3 cm, modus 67 cm, mediá 7 cm] P 75/67 Pa Dvořá jel automobilem prvích 0 m rychlostí 80 m/h, dalších 30 m rychlostí 90 m/h Vypočítejte průměrou rychlost jeho jízdy [85,7 m/h] 7/33 Házíme micí, až pade poprvé líc; za x udává, v oliátém hodu se ta stalo Opaováí tohoto pousu 00 rát dalo ásledující rozděleí četostí: čeáí a líc četost a) Vypočítej aritmeticý průměr, modus a mediá [průměr,95, modus, mediá ] b) Porovej relativí četosti s příslušými pravděpodobostmi (Návod: Pravděpodobost, že líc pade hed v prvím hodu, je /, že pade až v druhém hodu, / atd) [relativí četosti: 0,53; 0,; 0,3; ; pravděpodobosti: 0,50; 0,5; 0,5; ] Pravděpodobost opaováí P 7/57 V tombole je 30 ce (vyhrává 30 losů) Bylo prodáo 500 losů Pa Nová si oupil 3 losy Jaá je pravděpodobost, že a) a všechy tři losy vyhraje, [0,0006] b) vyhraje alespoň jedu ceu? [0,7] P 70/ a) Jaá je pravděpodobost, že při třech hodech jedou micí pade alespoň dvarát líc? [/] b) Jaá je pravděpodobost, že při hodu třemi micemi ajedou pade alespoň a dvou micích líc? [/] P 7/0 S jaou pravděpodobostí pade při deseti hodech jedou ostou alespoň třirát šesta? [0,5]

Statistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter.

Statistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter. Statistika Cíle: Chápat pomy statistický soubor, rozsah souboru, statistická edotka, statistický zak, umět sestavit tabulku rozděleí četostí, umět zázorit spoicový diagram a sloupcový diagram / kruhový

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

Doc. Ing. Dagmar Blatná, CSc.

Doc. Ing. Dagmar Blatná, CSc. PRAVDĚPODOBNOST A STATISTIKA Doc. Ig. Dagmar Blatá, CSc. Statsta statstcé údaje o hromadých jevech čost, terá vede zísáí statstcých údajů a jejch zpracováí teore statsty - věda o stavu, vztazích a vývoj

Více

NEPARAMETRICKÉ METODY

NEPARAMETRICKÉ METODY NEPARAMETRICKÉ METODY Jsou to metody, dy předmětem testu hypotézy eí tvrzeí o hodotě parametru ějaého orétího rozděleí, ale ulová hypotéza je formulováa obecěji, apř. jao shoda rozděleí ebo ezávislost

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti. 10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

8. Základy statistiky. 8.1 Statistický soubor

8. Základy statistiky. 8.1 Statistický soubor 8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě

Více

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly.

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly. 0. KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Dovedosti :. Chápat pojem faktoriál a ovládat operace s faktoriály.. Zát defiici kombiačího čísla a základí vlastosti kombiačích čísel. Ovládat jedoduché operace

Více

Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem

Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem Popisá statistika - zavedeí pojmů Popisá statistika - zavedeí pojmů Soubor idividuálích údajů o objektech azýváme základí soubor ebo také populace. Zkoumaé objekty jsou tzv. statistické jedotky a sledujeme

Více

3. Charakteristiky a parametry náhodných veličin

3. Charakteristiky a parametry náhodných veličin 3. Charateristiy a parametry áhodých veliči Úolem této apitoly je zavést pomocý aparát, terým budeme dále popisovat pomocí jedoduchých prostředů áhodé veličiy. Taovýmto aparátem jsou tzv. parametry ebo

Více

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků 1 Pops statstcých dat 1.1 Pops omálích a ordálích zaů K zobrazeí rozděleí hodot omálích ebo ordálích zaů lze použít tabulu ebo graf rozděleí četostí. Tuto formu zobrazeí lze dooce použít pro číselé zay,

Více

8.1.2 Vzorec pro n-tý člen

8.1.2 Vzorec pro n-tý člen 8 Vzorec pro -tý čle Předpolady: 80 Pedagogicá pozáma: Přílady a hledáí dalších čleů posloupostí a a objevováí vzorců pro -tý čle do začé míry odpovídají typicým příladům z IQ testů, teré studeti zají

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

Odhady parametrů 1. Odhady parametrů

Odhady parametrů 1. Odhady parametrů Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Gymázium, Šterberk, Horí ám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šabloa III/2 Iovace a zkvalitěí výuky prostředictvím ICT Ozačeí materiálu VY_32_INOVACE_Hor018 Vypracoval(a), de Mgr. Radek

Více

8.1.2 Vzorec pro n-tý člen

8.1.2 Vzorec pro n-tý člen 8.. Vzorec pro -tý čle Předpolady: 80 Pedagogicá pozáma: Myslím, že jde o jedu z velmi pěých hodi. Přílady a hledáí dalších čleů posloupostí a a objevováí vzorců pro -tý čle do začé míry odpovídají typicým

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

Cvičení 3 - teorie. Teorie pravděpodobnosti vychází ze studia náhodných pokusů.

Cvičení 3 - teorie. Teorie pravděpodobnosti vychází ze studia náhodných pokusů. Cvičeí 3 - teorie Téma: Teorie pravděpodobosti Teorie pravděpodobosti vychází ze studia áhodých pokusů. Náhodý pokus Proces, který při opakováí dává ze stejých podmíek rozdílé výsledky. Výsledek pokusu

Více

k(k + 1) = A k + B. s n = n 1 n + 1 = = 3. = ln 2 + ln. 2 + ln

k(k + 1) = A k + B. s n = n 1 n + 1 = = 3. = ln 2 + ln. 2 + ln Číselé řady - řešeé přílady ČÍSELNÉ ŘADY - řešeé přílady A. Součty řad Vzorové přílady:.. Přílad. Určete součet řady + = + 6 + +.... Řešeí: Rozladem -tého čleu řady a parciálí zlomy dostáváme + = + ) =

Více

Statistika Statistická jednotka, statistický soubor a statistické znaky Poznámka. (Rozd lení etností jednoho kvantitativního statistického znaku)

Statistika Statistická jednotka, statistický soubor a statistické znaky Poznámka. (Rozd lení etností jednoho kvantitativního statistického znaku) Statistia Tímto pomem většiou ozačueme: a) statisticé údae a eich ěteré fuce, b) statisticou čiost a istituce, teré tuto čiost provozuí, c) statisticou teorii. Statisticé údae eboli statisticá data sou

Více

1.3. POLYNOMY. V této kapitole se dozvíte:

1.3. POLYNOMY. V této kapitole se dozvíte: 1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí

Více

PRACOVNÍ SEŠIT KOMBINATORIKA, PRAVDĚPODOBNOST A STATISTIKA. 9. tematický okruh:

PRACOVNÍ SEŠIT KOMBINATORIKA, PRAVDĚPODOBNOST A STATISTIKA. 9. tematický okruh: Připrav se a státí maturití zoušu z MATEMATIKY důladě, z pohodlí domova a olie PRACOVNÍ SEŠIT 9. tematicý oruh: KOMBINATORIKA, PRAVDĚPODOBNOST A STATISTIKA vytvořila: RNDr. Věra Effeberger eperta a olie

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

Lineární regrese ( ) 2

Lineární regrese ( ) 2 Leárí regrese Častým úolem je staoveí vzájemé závslost dvou (č více) fzálích velč a její matematcé vjádřeí. K tomuto účelu se používají růzé regresí metod, pomocí chž hledáme vhodou fuc f (), apromující

Více

6. Posloupnosti a jejich limity, řady

6. Posloupnosti a jejich limity, řady Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme

Více

6. KOMBINATORIKA 181. 6.1. Základní pojmy 181 6.1.1. Počítání s faktoriály a kombinačními čísly 182. 6.2. Variace 184. 6.3.

6. KOMBINATORIKA 181. 6.1. Základní pojmy 181 6.1.1. Počítání s faktoriály a kombinačními čísly 182. 6.2. Variace 184. 6.3. Zálady matematiy Kombiatoria. KOMBINATORIKA 8.. Záladí pojmy 8... Počítáí s fatoriály a ombiačími čísly 8.. Variace 8.. Permutace 85.. Kombiace 87.5. Biomicá věta 89 Úlohy samostatému řešeí 9 Výsledy úloh

Více

Elementární zpracování statistického souboru

Elementární zpracování statistického souboru Elemetárí zpracováí statistického souboru Obsah kapitoly 4. Elemetárí statistické zpracováí - parametrizace vhodými empirickými parametry Studijí cíle Naučit se výsledky měřeí parametrizovat vhodými empirickými

Více

Náhodný výběr 1. Náhodný výběr

Náhodný výběr 1. Náhodný výběr Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti

Více

Intervalové odhady parametrů některých rozdělení.

Intervalové odhady parametrů některých rozdělení. 4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:

Více

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR Ze serveru www.czso.cz jsme sledovali sklizeň obilovi v ČR. Sklizeň z ěkolika posledích let jsme vložili do tabulky 10.10. V kapitole 7. Idexy

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

13 Popisná statistika

13 Popisná statistika 13 Popisá statistika 13.1 Jedorozměrý statistický soubor Statistický soubor je možia všech prvků, které jsou předmětem statistického zkoumáí. Každý z prvků je statistickou jedotkou. Prvky tvořící statistický

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

5. Lineární diferenciální rovnice n-tého řádu

5. Lineární diferenciální rovnice n-tého řádu 5 3.3.8 8:44 Josef Herdla lieárí difereciálí rovice -tého řádu 5. Lieárí difereciálí rovice -tého řádu (rovice s ostatími oeficiety) ( ), a,, a (5.) ( ) ( ) y a y a y ay q L[ y] y a y a y a y, q je spojitá

Více

3. cvičení 4ST201 - řešení

3. cvičení 4ST201 - řešení cvčící Ig. Jaa Feclová 3. cvčeí 4ST0 - řešeí Obah: Míry varablty Rozptyl Směrodatá odchyla Varačí oefcet Rozlad rozptylu a mezupovou a vtroupovou varabltu Změa rozptylu Vyoá šola eoomcá VŠE urz 4ST0 Míry

Více

!!! V uvedených vzorcích se vyskytují čísla n a k tato čísla musí být z oboru čísel přirozených.

!!! V uvedených vzorcích se vyskytují čísla n a k tato čísla musí být z oboru čísel přirozených. Kombiatoria Kombiatoria část matematiy, terá se zabývá růzými číselými "ombiacemi". Využití - apř při hledáí počtu možých tipů ve sportce ebo jiých soutěžích hrách, v chemii při spojováí moleul... Záladím

Více

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů.

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů. Náhodu bychom mohli defiovat jako součet velkého počtu drobých epozaých vlivů. V rámci přírodích věd se setkáváme s pokusy typu za určitých podmíek vždy astae určitý důsledek. Např. jestliže za ormálího

Více

8.2.1 Aritmetická posloupnost

8.2.1 Aritmetická posloupnost 8.. Aritmetická posloupost Předpoklady: 80, 80, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Př. : V továrě dokočí každou hodiu motáž

Více

8.2.6 Geometrická posloupnost

8.2.6 Geometrická posloupnost 8.. Geometricá posloupost Předpoldy: 80, 80, 80, 807 Pedgogicá pozám: V hodiě rozdělím třídu dvě supiy ždá z ich dělá jede z prvích dvou příldů. Př. : Poločs rozpdu (dob z terou se rozpde polovi existujícího

Více

Přednáška č. 2 náhodné veličiny

Přednáška č. 2 náhodné veličiny Předáša č. áhodé velčy Pozámy záladím pojmům z počtu pravděpodobost Pozáma 1: Př výpočtu pravděpodobost áhodého jevu dle lascé defce je uté věovat pozorost způsobu formulace vybraého jevu. V ásledující

Více

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu Cvičeí 6: Výpočet středí hodoty a rozptylu, bodové a itervalové odhady středí hodoty a rozptylu Příklad 1: Postupě se zkouší spolehlivost čtyř přístrojů Další se zkouší je tehdy, když předchozí je spolehlivý

Více

3. cvičení 4ST201. Míry variability

3. cvičení 4ST201. Míry variability cvčící Ig. Jaa Feclová 3. cvčeí 4ST0 Obah: Míry varablty Rozptyl Směrodatá odchyla Varačí oefcet Rozlad rozptylu a mezupovou a vtroupovou varabltu Změa rozptylu Vyoá šola eoomcá VŠE urz 4ST0 Míry varablty

Více

10.2.3 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI

10.2.3 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI Středí hodoty Artmetcý průměr vážeý Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI Zatím jsme počítal s tím, že četost ve vztahu pro vážeý artmetcý průměr byla přrozeá čísla Četost mohou

Více

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují

Více

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,

Více

Základní požadavky a pravidla měření

Základní požadavky a pravidla měření Základí požadavky a pravidla měřeí Základí požadavky pro správé měřeí jsou: bezpečost práce teoretické a praktické zalosti získaé přípravou a měřeí přesost a spolehlivost měřeí optimálí orgaizace průběhu

Více

Zhodnocení přesnosti měření

Zhodnocení přesnosti měření Zhodoceí přesosti měřeí 1. Chyby měřeí Měřeím emůžeme ikdy zjistit skutečou (pravou) hodotu s měřeé veličiy. To je způsobeo edokoalostí metod měřeí, měřicích přístrojů, lidských smyslů i proměých podmíek

Více

1. K o m b i n a t o r i k a

1. K o m b i n a t o r i k a . K o m b i a t o r i k a V teorii pravděpodobosti a statistice budeme studovat míru výskytu -pravděpodobostvýsledků procesů, které mají áhodý charakter, t.j. při opakováí za stejých podmíek se objevují

Více

Statistické charakteristiky (míry)

Statistické charakteristiky (míry) Stattcé charaterty (míry) - hrují formac, obažeou v datech (vyjadřují j v ocetrovaé formě); - charaterzují záladí ryy zoumaého ouboru dat; - umožňují porováváí více ouborů. upy tattcých charatert :. charaterty

Více

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE 1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE V této kapitole se dozvíte: jak je axiomaticky defiová vektor a vektorový prostor včetě defiice sčítáí vektorů a ásobeí vektorů skalárem;

Více

vají statistické metody v biomedicíně

vají statistické metody v biomedicíně Statistika v biomedicísk ském m výzkumu a ve zdravotictví Prof. RNDr. Jaa Zvárov rová,, DrSc. EuroMISE Cetrum Ústav iformatiky AV ČR R v.v.i. Proč se používaj vají statistické metody v biomedicíě Biomedicísk

Více

9.1.12 Permutace s opakováním

9.1.12 Permutace s opakováním 9.. Permutace s opakováím Předpoklady: 905, 9 Pedagogická pozámka: Pokud echáte studety počítat samostatě příklad 9 vyjde tato hodia a skoro 80 miut. Uvažuji o tom, že hodiu doplím a rozdělím a dvě. Př.

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

1. Rozdělení četností a grafické znázornění Předpokládejme, že při statistickém šetření nás zajímá jediný statistický znak x, který nabývá

1. Rozdělení četností a grafické znázornění Předpokládejme, že při statistickém šetření nás zajímá jediný statistický znak x, který nabývá Statitická šetřeí a zpracováí dat Statitika e věda o metodách běru, zpracováí a vyhodocováí tatitických údaů. Statitika zkoumá polečeké, přírodí, techické a. evy vždy a dotatečě rozáhlém ouboru údaů. Matematická

Více

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky Téma 6.: Základí pojmy matematické statistiky Vlastosti důležitých statistik odvozeých z jedorozměrého áhodého výběru: Nechť X,..., X je áhodý výběr z rozložeí se středí hodotou μ, rozptylem σ a distribučí

Více

ZÁKLADY POPISNÉ STATISTIKY

ZÁKLADY POPISNÉ STATISTIKY ZÁKLADY POPISNÉ STATISTIKY Statitia věda o metodách běru, zpracováí a vyhodocováí tatiticých údaů. Statiticé údae ou apř. údae o přirozeém přírůtu či migraci obyvateltva, obemu výroby průmylových podiů,

Více

Intervalový odhad. nazveme levostranným intervalem pro odhad parametru Θ. Statistiku. , kde číslo α je blízké nule, nazveme horním

Intervalový odhad. nazveme levostranným intervalem pro odhad parametru Θ. Statistiku. , kde číslo α je blízké nule, nazveme horním Lekce Itervalový odhad Itervalový odhad je jedou ze stadardích statistických techik Cílem je sestrojit iterval (kofidečí iterval, iterval spolehlivosti, který s vysokou a avíc předem daou pravděpodobostí

Více

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR Středí hodoty Artmetcý průměr vážeý ze tříděí Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR Výzam a užtí vážeého artmetcého průměru uážeme a ásledujících příladech Přílad 0 Ve frmě Gama Blatá máme soubor

Více

8. cvičení 4ST201-řešení

8. cvičení 4ST201-řešení cvičící 8. cvičeí 4ST01-řešeí Obsah: Neparametricé testy Chí-vadrát test dobréshody Kotigečí tabuly Aalýza rozptylu (ANOVA) Vysoá šola eoomicá 1 VŠE urz 4ST01 Neparametricé testy Neparametricétesty využíváme,

Více

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých 9 Limití věty. V aplikacích teorie pravděpodobosti (matematická statistika, metody Mote Carlo se užívají tvrzeí vět o kovergeci posloupostí áhodých veliči. Podle povahy kovergece se limití věty teorie

Více

2.4. INVERZNÍ MATICE

2.4. INVERZNÍ MATICE 24 INVERZNÍ MICE V této kapitole se dozvíte: defiici iverzí matice; základí vlastosti iverzí matice; dvě základí metody výpočtu iverzí matice; defiici celočíselé mociy matice Klíčová slova této kapitoly:

Více

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS.

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS. Dopraví stroje a zařízeí odborý zálad AR 04/05 Idetifiačí číslo: Počet otáze: 6 Čas : 60 miut Počet bodů Hodoceí OTÁZKY: ) Vypočtěte eálí poměr rozděleí brzdých sil a ápravy dvouápravového vozla bez ABS.

Více

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu Cvičeí 6: Bodové a itervalové odhady středí hodoty, rozptylu a koeficietu korelace, test hypotézy o středí hodotě při zámém rozptylu Příklad : Bylo zkoumáo 9 vzorků půdy s růzým obsahem fosforu (veličia

Více

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti 1 Základí statistické zpracováí dat 1.1 Základí pojmy Populace (základí soubor) je soubor objektů (statistických jedotek), který je vymeze jejich výčtem ebo charakterizací jejich vlastostí, může být proto

Více

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota

Více

8.2.7 Geometrická posloupnost

8.2.7 Geometrická posloupnost 87 Geometrická posloupost Předpokldy: 80, 80, 80, 807 Pedgogická pozámk: V hodiě rozdělím třídu dvě skupiy kždá z ich dělá jede z prvích dvou příkldů Větši studetů obou skupi potřebuje pomoc u tbule Ob

Více

6. FUNKCE A POSLOUPNOSTI

6. FUNKCE A POSLOUPNOSTI 6. FUNKCE A POSLOUPNOSTI Fukce Dovedosti:. Základí pozatky o fukcích -Chápat defiici fukce,obvyklý způsob jejího zadáváí a pojmy defiičí obor hodot fukce. U fukcí zadaých předpisem umět správě operovat

Více

Petr Šedivý Šedivá matematika

Petr Šedivý  Šedivá matematika LIMITA POSLOUPNOSTI Úvod: Kapitola, kde poprvé arazíme a ekoečo. Argumety posloupostí rostou ade všechy meze a zkoumáme, jak vypadají hodoty poslouposti. V kapitole se sezámíte se základími typy it a početími

Více

9.1.13 Permutace s opakováním

9.1.13 Permutace s opakováním 93 Permutace s opakováím Předpoklady: 906, 9 Pedagogická pozámka: Obsah hodiy přesahuje 45 miut, pokud emáte k dispozici další půlhodiu, musíte žáky echat projít posledí dva příklady doma Př : Urči kolik

Více

8.2.1 Aritmetická posloupnost I

8.2.1 Aritmetická posloupnost I 8.2. Aritmetická posloupost I Předpoklady: 80, 802, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Čley posloupostí pak při kotrole vypíšu

Více

z možností, jak tuto veličinu charakterizovat, je určit součet

z možností, jak tuto veličinu charakterizovat, je určit součet 6 Charakteristiky áhodé veličiy. Nejdůležitější diskrétí a spojitá rozděleí. 6.1. Číselé charakteristiky áhodé veličiy 6.1.1. Středí hodota Uvažujme ejprve diskrétí áhodou veličiu X s rozděleím {x }, {p

Více

1. Základy počtu pravděpodobnosti:

1. Základy počtu pravděpodobnosti: www.cz-milka.et. Základy počtu pravděpodobosti: Přehled pojmů Jev áhodý jev, který v závislosti a áhodě může, ale emusí při uskutečňováí daého komplexu podmíek astat. Náhoda souhr drobých, ezjistitelých

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

STATISTIKA PRO EKONOMY

STATISTIKA PRO EKONOMY EDICE UČEBNÍCH TEXTŮ STATISTIKA PRO EKONOMY EDUARD SOUČEK V Y S O K Á Š K O L A E K O N O M I E A M A N A G E M E N T U Eduard Souček Statistika pro ekoomy UČEBNÍ TEXT VYSOKÁ ŠKOLA EKONOMIE A MANAGEMENTU

Více

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení Odhad parametru p biomického rozděleí a test hypotézy o tomto parametru Test hypotézy o parametru p biomického rozděleí Motivačí úloha Předpokládejme, že v důsledku realizace jistého áhodého pokusu P dochází

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů: Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy

Více

Komplexní čísla. Definice komplexních čísel

Komplexní čísla. Definice komplexních čísel Komplexí čísla Defiice komplexích čísel Komplexí číslo můžeme adefiovat jako uspořádaou dvojici reálých čísel [a, b], u kterých defiujeme operace sčítáí, ásobeí, apod. Stadardě se komplexí čísla zapisují

Více

0. 4b) 4) Je dán úhel 3450. Urči jeho základní velikost a převeď ji na radiány. 2b) Jasný Q Q ZK T D ZNÁMKA. 1. pololetí 2 3 1 2 2 3 5 2 3 1 1

0. 4b) 4) Je dán úhel 3450. Urči jeho základní velikost a převeď ji na radiány. 2b) Jasný Q Q ZK T D ZNÁMKA. 1. pololetí 2 3 1 2 2 3 5 2 3 1 1 ) Urči záladí veliost úhlu v radiáech, víš-li, že platí: a) si cos 0. b) cos, Opravá zouša z matematiy 3SD (druhé pololetí) c) cotg 3 5b) ) Na možiě R řeš rovici cos cos 0. 4b) 3) Vzdáleost bodů AB elze

Více

b c a P(A B) = c = 4% = 0,04 d

b c a P(A B) = c = 4% = 0,04 d Příklad 6: Z Prahy do Athé je 50 km V Praze byl osaze válec auta ovou svíčkou, jejíž životost má ormálí rozděleí s průměrem 0000 km a směrodatou odchylkou 3000 km Jaká je pravděpodobost, že automobil překoá

Více

Aritmetická posloupnost, posloupnost rostoucí a klesající Posloupnosti

Aritmetická posloupnost, posloupnost rostoucí a klesající Posloupnosti 8 Aritmetická posloupost, posloupost rostoucí a klesající Poslouposti Posloupost je fukci s defiičím oborem celých kladých čísel - apř.,,,,,... 3 4 5 Jako fukci můžeme také posloupost zobrazit do grafu:

Více

Kombinatorika, pravděpodobnost, statistika

Kombinatorika, pravděpodobnost, statistika Kombiatoria, pravděpodobost, statistia Kombiatoria, pravděpodobost, statistia Obsah 9. Kombiatoria... 70 9.. Fatoriály... 70 9.. Variace bez opaováí... 75 9.. Permutace bez opaováí... 8 9.4. Kombiace bez

Více

Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy. Předmět, mezipředmětové vztahy: matematika a její aplikace

Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy. Předmět, mezipředmětové vztahy: matematika a její aplikace Název: Kombiatoria Autor: Mgr. Haa Čerá Název šoly: Gymázium Jaa Nerudy, šola hl. města Prahy Předmět, mezipředmětové vztahy: matematia a její apliace Ročí: 5. ročí Tématicý cele: Kombiatoria a pravděpodobost

Více

Tržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c t tedy platí c t = c t + ε t.

Tržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c t tedy platí c t = c t + ε t. Techická aalýza Techická aalýza z vývoje cey a obchodovaých objemů akcie odvozuje odhad budoucího vývoje cey. Dalšími metodami odhadu vývoje ce akcií jsou apř. fudametálí aalýza (zkoumá podrobě účetictví

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Náhodá veličia Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 45/004. Náhodá veličia Většia áhodých pokusů má jako výsledky reálá čísla. Budeme tedy dále áhodou veličiou rozumět proměou, která

Více

1. Základy měření neelektrických veličin

1. Základy měření neelektrických veličin . Základy měřeí eelektrických veliči.. Měřicí řetězec Měřicí řetězec (měřicí soustava) je soubor měřicích čleů (jedotek) účelě uspořádaých tak, aby bylo ožě split požadovaý úkol měřeí, tj. získat iformaci

Více

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT Základy práce s tabulkou Výukový modul III. Iovace a zkvalitěí výuky prostředictvím ICT Téma III..3, pracoví list 3 Techická měřeí v MS Ecel Průměry a četosti, odchylky změřeých hodot. Ig. Jiří Chobot

Více

8.1.3 Rekurentní zadání posloupnosti I

8.1.3 Rekurentní zadání posloupnosti I 8.. Rekuretí zadáí poslouposti I Předpoklady: 80, 80 Pedagogická pozámka: Podle mých zkušeostí je pro studety pochopitelější zavádět rekuretí posloupost takto (sado kotrolovatelou ukázkou), ež dosazováím

Více

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ 4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ 77 4. ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu

Více

Matematika I, část II

Matematika I, část II 1. FUNKCE Průvodce studiem V deím životě, v přírodě, v techice a hlavě v matematice se eustále setkáváme s fukčími závislostmi jedé veličiy (apř. y) a druhé (apř. x). Tak apř. cea jízdeky druhé třídy osobího

Více

Úloha II.S... odhadnutelná

Úloha II.S... odhadnutelná Úloha II.S... odhadutelá 10 bodů; průměr 7,17; řešilo 35 studetů a) Zkuste vlastími slovy popsat, k čemu slouží itervalový odhad středí hodoty v ormálím rozděleí a uveďte jeho fyzikálí iterpretaci (postačí

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

MĚŘENÍ PARAMETRŮ OSVĚTLOVACÍCH SOUSTAV VEŘEJNÉHO OSVĚTLENÍ NAPÁJENÝCH Z REGULÁTORU E15

MĚŘENÍ PARAMETRŮ OSVĚTLOVACÍCH SOUSTAV VEŘEJNÉHO OSVĚTLENÍ NAPÁJENÝCH Z REGULÁTORU E15 VŠB - T Ostrava, FE MĚŘENÍ PARAMETRŮ OVĚTLOVACÍCH OTAV VEŘEJNÉHO OVĚTLENÍ NAPÁJENÝCH Z REGLÁTOR E5 Řešitelé: g. taislav Mišák, Ph.D., Prof. g. Karel okaský, Cc. V Ostravě de.8.2007 g. taislav Mišák, Prof.

Více

Nové symboly pro čísla

Nové symboly pro čísla Nové symboly pro čísl V pitole Ituitiví ombitori jsme řešili tyto dv typy příldů. Stále se v ich opují součiy přirozeých čísel, t j jdou z sebou, ědy ž do, ědy sočí dříve. Proto si zvedeme dv ové symboly

Více

Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti

Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti Předáška VI. Itervalové odhady Motivace Směrodatá odchylka a směrodatá chyba Cetrálí limití věta Itervaly spolehlivosti Opakováí estraé a MLE Jaký je pricip estraých odhadů? Jaký je pricip odhadů metodou

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

2. Náhodná veličina. je konečná nebo spočetná množina;

2. Náhodná veličina. je konečná nebo spočetná množina; . Náhodá veličia Většia áhodých pokusů koaých v přírodích ebo společeských vědách má iterpretaci pomocí reálé hodoty. Při takovýchto dějích přiřazujeme tedy reálá čísla áhodým jevům. Proto je důležité

Více