1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků"

Transkript

1 1 Pops statstcých dat 1.1 Pops omálích a ordálích zaů K zobrazeí rozděleí hodot omálích ebo ordálích zaů lze použít tabulu ebo graf rozděleí četostí. Tuto formu zobrazeí lze dooce použít pro číselé zay, poud počet obmě zau eí přílš vysoý (apř. počet dětí v domácost). Tabula rozděleí četostí (stručě tabula četostí) je specálím případem tabuly agregovaých údajů. Řády tabuly představují jedotlvé obměy zobrazovaého zau, zobrazeým agregovaým údajem jsou četost (počty) výsytu těchto obmě. ZNÁMKA POČET MATEMATIKA POČET STATISTIKA CELKEM Obr. 2.1 Uáza tabuly četostí rozděleí záme z matematy a statsty Četost (ědy zvaá absolutí četost, czím slovem frevece) obměy zau je rova celovému počtu výsytů této obměy v souboru. Poud je statstcý soubor tvoře jedotam a sledovaý za abývá růzých obmě (hodot), pa pro četost jedotlvých obmě 1, 2 až musí platt: Kromě absolutích četostí se často uvádějí taé relatví četost p, teré vyjadřují, jaou část z celu (tj. celého souboru) tvoří jedoty s daou obměou zau. Obvyle se uvádějí v procetech (%). Relatví četost p spočítáte podle vzorce: p 100% Součet relatvích četostí všech obmě zau musí být rove 1, ebol 100%. 2

2 Pořadí jedotlvých obmě v tabulce rozděleí četostí se u omálích zau volí obvyle podle abecedy (podle ázvů obmě), u ordálích a metrcých zaů podle rostoucí hodoty. Posledí řáde tabuly četostí tvoří obvyle součet hodot (četostí) z jedotlvých řádů. Teto údaj je rove u absolutích četostí rozsahu souboru, u relatvích četostí je rove jedé. U ordálích zaů se ědy uvádějí taé umulatví četost. Kumulatví četost -té obměy je defováa jao součet četostí všech obmě zau, teré v daém uspořádáí mají hodotu žší ebo ejvýše rovu sledovaé obměě. Poud jsou jedotlvé obměy uspořádáy ve smyslu svých pořadových čísel, lze umulatví četost m vyjádřt jao: m j j 1 Obdobě jao relatví četost lze defovat relatví umulatví četost F jao relatví vyjádřeí umulatví četost obměy vůč počtu všech jedote souboru (apřílad relatví umulatví četost trojy vyjadřuje, jaá část studetů udělala zoušu). Platí tedy: F m 100% V programu Mcrosoft Ecel lze vytvořeí tabuly rozděleí četostí použít ástroj Kotgečí tabula. Teto ástroj vytvoří absolutí četost, ostatí typy četostí lze dopočítat pomocí výše uvedeých vzorců. KUMUL. ČETNOSTI VZDĚLÁNÍ ČETNOSTI abs. rel. abs. rel. záladí 4 16% 4 16% vyuče 5 20% 9 36% maturta 9 36% 18 72% VŠ 7 28% % CELKEM % Obr. 2.2 Tabula četostí statstcého zau vzděláí Názorou a často používaou formou zobrazeí četostí omálího ebo ordálího zau jsou grafy četostí: sloupcový graf četostí ebol hstogram; spojcový graf četostí ebol polygo; výsečový (oláčový) graf. 3

3 Výsečový graf je vhodý zejméa v případech, dy je počet obmě malý. V případě většího počtu obmě se stává epřehledým a je lepší zvolt sloupcový graf (hstogram). Te je aopa vhodý v případech, dy počet růzých obmě je mez 5 a 20. Na osu y lze vyášet absolutí relatví četost. Pro grafcé vyjádřeí četostí obmě ordálího zau se graf výsečový přílš ehodí, eboť ezdůrazňuje uspořádáí (ordaltu) zobrazovaého zau. Naopa velm vhodý je spojcový graf četostí, tazvaý polygo, eboť jeho spojce zázorňuje vývoj daého zau. Kromě grafů (prostých) četostí se vša vyjádřeí a zobrazeí průběhu ordálího zau používají grafy umulatvích četostí. Polygo umulatvích četostí se taé azývá podle svého autora Galtoova ogva, díy svému typcému tvaru taé součtová S řva Hstogram záladí vyuče maturta VŠ 100% 80% 60% 40% 20% 0% Galtoova ogva záladí vyuče maturta VŠ Obr. 2.3 Grafy rozděleí četostí statstcého zau vzděláí 1.2 Pops metrcých zaů Počet obmě metrcého (číselého) zau bývá často přílš velý a to, aby mohl být prezetová pomocí tabuly rozděleí četostí přímo. Pratcé zušeost uazují, že počet růzých obmě by eměl přeročt hodotu 20 (tj. < 20), avíc rozsahem souboru (počet jedote) by měl být alespoň 3 větší ež počet obmě. Představte s apřílad rozděleí měsíčích příjmů všech zaměstaců v Česé republce. Jejch příjmy mohou teoretcy abývat hodot od ěola tsíc Kč až po stovy tsíc Kč. Tabula rozděleí četostí by v taovém případě měla statsíce řáde, přčemž četost u většy hodot by byla velm malá čísla (často 0 ebo 1). Vypovídací schopost taové tabuly by byla pratcy ulová. Pro vyhodoceí metrcého statstcého zau s velým počtem obmě se proto používá metoda, př teré se rozdělí celý rozsah hodot zau a ěol stejě velých dsjutích tervalů tříd, se terým se dále pracuje obdobě jao s obměam ordálího zau. Tomuto rozděleí se obvyle říá tervalové rozděleí četostí. 4

4 Počet tříd (tervalů) je třeba volt ta, aby vzlé rozděleí četostí mělo dobrou vypovídací schopost. Poud se zvolí malý počet tříd, dojde př tříděí výrazé ztrátě formace o průběhu původího zau. Poud se aopa zvolí přílš velý počet tříd (s malým četostm), bude vzlé tervalové rozděleí epřehledé. Estují růzá emprcá doporučeí pro určeí počtu tříd, z chž ejzámější je zřejmě Sturgesovo pravdlo : 1 3,3 log Vypočteá hodota je pouze doporučeou, eí tedy žádé dogma, teré je uto dodržet. Odchyla sutečého počtu tříd od doporučeé hodoty o 2 třídy ahoru ebo dolů je tedy ještě přjatelá. Je-l urče počet tříd, může se staovt přblžá šířa tervalu (třídy) h podle vztahu: de: h ma m ma ejvyšší hodota statstcého zau m ejžší hodota statstcého zau Ve sutečost se tervaly (třídy) volí ta, aby byly splěy ásledující podmíy: počet tervalů emá být meší ež 5 a větší ež 20; hrace tervalů musí být dobře zapamatovatelá zaorouhleá čísla; tervaly musí jedozačě porývat celý obor hodot popsovaého zau; tervaly by měly být stejě šroé; oba rají tervaly rozděleí musí mít eulové četost. Aby byla splěa podmía jedozačého porytí oboru hodot proměé, musí mít sousedí tervaly společý hračí bod, přčemž ale tato hrace musí být jedozačě přřazea pouze jedomu z tervalů. KUMUL. ČETNOST ZNAK PLAT ČETNOST abs. rel. abs. rel ,5% 15 62,5% ,5% 18 75,0% ,3% 20 83,3% ,0% 20 83,3% ,3% 22 91,7% ,2% 23 95,8% ,2% ,0% CELKEM ,0% 5

5 Obr. 2.4 Tabula rozděleí četostí statstcého zau plat K vytvořeí tervalového rozděleí četostí lze v programu Mcrosoft Ecel použít ástroj Hstogram, terý je součástí Aalytcých ástrojů (z meu Nástroje / Aalýza dat). 1.3 Číselé míry a charatersty Rozložeí obmě statstcých zaů lze vyjádřt eje tabulou ebo grafem rozložeí četostí, ale taé vhodou ombací číselých charaterst. Tyto míry pa mohou být prezetováy samostatě, ebo jao agregátí uazatele v rámc tabuly ebo grafu. Větša charaterst uváděých v této aptole se bude vztahovat číselým, tedy metrcým proměým. Straou vša ezůstaou a charatersty, teré se používají popsu proměých valtatvích. Statstcé zay obvyle popsují dva záladí typy charaterst: míry polohy (úrově), teré určují typcé rozložeí hodot zau (umístěí obmě zau a číselé ose); míry varablty, teré určují varabltu ebol rozptyl hodot olem své typcé polohy. Míry polohy se saží ahradt celé rozložeí statstcého zau jedou hodotou, terá bude typcým reprezetatem zau, jeho pomyslým středem. Proto se těmto charaterstám říá taé středí hodoty. Záladím a ejrozšířeějším typem středí hodoty (pro číselé proměé) je artmetcý průměr. Zísáte ho ta, že sečteme všechy hodoty (obměy) číselého zau a součet vydělíte počtem hodot: de: artmetcý průměr jedotlvé hodoty zau ( 1, 2, až ) počet hodot zau (rozsah statstcého souboru) Poud máte statstcou proměou defováu pomocí tabuly rozděleí četostí, taže víte, že aždá obměa se v souboru vysytuje s četostí, můžete středí hodotu všech hodot zau vyjádřt pomocí vzorce pro vážeý artmetcý průměr: 6

6 de: 1 četost jedotlvých hodot zau Poud ahradíme jedotlvé hodoty zau středím hodotam jedotlvých tříd, lze teto vzorec použít taé pro výpočet středí hodoty zau v tervalovém rozděleí četostí. Poud v tervalovém rozděleí ezáte průměry tříd, můžete je odhadout pomocí středu tervalu. V tom případě vša vypočteý artmetcý průměr ebude přesý, půjde pouze o odhad sutečé hodoty. Artmetcý průměr se počítá ze všech hodot statstcého zau. Využívá tedy ejvíce formací o celém souboru (zau), a druhé straě je ovšem velm ctlvý a etrémí odchyly. Proto se v ěterých případech místo ěho používají další středí hodoty, teré jsou a etrémí výyvy méě ctlvé. Patří mez ě především medá a modus. Medá je defová jao prostředí hodota zau. Zameá to, že počet hodot meších ež medá a větších ež medá by se měl rovat. Hodota medáu metrcého zau se určí ásledujícím způsobem: 1. jedoty souboru se uspořádají podle sledovaého zau od ejmeší do ejvětší a očíslují se; 2. je-l rozsah souboru lchý, je střed souboru defová jedozačě (apř. př 25 prvcích souboru jde o 13. hodotu v pořadí), medá je rove přímo hodotě tohoto prostředího zau; 3. je-l rozsah souboru sudý, určí se medá jao artmetcý průměr dvou hodot, teré leží ejblíže pomyslému středu souboru (apř. u souboru o 20 jedotách je to 10. a 11. hodota). Medá lze použít jao středí hodotu taé u ordálích ečíselých zaů. Stačí hodoty tohoto zau uspořádat podle velost (výzamu) a ajít střed tato uspořádaého zau (vz postup výše). Tato určeý střed souboru lze terpretovat jao hodotu, terá je stejě vzdáleá od obou rajích jedote. Modus ˆ číselého (metrcého) zau je chápá jao hodota (obměa) s ejvyšší četostí, tedy hodota, terá se v souboru vysytuje ejčastěj. Modus lze samozřejmě určovat pouze tehdy, poud jej lze staovt jedozačě, tj. poud ejvyšší četost má pouze jeda obměa. U spojtých metrcých zaů (apř. plat, teplota ebo spotřeba automoblu) bývá aždá obměa zau dvduálí, proto u taových zaů emá smysl modus určovat. Modus je aopa obvyle jedou středí hodotou, terou lze určt u omálího ečíselého zau. V tomto případě epředstavuje a ta pomyslý střed souboru (zau), 7

7 jao spíše typcého reprezetata tohoto zau, tedy hodotu, terá chováí souboru ovlvňuje ejvíce. Uvedeé středí hodoty, ať jž jde o průměr, medá ebo modus, umožňují charaterzovat polohu statstcého zau. Vyjadřují pomyslý střed zoumaého zau, c vša eříají o rozložeí jedotlvých obmě olem tohoto středu tedy o varabltě zau. Čím větší je totž rozptýleost hodot olem pomyslého středu souboru, tím meší má tato středí hodota schopost reprezetovat celý za. Záladí míra rozptýleost (varablty) číselého statstcého zau je rozptyl 2. Jde vlastě o artmetcý průměr vypočteý z druhých moc odchyle hodot zau od jejch středí hodoty. Pro výpočet rozptylu tedy eí důležté, zda jsou tyto odchyly ladé ebo záporé: V případě výběrového souboru vša uvedeý vzorec sutečou varabltu daého zau podhodocuje. Proto se místo ěho používá vztah pro tzv. výběrový rozptyl s 2 : s Hodota 1 ve jmeovatel vzorce pro výběrový rozptyl se azývá stupeň volost. Neboť v pra se budete setávat především s výběrovým soubory, budete taé většou varabltu hodot zau vyjadřovat podle právě uvedeého vzorce pro výběrový rozptyl. Navíc u souborů s více ež 30 hodotam (tzv. velé soubory) jž eí mez oběma výpočty rozptylu pratcy žádý podstatý rozdíl. V pra se pro výpočet (výběrového) rozptylu s 2 obvyle používá upraveý vzorec: s Př použtí tohoto vzorce se výrazě sžuje počet potřebých operací př výpočtu. Máme-l statstcý za zadaý pomocí tabuly četostí, lze varabltu určt pomocí vážeého rozptylu, tedy obdobě jao u artmetcého průměru. Pro výběrový rozptyl bude příslušý vzorec vypadat tato: 8

8 s Problém astává teprve u tervalového rozděleí četostí. Poud bychom totž do výše uvedeého vzorce dosadl amísto hodot středí hodoty tervalů, vypočteme tímto způsobem pouze varabltu mez třídam, rozptyly hodot uvtř tervalů ebudou započtey. Výsledá varablta bude tedy podhodoceá. Nevýhodou použtí rozptylu jao uazatele varablty je sutečost, že rozměr tohoto uazatele je vyjádře ve druhé mocě rozměru hodot daého statstcého zau. Teto edostate vša odstraí další uazatel varablty, směrodatá odchyla s. Ta se vypočte jedoduše jao odmoca z rozptylu: s Směrodatou odchylu lze terpretovat jao průměrou odchylu hodot zau od středí hodoty, případě jao průměrou odchylu (rozdíl) mez hodotam zau. Pro výpočet číselých charaterst statstcých zaů zadaých ve formě sezamu hodot (olv tedy tabuly četostí) estuje v Ecelu (verze 2010 a výše) ěol fucí, teré s yí uvedeme: PRŮMĚR MEDIAN MODE VAR.P VAR.S SMODCH.VÝBĚR.S artmetcý průměr medá modus rozptyl (záladího souboru) výběrový rozptyl výběrová směrodatá odchyla Souhré popsé údaje o statstcém zau můžeme zísat taé ajedou pomocí aalytcého ástroje Popsá statsta. 9

9 Vyzoušejte s sam 1. Tabula obsahuje rozděleí pracovíů podle platových tříd: TARIF PLAT POČET třída třída třída třída třída třída třída a) Určete, jaého typu jsou statstcé zay platová třída a tarf plat. b) Doplňte tabulu o relatví a umulatví četost. c) Určete medá a modus zau platová třída. d) Určete středí hodotu a směrodatou odchylu zau tarfí plat. 2. Tabula obsahuje přehled o pravdelém měsíčím spořeí letů vescé ampelčy: MĚSÍČNÍ SPOŘENÍ POČET 0 až až až až až více ež a) Vypočtěte artmetcý průměr a medá zau měsíčí spořeí. b) Vypočtěte rozptyl a směrodatou odchylu. 10

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR Středí hodoty Artmetcý průměr vážeý ze tříděí Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR Výzam a užtí vážeého artmetcého průměru uážeme a ásledujících příladech Přílad 0 Ve frmě Gama Blatá máme soubor

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

STATISTIKA. Základní pojmy

STATISTIKA. Základní pojmy Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

SOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO. Statistika I. distanční studijní opora. Milan Křápek

SOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO. Statistika I. distanční studijní opora. Milan Křápek SOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO Statstka I dstačí studjí opora Mla Křápek Soukromá vysoká škola ekoomcká Zojmo Dube 3 Statstka I Vydala Soukromá vysoká škola ekoomcká Zojmo. vydáí Zojmo, 3 ISBN

Více

BIVŠ. Pravděpodobnost a statistika

BIVŠ. Pravděpodobnost a statistika BIVŠ Pravděpodobost a statstka Úvod Skrpta Pravděpodobost a statstka jsou učebím tetem pro stejojmeý kurz magsterského studa Bakovího sttutu vysoké školy Kurzy Pravděpodobost a statstka a avazující kurz

Více

1 STATISTICKÁ ŠETŘENÍ

1 STATISTICKÁ ŠETŘENÍ STATISTICKÁ ŠETŘENÍ Záladem aždého tattcého zoumáí jou údaje (data). Lze je zíat v záadě dvěma způoby. Buď je převzít z ějaého zdroje ebo je am zjtt. Seudárí data údaje, teré převezmeme z růzých zdrojů;

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

APLIKOVANÁ STATISTIKA

APLIKOVANÁ STATISTIKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA MANAGEMENTU A EKONOMIKY VE ZLÍNĚ APLIKOVANÁ STATISTIKA FRANTIŠEK PAVELKA PETR KLÍMEK ZLÍN 000 Recezoval: Haa Lošťáková Fratšek Pavelka, Petr Klímek, 000 ISBN 80 4

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

ZÁKLADY PRAVDĚPODOBNOSTI A STATISTIKY

ZÁKLADY PRAVDĚPODOBNOSTI A STATISTIKY UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ZÁKLADY PRAVDĚPODOBNOSTI A STATISTIKY Josef Tvrdík OSTRAVSKÁ UNIVERZITA 00 OBSAH: ÚVOD... 4. CO JE STATISTIKA?... 4. STATISTICKÁ DATA... 5.3 MĚŘENÍ

Více

11. Časové řady. 11.1. Pojem a klasifikace časových řad

11. Časové řady. 11.1. Pojem a klasifikace časových řad . Časové řad.. Pojem a klasfkace časových řad Specfckým statstckým dat jsou časové řad pomocí chž můžeme zkoumat damku jevů v čase. Časovou řadou (damcká řada, vývojová řada) rozumíme v čase uspořádaé

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzta Karlova v Praze Pedagogcká fakulta SEMINÁRNÍ PRÁCE Z OBECNÉ ALGEBRY DĚLITELNOST CELÝCH ČÍSEL V SOUSTAVÁCH O RŮZNÝCH ZÁKLADECH / Cfrk C. Zadáí: Najděte pět krtérí pro děltelost v jých soustavách

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

8. Základy statistiky. 8.1 Statistický soubor

8. Základy statistiky. 8.1 Statistický soubor 8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě

Více

UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesné výchovy

UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesné výchovy UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesé výchovy VYBRANÉ NEPARAMETRICKÉ STATISTICKÉ POSTUPY V ANTROPOMOTORICE Zdeěk Havel Davd Chlář 0 VYBRANÉ NEPARAMETRICKÉ

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

1.1 Definice a základní pojmy

1.1 Definice a základní pojmy Kaptola. Teore děltelost C. F. Gauss: Matematka je královou všech věd a teore čísel je králova matematky. Základím číselým oborem se kterým budeme v této kaptole pracovat jsou celá čísla a pouze v ěkterých

Více

1. Úvod do základních pojmů teorie pravděpodobnosti

1. Úvod do základních pojmů teorie pravděpodobnosti 1. Úvod do záladních pojmů teore pravděpodobnost 1.1 Úvodní pojmy Většna exatních věd zobrazuje své výsledy rgorózně tj. výsledy jsou zísávány na záladě přesných formulí a jsou jejch nterpretací. em je

Více

Téma 11 Prostorová soustava sil

Téma 11 Prostorová soustava sil Stavebí statka,.ročík bakalářského studa Téma Prostorová soustava sl Prostorový svazek sl Statcký momet síly a dvojce sl v prostoru Obecá prostorová soustava sl Prostorová soustava rovoběžých sl Katedra

Více

Téma 3: Popisná statistika

Téma 3: Popisná statistika Popá tatta Téma : Popá tatta Předáša 7 Záladí tattcé pojmy Pojem a úoly tatty Statta je věda, teá e zabývá zíáváím, zpacováím a aalýzou dat po potřeby ozhodováí. Zoumá tav a vývoj homadých jevů a vztahů

Více

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost Dráha [m] 9. Měřeí závslostí ve statstce Měřeí závslostí ve statstce se zývá především zkoumáím vzájemé závslost statstckých zaků vícerozměrých souborů. Závslost přtom mohou být apříklad pevé, volé, jedostraé,

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

stavební obzor 1 2/2014 11

stavební obzor 1 2/2014 11 tavebí obzor /04 Exploratorí aalýza výběrového ouboru dat pevoti drátobetou v tlau Ig. Daiel PIESZKA Ig. Iva KOLOŠ, Ph.D. doc. Ig. Karel KUBEČKA, Ph.D. VŠB-TU Otrava Faulta tavebí Věrohodé vyhodoceí experimetálích

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů Semárky, předášky, bakalářky, testy - ekoome, ace, účetctví, ačí trhy, maagemet, právo, hstore... PODNIKOVÁ EKONOMIKA 3. Cea ceých papírů Ceé papíry jsou jedím ze způsobů, jak podk může získat potřebý

Více

STATISTICKÉ MINIMUM PRO STUDENTY BAKALÁŘSKÉHO STUDIA NA TECHNICKÝCH OBORECH BOHUMIL MINAŘÍK

STATISTICKÉ MINIMUM PRO STUDENTY BAKALÁŘSKÉHO STUDIA NA TECHNICKÝCH OBORECH BOHUMIL MINAŘÍK STATISTICKÉ MINIMUM PRO STUDENTY BAKALÁŘSKÉHO STUDIA NA TECHNICKÝCH OBORECH BOHUMIL MINAŘÍK 04 prof. Ig. Bohuml Mařík, CSc. STATISTICKÉ MINIMUM PRO STUDENTY BAKALÁŘSKÉHO STUDIA NA TECHNICKÝCH OBORECH.

Více

Máme dotazníky. A co dál? Martina Litschmannová

Máme dotazníky. A co dál? Martina Litschmannová Máme dotazíy. A co dál? Martia Litschmaová. Úvod S dotazíy se setáváme běžě. Vídáme je v oviách, v časopisech, jsou součásti evaluačích zpráv (sebehodoceí šol, ), výzumých zpráv, Využívají se v sociologii,

Více

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti 1 Základí statistické zpracováí dat 1.1 Základí pojmy Populace (základí soubor) je soubor objektů (statistických jedotek), který je vymeze jejich výčtem ebo charakterizací jejich vlastostí, může být proto

Více

Střední hodnoty. Aritmetický průměr prostý Aleš Drobník strana 1

Střední hodnoty. Aritmetický průměr prostý Aleš Drobník strana 1 Středí hodoty. Artmetcký průměr prostý Aleš Drobík straa 0. STŘEDNÍ HODNOTY Př statstckém zjšťováí často zpracováváme statstcké soubory s velkým možstvím statstckých jedotek. Např. soubor pracovíků orgazace,

Více

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT. Josef Tvrdík

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT. Josef Tvrdík UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT (OPRAVENÁ VERZE 006) Josef Tvrdík OSTRAVSKÁ UNIVERZITA 00 Obsah: Úvod... 3 Programové prostředky pro statstcké výpočty... 4. Tabulkový

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS.

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS. Dopraví stroje a zařízeí odborý zálad AR 04/05 Idetifiačí číslo: Počet otáze: 6 Čas : 60 miut Počet bodů Hodoceí OTÁZKY: ) Vypočtěte eálí poměr rozděleí brzdých sil a ápravy dvouápravového vozla bez ABS.

Více

Rekonstrukce vodovodních řadů ve vztahu ke spolehlivosti vodovodní sítě

Rekonstrukce vodovodních řadů ve vztahu ke spolehlivosti vodovodní sítě Rekostrukce vodovodích řadů ve vztahu ke spolehlvost vodovodí sítě Ig. Jaa Šekapoulová Vodáreská akcová společost, a.s. Bro. ÚVOD V oha lokaltách České republky je v současost aktuálí problée zastaralá

Více

STATISTIKA PRO EKONOMY

STATISTIKA PRO EKONOMY EDICE UČEBNÍCH TEXTŮ STATISTIKA PRO EKONOMY EDUARD SOUČEK V Y S O K Á Š K O L A E K O N O M I E A M A N A G E M E N T U Eduard Souček Statistika pro ekoomy UČEBNÍ TEXT VYSOKÁ ŠKOLA EKONOMIE A MANAGEMENTU

Více

, jsou naměřené a vypočtené hodnoty závisle

, jsou naměřené a vypočtené hodnoty závisle Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,

Více

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY. Přírodovědecká fakulta ANALÝZA DAT. 2. upravené vydání. Josef Tvrdík

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY. Přírodovědecká fakulta ANALÝZA DAT. 2. upravené vydání. Josef Tvrdík UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT. upraveé vydáí Josef Tvrdík OSTRAVSKÁ UNIVERZITA 008 OBSAH: Úvod... 3 Parametrcké testy o shodě středích hodot... 4. Jedovýběrový t-test...

Více

Optimalizace portfolia

Optimalizace portfolia Optmalzace portfola ÚVOD Problémy vestováí prostředctvím ákupu ceých papírů sou klasckým tématem matematcké ekoome. Celkový výos z portfola má v době rozhodováí o vestcích povahu áhodé velčy, eíž rozložeí

Více

Téma 5: Analýza závislostí

Téma 5: Analýza závislostí Aalýza závlotí Téma 5: Aalýza závlotí Předáša 5 Závlot mez ev Záladí pom Předmětem této aptol ude zoumáí závlotí ouvlotí mez dvěma a více ev. Jedá e o proutí do vztahů mez ledovaým ev a tím přlížeí tzv.

Více

9.1.12 Permutace s opakováním

9.1.12 Permutace s opakováním 9.. Permutace s opakováím Předpoklady: 905, 9 Pedagogická pozámka: Pokud echáte studety počítat samostatě příklad 9 vyjde tato hodia a skoro 80 miut. Uvažuji o tom, že hodiu doplím a rozdělím a dvě. Př.

Více

1 Trochu o kritériích dělitelnosti

1 Trochu o kritériích dělitelnosti Meu: Úloha č.1 Dělitelost a prvočísla Mirko Rokyta, KMA MFF UK Praha Jaov, 12.10.2013 Růzé dělitelosti, třeba 11 a 7 (aeb Jak zfalšovat rodé číslo). Prvočísla: které je ejlepší, které je ejvětší a jak

Více

DLUHOPISY. Třídění z hlediska doby splatnosti

DLUHOPISY. Třídění z hlediska doby splatnosti DLUHOISY - dlouhodobý obchodovatelý ceý papír - má staoveou dobu splatost - vyadřue závaze emteta oblgace (dlužía) vůč matel oblgace (věřtel) Tříděí z hledsa doby splatost - rátodobé : splatost do 1 rou

Více

Jednoduchá lineární závislost

Jednoduchá lineární závislost Jedoduchá leárí závlot Regreí fuce: ),...,, ( 0 m f Předpolad: Fuce je leárí v parametrech: ) (... ) 0 ( 0 f f m m f 0 ()... f m () regreor 0... m regreí parametr určujeme METODOU NEJMENŠÍCH ČTVERCŮ Regreí

Více

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications)

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications) Základy datové aalýzy, modelového vývojářství a statistického učeí (Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applicatios) Lukáš Pastorek POZOR: Autor upozorňuje, že se jedá

Více

Téma 6: Indexy a diference

Téma 6: Indexy a diference dexy a dferece Téma 6: dexy a dferece ředáška 9 dvdálí dexy a dferece Základí ojmy Vedle elemetárího statstckého zracováí dat se hromadé jevy aalyzjí tzv. srováváím růzých kazatelů. Statstcký kazatel -

Více

Statistická analýza dat

Statistická analýza dat INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Statstcká aalýza dat Učebí texty k semář Autor: Prof. RNDr. Mla Melou, DrSc. Datum: 5.. 011 Cetrum pro rozvoj výzkumu pokročlých řídcích a sezorckých techologí CZ.1.07/.3.00/09.0031

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ 4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ 77 4. ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu

Více

9.1.13 Permutace s opakováním

9.1.13 Permutace s opakováním 93 Permutace s opakováím Předpoklady: 906, 9 Pedagogická pozámka: Obsah hodiy přesahuje 45 miut, pokud emáte k dispozici další půlhodiu, musíte žáky echat projít posledí dva příklady doma Př : Urči kolik

Více

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH ECHNICKÝ AUDI VODÁRENSKÝCH DISRIBUČNÍCH SYSÉMŮ Ig. Ladislav uhovčák, CSc. 1), Ig. omáš Kučera 1), Ig. Miroslav Svoboda 1), Ig. Miroslav Šebesta 2) 1) 2) Vysoké učeí techické v Brě, Fakulta stavebí, Ústav

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C) Přijímací řízeí pro akademický rok 24/ a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata C) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

Dvourozměrná tabulka rozdělení četností

Dvourozměrná tabulka rozdělení četností ANALÝZA ZÁVILOTÍ - zouáí závlot dvou evet více poěých, ěřeí íl této závlot, atd - cíle je hlubší vutí do podtat ledovaých jevů a poceů, přblížeí tzv příčý ouvlote Dvouozěá tabula ozděleí četotí - je eleetáí

Více

AMC/IEM J - HMOTNOST A VYVÁŽENÍ

AMC/IEM J - HMOTNOST A VYVÁŽENÍ ČÁST JAR-OPS 3 AMC/IEM J - HMOTNOST A VYVÁŽENÍ ACJ OPS 3.605 Hodoty hmotostí Viz JAR-OPS 3.605 V souladu s ICAO Ae 5 a s meziárodí soustavou jedotek SI, skutečé a omezující hmotosti vrtulíků, užitečé zatížeí

Více

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu ÚROKVÁ SAZBA A VÝPOČET BUDOUÍ HODNOTY. Typy a druhy úročeí, budoucí hodota ivestice Úrok - odměa za získáí úvěru (cea za službu peěz) Ročí úroková sazba (míra)(i) úrok v % z hodoty kapitálu za časové období

Více

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad Metody vyhodoceí efektvost vestc Časová hodota peěz Metody vyhodoceí Časová hodota peěz Prostředky, které máme k dspozc v současost mají vyšší hodotu ež prostředky, které budeme mít k dspozc v budoucost.

Více

pravděpodobnostn podobnostní jazykový model

pravděpodobnostn podobnostní jazykový model Pokročilé metody rozpozáváířeči Předáška 8 Rozpozáváí s velkými slovíky, pravděpodobost podobostí jazykový model Rozpozáváí s velkým slovíkem Úlohy zaměřeé a diktováíči přepis řeči vyžadují velké slovíky

Více

KOMBINATORIKA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMBINATORIKA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMBINATORIKA Gymázium Jiřího Wolera v Prostějově Výuové materiály z matematiy pro vyšší gymázia Autoři projetu Studet a prahu. století - využití ICT ve vyučováí matematiy a gymáziu INVESTICE DO ROZVOJE

Více

Poznámky k tématu Korelace a jednoduchá lineární regrese (Téma není ve skriptech)

Poznámky k tématu Korelace a jednoduchá lineární regrese (Téma není ve skriptech) Pozámk k tématu Koelace a jedoduchá leáí egee (Téma eí ve kptech) Mějme data, ),...,(, ), kteá jou áhodým výběem z ějaké populace. Data ted pokládáme za ezávlé ealzace dvojce áhodých velč ( X, Y ). Půmě

Více

7. P o p i s n á s t a t i s t i k a

7. P o p i s n á s t a t i s t i k a 7. P o p i s á s t a t i s t i k a 7.. Pozámka: Při statistickém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákoitosti, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme

Více

Základy teorie chyb a zpracování fyzikálních měření Jiří Novák

Základy teorie chyb a zpracování fyzikálních měření Jiří Novák Zálad eore chb a zpracováí zálích měřeí Jří ová Teo e je zamýšle jao pomůca pro vpracováí laboraorích úloh z z Je urče pouze pro sudjí účel a jeho účelem je objas meod zpracováí měřeí Chb měřeí Druh chb

Více

Zobrazení čísel v počítači

Zobrazení čísel v počítači Zobraeí ísel v poítai, áklady algoritmiace Ig. Michala Kotlíková Straa 1 (celkem 10) Def.. 1 slabika = 1 byte = 8 bitů 1 bit = 0 ebo 1 (ve dvojkové soustavě) Zobraeí celých ísel Zobraeí ísel v poítai Ke

Více

3.3.3 Rovinná soustava sil a momentů sil

3.3.3 Rovinná soustava sil a momentů sil 3.3.3 Rová soustava s a oetů s Předpoady Všechy síy soustavy eží v edé rově. Všechy oety sou oé a tuto rovu. *) Souřadý systé voíe ta, že rova - e totožá s rovou s. y O *) Po.: Sový oet ůžee ahradt dvocí

Více

ÚVOD DO PRAKTICKÉ FYZIKY I

ÚVOD DO PRAKTICKÉ FYZIKY I JIŘÍ ENGLICH ÚVOD DO PRAKTICKÉ FYZIKY I ZPRACOVÁNÍ VÝSLEDKŮ MĚŘENÍ Jede z epermetů, které změly vývoj fyzky v mulém století. V roce 9 prof. H. Kamerlgh Oes ve své laboratoř v Leydeu měřl teplotí závslost

Více

-1- Finanční matematika. Složené úrokování

-1- Finanční matematika. Složené úrokování -- Fiačí ateatika Složeé úrokováí Při složeé úročeí se úroky přičítají k počátečíu kapitálu ( k poskytutí úvěru, k uložeéu vkladu ) a společě s í se úročí. Vzorec pro kapitál K po letech při složeé úročeí

Více

Využití účetních dat pro finanční řízení

Využití účetních dat pro finanční řízení Využtí účetích dat pro fačí řízeí KAPITOLA 4 V rác této kaptoly se zaěříe a časovou hodotu peěz (a to včetě oceňováí ceých papírů), která se prolíá celý vestčí rozhodováí, dále a fačí aalýzu (vycházející

Více

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ALGEBRAICKÉ VÝRAZY vtvořil: RNDr. Věr Effeberger epertk olie příprvu SMZ z mtemtik školí rok 04/05

Více

Číselné řady. 1 m 1. 1 n a. m=2. n=1

Číselné řady. 1 m 1. 1 n a. m=2. n=1 Číselé řady Úvod U řad budeme řešit dva typy úloh: alezeí součtu a kovergeci. Nalezeí součtu (v případě, že řada koverguje) je obecě mohem těžší, elemetárě lze sečíst pouze ěkolik málo typů řad. Součet

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika Co e to statistika? Statistické hodoceí výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Statistika e ako bikiy. Odhalí téměř vše, ale to edůležitěší ám zůstae skryto. (autor ezámý) Statistika uda e, má

Více

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ČÍSELNÉ OBORY vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z mtemtiky školí rok 204/205

Více

8 Průzkumová analýza dat

8 Průzkumová analýza dat 8 Průzkumová aalýza dat Cílem průzkumové aalýzy dat (také zámé pod zkratkou EDA - z aglického ázvu exploratory data aalysis) je alezeí zvláštostí statistického chováí dat a ověřeí jejich předpokladů pro

Více

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY.

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY. OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY. Ig.Karel Hoder, ÚAMT-VUT Bro. 1.Úvod Optimálí rozděleí ákladů a vytápěí bytového domu mezi uživatele bytů v domě stále podléhá

Více

Veterinární a farmaceutická univerzita Brno. Základy statistiky. pro studující veterinární medicíny a farmacie

Veterinární a farmaceutická univerzita Brno. Základy statistiky. pro studující veterinární medicíny a farmacie Veteriárí a farmaceutická uiverzita Bro Základy statistiky pro studující veteriárí medicíy a farmacie Doc. RNDr. Iveta Bedáňová, Ph.D. Prof. MVDr. Vladimír Večerek, CSc. Bro, 007 Obsah Úvod.... 5 1 Základí

Více

2. Směsi, směšování a ředění roztoků, vylučování látek z roztoků

2. Směsi, směšování a ředění roztoků, vylučování látek z roztoků 2. Sě ěšováí a ředěí roztoů vyučováí áte z roztoů Sožeí ě áte ůžee vyadřovat poocí hototích zoů edotvých áte (ože ě). Hototí zoe -té ožy e defová ao poěr eí hotot hotot ě : (2) Pode záoa zachováí hotot

Více

ANALÝZA NÁKLADOVÝCH A CENOVÝCH VZTAHŮ V ODPADOVÉM HOSPODÁŘSTVÍ ČR ANALYSIS OF COST AND PRICE RELATIONSHIPS IN WASTE MANAGEMENT OF THE CZECH REPUBLIC

ANALÝZA NÁKLADOVÝCH A CENOVÝCH VZTAHŮ V ODPADOVÉM HOSPODÁŘSTVÍ ČR ANALYSIS OF COST AND PRICE RELATIONSHIPS IN WASTE MANAGEMENT OF THE CZECH REPUBLIC ANALÝZA NÁKLADOVÝCH A CENOVÝCH VZTAHŮ V ODPADOVÉM HOSPODÁŘSTVÍ ČR ANALYSIS OF COST AND PRICE RELATIONSHIPS IN WASTE MANAGEMENT OF THE CZECH REPUBLIC Jří HŘEBÍČEK, Mchal HEJČ, Jaa SOUKOPOVÁ ECO-Maagemet,

Více

Nepředvídané události v rámci kvantifikace rizika

Nepředvídané události v rámci kvantifikace rizika Nepředvídaé událost v rác kvatfkace rzka Jří Marek, ČVUT, Stavebí fakulta {r.arek}@rsk-aageet.cz Abstrakt Z hledska úspěchu vestce ohou být krtcké právě ty zdroe ebezpečí, které esou detfkováy. Vzhlede

Více

Determinanty Opakování: Permutace na n prvcích je zobrazení p:{1,..., n} {1,..., n}, které je prosté a na.

Determinanty Opakování: Permutace na n prvcích je zobrazení p:{1,..., n} {1,..., n}, které je prosté a na. Li algebra determiaty, polyomy, vlast čísla a vetory, charateristicý mohočle, salárí souči, posdef matice, bilieárí a vadraticé formy Lieárí algebra II láta z II semestru iformatiy MFF UK dle předáše Jiřího

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA RVDĚODONOST STTISTIK Gymázium Jiřího Wolkera v rostějově Výukové materiály z matematiky pro vyšší gymázia utoři projektu Studet a prahu. století - využití ICT ve vyučováí matematiky a gymáziu Teto projekt

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná

Více

Neparametrické metody

Neparametrické metody I. ÚVOD Neparametrické metody EuroMISE Cetrum v Neparametrické testy jsou založey a pořadových skórech, které reprezetují původí data v Data emusí utě splňovat určité předpoklady vyžadovaé u parametrických

Více

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY Statitické metody ve veřejé právě ŘEŠENÉ PŘÍKLADY Ig. Václav Friedrich, Ph.D. 2013 1 Kapitola 2 Popi tatitických dat 2.1 Tabulka obahuje rozděleí pracovíků podle platových tříd: TARIF PLAT POČET TARIF

Více

8.2.10 Příklady z finanční matematiky I

8.2.10 Příklady z finanční matematiky I 8..10 Příklady z fiačí matematiky I Předoklady: 807 Fiačí matematika se zabývá ukládáím a ůjčováím eěz, ojišťováím, odhady rizik aod. Poměrě důležitá a výosá discilía. Sořeí Při sořeí vkladatel uloží do

Více

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů - 12.1 - Přehled Ifomace po odhad ákladů Míy po áklady dotazu Opeace výběu Řazeí Opeace spojeí Vyhodocováí výazů Tasfomace elačích výazů Výbě pláu po vyhodoceí Kapitola 12: Zpacováí dotazů Základí koky

Více

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty)

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty) (variata s odděleým hodoceím ivestičích ákladů vyaložeých a jedotlivé privatizovaé objekty) Vypracoval: YBN CONSULT - Zalecký ústav s.r.o. Ig. Bedřich Malý Ig. Yvetta Fialová, CSc. Václavské áměstí 1 110

Více

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/.5./34.948 IV-2 Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- JEDNODCHÉ

Více

Fraktálová komprese. Historie

Fraktálová komprese. Historie Fraktálová komprese Hstore Prví zmíky o tzv. fraktálové kompres jsem ašel kdys v bezvadé a dodes aktuálí kížce!! Grafcké formáty (Braslav Sobota, Já Mlá, akl. Kopp), kde však šlo spíše o adšeý úvod a pak

Více

MODELY HROMADNÉ OBSLUHY Models of queueing systems

MODELY HROMADNÉ OBSLUHY Models of queueing systems MODELY HROMADNÉ OBSLUHY Models of queueig systems Prof. RNDr. Ig. Miloš Šeda, Ph.D. Vysoé učeí techicé v Brě, Faulta strojího ižeýrství, Ústav automatizace a iformatiy e-mail: seda@fme.vutbr.cz Abstrat

Více

Obyčejné diferenciální rovnice. Cauchyova úloha Dirichletova úloha

Obyčejné diferenciální rovnice. Cauchyova úloha Dirichletova úloha Občejé erecálí rovce Caucova úloa Drcletova úloa Občejé erecálí rovce - Caucova úloa Úlo: I. = s omíou = jea rovce. řáu II. soustava rovc. řáu III. = - jea rovce -téo řáu = = = - = - Hleáme uc res. uce

Více

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/../.98 IV- Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- SLOŽENÉ ÚROOVÁNÍ

Více

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu.

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu. KVALIMETRIE Miloslav Sucháek 16. Statistické metody v metrologii a aalytické chemii Řešeé příklady a CD-ROM v Excelu Eurachem ZAOSTŘENO NA ANALYTICKOU CHEMII V EVROPĚ Kvalimetrie 16 je zatím posledí z

Více

3.3 Soustavy sil a silových momentů. soustava sil a momentů = seskupení sil a momentů sil působících na těleso

3.3 Soustavy sil a silových momentů. soustava sil a momentů = seskupení sil a momentů sil působících na těleso 3.3 Soustav s a sových oetů soustava s a oetů sesupeí s a oetů s působících a těeso váští případ: svae s (paps všech s soustav se potíají v jedo bodě) soustava ovoběžých s (paps všech s soustav jsou aváje

Více

Makroekonomie cvičení 1

Makroekonomie cvičení 1 Makroekoomie cvičeí 1 D = poptávka. S = Nabídka. Q = Možství. P = Cea. Q* = Rovovážé možství (Q E ). P* = Rovovážá caa (P E ). L = Práce. K = Kapitál. C = Spotřeba domácosti. LR = Dlouhé období. SR = Krátké

Více

5. Výpočty s využitím vztahů mezi stavovými veličinami ideálního plynu

5. Výpočty s využitím vztahů mezi stavovými veličinami ideálního plynu . ýpočty s využití vztahů ezi stavovýi veličiai ideálího plyu Ze zkušeosti víe, že obje plyu - a rozdíl od objeu pevé látky ebo kapaliy - je vyeze prostore, v ěž je ply uzavře. Přítoost plyu v ádobě se

Více

Západočeská univerzita FAKULTA APLIKOVANÝCH VĚD

Západočeská univerzita FAKULTA APLIKOVANÝCH VĚD Záadočesá uverzta FKULT PLIKOVNÝCH VĚD Obsah: Pravděodobostí modelováí očítačových systémů geerováí a využtí áhodých čísel (Mote Carlo metody), matematcé (marovsé) modely 3 Zálady teore systémů hromadé

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

Vysoká škola ekonomická v Praze Fakulta informatiky a statistiky Vyšší odborná škola informačních služeb v Praze. Lukáš Kleňha

Vysoká škola ekonomická v Praze Fakulta informatiky a statistiky Vyšší odborná škola informačních služeb v Praze. Lukáš Kleňha Vysoká škola ekoomcká v Praze Fakulta formatky a statstky Vyšší odborá škola formačích služeb v Praze Lukáš Kleňha egresí aalýza acetovy rogrese o rví hostalzac s CHOPN 0 Prohlášeí Prohlašuj, že jsem

Více