1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků

Rozměr: px
Začít zobrazení ze stránky:

Download "1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků"

Transkript

1 1 Pops statstcých dat 1.1 Pops omálích a ordálích zaů K zobrazeí rozděleí hodot omálích ebo ordálích zaů lze použít tabulu ebo graf rozděleí četostí. Tuto formu zobrazeí lze dooce použít pro číselé zay, poud počet obmě zau eí přílš vysoý (apř. počet dětí v domácost). Tabula rozděleí četostí (stručě tabula četostí) je specálím případem tabuly agregovaých údajů. Řády tabuly představují jedotlvé obměy zobrazovaého zau, zobrazeým agregovaým údajem jsou četost (počty) výsytu těchto obmě. ZNÁMKA POČET MATEMATIKA POČET STATISTIKA CELKEM Obr. 2.1 Uáza tabuly četostí rozděleí záme z matematy a statsty Četost (ědy zvaá absolutí četost, czím slovem frevece) obměy zau je rova celovému počtu výsytů této obměy v souboru. Poud je statstcý soubor tvoře jedotam a sledovaý za abývá růzých obmě (hodot), pa pro četost jedotlvých obmě 1, 2 až musí platt: Kromě absolutích četostí se často uvádějí taé relatví četost p, teré vyjadřují, jaou část z celu (tj. celého souboru) tvoří jedoty s daou obměou zau. Obvyle se uvádějí v procetech (%). Relatví četost p spočítáte podle vzorce: p 100% Součet relatvích četostí všech obmě zau musí být rove 1, ebol 100%. 2

2 Pořadí jedotlvých obmě v tabulce rozděleí četostí se u omálích zau volí obvyle podle abecedy (podle ázvů obmě), u ordálích a metrcých zaů podle rostoucí hodoty. Posledí řáde tabuly četostí tvoří obvyle součet hodot (četostí) z jedotlvých řádů. Teto údaj je rove u absolutích četostí rozsahu souboru, u relatvích četostí je rove jedé. U ordálích zaů se ědy uvádějí taé umulatví četost. Kumulatví četost -té obměy je defováa jao součet četostí všech obmě zau, teré v daém uspořádáí mají hodotu žší ebo ejvýše rovu sledovaé obměě. Poud jsou jedotlvé obměy uspořádáy ve smyslu svých pořadových čísel, lze umulatví četost m vyjádřt jao: m j j 1 Obdobě jao relatví četost lze defovat relatví umulatví četost F jao relatví vyjádřeí umulatví četost obměy vůč počtu všech jedote souboru (apřílad relatví umulatví četost trojy vyjadřuje, jaá část studetů udělala zoušu). Platí tedy: F m 100% V programu Mcrosoft Ecel lze vytvořeí tabuly rozděleí četostí použít ástroj Kotgečí tabula. Teto ástroj vytvoří absolutí četost, ostatí typy četostí lze dopočítat pomocí výše uvedeých vzorců. KUMUL. ČETNOSTI VZDĚLÁNÍ ČETNOSTI abs. rel. abs. rel. záladí 4 16% 4 16% vyuče 5 20% 9 36% maturta 9 36% 18 72% VŠ 7 28% % CELKEM % Obr. 2.2 Tabula četostí statstcého zau vzděláí Názorou a často používaou formou zobrazeí četostí omálího ebo ordálího zau jsou grafy četostí: sloupcový graf četostí ebol hstogram; spojcový graf četostí ebol polygo; výsečový (oláčový) graf. 3

3 Výsečový graf je vhodý zejméa v případech, dy je počet obmě malý. V případě většího počtu obmě se stává epřehledým a je lepší zvolt sloupcový graf (hstogram). Te je aopa vhodý v případech, dy počet růzých obmě je mez 5 a 20. Na osu y lze vyášet absolutí relatví četost. Pro grafcé vyjádřeí četostí obmě ordálího zau se graf výsečový přílš ehodí, eboť ezdůrazňuje uspořádáí (ordaltu) zobrazovaého zau. Naopa velm vhodý je spojcový graf četostí, tazvaý polygo, eboť jeho spojce zázorňuje vývoj daého zau. Kromě grafů (prostých) četostí se vša vyjádřeí a zobrazeí průběhu ordálího zau používají grafy umulatvích četostí. Polygo umulatvích četostí se taé azývá podle svého autora Galtoova ogva, díy svému typcému tvaru taé součtová S řva Hstogram záladí vyuče maturta VŠ 100% 80% 60% 40% 20% 0% Galtoova ogva záladí vyuče maturta VŠ Obr. 2.3 Grafy rozděleí četostí statstcého zau vzděláí 1.2 Pops metrcých zaů Počet obmě metrcého (číselého) zau bývá často přílš velý a to, aby mohl být prezetová pomocí tabuly rozděleí četostí přímo. Pratcé zušeost uazují, že počet růzých obmě by eměl přeročt hodotu 20 (tj. < 20), avíc rozsahem souboru (počet jedote) by měl být alespoň 3 větší ež počet obmě. Představte s apřílad rozděleí měsíčích příjmů všech zaměstaců v Česé republce. Jejch příjmy mohou teoretcy abývat hodot od ěola tsíc Kč až po stovy tsíc Kč. Tabula rozděleí četostí by v taovém případě měla statsíce řáde, přčemž četost u většy hodot by byla velm malá čísla (často 0 ebo 1). Vypovídací schopost taové tabuly by byla pratcy ulová. Pro vyhodoceí metrcého statstcého zau s velým počtem obmě se proto používá metoda, př teré se rozdělí celý rozsah hodot zau a ěol stejě velých dsjutích tervalů tříd, se terým se dále pracuje obdobě jao s obměam ordálího zau. Tomuto rozděleí se obvyle říá tervalové rozděleí četostí. 4

4 Počet tříd (tervalů) je třeba volt ta, aby vzlé rozděleí četostí mělo dobrou vypovídací schopost. Poud se zvolí malý počet tříd, dojde př tříděí výrazé ztrátě formace o průběhu původího zau. Poud se aopa zvolí přílš velý počet tříd (s malým četostm), bude vzlé tervalové rozděleí epřehledé. Estují růzá emprcá doporučeí pro určeí počtu tříd, z chž ejzámější je zřejmě Sturgesovo pravdlo : 1 3,3 log Vypočteá hodota je pouze doporučeou, eí tedy žádé dogma, teré je uto dodržet. Odchyla sutečého počtu tříd od doporučeé hodoty o 2 třídy ahoru ebo dolů je tedy ještě přjatelá. Je-l urče počet tříd, může se staovt přblžá šířa tervalu (třídy) h podle vztahu: de: h ma m ma ejvyšší hodota statstcého zau m ejžší hodota statstcého zau Ve sutečost se tervaly (třídy) volí ta, aby byly splěy ásledující podmíy: počet tervalů emá být meší ež 5 a větší ež 20; hrace tervalů musí být dobře zapamatovatelá zaorouhleá čísla; tervaly musí jedozačě porývat celý obor hodot popsovaého zau; tervaly by měly být stejě šroé; oba rají tervaly rozděleí musí mít eulové četost. Aby byla splěa podmía jedozačého porytí oboru hodot proměé, musí mít sousedí tervaly společý hračí bod, přčemž ale tato hrace musí být jedozačě přřazea pouze jedomu z tervalů. KUMUL. ČETNOST ZNAK PLAT ČETNOST abs. rel. abs. rel ,5% 15 62,5% ,5% 18 75,0% ,3% 20 83,3% ,0% 20 83,3% ,3% 22 91,7% ,2% 23 95,8% ,2% ,0% CELKEM ,0% 5

5 Obr. 2.4 Tabula rozděleí četostí statstcého zau plat K vytvořeí tervalového rozděleí četostí lze v programu Mcrosoft Ecel použít ástroj Hstogram, terý je součástí Aalytcých ástrojů (z meu Nástroje / Aalýza dat). 1.3 Číselé míry a charatersty Rozložeí obmě statstcých zaů lze vyjádřt eje tabulou ebo grafem rozložeí četostí, ale taé vhodou ombací číselých charaterst. Tyto míry pa mohou být prezetováy samostatě, ebo jao agregátí uazatele v rámc tabuly ebo grafu. Větša charaterst uváděých v této aptole se bude vztahovat číselým, tedy metrcým proměým. Straou vša ezůstaou a charatersty, teré se používají popsu proměých valtatvích. Statstcé zay obvyle popsují dva záladí typy charaterst: míry polohy (úrově), teré určují typcé rozložeí hodot zau (umístěí obmě zau a číselé ose); míry varablty, teré určují varabltu ebol rozptyl hodot olem své typcé polohy. Míry polohy se saží ahradt celé rozložeí statstcého zau jedou hodotou, terá bude typcým reprezetatem zau, jeho pomyslým středem. Proto se těmto charaterstám říá taé středí hodoty. Záladím a ejrozšířeějším typem středí hodoty (pro číselé proměé) je artmetcý průměr. Zísáte ho ta, že sečteme všechy hodoty (obměy) číselého zau a součet vydělíte počtem hodot: de: artmetcý průměr jedotlvé hodoty zau ( 1, 2, až ) počet hodot zau (rozsah statstcého souboru) Poud máte statstcou proměou defováu pomocí tabuly rozděleí četostí, taže víte, že aždá obměa se v souboru vysytuje s četostí, můžete středí hodotu všech hodot zau vyjádřt pomocí vzorce pro vážeý artmetcý průměr: 6

6 de: 1 četost jedotlvých hodot zau Poud ahradíme jedotlvé hodoty zau středím hodotam jedotlvých tříd, lze teto vzorec použít taé pro výpočet středí hodoty zau v tervalovém rozděleí četostí. Poud v tervalovém rozděleí ezáte průměry tříd, můžete je odhadout pomocí středu tervalu. V tom případě vša vypočteý artmetcý průměr ebude přesý, půjde pouze o odhad sutečé hodoty. Artmetcý průměr se počítá ze všech hodot statstcého zau. Využívá tedy ejvíce formací o celém souboru (zau), a druhé straě je ovšem velm ctlvý a etrémí odchyly. Proto se v ěterých případech místo ěho používají další středí hodoty, teré jsou a etrémí výyvy méě ctlvé. Patří mez ě především medá a modus. Medá je defová jao prostředí hodota zau. Zameá to, že počet hodot meších ež medá a větších ež medá by se měl rovat. Hodota medáu metrcého zau se určí ásledujícím způsobem: 1. jedoty souboru se uspořádají podle sledovaého zau od ejmeší do ejvětší a očíslují se; 2. je-l rozsah souboru lchý, je střed souboru defová jedozačě (apř. př 25 prvcích souboru jde o 13. hodotu v pořadí), medá je rove přímo hodotě tohoto prostředího zau; 3. je-l rozsah souboru sudý, určí se medá jao artmetcý průměr dvou hodot, teré leží ejblíže pomyslému středu souboru (apř. u souboru o 20 jedotách je to 10. a 11. hodota). Medá lze použít jao středí hodotu taé u ordálích ečíselých zaů. Stačí hodoty tohoto zau uspořádat podle velost (výzamu) a ajít střed tato uspořádaého zau (vz postup výše). Tato určeý střed souboru lze terpretovat jao hodotu, terá je stejě vzdáleá od obou rajích jedote. Modus ˆ číselého (metrcého) zau je chápá jao hodota (obměa) s ejvyšší četostí, tedy hodota, terá se v souboru vysytuje ejčastěj. Modus lze samozřejmě určovat pouze tehdy, poud jej lze staovt jedozačě, tj. poud ejvyšší četost má pouze jeda obměa. U spojtých metrcých zaů (apř. plat, teplota ebo spotřeba automoblu) bývá aždá obměa zau dvduálí, proto u taových zaů emá smysl modus určovat. Modus je aopa obvyle jedou středí hodotou, terou lze určt u omálího ečíselého zau. V tomto případě epředstavuje a ta pomyslý střed souboru (zau), 7

7 jao spíše typcého reprezetata tohoto zau, tedy hodotu, terá chováí souboru ovlvňuje ejvíce. Uvedeé středí hodoty, ať jž jde o průměr, medá ebo modus, umožňují charaterzovat polohu statstcého zau. Vyjadřují pomyslý střed zoumaého zau, c vša eříají o rozložeí jedotlvých obmě olem tohoto středu tedy o varabltě zau. Čím větší je totž rozptýleost hodot olem pomyslého středu souboru, tím meší má tato středí hodota schopost reprezetovat celý za. Záladí míra rozptýleost (varablty) číselého statstcého zau je rozptyl 2. Jde vlastě o artmetcý průměr vypočteý z druhých moc odchyle hodot zau od jejch středí hodoty. Pro výpočet rozptylu tedy eí důležté, zda jsou tyto odchyly ladé ebo záporé: V případě výběrového souboru vša uvedeý vzorec sutečou varabltu daého zau podhodocuje. Proto se místo ěho používá vztah pro tzv. výběrový rozptyl s 2 : s Hodota 1 ve jmeovatel vzorce pro výběrový rozptyl se azývá stupeň volost. Neboť v pra se budete setávat především s výběrovým soubory, budete taé většou varabltu hodot zau vyjadřovat podle právě uvedeého vzorce pro výběrový rozptyl. Navíc u souborů s více ež 30 hodotam (tzv. velé soubory) jž eí mez oběma výpočty rozptylu pratcy žádý podstatý rozdíl. V pra se pro výpočet (výběrového) rozptylu s 2 obvyle používá upraveý vzorec: s Př použtí tohoto vzorce se výrazě sžuje počet potřebých operací př výpočtu. Máme-l statstcý za zadaý pomocí tabuly četostí, lze varabltu určt pomocí vážeého rozptylu, tedy obdobě jao u artmetcého průměru. Pro výběrový rozptyl bude příslušý vzorec vypadat tato: 8

8 s Problém astává teprve u tervalového rozděleí četostí. Poud bychom totž do výše uvedeého vzorce dosadl amísto hodot středí hodoty tervalů, vypočteme tímto způsobem pouze varabltu mez třídam, rozptyly hodot uvtř tervalů ebudou započtey. Výsledá varablta bude tedy podhodoceá. Nevýhodou použtí rozptylu jao uazatele varablty je sutečost, že rozměr tohoto uazatele je vyjádře ve druhé mocě rozměru hodot daého statstcého zau. Teto edostate vša odstraí další uazatel varablty, směrodatá odchyla s. Ta se vypočte jedoduše jao odmoca z rozptylu: s Směrodatou odchylu lze terpretovat jao průměrou odchylu hodot zau od středí hodoty, případě jao průměrou odchylu (rozdíl) mez hodotam zau. Pro výpočet číselých charaterst statstcých zaů zadaých ve formě sezamu hodot (olv tedy tabuly četostí) estuje v Ecelu (verze 2010 a výše) ěol fucí, teré s yí uvedeme: PRŮMĚR MEDIAN MODE VAR.P VAR.S SMODCH.VÝBĚR.S artmetcý průměr medá modus rozptyl (záladího souboru) výběrový rozptyl výběrová směrodatá odchyla Souhré popsé údaje o statstcém zau můžeme zísat taé ajedou pomocí aalytcého ástroje Popsá statsta. 9

9 Vyzoušejte s sam 1. Tabula obsahuje rozděleí pracovíů podle platových tříd: TARIF PLAT POČET třída třída třída třída třída třída třída a) Určete, jaého typu jsou statstcé zay platová třída a tarf plat. b) Doplňte tabulu o relatví a umulatví četost. c) Určete medá a modus zau platová třída. d) Určete středí hodotu a směrodatou odchylu zau tarfí plat. 2. Tabula obsahuje přehled o pravdelém měsíčím spořeí letů vescé ampelčy: MĚSÍČNÍ SPOŘENÍ POČET 0 až až až až až více ež a) Vypočtěte artmetcý průměr a medá zau měsíčí spořeí. b) Vypočtěte rozptyl a směrodatou odchylu. 10

Doc. Ing. Dagmar Blatná, CSc.

Doc. Ing. Dagmar Blatná, CSc. PRAVDĚPODOBNOST A STATISTIKA Doc. Ig. Dagmar Blatá, CSc. Statsta statstcé údaje o hromadých jevech čost, terá vede zísáí statstcých údajů a jejch zpracováí teore statsty - věda o stavu, vztazích a vývoj

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR Středí hodoty Artmetcý průměr vážeý ze tříděí Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR Výzam a užtí vážeého artmetcého průměru uážeme a ásledujících příladech Přílad 0 Ve frmě Gama Blatá máme soubor

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

Statistické charakteristiky (míry)

Statistické charakteristiky (míry) Stattcé charaterty (míry) - hrují formac, obažeou v datech (vyjadřují j v ocetrovaé formě); - charaterzují záladí ryy zoumaého ouboru dat; - umožňují porováváí více ouborů. upy tattcých charatert :. charaterty

Více

STATISTIKA. Základní pojmy

STATISTIKA. Základní pojmy Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci

Více

2. Vícekriteriální a cílové programování

2. Vícekriteriální a cílové programování 2. Vícerterálí a cílové programováí Úlohy vícerterálího programováí jsou úlohy, ve terých se a možě přípustých řešeí optmalzuje ěol salárích rterálích fucí. Moža přípustých řešeí je přtom defováa podobě

Více

10.2.3 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI

10.2.3 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI Středí hodoty Artmetcý průměr vážeý Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI Zatím jsme počítal s tím, že četost ve vztahu pro vážeý artmetcý průměr byla přrozeá čísla Četost mohou

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

NEPARAMETRICKÉ METODY

NEPARAMETRICKÉ METODY NEPARAMETRICKÉ METODY Jsou to metody, dy předmětem testu hypotézy eí tvrzeí o hodotě parametru ějaého orétího rozděleí, ale ulová hypotéza je formulováa obecěji, apř. jao shoda rozděleí ebo ezávislost

Více

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz:

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz: Ig. Marta Ltschmaová Statstka I., cvčeí 1 TESTOVÁNÍ NEPARAMETRICKÝCH HYPOTÉZ Dosud jsme se zabýval testováím parametrcký hypotéz, což jsou hypotézy o parametrech rozděleí (populace). Statstckým hypotézám

Více

Statistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter.

Statistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter. Statistika Cíle: Chápat pomy statistický soubor, rozsah souboru, statistická edotka, statistický zak, umět sestavit tabulku rozděleí četostí, umět zázorit spoicový diagram a sloupcový diagram / kruhový

Více

8.1.2 Vzorec pro n-tý člen

8.1.2 Vzorec pro n-tý člen 8 Vzorec pro -tý čle Předpolady: 80 Pedagogicá pozáma: Přílady a hledáí dalších čleů posloupostí a a objevováí vzorců pro -tý čle do začé míry odpovídají typicým příladům z IQ testů, teré studeti zají

Více

3. cvičení 4ST201 - řešení

3. cvičení 4ST201 - řešení cvčící Ig. Jaa Feclová 3. cvčeí 4ST0 - řešeí Obah: Míry varablty Rozptyl Směrodatá odchyla Varačí oefcet Rozlad rozptylu a mezupovou a vtroupovou varabltu Změa rozptylu Vyoá šola eoomcá VŠE urz 4ST0 Míry

Více

P1: Úvod do experimentálních metod

P1: Úvod do experimentálních metod P1: Úvod do epermetálích metod Chyby a ejstoty měřeí - Každé měřeí je zatížeo určtou epřesostí, která je způsobea ejrůzějším egatvím vlvy, vyskytujícím se v procesu měřeí. - Výsledek měřeí se díky tomu

Více

Úvod do korelační a regresní analýzy

Úvod do korelační a regresní analýzy Úvod do korelačí a regresí aalýz Bude ás zajímat, jak těsě spolu souvsí dva sledovaé jev Příklad: vztah mez rchlostí auta a brzdou dráhou vztah mez věkem žáka a rchlostí v běhu a 60 m vztah mez spotřebou

Více

[ jednotky ] Chyby měření

[ jednotky ] Chyby měření Chyby měřeí Provedeme-l určté měřeí za stejých podmíek vícekrát, jedotlvá měřeí se mohou odlšovat (z důvodu koečé rozlšovací schopost měř. přístrojů, áhodých vlvů apod.). Chyba měřeí: e = x x x...přesá

Více

3. cvičení 4ST201. Míry variability

3. cvičení 4ST201. Míry variability cvčící Ig. Jaa Feclová 3. cvčeí 4ST0 Obah: Míry varablty Rozptyl Směrodatá odchyla Varačí oefcet Rozlad rozptylu a mezupovou a vtroupovou varabltu Změa rozptylu Vyoá šola eoomcá VŠE urz 4ST0 Míry varablty

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

k(k + 1) = A k + B. s n = n 1 n + 1 = = 3. = ln 2 + ln. 2 + ln

k(k + 1) = A k + B. s n = n 1 n + 1 = = 3. = ln 2 + ln. 2 + ln Číselé řady - řešeé přílady ČÍSELNÉ ŘADY - řešeé přílady A. Součty řad Vzorové přílady:.. Přílad. Určete součet řady + = + 6 + +.... Řešeí: Rozladem -tého čleu řady a parciálí zlomy dostáváme + = + ) =

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

13 Popisná statistika

13 Popisná statistika 13 Popisá statistika 13.1 Jedorozměrý statistický soubor Statistický soubor je možia všech prvků, které jsou předmětem statistického zkoumáí. Každý z prvků je statistickou jedotkou. Prvky tvořící statistický

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

SOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO. Statistika I. distanční studijní opora. Milan Křápek

SOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO. Statistika I. distanční studijní opora. Milan Křápek SOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO Statstka I dstačí studjí opora Mla Křápek Soukromá vysoká škola ekoomcká Zojmo Dube 3 Statstka I Vydala Soukromá vysoká škola ekoomcká Zojmo. vydáí Zojmo, 3 ISBN

Více

BIVŠ. Pravděpodobnost a statistika

BIVŠ. Pravděpodobnost a statistika BIVŠ Pravděpodobost a statstka Úvod Skrpta Pravděpodobost a statstka jsou učebím tetem pro stejojmeý kurz magsterského studa Bakovího sttutu vysoké školy Kurzy Pravděpodobost a statstka a avazující kurz

Více

2. TEORIE PRAVDĚPODOBNOSTI

2. TEORIE PRAVDĚPODOBNOSTI . TEORIE PRAVDĚPODOBNOSTI V prax se můžeme setat s dvojím typem procesů. Jeda jsou to procesy determstcé, u terých platí, že př dodržeí orétích vstupích podmíe obdržíme přesý, předem zámý výslede (te můžeme

Více

9 Kombinatorika, teorie pravděpodobnosti a matematická statistika

9 Kombinatorika, teorie pravděpodobnosti a matematická statistika 9 Kombatora, teore pravděpodobost a matematcá statsta Te, do argumetue průměrým platem, e s velou pravděpodobostí vysoce adprůměrý vůl s hluboce podprůměrým vzděláím (Mloslav Drucmüller) 9. Kombatora Kombatora

Více

1 STATISTICKÁ ŠETŘENÍ

1 STATISTICKÁ ŠETŘENÍ STATISTICKÁ ŠETŘENÍ Záladem aždého tattcého zoumáí jou údaje (data). Lze je zíat v záadě dvěma způoby. Buď je převzít z ějaého zdroje ebo je am zjtt. Seudárí data údaje, teré převezmeme z růzých zdrojů;

Více

APLIKOVANÁ STATISTIKA

APLIKOVANÁ STATISTIKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA MANAGEMENTU A EKONOMIKY VE ZLÍNĚ APLIKOVANÁ STATISTIKA FRANTIŠEK PAVELKA PETR KLÍMEK ZLÍN 000 Recezoval: Haa Lošťáková Fratšek Pavelka, Petr Klímek, 000 ISBN 80 4

Více

5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC

5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC 5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC V této kaptole se dozvíte: jak je defováa fukce přrozeá odmoca v kompleím oboru a jaké má vlastost včetě odlšostí od odmocy v reálém

Více

3. Charakteristiky a parametry náhodných veličin

3. Charakteristiky a parametry náhodných veličin 3. Charateristiy a parametry áhodých veliči Úolem této apitoly je zavést pomocý aparát, terým budeme dále popisovat pomocí jedoduchých prostředů áhodé veličiy. Taovýmto aparátem jsou tzv. parametry ebo

Více

1. Základy měření neelektrických veličin

1. Základy měření neelektrických veličin . Základ měřeí eelektrckých velč.. Měřcí řetězec Měřcí řetězec (měřcí soustava) je soubor měřcích čleů (jedotek) účelě uspořádaých tak, ab blo ožě splt požadovaý úkol měřeí, tj. získat formac o velkost

Více

ZÁKLADY PRAVDĚPODOBNOSTI A STATISTIKY

ZÁKLADY PRAVDĚPODOBNOSTI A STATISTIKY UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ZÁKLADY PRAVDĚPODOBNOSTI A STATISTIKY Josef Tvrdík OSTRAVSKÁ UNIVERZITA 00 OBSAH: ÚVOD... 4. CO JE STATISTIKA?... 4. STATISTICKÁ DATA... 5.3 MĚŘENÍ

Více

11. Časové řady. 11.1. Pojem a klasifikace časových řad

11. Časové řady. 11.1. Pojem a klasifikace časových řad . Časové řad.. Pojem a klasfkace časových řad Specfckým statstckým dat jsou časové řad pomocí chž můžeme zkoumat damku jevů v čase. Časovou řadou (damcká řada, vývojová řada) rozumíme v čase uspořádaé

Více

1 Měření závislosti statistických znaků. 1.1 Dvourozměrný statistický soubor

1 Měření závislosti statistických znaků. 1.1 Dvourozměrný statistický soubor 1 Měřeí závlot tattckých zaků 1.1 Dvourozměrý tattcký oubor Př aalýze ekoomckých kutečotí á čato ezajímají jedotlvé velč jako takové, ale vztah mez m. Ptáme e, jak záví poptávka a ceě produktu, plat zamětaců

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzta Karlova v Praze Pedagogcká fakulta SEMINÁRNÍ PRÁCE Z OBECNÉ ALGEBRY DĚLITELNOST CELÝCH ČÍSEL V SOUSTAVÁCH O RŮZNÝCH ZÁKLADECH / Cfrk C. Zadáí: Najděte pět krtérí pro děltelost v jých soustavách

Více

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT Základy práce s tabulkou Výukový modul III. Iovace a zkvaltěí výuky prostředctvím IC éma III..3 echcká měřeí v MS Excel Pracoví lst 5 Měřeí teploty. Ig. Jří Chobot VY_3_INOVACE_33_5 Aotace Iovace a zkvaltěí

Více

11. Popisná statistika

11. Popisná statistika . Popsá statstka.. Pozámka: Př statstckém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákotost, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme statstcké jedotky. Př

Více

Chyby přímých měření. Úvod

Chyby přímých měření. Úvod Chyby přímých měřeí Úvod Př zjšťováí velkost sledovaé velčy dochází k růzým chybám, které ovlvňují celkový výsledek. V pra eestuje žádá metoda měřeí a měřcí zařízeí, které by bylo absolutě přesé, což zameá,

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení.

- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení. MATEMATICKÁ STATISTIKA - a základě výběrových dat uuzujeme a obecější kutečot, týkající e základího ouboru; provádíme zevšeobecňující (duktví) úudek - duktví uuzováí pomocí matematcko-tattckých metod je

Více

Komplexní čísla. Definice komplexních čísel

Komplexní čísla. Definice komplexních čísel Komplexí čísla Defiice komplexích čísel Komplexí číslo můžeme adefiovat jako uspořádaou dvojici reálých čísel [a, b], u kterých defiujeme operace sčítáí, ásobeí, apod. Stadardě se komplexí čísla zapisují

Více

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly.

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly. 0. KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Dovedosti :. Chápat pojem faktoriál a ovládat operace s faktoriály.. Zát defiici kombiačího čísla a základí vlastosti kombiačích čísel. Ovládat jedoduché operace

Více

8. Základy statistiky. 8.1 Statistický soubor

8. Základy statistiky. 8.1 Statistický soubor 8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě

Více

Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem

Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem Popisá statistika - zavedeí pojmů Popisá statistika - zavedeí pojmů Soubor idividuálích údajů o objektech azýváme základí soubor ebo také populace. Zkoumaé objekty jsou tzv. statistické jedotky a sledujeme

Více

Testování statistických hypotéz

Testování statistických hypotéz Testováí statstckých hypotéz - Testováí hypotéz je postup, sloužící k ověřeí předpokladů o ZS (hypotéz a základě výběrových dat (tj. hodot z výběrového souboru. - ypotéza = určtý předpoklad o základím

Více

14. Korelace Teoretické základy korelace Způsoby měření závislostí pro různé typy dat

14. Korelace Teoretické základy korelace Způsoby měření závislostí pro různé typy dat 4. Korelace 4. Teoretcké základy korelace 4. Způsoby měřeí závslostí pro růzé typy dat Př prác se statstckým údaj se velm často setkáváme s daty, která jsou tvořea dvojcem, trojcem hodot. Složky takovýchto

Více

Elementární zpracování statistického souboru

Elementární zpracování statistického souboru Elemetárí zpracováí statistického souboru Obsah kapitoly 4. Elemetárí statistické zpracováí - parametrizace vhodými empirickými parametry Studijí cíle Naučit se výsledky měřeí parametrizovat vhodými empirickými

Více

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu Cvičeí 6: Výpočet středí hodoty a rozptylu, bodové a itervalové odhady středí hodoty a rozptylu Příklad 1: Postupě se zkouší spolehlivost čtyř přístrojů Další se zkouší je tehdy, když předchozí je spolehlivý

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

Statistika - vícerozměrné metody

Statistika - vícerozměrné metody Statstka - vícerozměré metody Mgr. Mart Sebera, Ph.D. Katedra kezologe Masarykova uverzta Fakulta sportovích studí Bro 0 Obsah Obsah... Sezam obrázků... 4 Sezam tabulek... 4 Úvod... 6 Pojmy... 7 Náhodé

Více

DISKRÉTNÍ MATEMATIKA II

DISKRÉTNÍ MATEMATIKA II Faulta pedagogcá Techcá uverzta v Lberc DISKRÉTNÍ MATEMATIKA II Doc. RNDr. Mroslav Koucý CSc. Lberec 4 Úvod Dsrétí ateata resp. její zálady patří jž tradčě ez stadardí téata předášeá a Techcé uverztě v

Více

Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy. Předmět, mezipředmětové vztahy: matematika a její aplikace

Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy. Předmět, mezipředmětové vztahy: matematika a její aplikace Název: Kombiatoria Autor: Mgr. Haa Čerá Název šoly: Gymázium Jaa Nerudy, šola hl. města Prahy Předmět, mezipředmětové vztahy: matematia a její apliace Ročí: 5. ročí Tématicý cele: Kombiatoria a pravděpodobost

Více

PŘÍKLAD NA VÁŽENÝ ARITMETICKÝ PRŮMĚR Z INTERVALOVÉHO ROZDĚLENÍ ČETNOSTI

PŘÍKLAD NA VÁŽENÝ ARITMETICKÝ PRŮMĚR Z INTERVALOVÉHO ROZDĚLENÍ ČETNOSTI PŘÍKLAD NA VÁŽENÝ ARITMETICKÝ PRŮMĚR Z INTERVALOVÉHO ROZDĚLENÍ ČETNOSTI Přílad 0.6 Pracoví, terý spravuje podovou databáz, eportoval do tabulového procesoru všechy pracovíy podu Alfa Blatá s ěterým sledovaým

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

IAJCE Přednáška č. 12

IAJCE Přednáška č. 12 Složitost je úvod do problematiky Úvod praktická realizace algoritmu = omezeí zejméa: o časem o velikostí paměti složitost = vztah daého algoritmu k daým prostředkům: časová složitost každé možiě vstupích

Více

1. Úvod do základních pojmů teorie pravděpodobnosti

1. Úvod do základních pojmů teorie pravděpodobnosti 1. Úvod do záladních pojmů teore pravděpodobnost 1.1 Úvodní pojmy Většna exatních věd zobrazuje své výsledy rgorózně tj. výsledy jsou zísávány na záladě přesných formulí a jsou jejch nterpretací. em je

Více

UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesné výchovy

UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesné výchovy UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesé výchovy VYBRANÉ NEPARAMETRICKÉ STATISTICKÉ POSTUPY V ANTROPOMOTORICE Zdeěk Havel Davd Chlář 0 VYBRANÉ NEPARAMETRICKÉ

Více

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují

Více

Téma 3: Popisná statistika

Téma 3: Popisná statistika Popá tatta Téma : Popá tatta Předáša 7 Záladí tattcé pojmy Pojem a úoly tatty Statta je věda, teá e zabývá zíáváím, zpacováím a aalýzou dat po potřeby ozhodováí. Zoumá tav a vývoj homadých jevů a vztahů

Více

1.3. POLYNOMY. V této kapitole se dozvíte:

1.3. POLYNOMY. V této kapitole se dozvíte: 1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí

Více

1.1 Definice a základní pojmy

1.1 Definice a základní pojmy Kaptola. Teore děltelost C. F. Gauss: Matematka je královou všech věd a teore čísel je králova matematky. Základím číselým oborem se kterým budeme v této kaptole pracovat jsou celá čísla a pouze v ěkterých

Více

1 EXPLORATORNÍ ANALÝZA PROMNNÝCH. as ke studiu kapitoly: 120 minut. Cíl: Po prostudování této kapitoly budete umt použít

1 EXPLORATORNÍ ANALÝZA PROMNNÝCH. as ke studiu kapitoly: 120 minut. Cíl: Po prostudování této kapitoly budete umt použít EXPLORATORNÍ ANALÝZA PROMNNÝCH as ke studu kaptoly: mut Cíl: Po prostudováí této kaptoly budete umt použít základí pojmy eploratorí (popsé) statstky typy datových promých statstcké charakterstky a grafckou

Více

Téma 11 Prostorová soustava sil

Téma 11 Prostorová soustava sil Stavebí statka,.ročík bakalářského studa Téma Prostorová soustava sl Prostorový svazek sl Statcký momet síly a dvojce sl v prostoru Obecá prostorová soustava sl Prostorová soustava rovoběžých sl Katedra

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů: Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy

Více

Statistická rozdělení

Statistická rozdělení Úvod Statstcá rozděleí Václav Adamec vadamec@medelu.cz Náhodá proměá: matematcá velča, jejíž hodot osclují. Produt áhodého procesu lze charaterzovat fucí Hodot proměé v oboru přípustých hodot Rozděleí

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR Ze serveru www.czso.cz jsme sledovali sklizeň obilovi v ČR. Sklizeň z ěkolika posledích let jsme vložili do tabulky 10.10. V kapitole 7. Idexy

Více

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT Základy práce s tabulkou Výukový modul III. Iovace a zkvalitěí výuky prostředictvím ICT Téma III..3, pracoví list 3 Techická měřeí v MS Ecel Průměry a četosti, odchylky změřeých hodot. Ig. Jiří Chobot

Více

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky Téma 6.: Základí pojmy matematické statistiky Vlastosti důležitých statistik odvozeých z jedorozměrého áhodého výběru: Nechť X,..., X je áhodý výběr z rozložeí se středí hodotou μ, rozptylem σ a distribučí

Více

!!! V uvedených vzorcích se vyskytují čísla n a k tato čísla musí být z oboru čísel přirozených.

!!! V uvedených vzorcích se vyskytují čísla n a k tato čísla musí být z oboru čísel přirozených. Kombiatoria Kombiatoria část matematiy, terá se zabývá růzými číselými "ombiacemi". Využití - apř při hledáí počtu možých tipů ve sportce ebo jiých soutěžích hrách, v chemii při spojováí moleul... Záladím

Více

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu Cvičeí 6: Bodové a itervalové odhady středí hodoty, rozptylu a koeficietu korelace, test hypotézy o středí hodotě při zámém rozptylu Příklad : Bylo zkoumáo 9 vzorků půdy s růzým obsahem fosforu (veličia

Více

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost Dráha [m] 9. Měřeí závslostí ve statstce Měřeí závslostí ve statstce se zývá především zkoumáím vzájemé závslost statstckých zaků vícerozměrých souborů. Závslost přtom mohou být apříklad pevé, volé, jedostraé,

Více

6. KOMBINATORIKA 181. 6.1. Základní pojmy 181 6.1.1. Počítání s faktoriály a kombinačními čísly 182. 6.2. Variace 184. 6.3.

6. KOMBINATORIKA 181. 6.1. Základní pojmy 181 6.1.1. Počítání s faktoriály a kombinačními čísly 182. 6.2. Variace 184. 6.3. Zálady matematiy Kombiatoria. KOMBINATORIKA 8.. Záladí pojmy 8... Počítáí s fatoriály a ombiačími čísly 8.. Variace 8.. Permutace 85.. Kombiace 87.5. Biomicá věta 89 Úlohy samostatému řešeí 9 Výsledy úloh

Více

2 EXPLORATORNÍ ANALÝZA

2 EXPLORATORNÍ ANALÝZA Počet automobilů Ig. Martia Litschmaová EXPLORATORNÍ ANALÝZA.1. Níže uvedeá data představují částečý výsledek zazameaý při průzkumu zatížeí jedé z ostravských křižovatek, a to barvu projíždějících automobilů.

Více

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů Semárky, předášky, bakalářky, testy - ekoome, ace, účetctví, ačí trhy, maagemet, právo, hstore... PODNIKOVÁ EKONOMIKA 3. Cea ceých papírů Ceé papíry jsou jedím ze způsobů, jak podk může získat potřebý

Více

1.3. ORTOGONÁLNÍ A ORTONORMÁLNÍ BÁZE

1.3. ORTOGONÁLNÍ A ORTONORMÁLNÍ BÁZE ORTOGONÁLNÍ A ORTONORMÁLNÍ BÁZE V této kaptole se dozvíte: jak je oecě defováa kolmost (ortogoalta) vektorů; co rozumíme ortogoálí a ortoormálí ází; co jsou to tzv relace ortoormalty a Croeckerovo delta;

Více

1. K o m b i n a t o r i k a

1. K o m b i n a t o r i k a . K o m b i a t o r i k a V teorii pravděpodobosti a statistice budeme studovat míru výskytu -pravděpodobostvýsledků procesů, které mají áhodý charakter, t.j. při opakováí za stejých podmíek se objevují

Více

stavební obzor 1 2/2014 11

stavební obzor 1 2/2014 11 tavebí obzor /04 Exploratorí aalýza výběrového ouboru dat pevoti drátobetou v tlau Ig. Daiel PIESZKA Ig. Iva KOLOŠ, Ph.D. doc. Ig. Karel KUBEČKA, Ph.D. VŠB-TU Otrava Faulta tavebí Věrohodé vyhodoceí experimetálích

Více

4. KRUHOVÁ KONVOLUCE, RYCHLÁ FOURIEROVA TRANSFORMACE (FFT) A SPEKTRÁLNÍ ANALÝZA SIGNÁLŮ

4. KRUHOVÁ KONVOLUCE, RYCHLÁ FOURIEROVA TRANSFORMACE (FFT) A SPEKTRÁLNÍ ANALÝZA SIGNÁLŮ 4. KRUHOVÁ KOVOLUCE, RYCHLÁ FOURIEROVA TRASFORMACE FFT A SEKTRÁLÍ AALÝZA SIGÁLŮ Kruová cylcá ovoluce Ryclá Fourerova trasformace Aplace DFT a aalogové sgály, frevečí aalýza perodcýc aalogovýc sgálů s využtím

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

TĚŽIŠTĚ A STABILITA. Těžiště tělesa = bod, kterým stále prochází výslednice tíhových sil všech jeho hmotných bodů, ať těleso natáčíme jakkoli

TĚŽIŠTĚ A STABILITA. Těžiště tělesa = bod, kterým stále prochází výslednice tíhových sil všech jeho hmotných bodů, ať těleso natáčíme jakkoli SAIKA - těžště ĚŽIŠĚ A SABILIA ěžště tělesa bod, kterým stále prochází výsledce tíhových sl všech jeho hmotých bodů, ať těleso atáčíme jakkol bod, ke kterému astává rovováha mometů způsobeých tíhou jedotlvých

Více

6. FUNKCE A POSLOUPNOSTI

6. FUNKCE A POSLOUPNOSTI 6. FUNKCE A POSLOUPNOSTI Fukce Dovedosti:. Základí pozatky o fukcích -Chápat defiici fukce,obvyklý způsob jejího zadáváí a pojmy defiičí obor hodot fukce. U fukcí zadaých předpisem umět správě operovat

Více

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti 1 Základí statistické zpracováí dat 1.1 Základí pojmy Populace (základí soubor) je soubor objektů (statistických jedotek), který je vymeze jejich výčtem ebo charakterizací jejich vlastostí, může být proto

Více

Testy statistických hypotéz

Testy statistických hypotéz Úvod Testy statstckých hypotéz Václav Adamec vadamec@medelu.cz Testováí: kvalfkovaá procedura vedoucí v zamítutí ebo ezamítutí ulové hypotézy v podmíkách ejstoty Testy jsou vázáy a rozděleí áhodých velč

Více

Tržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c t tedy platí c t = c t + ε t.

Tržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c t tedy platí c t = c t + ε t. Techická aalýza Techická aalýza z vývoje cey a obchodovaých objemů akcie odvozuje odhad budoucího vývoje cey. Dalšími metodami odhadu vývoje ce akcií jsou apř. fudametálí aalýza (zkoumá podrobě účetictví

Více

Střední hodnoty. Aritmetický průměr prostý Aleš Drobník strana 1

Střední hodnoty. Aritmetický průměr prostý Aleš Drobník strana 1 Středí hodoty. Artmetcký průměr prostý Aleš Drobík straa 0. STŘEDNÍ HODNOTY Př statstckém zjšťováí často zpracováváme statstcké soubory s velkým možstvím statstckých jedotek. Např. soubor pracovíků orgazace,

Více

STATISTICKÉ MINIMUM PRO STUDENTY BAKALÁŘSKÉHO STUDIA NA TECHNICKÝCH OBORECH BOHUMIL MINAŘÍK

STATISTICKÉ MINIMUM PRO STUDENTY BAKALÁŘSKÉHO STUDIA NA TECHNICKÝCH OBORECH BOHUMIL MINAŘÍK STATISTICKÉ MINIMUM PRO STUDENTY BAKALÁŘSKÉHO STUDIA NA TECHNICKÝCH OBORECH BOHUMIL MINAŘÍK 04 prof. Ig. Bohuml Mařík, CSc. STATISTICKÉ MINIMUM PRO STUDENTY BAKALÁŘSKÉHO STUDIA NA TECHNICKÝCH OBORECH.

Více

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů.

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů. Náhodu bychom mohli defiovat jako součet velkého počtu drobých epozaých vlivů. V rámci přírodích věd se setkáváme s pokusy typu za určitých podmíek vždy astae určitý důsledek. Např. jestliže za ormálího

Více

6. Posloupnosti a jejich limity, řady

6. Posloupnosti a jejich limity, řady Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme

Více

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE 1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE V této kapitole se dozvíte: jak je axiomaticky defiová vektor a vektorový prostor včetě defiice sčítáí vektorů a ásobeí vektorů skalárem;

Více

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS.

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS. Dopraví stroje a zařízeí odborý zálad AR 04/05 Idetifiačí číslo: Počet otáze: 6 Čas : 60 miut Počet bodů Hodoceí OTÁZKY: ) Vypočtěte eálí poměr rozděleí brzdých sil a ápravy dvouápravového vozla bez ABS.

Více

4. Třídění statistických dat pořádek v datech

4. Třídění statistických dat pořádek v datech 4. Třídění statstcých dat pořáde v datech Záladní členění statstcých řad: řada časová, řada prostorová, řada věcná věcná slovní řada, věcná číselná řada. Záladem statstcého třídění je uspořádání hodnot

Více

Popis datového souboru

Popis datového souboru Lece 3 Pop datového ouboru Zatím jme hovořl převážě o zjšťováí dat a jejch zpracováí Údaje datového ouboru popují aždý případ zvlášť Ní e pouíme vužít údaje tomu, abchom zobecl určté tpcé vlatot datového

Více