Základní principy fyziky semestrální projekt. Studium dynamiky kladky, závaží a vozíku

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Základní principy fyziky semestrální projekt. Studium dynamiky kladky, závaží a vozíku"

Transkript

1 Zákldní principy fyziky seestrální projekt Studiu dyniky kldky, závží vozíku Petr Luzr I/4 008/009

2 Zákldní principy fyziky Seestrální projekt Projekt zdl: Projekt vyprcovl: prof. In. rntišek Schuer, DrSc. Petr Luzr, obor Inforční technoloie. ročník bklářského studi Akdeický rok: 008/009 Místo zprcování: Kroěříž, 8.listopdu

3 Zákldní principy fyziky Seestrální projekt Obsh. Úvod popis siulčního plletu...4. eorie dyniky tuhého těles Druhý Newtonův zákon Důsledky zákon síly D'Alebertův princip Enerie tuhého těles Kinetická enerie Výpočet Závěr práce Použitá litertur

4 Zákldní principy fyziky Seestrální projekt. Úvod popis siulčního plletu Pro vyprcování seestrálního projektu do předětu Zákldní principy fyziky jse si zvolil té Studiu dyniky kldky, závží vozíku, které jse si vybrl z nepřeberného nožství nbízených náětů. Mý úkole je zjistit prostudovt čtyři fktory ze siulčního pletu: zrychlení systéu síl npínjící lno thová síl hotnost kldky oent setrvčnosti kldky Siulční plet se nchází n internetové drese: Zčátek Konec N siulci vidíe vozík odré závží zvěšené přes kldku, které vozík táhne po podložce s nízký třecí koeficiente

5 Zákldní principy fyziky Seestrální projekt. eorie dyniky tuhého těles uhé těleso ůžee chápt jko speciální přípd soustvy hotných bodů, pro kterou pltí, že bez ohledu n pohyb působící síly se vzdálenosti ezi jednotlivýi body neění. uhé těleso lze chápt i jko odel reálného těles z důvodu, že reálná těles jsou deforovtelná. Zákldníi typy pohybů u těchto těles jsou trnslční pohyby pohyby rotční kole stálé osy otáčení. U složitějších pohybů ůžee tyto pohyby rozdělit do jednotlivých složek pohybů. Pohybové rovnice tuhého těles lze získt buď podle druhého Newtonov zákon nebo podle d Alebertov principu... Druhý Newtonův zákon Druhý Newtonův zákon je též nzýván zákone síly. Říká, že velikost zrychlení hotného bodu je přío úěrná velikosti výslednice sil působících n hotný bod nepřío úěrná hotnosti hotného bodu [ ]. ento Newtonův pozntek vyplývá ze zákon setrvčnosti, který je forulován: Jkile n těleso zčne působit síl, zění se jeho pohybový stv. Jednotkou síly je tedy Newton, znčí se N. r r [ ] Pohybovou rovnici lze sestvit i z yšlenky, že zrychlení je derivce rychlosti, nebo-li druhá derivce polohy [ ]. r r d [ ] dt Rovnice ovše pltí z předpokldu, že hotnost těles se v čse neění. o le neusí být vždy splněno (strtující rketě ubývá plivo nebo se hotnost ění při reltivistických rychlostech). V to přípdě je třeb užít obecnější tvr pohybové rovnice [ 3 ], kde p je hybnost těles. r r dp [ 3 ] dt - 5 -

6 Zákldní principy fyziky Seestrální projekt... Důsledky zákon síly Koná-li těleso rovnoěrný příočrý pohyb, je jeho zrychlení nulové tké výslednice sil je rovn nule [ 4 ]. Popsná situce nstává, právě tehdy jestliže n těleso nepůsobí žádná síl nebo v přípdě, že se působící síly nvzáje ruší. 0N [ 4 ] Koná-li těleso rovnoěrně zrychlený nebo zpolený pohyb, je jeho zrychlení konstntní tké výslednice sil je konstntní [ 5 ]. konst. [ 5 ].. D'Alebertův princip D Alebertovů princip je zložen n rovnováze působících vnějších sil sil setrvčných. Při této etodě používáe soustvu spojenou s pohybující se tělese setrvčné síly jednotlivých eleentů těles, resp. jejich setrvčné oenty, sloučíe do výsledné setrvčné síly (setrvčného oentu). D'Alebertův princip se vzthuje k zákonů pohybu v klsické echnice. Prezentuje ekvivlentní vyjádření druhého Newtonov zákon. ento význný frncouzský fyzik tetik, celý jéne Jen le Rond d'alebert, díky svéu principu položil zákldy tzv. lrneovské echniky. ento princip říká, že součet rozdílů ezi sili působícíi n systé čsovýi zěni hybnosti systéu při virtuální posunutí systéu je nulový. D'Alebertův princip bývá tké vyjdřován tk, že při pohybu echnické soustvy jsou setrvčné síly v rovnováze s explicitníi sili. předstvuje jiné pojetí k popisu echniky než jké využívjí Newtonovy pohybové rovnice. K popisu echniky je ožné zvolit jiný vzth tohoto pohybu, který je v noh přípdech výhodnější

7 Zákldní principy fyziky Seestrální projekt.3. Enerie tuhého těles Enerii lze chápt jko schopnost vykonávt práci. Abycho ohli vykont práci, potřebujee k ní enerii. Celková echnická enerie je součet enerie kinetické potencionální. Jednotkou je Joule, znčný velký J. J k s.3.. Kinetická enerie Kinetická enerie je enerie pohybová. Vyjdřuje skutečnost, že pohybující se těleso je schopné kont práci jko důsledek svého pohybu. Kinetickou enerii ůžee rozdělit n enerii pro těles při posuvné pohybu [ 6 ] pro těles při otáčivé pohybu [ 7 ]. V é přípdě ovše budu tyto dvě rovnice enerie kobinovt [ 8 ], resp. sčítt, kde předstvuje hotnost, v rychlost posuvného pohybu w je rychlost otáčivého pohybu. E [ 6 ] k v E k J ω [ 7 ] Ek v J ω [ 8 ] - 7 -

8 Zákldní principy fyziky Seestrální projekt 3. Výpočet Systé I Hotnost,0 k Hotnost 0,5 k řecí koeficient f 0, Poloěr kldky r 0,05 y x Systé II Jko první jse se rozhodl řešit zrychlení soustvy. K výpočtu jse dospěl tk, že jse si překreslenou situci z plletu rozdělil do dvou systéů znázorňující působící síly. Systé I n Systé II Do dirů jse si vynesl jednotlivé složky působící v systéech I II, kde předstvuje třecí sílu působící proti thové síle. N tíhovou sílu resp. působí v opčné sěru síl n, znázorňující sílu od podložky. Z jednotlivých dirů působících sil si ohu nyní sestvit soustvu rovnic pro výpočet. SystéI: x y n. Systé II: x y 0-8 -

9 Zákldní principy fyziky Seestrální projekt Po vytvoření rovnic pro kždý systé si vypočítá celkové zrychlení. oho docílí tk, že si vyjádří npř. z x-ové složky prvního systéu thovou sílu, kterou pk následně dosdí do rovnice druhého systéu y-ové složky. řecí koeficient jse si zvolil 0,. Poto ně vznikne následující:,96,5,943 0,5 0, 9,8 9,8,5 0 s f f n Nyní po výpočtu zrychlení lze i vypočítt thovou sílu. N f 94 3,,96 0, 9,8 Zrychlení thovou silu tké rovnou vypočítt z následujících vzorců:,96 9,8 0,5 0, 0,5 s f N f 3,94 9,8 0,5 0,5 0,) ( ) ( Nyní přejdu k výpočtu oentu setrvčnosti úhlové rychlosti kldky. Poté zjistí i její hotnost. Moent setrvčnosti zjistí z rovnice [ 9 ], do které dosdí jednotlivé kinetické enerie červeného těles, zeleného těles kldky. kkldky k k E E E v J v ω [ 9 ]

10 Zákldní principy fyziky Seestrální projekt Úhlovou rychlost kldky vypočítá poocí vzorce [ ]. Poloěr kldky jse zjistil ze siulčního plletu. Z rychlost v jse dosdil hodnotu,5 s -, kterou jse tké zjistil ze siulčního plletu. Ovše jestliže vypočítá rychlost z ého zrychlení, kde jse zohlednil i třecí koeficient, který jse si zvolil 0, vyšl by rychlost,5696 s -. Rychlost se vypočítá rovnicí [ 0 ], čs jse opět zjistil ze siulčního plletu. v t [ 0 ] v ω [ ] r v ω 50rd s r 0,05,5 v J ω v v J ω 0,5,5,5 J 50 J 0,00375k 4 0 v 3 k Jko poslední krok vypočítá hotnost kldky to poocí vzorce pro oent setrvčnosti válce nebo disku [ ], v é přípdě kldky. J r [ ] J r J 0,004 r 0,05 3,k - 0 -

11 Zákldní principy fyziky Seestrální projekt 4. Závěr práce Úkole v toto projektu bylo zjistil několik fktorů vyskytujících se v ukázkové plletu. Poocí Newtonových zákonů jse zjistil celkové zrychlení soustvy,96 s -. o le z předpokldu, když jse si zvolil třecí koeficient 0,. V přípdě, kdy jse tento koeficient znedbl, tudíž byl nulový, vyšlo zrychlení jiné ělo vliv i n okžitou rychlost v čse 0,8 sekundy. Rychlost v toto čse s ohlede n třecí koeficient vyšl v,5696 s -. Z plletu jde tedy vidět, že rychlost je odlišná o s -. Dále jse tedy počítl už s hodnoti ze siulce, tzn. s rychlostí,5 s -. Po výpočtu úhlové rychlosti kldky, která vyšl ω 50 rds - jse zjistil z rovnic pro kinetickou enerii i její oent setrvčnosti. en vyšel J 40-3 k. Jko poslední jse zjišťovl hotnost kldky, která vyšl 3, k. K projektu jse se snžil přistupovt s co největší pečlivostí to i z předpokldu, že ve výpočtech ohlo dojít k chybá způsobené lidský fktore nebo tké ze šptné úvhy fyzikálních zákonů. Ovše i tk povžuji tento úkol z velice poučný zjívý. - -

12 Zákldní principy fyziky Seestrální projekt 5. Použitá litertur DOSÁL J., JANÁČEK Z.: yzik, 5. vydání, Vysoké učení technické v Brně nkldtelství VUIUM, 997, ISBN: HALLIDAY D., RESNICK R., WALKER J.: yzik,. vydání, Vysoké učení technické v Brně nkldtelství VUIUM, 00, ISBN:

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501 1.5. Mechnická práce II Předpokldy: 1501 Př. 1: Těleso o hmotnosti 10 kg bylo vytženo pomocí provzu do výšky m ; poprvé rovnoměrným přímočrým pohybem, podruhé pohybem rovnoměrně zrychleným se zrychlením

Více

ZOBRAZOVACÍ ROVNICE OKY A KULOVÉHO ZRCADLA

ZOBRAZOVACÍ ROVNICE OKY A KULOVÉHO ZRCADLA OBRAOVACÍ ROVNICE OKY A KULOVÉHO RCADLA vtšení optického zobrzení pedešlých kpitol již víme, že pi zobrzení okmi nebo kulovými zrcdly mohou vznikt zvtšené nebo zmenšené obrzy pedmt. Pro jejich mtemtický

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

Obr. 1: Optická lavice s příslušenstvím při měření přímou metodou. 2. Určení ohniskové vzdálenosti spojky Besselovou metodou

Obr. 1: Optická lavice s příslušenstvím při měření přímou metodou. 2. Určení ohniskové vzdálenosti spojky Besselovou metodou MĚŘENÍ PARAMETRŮ OPTICKÝCH SOUSTAV Zákldním prmetrem kždé zobrzovcí soustvy je především její ohnisková vzdálenost. Existuje několik metod k jejímu určení le téměř všechny jsou ztíženy určitou nepřesností

Více

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

2.2.9 Grafické řešení rovnic a nerovnic

2.2.9 Grafické řešení rovnic a nerovnic ..9 Grfické řešení rovnic nerovnic Předpokldy: 0, 06 Př. : Řeš početně i grficky rovnici x + = x. Početně: Už umíme. x + = x x = x = K = { } Grficky: Kždá ze strn rovnice je výrzem pro lineární funkci

Více

P2 Číselné soustavy, jejich převody a operace v čís. soustavách

P2 Číselné soustavy, jejich převody a operace v čís. soustavách P Číselné soustvy, jejich převody operce v čís. soustvách. Zobrzení čísl v libovolné číselné soustvě Lidé využívjí ve svém životě pro zápis čísel desítkovou soustvu. V této soustvě máme pro zápis čísel

Více

Teoretický souhrn k 2. až 4. cvičení

Teoretický souhrn k 2. až 4. cvičení SYSTÉMOVÁ ANALÝZA A MODELOVÁNÍ Teoretcký souhrn k 2. ž 4. cvčení ZS 2009 / 200 . Vyezení zákldních poů.. Systé e Systé e účelově defnovná nožn prvků vze ez n, která spolu se svý vstupy výstupy vykzue ko

Více

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Projekt relizovný n PŠ Nové Město nd Metují s finnční podporou v Operční proru Vzdělávání pro konkurencescopnost Královérdeckéo krje Modul 03 - Tecnické předěty In. Jn Jeelík - nuk o rovnováze kplin jejic

Více

2.9.11 Logaritmus. Předpoklady: 2909

2.9.11 Logaritmus. Předpoklady: 2909 .9. Logritmus Předpokld: 909 Pedgogická poznámk: Následující příkld vždují tk jeden půl vučovcí hodin. V přípdě potřeb všk stčí dojít k příkldu 6 zbtek jen ukázt, což se dá z jednu hodinu stihnout (nedoporučuji).

Více

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa. .4. Obsh pláště otčního těles.4. Obsh pláště otčního těles Cíle Seznámíte se s dlší plikcí učitého integálu výpočtem obshu pláště otčního těles. Předpokládné znlosti Předpokládáme, že jste si postudovli

Více

Pístový efekt výtahů ve stavebních objektech

Pístový efekt výtahů ve stavebních objektech Pístový efekt výthů ve stvebních objektech Ing. Jiří Pokorný, Ph.D. Hsičský záchrnný sbor Morvskoslezského krje úzení odbor Opv Těšínská 39, 746 01 Opv e-il: jiripokorny@ujil.cz Klíčová slov Pístový efekt,

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa. .. Ojem rotčního těles Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem ojemu rotčního těles. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál (kpitol.).

Více

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník TUHÉ TĚLESO Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Tuhé těleso Tuhé těleso je ideální těleso, jehož objem ani tvar se účinkem libovolně velkých sil nemění. Pohyb tuhého tělesa: posuvný

Více

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření.

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření. Úloh č. 9 je sestven n zákldě odkzu n dv prmeny. Kždý z nich přistupuje k stejnému úkolu částečně odlišnými způsoby. Níže jsou uvedeny ob zdroje v plném znění. V kždém z nich jsou pro posluchče cenné inormce

Více

3.1.3 Rychlost a zrychlení harmonického pohybu

3.1.3 Rychlost a zrychlení harmonického pohybu 3.1.3 Rychlost a zrychlení haronického pohybu Předpoklady: 312 Kroě dráhy (výchylky) popisujee pohyb i poocí dalších dvou veličin: rychlosti a zrychlení. Jak budou vypadat jejich rovnice? Společný graf

Více

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM homogenizace (směšovací pravidla)

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM homogenizace (směšovací pravidla) KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 23TVVM hoogenizce (sěšovcí prvidl) Hoogenizce Stvební teriály sou z hledisk zstoupení doinntních složek několikfázové systéy: Dvoufázové trice, vzduch (póry)

Více

1 Tuhé těleso a jeho pohyb

1 Tuhé těleso a jeho pohyb 1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité

Více

( 5 ) 6 ( ) 6 ( ) Přijímací řízení ak. r. 2010/11 Kompletní znění testových otázek - matematický přehled

( 5 ) 6 ( ) 6 ( ) Přijímací řízení ak. r. 2010/11 Kompletní znění testových otázek - matematický přehled řijímcí řízení k. r. / Kompletní znění testových otázek - mtemtický přehled Koš Znění otázky Odpověď ) Odpověď b) Odpověď c) Odpověď d) Správná odpověď. Které číslo doplníte místo otzníku? 8?. Které číslo

Více

Dynamika. Dynamis = řecké slovo síla

Dynamika. Dynamis = řecké slovo síla Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při

Více

Srovnání klasického a kvantového oscilátoru. Ondřej Kučera

Srovnání klasického a kvantového oscilátoru. Ondřej Kučera Srovnání klasického a kvantového oscilátoru Ondřej Kučera Seestrální projekt 010 Obsah 1. Úvod... 3. Teorie k probleatice... 4.1. Mechanika... 4.1.1. Klasická echanika... 4.1.1.1. Klasický oscilátor...

Více

1.1.20 Sbírka na procvičení vztahů mezi veličinami popisujícími pohyb

1.1.20 Sbírka na procvičení vztahů mezi veličinami popisujícími pohyb 1.1.20 Sbírk n procvičení vzhů mezi veličinmi popisujícími pohyb Máme ři veličiny popisující pohyb dv vzhy, keré je spojují nvzájem. s v = Rychlos je změn dráhy z změnu čsu (rychlos říká, jk se v čse mění

Více

1.2.5 2. Newtonův zákon I

1.2.5 2. Newtonův zákon I 15 Newtonův zákon I Předpoklady: 104 Z inulé hodiny víe, že neexistuje příý vztah (typu příé nebo nepříé úěrnosti) ezi rychlostí a silou hledáe jinou veličinu popisující pohyb, která je navázána na sílu

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

Test jednotky, veličiny, práce, energie, tuhé těleso

Test jednotky, veličiny, práce, energie, tuhé těleso DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost

Více

13. Soustava lineárních rovnic a matice

13. Soustava lineárních rovnic a matice @9. Soustv lineárních rovnic mtice Definice: Mtice je tbulk reálných čísel. U mtice rozlišujeme řádky (i=,..n), sloupce (j=,..m) říkáme, že mtice je typu (n x m). Oznčíme-li mtici písmenem A, její prvky

Více

Řešení testu 1b. Fyzika I (Mechanika a molekulová fyzika) NOFY021. 19. listopadu 2015

Řešení testu 1b. Fyzika I (Mechanika a molekulová fyzika) NOFY021. 19. listopadu 2015 Řešení testu b Fyzika I (Mechanika a olekulová fyzika) NOFY0 9. listopadu 05 Příklad Zadání: Kulička byla vystřelena vodorovně rychlostí 0 /s do válcové roury o průěru a koná pohyb naznačený na obrázku.

Více

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY Předmět: Ročník: Vytvořil: Datum: MECHNIK PRVNÍ ŠČERBOVÁ M. PVELK V. 15. ZÁŘÍ 2012 Název zpracovaného celku: NOSNÍKY ) NOSNÍKY ZTÍŽENÉ OBECNOU SOUSTVOU SIL Obecný postup při matematickém řešení reakcí

Více

Molekulová fyzika. Reálný plyn. Prof. RNDr. Emanuel Svoboda, CSc.

Molekulová fyzika. Reálný plyn. Prof. RNDr. Emanuel Svoboda, CSc. Molekulová fyzik Reálný lyn Prof. RNDr. Enuel Svood, CSc. Reálný lyn Existence vzájeného silového ůsoení ezi částicei (tzv. vn der Wlsovské síly) Odudivá síl ezi částicei (interkce řekryvová) ři dosttečně

Více

Měření odporu ohmovou metodou

Měření odporu ohmovou metodou ěření odporu ohmovou metodou Teoretický rozbor: ýpočet a S Pro velikost platí: Pro malé odpory: mpérmetr však neměří pouze proud zátěže ale proud, který je dán součtem proudu zátěže a proudu tekoucího

Více

Nosné stavební konstrukce Výpočet reakcí

Nosné stavební konstrukce Výpočet reakcí Stvení sttik 1.ročník klářského studi Nosné stvení konstrukce Výpočet rekcí Reálné ztížení nosných stveních konstrukcí Prut geometrický popis vnější vzy nehynost silové ztížení složky rekcí Ktedr stvení

Více

VZDUCH V MÍSTNOSTI POMŮCKY NASTAVENÍ MĚŘICÍHO ZAŘÍZENÍ. Vzdělávací předmět: Fyzika. Tematický celek dle RVP: Látky a tělesa

VZDUCH V MÍSTNOSTI POMŮCKY NASTAVENÍ MĚŘICÍHO ZAŘÍZENÍ. Vzdělávací předmět: Fyzika. Tematický celek dle RVP: Látky a tělesa VZDUCH V MÍSTNOSTI Vzdělávací předět: Fyzika Teatický celek dle RVP: Látky a tělesa Teatická oblast: Měření fyzikálních veličin Cílová skupina: Žák 6. ročníku základní školy Cíle pokusu je určení rozěrů

Více

Úvod. 1 Převody jednotek

Úvod. 1 Převody jednotek Úvod 1 Převody jednotek Násobky a díly jednotek: piko p 10-12 nano n 10-9 mikro μ 10-6 mili m 10-3 centi c 10-2 deci d 10-1 deka da 10 1 hekto h 10 2 kilo k 10 3 mega M 10 6 giga G 10 9 tera T 10 12 Ve

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

Určete velikost zrychlení, kterým se budou tělesa pohybovat. Vliv kladky zanedbejte.

Určete velikost zrychlení, kterým se budou tělesa pohybovat. Vliv kladky zanedbejte. Určete velikost zrychlení, kterým se budou tělesa pohybovat. Vliv kladky zanedbejte. Pozn.: Na konci je uvedena stručná verze výpočtu, aby se vešla na jednu stránku. Začneme silovým rozborem. Na první

Více

1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N?

1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N? MECHANICKÁ PRÁCE 1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N? l = s = 6 cm = 6 10 2 m F = 120 N W =? (J) W = F. s W = 6 10 2 120 = 7,2 W = 7,2 J

Více

5.1.5 Základní vztahy mezi body přímkami a rovinami

5.1.5 Základní vztahy mezi body přímkami a rovinami 5.1.5 Zákldní vzthy mezi body přímkmi rovinmi Předpokldy: 510 Prostor má tři rozměry, skládá se z bodů. Přímk - jednorozměrná podmnožin prostoru (množin bodů) Rovin - dvojrozměrná podmnožin prostoru (množin

Více

1.1 Numerické integrování

1.1 Numerické integrování 1.1 Numerické integrování 1.1.1 Úvodní úvhy Nším cílem bude přibližný numerický výpočet určitého integrálu I = f(x)dx. (1.1) Je-li znám k integrovné funkci f primitivní funkce F (F (x) = f(x)), můžeme

Více

c 2 b 2 a 2 2.8.20 Důkazy Pythagorovy věty Předpoklady: 020819

c 2 b 2 a 2 2.8.20 Důkazy Pythagorovy věty Předpoklady: 020819 .8.0 Důkzy Pythgorovy věty Předpokldy: 00819 Pedgogická poznámk: V řešení kždého příkldu jsou uvedeny rdy, které dávám postupně žákům, bych jim pomohl. Pedgogická poznámk: Diskuse o následujícím příkldu

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

Určení geometrických a fyzikálních parametrů čočky

Určení geometrických a fyzikálních parametrů čočky C Určení geoetrickýc a yzikálníc paraetrů čočky Úkoly :. Určete poloěry křivosti ploc čočky poocí séroetru. Zěřte tloušťku čočky poocí digitálnío posuvnéo ěřítka 3. Zěřte oniskovou vzdálenost spojné čočky

Více

Digitální učební materiál

Digitální učební materiál Digitální učební ateriál Číslo projektu CZ.1.07/1.5.00/4.0802 Název projektu Zkvalitnění výuky prostřednictví ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictví

Více

5.1 ČÍM JE ZPŮSOBENO ZRYCHLENÍ?

5.1 ČÍM JE ZPŮSOBENO ZRYCHLENÍ? 5 SÌl pohyb I Vöude n svïtï mjì lidè v oblibï soutïûe rekordy. Snd proto, by se p esvïdëili, ûe hrnice lidsk ch moûnostì lze neust le posouvt. A tk se tu tm dovìd me o nejr znïjöìch neobvykl ch v konech,

Více

BIOMECHANIKA. 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti)

BIOMECHANIKA. 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti) BIOMECHANIKA 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti) Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin

Více

F-1 Fyzika hravě. (Anotace k sadě 20 materiálů) ROVNOVÁŽNÁ POLOHA ZAPOJENÍ REZISTORŮ JEDNODUCHÝ ELEKTRICKÝ OBVOD

F-1 Fyzika hravě. (Anotace k sadě 20 materiálů) ROVNOVÁŽNÁ POLOHA ZAPOJENÍ REZISTORŮ JEDNODUCHÝ ELEKTRICKÝ OBVOD F-1 Fyzika hravě ( k sadě 20 materiálů) Poř. 1. F-1_01 KLID a POHYB 2. F-1_02 ROVNOVÁŽNÁ POLOHA Prezentace obsahuje látku 1 vyučovací hodiny. materiál slouží k opakování látky na téma relativnost klidu

Více

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská

Více

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT 1. Mechanika 1. 3. Newtonovy zákony 1 Autor: Jazyk: Aleš Trojánek čeština

Více

Úvod do elektrických měření I

Úvod do elektrických měření I Úvod do elektrických ěření I Historické střípky První pozorované elektrické jevy byly elektrostatické povahy Proto první elektrické ěřicí přístroje byly založeny právě na elektrostatické principu ezi první

Více

Vnitřní energie ideálního plynu podle kinetické teorie

Vnitřní energie ideálního plynu podle kinetické teorie Vnitřní energie ideálního plynu podle kinetické teorie Kinetická teorie plynu, která prní poloině 9.století dokázala úspěšně spojit klasickou fenoenologickou terodynaiku s echanikou, poažuje plyn za soustau

Více

SÍLY A JEJICH VLASTNOSTI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

SÍLY A JEJICH VLASTNOSTI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda SÍLY A JEJICH VLASTNOSTI Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Vzájemné působení těles Silové působení je vždy vzájemné! 1.Působení při dotyku 2.Působení na dálku prostřednictvím polí gravitační pole

Více

Moment síly Statická rovnováha

Moment síly Statická rovnováha Moment síly Statická rovnováha Kopírování a šíření tohoto materiálu lze pouze se souhlasem autorky PhDr. Evy Tlapákové, CSc. Jedná se o zatím pracovní verzi, rok 2009 ZKRÁCENÁ VERZE Síla může mít rozdílný

Více

BEZSTYKOVÁ KOLEJ NA MOSTECH

BEZSTYKOVÁ KOLEJ NA MOSTECH 7. 9. března 01 01 BEZSTYKOVÁ KOLEJ NA MOSTECH Doc. Ing. Otto Plášek, Ph.D Vysoké učení technické v Brně, Fakulta stavební 1. ÚVOD V současné době probíhá rozsáhlá odborná diskuze ke spolupůsobení ostní

Více

Dynamika I - příklady do cvičení

Dynamika I - příklady do cvičení Dynaika I - příklady do cvičení Poocí jednotek ověřte, zda platí vztah: ( sinβ + tgα cosβ) 2 2 2 v cos α L = L [] v [ s -1 ] g [ s -2 ] 2 g cos β π t = 4k v t [s] v [ s -1 ] [kg] k [kg -1 ] ln 2 L = 2k

Více

7.5.8 Středová rovnice elipsy

7.5.8 Středová rovnice elipsy 758 Středová rovnice elips Předpokld: 750, 7507 Př : Vrchol elips leží v odech A[ ;], B [ 3;], [ ;5], [ ; 3] elips souřdnice jejích ohnisek Urči prmetr Zdné souřdnice už n první pohled vpdjí podezřele,

Více

Odraz na kulové ploše Duté zrcadlo

Odraz na kulové ploše Duté zrcadlo Odz n kulové ploše Duté zcdlo o.. os zcdl V.. vchol zcdl S.. střed zcdl (kul. ploch).. polomě zcdl (kul. ploch) Ppsek vchází z odu A n ose zcdl po odzu n zcdle dopdá do nějkého odu B n ose. Podle oázku

Více

II. termodynamický zákon a entropie

II. termodynamický zákon a entropie Přednášk 5 II. termodynmický zákon entropie he lw tht entropy lwys increses holds, I think, the supreme position mong the lws of Nture. If someone points out to you tht your pet theory of the universe

Více

Čtvrtletní výkaz nebankovních peněžních institucí

Čtvrtletní výkaz nebankovních peněžních institucí Čtvrtletní výkz nebnkovních peněžních institucí Pen 3b- Registrováno ČSÚ ČV 78/ ze dne 4. 9.20 IKF 2730 20 Výkz je součástí Progrmu sttistických zjišťování n rok 20. Podle zákon č. 89/5 Sb., o státní sttistické

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázi zákldní vzdělávání Jroslv Švrček kolektiv Rámcový vzdělávcí progrm pro zákldní vzdělávání Vzdělávcí oblst: Mtemtik její plikce Temtický okruh: Nestndrdní plikční

Více

SEMINÁŘ I Teorie absolutních a komparativních výhod

SEMINÁŘ I Teorie absolutních a komparativních výhod PODKLDY K SEMINÁŘŮM ŘEŠENÉ PŘÍKLDY SEMINÁŘ I eorie bsolutních komprtivních výhod Zákldní principy teorie komprtivních výhod eorie komprtivních výhod ve své klsické podobě odvozuje motivci k obchodu z rozdílných

Více

1. Mechanika - úvod. [ X ] - měřící jednotka. { X } - označuje kvantitu (množství)

1. Mechanika - úvod. [ X ] - měřící jednotka. { X } - označuje kvantitu (množství) . Mechanika - úvod. Základní pojy V echanice se zabýváe základníi vlastnosti a pohybe hotných těles. Chcee-li přeístit těleso (echanický pohyb), potřebujee k tou znát tyto tři veličiny: hota, prostor,

Více

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90 ROVNICE A NEROVNICE 8 Lineární rovnice 8 Kvdrtické rovnice 8 Rovnice s bsolutní hodnotou 88 Ircionální rovnice 90 Eponenciální rovnice 9 Logritmické rovnice 9 7 Goniometrické rovnice 98 8 Nerovnice 0 Úlohy

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:

Více

DIPLOMOVÁ PRÁCE. Teorie nekonečných her

DIPLOMOVÁ PRÁCE. Teorie nekonečných her UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY DIPLOMOVÁ PRÁCE Teorie nekonečných her Vedoucí diplomové práce: doc. Mgr. Krel Pstor, Ph.D Rok odevzdání:

Více

DYNAMIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika

DYNAMIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika DYNAMIKA HMOTNÉHO BODU Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika Dynamika Obor mechaniky, který se zabývá příčinami změn pohybového stavu těles, případně jejich deformací dynamis = síla

Více

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0 Komplexní čísl Pojem komplexní číslo zvedeme př řešení rovnce: x 0 x 0 x - x Odmocnn ze záporného čísl reálně neexstuje. Z toho důvodu se oor reálných čísel rozšíří o dlší číslo : Všechny dlší odmocnny

Více

Regulace f v propojených soustavách

Regulace f v propojených soustavách Regulce f v propojených soustvách Zopkování principu primární sekundární regulce f v izolovné soustvě si ukážeme obr.,kde je znázorněn S Slovenské Republiky. Modře jsou vyznčeny bloky, které jsou zřzeny

Více

Hydromechanické procesy Hydrostatika

Hydromechanické procesy Hydrostatika Hydromechanické procesy Hydrostatika M. Jahoda Hydrostatika 2 Hydrostatika se zabývá chováním tekutin, které se vzhledem k ohraničujícímu prostoru nepohybují - objem tekutiny bude v klidu, pokud výslednice

Více

Termodynamická soustava Vnitřní energie a její změna První termodynamický zákon Řešení úloh Prof. RNDr. Emanuel Svoboda, CSc.

Termodynamická soustava Vnitřní energie a její změna První termodynamický zákon Řešení úloh Prof. RNDr. Emanuel Svoboda, CSc. Vnitřní energie a její zěna erodynaická soustava Vnitřní energie a její zěna První terodynaický zákon Řešení úloh Prof. RNDr. Eanuel Svoboda, CSc. erodynaická soustava a její stav erodynaická soustava

Více

2 i i. = m r, (1) J = r m = r V. m V

2 i i. = m r, (1) J = r m = r V. m V Měření momentu setrvčnosti 1 Měření momentu setrvčnosti Úko č. 1: Změřte moment setrvčnosti obdéníkové desky přímou metodou. Pomůcky Fyzické kyvdo (kovová obdéníková desk s třemi otvory), kovové těísko

Více

4.2.1 Goniometrické funkce ostrého úhlu

4.2.1 Goniometrické funkce ostrého úhlu .. Goniometriké funke ostrého úhlu Předpokldy: 7 Dnešní látku opkujeme už potřetí (poprvé n zčátku mtemtiky, podruhé ve fyzie) je to oprvdu důležité. C C C C C C Všehny prvoúhlé trojúhelníky s úhlem α

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

Astronomická olympiáda 2010/2011

Astronomická olympiáda 2010/2011 Astronomická olympiád 00/0 Úvod V roce 00 jsme si připomenuli jedno význmné domácí výročí, uplynulo totiž 600 let od vyrobení nejstrších částí pržského orloje. V roce 0 nás tké čeká celá řd stronomických

Více

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Kapacita a uložená energie

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Kapacita a uložená energie ELEKTŘINA A MAGNETIZMUS Řešené úlohy postupy: Kpcit uložená energie Peter Dourmshkin MIT 6, překld: Jn Pcák (7) Osh 4. KAPACITA A ULOŽENÁ ENERGIE 4.1 ÚKOLY 4. ALGORITMUS PRO ŘEŠENÍ PROBLÉMŮ ÚLOHA 1: VÁLCOVÝ

Více

FYZIKA 3. ROČNÍK. Vlastní kmitání oscilátoru. Kmitavý pohyb. Kinematika kmitavého pohybu. y m

FYZIKA 3. ROČNÍK. Vlastní kmitání oscilátoru. Kmitavý pohyb. Kinematika kmitavého pohybu. y m Vlastní itání oscilátoru Kitavý pohb Kitání periodicý děj zařízení oná opaovaně stejný pohb a periodic se vrací do určitého stavu. oscilátor zařízení, teré ůže volně itat (závaží na pružině, vadlo) it

Více

Datamining a AA (Above Average) kvantifikátor

Datamining a AA (Above Average) kvantifikátor Dtmining AA (Above Averge) kvntifikátor Jn Burin Lbortory of Intelligent Systems, Fculty of Informtics nd Sttistics, University of Economics, W. Churchill Sq. 4, 13067 Prgue, Czech Republic, burinj@vse.cz

Více

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s 1 Mechanická práce mechanická práce W jednotka: [W] = J (joule) skalární veličina a) síla rovnoběžná s vektorem posunutí F s s dráha, kterou těleso urazilo 1 J = N m = kg m s -2 m = kg m 2 s -2 vyjádření

Více

ZÁKLADY KRYSTALOGRAFIE KOVŮ A SLITIN

ZÁKLADY KRYSTALOGRAFIE KOVŮ A SLITIN ZÁKLADY KRYSTALOGRAFIE KOVŮ A SLITIN pevné látky jsou chrkterizovány omezeným pohybem zákldních stvebních částic (tomů, iontů, molekul) kolem rovnovážných poloh PEVNÉ LÁTKY krystlické morfní KRYSTAL pevné

Více

APLIKACE METODY RIPRAN V SOFTWAROVÉM INŽENÝRSTVÍ

APLIKACE METODY RIPRAN V SOFTWAROVÉM INŽENÝRSTVÍ APLIKACE METODY RIPRAN V SOFTWAROVÉM INŽENÝRSTVÍ Brnislv Lcko VUT v Brně, Fkult strojního inženýrství, Ústv utomtizce informtiky, Technická 2, 616 69 Brno, lcko@ui.fme.vutbr.cz Abstrkt Příspěvek podává

Více

3.2.11 Obvody a obsahy obrazců I

3.2.11 Obvody a obsahy obrazců I ..11 Obvody obshy obrzců I Předpokldy: S pomocí vzorců v uvedených v tbulkách řeš následující příkldy Př. 1: Urči výšku lichoběžníku o obshu 54cm zákldnách 7cm 5cm. + c Obsh lichoběžníku: S v Výšk lichoběžníku

Více

Téma 4 Rovinný rám Základní vlastnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzavřený rám

Téma 4 Rovinný rám Základní vlastnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzavřený rám Sttik stvebních konstrukcí I.,.ročník bklářského studi Tém 4 Rovinný rám Zákldní vlstnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzvřený rám Ktedr stvební mechniky Fkult stvební, VŠB - Technická

Více

Soustava SI. SI - zkratka francouzského názvu Système International d'unités (mezinárodní soustava jednotek).

Soustava SI. SI - zkratka francouzského názvu Système International d'unités (mezinárodní soustava jednotek). Soustava SI SI - zkratka francouzského názvu Systèe International d'unités (ezinárodní soustava jednotek). Vznikla v roce 1960 z důvodu zajištění jednotnosti a přehlednosti vztahů ezi fyzikálníi veličinai

Více

FYZIKA 2. ROČNÍK. ρ = 8,0 kg m, M m 29 10 3 kg mol 1 p =? Příklady

FYZIKA 2. ROČNÍK. ρ = 8,0 kg m, M m 29 10 3 kg mol 1 p =? Příklady Příklady 1. Jaký je tlak vzduchu v pneuatice nákladního autoobilu při teplotě C a hustotě 8, kg 3? Molární hotnost vzduchu M 9 1 3 kg ol 1. t C T 93 K -3 ρ 8, kg, M 9 1 3 kg ol 1 p? p R T R T ρ M V M 8,31

Více

FYZIKA. Newtonovy zákony. 7. ročník

FYZIKA. Newtonovy zákony. 7. ročník FYZIKA Newtonovy zákony 7. ročník říjen 2013 Autor: Mgr. Dana Kaprálová Zpracováno v rámci projektu Krok za krokem na ZŠ Želatovská ve 21. století registrační číslo projektu: CZ.1.07/1.4.00/21.3443 Projekt

Více

CHEMICKÉ VÝPOČTY II SLOŽENÍ ROZTOKŮ. Složení roztoků udává vzájemný poměr rozpuštěné látky a rozpouštědla v roztoku. Vyjadřuje se:

CHEMICKÉ VÝPOČTY II SLOŽENÍ ROZTOKŮ. Složení roztoků udává vzájemný poměr rozpuštěné látky a rozpouštědla v roztoku. Vyjadřuje se: CEMICKÉ VÝPOČTY II SLOŽENÍ ROZTOKŮ Teorie Složení roztoků udává vzájený poěr rozpuštěné látky a rozpouštědla v roztoku. Vyjadřuje se: MOTNOSTNÍM ZLOMKEM B vyjadřuje poěr hotnosti rozpuštěné látky k hotnosti

Více

Logické rovnice. 1 Úvod. 2 Soustavy logických rovnic

Logické rovnice. 1 Úvod. 2 Soustavy logických rovnic Logické rovice J Bborák, Gyáziu Česká Líp, bbork@sez.cz Ev Svobodová, Krlíské gyáziu, evsvobo@gil.co Doiik Tělupil, Gyáziu Bro, dtelupil@gil.co Abstrkt Záklde šeho iiproektu e počítáí poocí Booleovy lgebry

Více

hmotný bod je model tělesa, nemá tvar ani rozměr, ale má hmotnost tuhé těleso nepodléhá deformacím, pevné těleso ano

hmotný bod je model tělesa, nemá tvar ani rozměr, ale má hmotnost tuhé těleso nepodléhá deformacím, pevné těleso ano Tuhé těleso, hmotný bod, počet stupňů volnosti hmotný bod je model tělesa, nemá tvar ani rozměr, ale má hmotnost tuhé těleso nepodléhá deformacím, pevné těleso ano Stupně volnosti konstanta určující nejmenší

Více

5. 2 Vzdělávací oblast Matematika a její aplikace

5. 2 Vzdělávací oblast Matematika a její aplikace 5. 2 Vzdělávcí oblst Mtemtik její plikce 5. 2. 1 Chrkteristik vzdělávcí oblsti Mtemtiku chápeme především jko metodu ke kvntittivnímu popisu svět. Mtemtik je nšem pojetí jednoduchá, názorná plikovtelná,

Více

ČSN EN 1991-1-1 (Eurokód 1): Zatížení konstrukcí Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb. Praha : ČNI, 2004.

ČSN EN 1991-1-1 (Eurokód 1): Zatížení konstrukcí Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb. Praha : ČNI, 2004. STÁLÁ UŽITNÁ ZTÍŽENÍ ČSN EN 1991-1-1 (Eurokód 1): Ztížení konstrukcí Objemové tíhy, vlstní tíh užitná ztížení pozemních stveb. Prh : ČNI, 004. 1. Stálá ztížení stálé (pevné) ztížení stvebních prvků zhrnuje

Více

FYZIKA Mechanika tuhých těles

FYZIKA Mechanika tuhých těles Výukový materiál zpracován v rámci operačního projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0512 Střední škola ekonomiky, obchodu a služeb SČMSD Benešov, s.r.o. FYZIKA Mechanika

Více

Rentgenová strukturní analýza

Rentgenová strukturní analýza Rntgnová strukturní nlýz Příprvná část Objktm zájmu difrkční nlýzy jsou 3D priodicky uspořádné struktury (krystly), n ktrých dochází k rozptylu dopdjícího zářní. Díky intrfrnci rozptýlných vln vzniká difrkční

Více

VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE

VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jednoduchý stroj je jeden z druhů mechanických

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Ktedr geotechniky podzemního stvitelství Modelování v geotechnice Princip metody mezní rovnováhy (prezentce pro výuku předmětu Modelování v geotechnice) doc. RNDr. Ev Hrubešová, Ph.D. Inovce studijního

Více

Okamžitý výkon P. Potenciální energie E p (x, y, z) E = x E = E = y. F y. F x. F z

Okamžitý výkon P. Potenciální energie E p (x, y, z) E = x E = E = y. F y. F x. F z 5. Práce a energie 5.1. Základní poznatky Práce W jestliže se hmotný bod pohybuje po trajektorii mezi body (1) a (), je práce definována křivkovým integrálem W = () () () F dr = Fx dx + Fy dy + (1) r r

Více

Charakteristika předmětu:

Charakteristika předmětu: Vzdělávací oblast : Vyučovací předmět: Volitelné předměty Člověk a příroda Seminář z fyziky Charakteristika předmětu: Vzdělávací obsah: Základem vzdělávacího obsahu předmětu Seminář z fyziky je vzdělávací

Více

3.9. Energie magnetického pole

3.9. Energie magnetického pole 3.9. nergie agnetického poe 1. Uět odvodit energii agnetického poe cívky tak, aby bya vyjádřena poocí paraetrů obvodu (I a L).. Znát vztah pro energii agnetického poe cívky jako funkci veičin charakterizujících

Více

kritérium Návaznost na další dokumenty Dokument naplňující standard

kritérium Návaznost na další dokumenty Dokument naplňující standard 1. CÍLE A ZPŮSOBY ČINNOSTI POVĚŘENÉ OSOBY Dokument obshuje zákldní prohlášení středisk Služby pro pěstouny, do kterého se řdí: poslání, cílová skupin, cíle zásdy, v souldu s kterými je služb poskytován.

Více

MĚŘENÍ POVRCHOVÉHO NAPĚTÍ VODY

MĚŘENÍ POVRCHOVÉHO NAPĚTÍ VODY LABORATORNÍ PRÁCE Č. 3 MĚŘENÍ POVRCHOVÉHO NAPĚTÍ VODY TEORETICKÉ ZÁKLADY CO JE POVRCHOVÉ NAPĚTÍ Jednotlivé olekuly vody na sebe působí přitažlivýi silai, lepí se k sobě. Důsledke je například to, že se

Více