3. cvičení 4ST201. Míry variability
|
|
- Zdenka Matějková
- před 9 lety
- Počet zobrazení:
Transkript
1 cvčící Ig. Jaa Feclová 3. cvčeí 4ST0 Obah: Míry varablty Rozptyl Směrodatá odchyla Varačí oefcet Rozlad rozptylu a mezupovou a vtroupovou varabltu Změa rozptylu Vyoá šola eoomcá VŠE urz 4ST0 Míry varablty Ig. Jaa Feclová Přílad 3..: V meze jme ledoval dva toly, u terých edělo hodě6 trávíů. Sledoval jme počet ězeých ovocých edlíů. U prvího tolu jme zjtl hodoty:,,5,5,8,8. U druhého tolu jme zjtl hodoty 5,5,5,5,5,5. Co byte řel o obou tolech? Uveďte ja e od ebe lšímíry polohy a míry varablty? Proču datových ouborůledujeme tyto míry, jaéám udávajíformace? Ilutrujte a předchozím příladě.
2 VŠE urz 4ST0 Míry varablty Ig. Jaa Feclová Najděte ve vzorcích áledující tatty: Vše alezete a 3 VŠE urz 4ST0 Míry varablty Abolutí míry varablty Ig. Jaa Feclová. Varačírozpětí: R ma m. Rozptyl: ( ) 3. Směrodatáodchyla: Relatví míry varablty 4. Varačíoefcet: V 4
3 VŠE urz 4ST0 Ig. Jaa Feclová Míry varablty záladí přílad 5 Přílad 3..:Sledoval jme dva tudety Adama a Evu. Oba e přpravoval a.tet ze tatty celem 5 dí. Zajímalo á, ol hod deě e a tet přpravoval. U Adama jme zjtl áledující hody:,,,,0 a u Evy,4,3,4,. Poute e popat přípravu a tet Adama a Evy. Pro aždého počítejte áledující míry :. Průměr. Medá 3. Rozptyl 4. Varačí rozpětí 5. Varačí oefcet Z výledůpopšte, ja e Adam a Eva přpravujía tet. Zute využít vše, co jte vypočítal. VŠE urz 4ST0 Ig. Jaa Feclová Rozptyl 6 ( ) ( ) ( ) p * p p Záladí tvar Výpočtový tvar Z eetříděých dat Ze etříděých dat pomocí abolutích četotí Ze etříděých dat pomocí relatvích četotí Podívejte e do vzorců!
4 VŠE urz 4ST0 Rozptyl - přílad Ig. Jaa Feclová Přílad 3.3.: Opět budeme počítat rozptyl hod, teré věuje přípravě e tudu Adam. Použjte jý tvar rozptylu ežte, terý jme užíval př prvím výpočtu. Vyjdou rozptyly tejě? Vypočítejte rozptyl v SASu. Přílad 3.4.: V teretovéavárějme ledoval dobu, po terou etrval ávštěvíc a teretu v průběhu jedoho de. Zjtl jme, že ze všech podělích záazíů byla: /5 záazíů a teretu hodu /5 záazíů a teretu hody /4 záazíů a teretu 4 hody Zbyte záazíůbyl a teretu 30 mut. Jaá je měrodatá odchyla hod, teré tráví záazíc a teretu? 7 VŠE urz 4ST0 Rozlad rozptylu Ig. Jaa Feclová Máme-l datový oubor, terý je rozděle a upy a jou-l zadaéupovéčetot, upovéprůměry a upovérozptyly, počítáme celový rozptyl pomocírozladu rozptylu a mezupovou a vtroupovou varabltu. A B Mezupová AB,,,, -,0,,0, Vtroupová A Vtroupová C Mezupová AC C 5,5,5,5,5 Mezupová CB Vtroupová B 8
5 VŠE urz 4ST0 Rozlad rozptylu - vzorec Ig. Jaa Feclová Poud máme tattcý oubor o jedote rozděle do dílčích podouborů, de záme dílčírozptyly, dílčíprůměry a dílčíčetot, potom rozptyl celého ouboru je dá oučtem rozptylu upových průměrů a průměru ze upových rozptylů. Podívejte e do vzorců! j j ( ) + ( ) ˆ * * 9 VŠE urz 4ST0 Ig. Jaa Feclová Rozlad rozptylu záladí přílad Přílad 3.5.: Sledujeme dvě curáry, teré vyrábějí tejý záue, terý e jmeuje Dooalé potěšeí. Curára Na růžu vyrábíročě000 těchto záuů, průměrácea za ro je Kč, cea má měrodatou odchylu. Curára U Jauba vyrábíročě500 těchto záuů, průměrácea za ro 5 Kč, cea má měrodatou odchylu. Spočítejte relatvívarabltu (varačíoefcet) cey záuu Dooalé potěšeí za obě dvě curáry, terý bude vyjadřovat, ja varablta cey záuu olíáběhem celého rou. 0
6 VŠE urz 4ST0 Ig. Jaa Feclová Rozlad rozptylu těžší přílad Přílad. 3.6.:Byla vypracováa tude vývoje těleéváhy mužůa že ve věu -4 let. Ze tude byly uveřejěy áledujícívýledy. Potvrďte č vyvraťte předtavu autorůo tom, že váha že mámeší relatvívarabltuežváha mužů. Nápověda: Relatvívarabltu určujeme varačím oefcetem jao podíl celovéměrodatéodchyly a celového průměru. Jou l data zadáa jao vtomto příladě(tj. průměry a měrodatéodchyly vjedotlvých upách) muíme použít výpočtu celový rozptyl, terý ložíme ze dvou čátí (vtroupovou a mezupovou). Křešeívyužjte rozlad rozptylu a vtroupový a mezupový. Poud etheme a cvčeívypočítat, počítejte doma, potup je tejý, jao v předchozím příladu. VŠE urz 4ST0 Ig. Jaa Feclová Přílad data: Zadáí: Výledy: Muž: 73,089 v 69,39 0,545 69,874 8,359 0,4 Žey: 60,3 v 6, 799 0,066 6,865 7,865 0,3
7 VŠE urz 4ST0 Výpočet změy rozptylu Ig. Jaa Feclová Přílad 3.7.: Zeptal jme e 0 ldí, ol utratía váte vatého Valetýa za dáry pro védrahépolovčy. Zjtl jme průměrou ceu 50 Kča měrodatáodchyla cey 00 Kč. Vypočítejte:. Zjtl jme u dvou ldí špatě zapaou ceu. Míto cey 500Kč měla být zazameáa cea 450 míto cey 300 mělo být zapáo 400. Ja e změíledovaý průměr a rozptyl?. Poud e zeptáme avíc ještětříldí, teříodpověděl 500 Kč, 500 Kča 500 Kč. Ja e tetorát změíprůměr a cea? 3 VŠE urz 4ST0 Ig. Jaa Feclová Rychléopaováípopétatty a doma: Př. 3.8.: U tudetůz VŠE a UK bylo zoumáo ol čau věujítýdětudu. V ouboru data_cv03_opaova.a7bdatjou uvedeázjštěádata.. Vytvořte tabulu četotí pro celý ouboru(ručě v SASu). Vytvořte tabulu četotí pro aždou vyoou šolu zvlášť(ručě v SASu) 3. Vypočítejte průměrý ča věovaý tudu za cele za jedotlvéšoly(ručě v SASu). 4. Vypočítejte celový průměrý ča pomocíprůměrův jedotlvých šolách.(ručě) 5. Spočítejte medá, horí a dolí vartl za celý oubor.(ručě v SASu) 6. Spočítejte rozptyl a měrodatéodchyly pro aždou šolu zvlášť(ručě v SASu) a to: a) Pro VŠE počítejte z eroztříděých dat (bez použtí tabuly četotí) b) Pro UK počítejte z roztříděých dat ( použtím tabuly četotí) 7. Spočítejte varačí a vartlové rozpětí pro celý oubor. A jdeme z popé tatty a pravděpodobot. 4
8 VŠE urz 4ST0 Ig. Jaa Feclová Děuj za pozorot! Poud budete mít jaéolv dotazy č přpomíy, pšte m a mal jaa.feclova@ve.cz ebo přjďte do ozultačích hod aždý páte 9:00-:00 JM37. 5
3. cvičení 4ST201 - řešení
cvčící Ig. Jaa Feclová 3. cvčeí 4ST0 - řešeí Obah: Míry varablty Rozptyl Směrodatá odchyla Varačí oefcet Rozlad rozptylu a mezupovou a vtroupovou varabltu Změa rozptylu Vyoá šola eoomcá VŠE urz 4ST0 Míry
Doc. Ing. Dagmar Blatná, CSc.
PRAVDĚPODOBNOST A STATISTIKA Doc. Ig. Dagmar Blatá, CSc. Statsta statstcé údaje o hromadých jevech čost, terá vede zísáí statstcých údajů a jejch zpracováí teore statsty - věda o stavu, vztazích a vývoj
Soustava momentů. k s. Je-li tedy ve vzorci obecného momentu s = 1, získáme vzorec aritmetického průměru.
Soutava mometů Momety (Obecé, cetrálí a ormovaé) Do ytému mometových charatert patří ty ejdůležtější artmetcý průměr (mometová míra úrově) a rozptyl (mometová úroveň varablty). Obecý momet -tého tupě:
Charakteristiky úrovně
Charaterty úrově Měřeí úrově Úroveň (poloha) je jedou ze záladích vlatotí tattcých dat, v úrov e mohou tattcá data lšt ebo aopa hodovat. Výzačé hodoty varačí řady ejou ctlvé a změu jedotlvých hodot Medá
Statistické charakteristiky (míry)
Stattcé charaterty (míry) - hrují formac, obažeou v datech (vyjadřují j v ocetrovaé formě); - charaterzují záladí ryy zoumaého ouboru dat; - umožňují porováváí více ouborů. upy tattcých charatert :. charaterty
10.2.3 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI
Středí hodoty Artmetcý průměr vážeý Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI Zatím jsme počítal s tím, že četost ve vztahu pro vážeý artmetcý průměr byla přrozeá čísla Četost mohou
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství. Matematika IV. Semestrální práce
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta troího ižeýrtví Matematika IV Semetrálí práce Zpracoval: Čílo zadáí: 7 Studií kupia: Datum: 8.4. 0 . Při kotrole akoti výrobků byla ledováa odchylka X [mm] eich rozměru
Popisné (deskriptivní) metody. Statistické metody a zpracování dat. II. Popisné statistické metody. Rozdělení četností. Skupinové rozdělení četností
Popé (derptví) metody Číme závěry pouze z určtého zpracovávaého ouboru výběrového, popujeme je to, co bylo zjštěo, bez zobecňováí Stattcé metody a zpracováí dat II. Popé tattcé metody Petr Dobrovolý Derptví
ZÁKLADY POPISNÉ STATISTIKY
ZÁKLADY POPISNÉ STATISTIKY Statitia věda o metodách běru, zpracováí a vyhodocováí tatiticých údaů. Statiticé údae ou apř. údae o přirozeém přírůtu či migraci obyvateltva, obemu výroby průmylových podiů,
7 VYUŽITÍ METOD OPERAČNÍ ANALÝZY V TECHNOLOGII DOPRAVY
7 VYUŽITÍ METOD OERAČNÍ ANALÝZY V TECHNOLOGII DORAVY Operačí aalýza jao jeda z oblatí apliovaé matematiy achází vé široé uplatěí v průmylových a eoomicých apliacích. Jedím z oborů, ve teré hraje ezatupitelou
Téma 1: Pravděpodobnost
ravděpodobot Téma : ravděpodobot ředáša - ravděpodobot áhodého evu Náhodý pou a áhodý ev Náhodý pou - aždá čot, eíž výlede eí edozačě urče podmíam, za terých probíhá apř hod otou, měřeí dély, běh a 00
- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení.
MATEMATICKÁ STATISTIKA - a základě výběrových dat uuzujeme a obecější kutečot, týkající e základího ouboru; provádíme zevšeobecňující (duktví) úudek - duktví uuzováí pomocí matematcko-tattckých metod je
8. cvičení 4ST201-řešení
cvičící 8. cvičeí 4ST01-řešeí Obsah: Neparametricé testy Chí-vadrát test dobréshody Kotigečí tabuly Aalýza rozptylu (ANOVA) Vysoá šola eoomicá 1 VŠE urz 4ST01 Neparametricé testy Neparametricétesty využíváme,
Měření a charakteristiky variability
Lece Měřeí a charatert varablt Po úrov je druhou vlatotí datového ouboru promělvot varablta Tato vlatot je ložtější o čemž vpovídají ja růzé ocepce chápáí promělvot dat ta začý počet dpoblích charatert
Mendelova univerzita v Brně Statistika projekt
Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4
Lekce Úroveň a její měření. aritmetický průměr; geometrický průměr; harmonický průměr; medián; mocninový
Lece Nejjedodušší Měřeí a charaterty úrově vlatotí datového ouboru je jeho úroveň, azývaá taé poloha. Charaterty úrově dělíme především podle toho, zda jou tvořey a báz výzamých hodot ebo zda jou fucem
Pracovní list č. 3: Pracujeme s kategorizovanými daty
Pracovní lt č. 3: Pracujeme kategorzovaným daty Cíl cvčení: Tento pracovní lt je určen pro cvčení ke 3. a. přednášce předmětu Kvanttatvní metody B (.1 Třídění tattckých dat a. Číelné charaktertky tattckých
8. cvičení 4ST201. Obsah: Neparametrické testy. Chí-kvadrát test dobréshody Kontingenční tabulky Analýza rozptylu (ANOVA) Neparametrické testy
cvičící 8. cvičeí 4ST1 Obsah: Neparametricé testy Chí-vadrát test dobréshody Kotigečí tabuly Aalýza rozptylu (ANOVA) Vysoá šola eoomicá 1 VŠE urz 4ST1 Neparametricé testy Neparametricétesty využíváme,
Popis datového souboru
Lece 3 Pop datového ouboru Zatím jme hovořl převážě o zjšťováí dat a jejch zpracováí Údaje datového ouboru popují aždý případ zvlášť Ní e pouíme vužít údaje tomu, abchom zobecl určté tpcé vlatot datového
Směrnice 1/2011 Statistické vyhodnocování dat, verze 4 Verze 4 je shodná se Směrnicí 1/2011 verze 3, pouze byla rozšířena o robustní analýzu
Směrce /0 Stattcké vyhodocováí dat, verze 4 Verze 4 e hodá e Směrcí /0 verze 3, ouze byla rozšířea o robutí aalýzu. Stattcké metody ro zkoušeí zůoblot Cílem tattcké aalýzy výledků zkoušek ř zkouškách zůoblot
Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY
Statitické metody ve veřejé právě ŘEŠENÉ PŘÍKLADY Ig. Václav Friedrich, Ph.D. 2013 1 Kapitola 2 Popi tatitických dat 2.1 Tabulka obahuje rozděleí pracovíků podle platových tříd: TARIF PLAT POČET TARIF
5. Základní statistický rozbor
5. Záladí tattcý rozbor Záladí tattcý rozbor očívá ve výočtech a rezetac číelých charatert tattcého ouboru hodot zoumaého číelého (vattatvího) tattcého zau. Číelé charaterty jou číelé hodoty, teré zhuštěím
Přednáška č. 2 náhodné veličiny
Předáša č. áhodé velčy Pozámy záladím pojmům z počtu pravděpodobost Pozáma 1: Př výpočtu pravděpodobost áhodého jevu dle lascé defce je uté věovat pozorost způsobu formulace vybraého jevu. V ásledující
Digitální učební materiál
Dgtálí učebí materál Číslo projetu CZ..07/.5.00/34.080 Název projetu Zvaltěí výuy prostředctvím ICT Číslo a ázev šabloy líčové atvty III/ Iovace a zvaltěí výuy prostředctvím ICT Příjemce podpory Gymázum,
PŘÍKLAD NA VÁŽENÝ ARITMETICKÝ PRŮMĚR Z INTERVALOVÉHO ROZDĚLENÍ ČETNOSTI
PŘÍKLAD NA VÁŽENÝ ARITMETICKÝ PRŮMĚR Z INTERVALOVÉHO ROZDĚLENÍ ČETNOSTI Přílad 0.6 Pracoví, terý spravuje podovou databáz, eportoval do tabulového procesoru všechy pracovíy podu Alfa Blatá s ěterým sledovaým
1 Měření závislosti statistických znaků. 1.1 Dvourozměrný statistický soubor
1 Měřeí závlot tattckých zaků 1.1 Dvourozměrý tattcký oubor Př aalýze ekoomckých kutečotí á čato ezajímají jedotlvé velč jako takové, ale vztah mez m. Ptáme e, jak záví poptávka a ceě produktu, plat zamětaců
1 STATISTICKÁ ŠETŘENÍ
STATISTICKÁ ŠETŘENÍ Záladem aždého tattcého zoumáí jou údaje (data). Lze je zíat v záadě dvěma způoby. Buď je převzít z ějaého zdroje ebo je am zjtt. Seudárí data údaje, teré převezmeme z růzých zdrojů;
Téma 5: Analýza závislostí
Aalýza závlotí Téma 5: Aalýza závlotí Předáša 5 Závlot mez ev Záladí pom Předmětem této aptol ude zoumáí závlotí ouvlotí mez dvěma a více ev. Jedá e o proutí do vztahů mez ledovaým ev a tím přlížeí tzv.
Téma 3: Popisná statistika
Popá tatta Téma : Popá tatta Předáša 7 Záladí tattcé pojmy Pojem a úoly tatty Statta je věda, teá e zabývá zíáváím, zpacováím a aalýzou dat po potřeby ozhodováí. Zoumá tav a vývoj homadých jevů a vztahů
Lineární regrese ( ) 2
Leárí regrese Častým úolem je staoveí vzájemé závslost dvou (č více) fzálích velč a její matematcé vjádřeí. K tomuto účelu se používají růzé regresí metod, pomocí chž hledáme vhodou fuc f (), apromující
Dvourozměrná tabulka rozdělení četností
ANALÝZA ZÁVILOTÍ - zouáí závlot dvou evet více poěých, ěřeí íl této závlot, atd - cíle je hlubší vutí do podtat ledovaých jevů a poceů, přblížeí tzv příčý ouvlote Dvouozěá tabula ozděleí četotí - je eleetáí
Regrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n
Regrese Aproxmace metodou ejmeších čtverců v v ( ) = f x v v x x x x Je dáo bodů [x, ], =,,, předpoládáme závslost a x a chceme ajít fuc, terá vsthuje teto tred - Sažíme se proložt fuc = f x ta, ab v =
SP2 Korelační analýza. Korelační analýza. Libor Žák
Korelačí aalýza Přpomeutí pojmů áhodá proměá áhodý vetor áhodý vetor Náhodý výběr: pro áhodou proměou : pro áhodý vetor : pro áhodý vetor : Přpomeutí pojmů - ovarace Kovarace áhodých proměých ovaračí oefcet
NEPARAMETRICKÉ METODY
NEPARAMETRICKÉ METODY Jsou to metody, dy předmětem testu hypotézy eí tvrzeí o hodotě parametru ějaého orétího rozděleí, ale ulová hypotéza je formulováa obecěji, apř. jao shoda rozděleí ebo ezávislost
6. KOMBINATORIKA 181. 6.1. Základní pojmy 181 6.1.1. Počítání s faktoriály a kombinačními čísly 182. 6.2. Variace 184. 6.3.
Zálady matematiy Kombiatoria. KOMBINATORIKA 8.. Záladí pojmy 8... Počítáí s fatoriály a ombiačími čísly 8.. Variace 8.. Permutace 85.. Kombiace 87.5. Biomicá věta 89 Úlohy samostatému řešeí 9 Výsledy úloh
ú ú ú ú úč Š ú Š ú š Č š ú Š š Ř Ý Č ž Š ú Č ó ú ž š šť ž Š ž ž ž Š ž ú ó ž ú Š š š ú š Š Š Š ú ť ú š Š ú ú ú Ř Ý Á Š É š Č Ó Ó Ť Ě Ť š Ý Ů Č Š Ř Š Ě Ý š Č ó ó ú ď Á ó ž ú ž ú Ó Á Ý Á Á š Ť ť ť ť Ť š
STATISTIKA. Základní pojmy
Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci
1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků
1 Pops statstcých dat 1.1 Pops omálích a ordálích zaů K zobrazeí rozděleí hodot omálích ebo ordálích zaů lze použít tabulu ebo graf rozděleí četostí. Tuto formu zobrazeí lze dooce použít pro číselé zay,
SPOTŘEBITELSKÝ ÚVĚR. Na začátku provedeme inicializaci proměnných jejich vynulováním příkazem "restart". To oceníme při opakovaném použití dokumentu.
Úloha 1 - Koupě nového televizoru SPOTŘEBITELSKÝ ÚVĚR Chceme si oupit nový televizor v hodnotě 000,-Kč. Bana nám půjčí, přičemž její úroová sazba činí 11%. Předpoládejme, že si půjčujeme na jeden ro a
ú čá á ú á Í á č é ú Ť á ě ů ů á Žá Í á ú ě é ě č á č ú ě é é č Í ú ě č ú ě ů čá čá ě ú é ů ě á é ů Í ě Í ě ú Í č ú ě č ě č ú ě é ů é é čú é é č ě é ě é é é č č ú ě ě é č ě č ě Í á ů č ě ě ů ú é é ú é
Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT
Základy práce s tabulkou Výukový modul III. Iovace a zkvaltěí výuky prostředctvím IC éma III..3 echcká měřeí v MS Excel Pracoví lst 5 Měřeí teploty. Ig. Jří Chobot VY_3_INOVACE_33_5 Aotace Iovace a zkvaltěí
1. Vztahy pro výpočet napěťových a zkratových
EE/E Eletráry ztahy pro výpočet apěťových a zratových poměrů. ztahy pro výpočet apěťových a zratových poměrů ýpočty lze provádět: ve fyziálích jedotách v poměrých jedotách v procetích jedotách Procetí
1.1. Primitivní funkce a neurčitý integrál
Mateatia II. NEURČITÝ INTEGRÁL.. Priitiví fuce a eurčitý itegrál Defiice... Říáe, že fuce F( ) je v itervalu ( ab, ) priitiví fucí fuci f ( ), platí-li pro všecha ( ab, ) vztah F = f. Defiice... Možia
8.1.2 Vzorec pro n-tý člen
8.. Vzorec pro -tý čle Předpolady: 80 Pedagogicá pozáma: Myslím, že jde o jedu z velmi pěých hodi. Přílady a hledáí dalších čleů posloupostí a a objevováí vzorců pro -tý čle do začé míry odpovídají typicým
stavební obzor 1 2/2014 11
tavebí obzor /04 Exploratorí aalýza výběrového ouboru dat pevoti drátobetou v tlau Ig. Daiel PIESZKA Ig. Iva KOLOŠ, Ph.D. doc. Ig. Karel KUBEČKA, Ph.D. VŠB-TU Otrava Faulta tavebí Věrohodé vyhodoceí experimetálích
2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT
2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic
Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)
Předáša 7 Derivace a difereciály vyšších řádů Budeme poračovat v ahrazováí fuce f(x v oolí bodu a polyomy, tj hledat vhodé ostaty c ta, aby bylo pro malá x a f(x c 0 + c 1 (x a + c 2 (x a 2 + c 3 (x a
8.1.2 Vzorec pro n-tý člen
8 Vzorec pro -tý čle Předpolady: 80 Pedagogicá pozáma: Přílady a hledáí dalších čleů posloupostí a a objevováí vzorců pro -tý čle do začé míry odpovídají typicým příladům z IQ testů, teré studeti zají
10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR
Středí hodoty Artmetcý průměr vážeý ze tříděí Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR Výzam a užtí vážeého artmetcého průměru uážeme a ásledujících příladech Přílad 0 Ve frmě Gama Blatá máme soubor
Aktivita 1 Seminář základů statistiky a workshop (Prof. Ing. Milan Palát, CSc., Ing. Kristina Somerlíková, Ph.D.)
Aktvta Semář základů tattky a workhop (Prof. Ig. Mla Palát, CSc., Ig. Krta Somerlíková, Ph.D.) Stattcké tříděí Základí metoda tattckého zpracováí. Sekupováí hodot proměé, které jou z hledka klafkačího
ANOVA. Analýza rozptylu při jednoduchém třídění. Jana Vránová, 3.lékařská fakulta UK, Praha
ANOVA Analýza rozptylu př jednoduchém třídění Jana Vránová, 3.léařsá faulta UK, Praha Teore Máme nezávslých výběrů, > Mají rozsahy n, teré obecně nemusí být stejné V aždém z nch známe průměr a rozptyl
1.1.14 Rovnice rovnoměrně zrychleného pohybu
..4 Rovnice rovnoměrně zrychleného pohybu Předpoklady: 3 Pedagogická poznámka: Stejně jako u předchozí hodiny je i v této hodině potřeba potupovat tak, aby tudenti měli minimálně minut na řešení příkladů
Popisná statistika. (Descriptive statistics)
Popá tatta Decrptve tattc Výledem měřeí je oubor aměřeých hodot vytvářející datový oubor D { } V datovém ouboru e mohou vyytovat tytéž hodoty vícerát, zejméa tehdy, mají-l velčy drétí epojtou povahu počet
Úvodem. Vážení čtenáři,
Úvodem Vážeí čteář, rpta, terá právě otevíráte, jou určea především poluchačům druhého ročíu baalářého tuda všech oborů Vyoé šoly fačí a práví, tj. jao tudjí materál předmětům Pravděpodobot a tatta, Pravděpodobot
Mendelova zemědělská a lesnická univerzita Provozně ekonomická fakulta. Výpočet charakteristik ze tříděných údajů Statistika I. protokol č.
Mendelova zemědělsá a lesnicá univerzita Provozně eonomicá faulta Výpočet charateristi ze tříděných údajů Statistia I. protool č. 2 Jan Grmela, 2. roční, Eonomicá informatia Zadání 130810, supina Středa
Interval spolehlivosti pro podíl
Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této
Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Gradovaný řetězec úloh Téma: Komolý kužel Autor: Kubešová Naděžda Klíčové pojmy:
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta dopraví Statistika Semestrálí práce Zdražováí pohoých hmot Jméa: Martia Jelíková, Jakub Štoudek Studijí skupia: 2 37 Rok: 2012/2013 Obsah Úvod... 2 Použité
NUMP403 (Pravděpodobnost a Matematická statistika I)
NUMP0 (Pravděpodobnost a Matematicá statistia I Střední hodnota disrétního rozdělení. V apce máte jednu desetiorunu, dvě dvacetioruny a jednu padesátiorunu. Zloděj Vám z apsy náhodně vybere tři mince.
Rovnice rovnoměrně zrychleného pohybu
..8 Rovnice rovnoměrně zrychleného pohybu Předpoklady: 7 Pedagogická poznámka: Stejně jako u předchozí hodiny je i v této hodině potřeba potupovat tak, aby tudenti měli minimálně píše minut na řešení příkladů
VY_52_INOVACE_J 05 01
Název a adresa školy: Středí škola průmyslová a umělecká, Opava, příspěvková orgazace, Praskova 399/8, Opava, 74601 Název operačího programu: OP Vzděláváí pro kokureceschopost, oblast podpory 1.5 Regstračí
Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i
: ometové míry polohy zahrují růzé druhy průměrů pomocí kterých můžeme charakterzovat cetrálí tedec dat ometové míry polohy jsou jedoduché číselé charakterstky které se vyčíslují ze všech prvků výběru
Měření indukčností cívek
7..00 Ṫeorie eletromagneticého pole Měření indučností cíve.......... Petr Česá, studijní supina 05 Letní semestr 000/00 . Měření indučností cíve Měření vlastní a vzájemné indučnosti válcových cíve ZAÁNÍ
Jednoduchá lineární závislost
Jedoduchá leárí závlot Regreí fuce: ),...,, ( 0 m f Předpolad: Fuce je leárí v parametrech: ) (... ) 0 ( 0 f f m m f 0 ()... f m () regreor 0... m regreí parametr určujeme METODOU NEJMENŠÍCH ČTVERCŮ Regreí
ě ú ě ú ů ě ů ě é ú ž ú ě Ú ů ů ě é š ů ě ě Ú ě ě ě ň é ň é Ú é é ěž é é ž Ú ž ž ž ů ě ě ž ě é ě ě ů é ň Č ž é Č ě Č ň ů ú ěž ú ú Č Ú ě ú ů Ú ě ú ě ů Ú é é ě é ú ě ú Ú ě é ú ú ů ú ď Č Ř é ě ú ů ů ě ě š
1. Rozdělení četností a grafické znázornění Předpokládejme, že při statistickém šetření nás zajímá jediný statistický znak x, který nabývá
Statitická šetřeí a zpracováí dat Statitika e věda o metodách běru, zpracováí a vyhodocováí tatitických údaů. Statitika zkoumá polečeké, přírodí, techické a. evy vždy a dotatečě rozáhlém ouboru údaů. Matematická
MATEMATIKA II V PŘÍKLADECH
VYSOKÁ ŠKOL BÁŇSKÁ TECHICKÁ UIVERZIT OSTRV FKULT STROJÍ MTEMTIK II V PŘÍKLDECH CVIČEÍ Č 0 Ing Petra Schreiberová, PhD Ostrava 0 Ing Petra Schreiberová, PhD Vysoá šola báňsá Technicá univerzita Ostrava
2. Vícekriteriální a cílové programování
2. Vícerterálí a cílové programováí Úlohy vícerterálího programováí jsou úlohy, ve terých se a možě přípustých řešeí optmalzuje ěol salárích rterálích fucí. Moža přípustých řešeí je přtom defováa podobě
k(k + 1) = A k + B. s n = n 1 n + 1 = = 3. = ln 2 + ln. 2 + ln
Číselé řady - řešeé přílady ČÍSELNÉ ŘADY - řešeé přílady A. Součty řad Vzorové přílady:.. Přílad. Určete součet řady + = + 6 + +.... Řešeí: Rozladem -tého čleu řady a parciálí zlomy dostáváme + = + ) =
0. 4b) 4) Je dán úhel 3450. Urči jeho základní velikost a převeď ji na radiány. 2b) Jasný Q Q ZK T D ZNÁMKA. 1. pololetí 2 3 1 2 2 3 5 2 3 1 1
) Urči záladí veliost úhlu v radiáech, víš-li, že platí: a) si cos 0. b) cos, Opravá zouša z matematiy 3SD (druhé pololetí) c) cotg 3 5b) ) Na možiě R řeš rovici cos cos 0. 4b) 3) Vzdáleost bodů AB elze
České vysoké učení technické v Praze. Fakulta dopravní. Semestrální práce. Statistika
České vysoké učeí techické v Praze Fakulta dopraví Semestrálí práce Statistika Čekáí vlaku ve staicích a trase Klado Ostrovec Praha Masarykovo ádraží Zouzalová Barbora 2 35 Michálek Tomáš 2 35 sk. 2 35
Momenty a momentové charakteristiky
Lekce 3 Momety a mometové charaktertky Pokud jme e v předešlém výkladu zmňoval o ěkteré tattcké charaktertce, zpravdla jme rověž uváděl, zda j řadíme mez více ebo méě důležté. A byly to právě artmetcký
Ř Í Ř Ý Ú Á Ř Í Í Í Ř Ř Á É Í Ě Ě Š Ř Ů Ř Ý Á Ř Á É Á Á Á Á Ý č ú é Í š č ž Š Á ý ý ý ý č é é é Ř Ř Í é Š é é Í ó č é ů ý é Í č Í Š é é é š ý ů é ý Ó Í Í ý ý č é ú Í ý ý Úč Í Ř Ř ů ý ý ší čů Í ů Í é čá
1.5.7 Prvočísla a složená čísla
17 Prvočísla a složená čísla Předpolady: 103, 106 Dnes bez alulačy Číslo 1 je dělitelné čísly 1,, 3,, 6 a 1 Množinu, terou tvoří právě tato čísla, nazýváme D 1 množina dělitelů čísla 1, značíme ( ) Platí:
JEDNOROZMĚRNÁ POPISNÁ STATISTIKA
JEDNOROZMĚRNÁ POPISNÁ STATISTIKA Záladí tattcé ojmy Statta - teto ojem lze cháat v záadě ve třech ojetích: ) číelé ebo loví údaje (data) a jejch ouhry o hromadých jevech ) ratcá čot očívající ve běru,
Binomická věta
97 Binomicá věta Předpolady: 96 Kdysi dávno v prvním ročníu jsme se učili vzorce na umocňování dvojčlenu Př : V tabulce jsou vypsány vzorce pro umocňování dvojčlenu Najdi podobnost s jinou dosud probíranou
4. Třídění statistických dat pořádek v datech
4. Třídění statstcých dat pořáde v datech Záladní členění statstcých řad: řada časová, řada prostorová, řada věcná věcná slovní řada, věcná číselná řada. Záladem statstcého třídění je uspořádání hodnot
LABORATORNÍ CVIČENÍ Z FYZIKY. Měření objemu tuhých těles přímou metodou
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATEDRA FYZIKY LABORATORNÍ CVIČENÍ Z FYZIKY Jméo: Petr Česák Datum měřeí:.3.000 Studjí rok: 999-000, Ročík: Datum odevzdáí: 6.3.000 Studjí skupa: 5 Laboratorí skupa:
P1: Úvod do experimentálních metod
P1: Úvod do epermetálích metod Chyby a ejstoty měřeí - Každé měřeí je zatížeo určtou epřesostí, která je způsobea ejrůzějším egatvím vlvy, vyskytujícím se v procesu měřeí. - Výsledek měřeí se díky tomu
Aplikace marginálních nákladů. Oceňování ztrát v distribučním rozvodu
Apliace margiálích áladů Oceňováí ztrát v distribučím rozvodu Učebí text předmětu MES Doc. Ig. J. Vastl, CSc. Celové ročí álady a ztráty N P ( T ) z z sj z wj Kč de N z celové ročí álady a ztráty *Kč+
3. Charakteristiky a parametry náhodných veličin
3. Charateristiy a parametry áhodých veliči Úolem této apitoly je zavést pomocý aparát, terým budeme dále popisovat pomocí jedoduchých prostředů áhodé veličiy. Taovýmto aparátem jsou tzv. parametry ebo
β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra:
GONIOMETRIE Veliost úhlu v oblouové a stupňové míře: Stupňová míra: Jednota (stupeň) 60 600 jeden stupeň 60 minut 600 vteřin Př. 5,4 5 4 0,4 0,4 60 4 Oblouová míra: Jednota radián radián je veliost taového
PRACOVNÍ SEŠIT KOMBINATORIKA, PRAVDĚPODOBNOST A STATISTIKA. 9. tematický okruh:
Připrav se a státí maturití zoušu z MATEMATIKY důladě, z pohodlí domova a olie PRACOVNÍ SEŠIT 9. tematicý oruh: KOMBINATORIKA, PRAVDĚPODOBNOST A STATISTIKA vytvořila: RNDr. Věra Effeberger eperta a olie
VYŠŠÍ ODBORNÁ ŠKOLA A STŘEDNÍ ŠKOLA SLABOPROUDÉ ELEKTROTECHNIKY Novovysočanská 48/280, Praha 9
1. Analogové měřicí přístroje Jsou přístroje, teré slouží měření různých eletricých veličin. Např. měření proudu, napětí a výonu. Pro měření těchto veličin nejčastěji používáme tyto soustavy:magnetoeletricá,
š č ů š ň č č Ú Ú č č č č Ú ú Ú č ž č Ž Ý Í š Š č Ž ú Í Š ú Č Í Á ÍÁ č ší č š ž č č ů ů č č ň č č ů Ž ú ž č ů č č ů š Š č č č ů ů ů č ž č š š č č Ž č č č š Í č č č čů š š ž š ž č č č č č Í ž ú Í Ž č ů
7.3.9 Směrnicový tvar rovnice přímky
739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná
f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad.
8. Taylorova řada. V urzu matematiy jsme uázali, že je možné funci f, terá má v oolí bodu x derivace aproximovat polynomem, jehož derivace se shodují s derivacemi aproximované funce v bodě x. Poud má funce
Í Í Ů Č ř ů ř Í ú ů ř ú ř ů ů ů ř ú ů Ť ž ů Š ř Š ů ř ř ů ř ů ř ů ú ž ž ú ň ž ř Ú Ž Í ž ř ř É Ť Ň Ř ř ů ů ž ů Ý Ř Ě ř ž ř ř Ý ů ř ř ů ř ú ů ů ž ů Č ř ž ř ř ů ř ř Ý ř ř ř ž ř ů ž ž ž ď ů ř ů ů ů ů ž ů Í
Možnosti vyžití statistiky a teorie zpracování dat v práci učitele na 1. stupni ZŠ
Možnot vyžtí tatty a teore zpracování dat v prác učtele na. tupn ZŠ Význam tatty je v oudobé polečnot všeobecně uznáván. Svědčí o tom člány v denním odborném tu, lýcháme o ní čato ve vytoupeních hopodářých
a 1 = 2; a n+1 = a n + 2.
Vyjářeí poloupoti Poloupot můžeme určit ěkolik růzými způoby. Prvím je protý výčet prvků. Npříkl jeouchá poloupot uých číel by e výčtem l zpt tkto:,, 6,,... Dlší možotí je vzorec pro tý čle. Stejá poloupot
Příklady: - počet členů dané domácnosti - počet zákazníků ve frontě - počet pokusů do padnutí čísla šest - životnost televizoru - věk člověka
Náhodná veličina Náhodnou veličinou nazýváme veličinu, terá s určitými p-stmi nabývá reálných hodnot jednoznačně přiřazených výsledům příslušných náhodných pousů Náhodné veličiny obvyle dělíme na dva záladní
MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU
Úloha č 5 MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU ÚKOL MĚŘENÍ: Určete moment setrvačnosti ruhové a obdélníové desy vzhledem jednotlivým osám z doby yvu Vypočtěte moment setrvačnosti ruhové a obdélníové
Identifikátor materiálu: ICT 2 59
Idetifiátor materiálu: ICT 59 Registračí číslo projetu Název projetu Název příjemce podpory ázev materiálu (DUM) Aotace Autor Jazy Očeávaý výstup Klíčová slova Druh učebího materiálu Druh iterativity Cílová
6 5 = 0, = 0, = 0, = 0, 0032
III. Opaované pousy, Bernoulliho nerovnost. Házíme pětrát hrací ostou a sledujeme výsyt šesty. Spočtěte pravděpodobnosti možných výsledů a určete, terý má největší pravděpodobnost. Řešení: Jedná se o serii
8.2.7 Vzorce pro geometrickou posloupnost
7 Vzoce po geometicou poloupot Předpoldy: 0, 0 Př : Po geometicou poloupot pltí ; q Uči čle, iž by učovl Mohli bychom pomocí vzoce po -tý čle učit čle p pomocí tejého vzoce učit i Teto potup je ložitější
teorie elektronických obvodů Jiří Petržela syntéza a návrh elektronických obvodů
Jří Petržela yntéza a návrh eletroncých obvodů vtupní údaje pro yntézu obvodu yntéza a návrh eletroncých obvodů vlatnot obvodu obvodové funce parametry obvodu toleranční pole (mtočtové charaterty fltru)
Ů Ř É Ř ž ů č ý Ř ž ě č š Ú ě č č ý š ě ě ě š ó ů ý š ě ě š ř ů č ř š ů č ů ř š ů ó ě ů ř úč Í ě ě ý Ř ě ě š ý ř Úč ě ě ě ň š ř ě úč ů ý ů ě ř ě ě č ň ý ý ě ý ě ž ě č ěř ů č ý ů Ř ř š Ř ě š ý ě č čů ž
Příloha č. 1 Část II. Ekonomika systému IDS JMK
Příloha č. 1 Část II. Eonomia systému IDS JMK Květen 2011 Eonomia systému IDS JMK I. EKONOMICKÉ JEDNOTKY Pro účely dělení výnosů je rozděleno území IDS JMK do eonomicých jednote tvořených supinami tarifních
1. Úvod do základních pojmů teorie pravděpodobnosti
1. Úvod do záladních pojmů teore pravděpodobnost 1.1 Úvodní pojmy Většna exatních věd zobrazuje své výsledy rgorózně tj. výsledy jsou zísávány na záladě přesných formulí a jsou jejch nterpretací. em je
Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc
Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se