Téma 3: Popisná statistika
|
|
- Oldřich Bárta
- před 9 lety
- Počet zobrazení:
Transkript
1 Popá tatta Téma : Popá tatta Předáša 7 Záladí tattcé pojmy Pojem a úoly tatty Statta je věda, teá e zabývá zíáváím, zpacováím a aalýzou dat po potřeby ozhodováí. Zoumá tav a vývoj homadých jevů a vztahů mez m potředctvím homadých pozoováí. Pod pojmem homadá pozoováí předtavíme měřeí a zjšťováí, dy - jev e může mohoát opaovat opaovaé pouy - jev pozoujeme a vybaém počtu objetů (jedote) výběy Etapy tattcé páce:. tattcé měřeí a zjšťováí,. zpacováí tattcých údajů,. tepetace zíaých výledů. Patcé užtí tatty e opíá o její ovy: - popou tattu zpacováí aměřeých dat a zíáí fomací o těchto datech (zejméa zobazeí dat pomocí tabule, gafů a výpočet číelých chaatet), - dutví tattu ouh metod loužících odhadům ledovaých vlatotí v záladích ouboech dutví úvahy využtím pavděpodobot, tedy zobecňováí zíaých fomací z výběu a celý oubo, ze teého byl výbě poříze. Záladí pojmy a potředy tattcý oubo moža zoumaých objetů, teé mají z daého hleda polečé vlatot (ooby, věc, otly, zvířata, pody, událot, ) tattcá jedota pve tattcého oubou ( člově, výobe, pou, ) záladí oubo oubo, teý je předmětem ašeho zájmu, je předmětem tattcého šetřeí a o jehož vlatotech e mají dělat závěy (ědy e ozačuje jao populace) eálý všechy jedoty eálě etují (tudet VŠ, Felce vyobeé v oce 999, deí poduce ohlíů u peaře, oečý) hypotetcý obecě je defová, ale eálě etuje jeom učtá jeho čát (poačující výoba, přcházející záazíc OD, laboatoí a fyzálí měřeí, eoečý) výběový oubo podmoža záladího oubou vytvořeá a záladě tzv. výběového epezetatvího šetřeí laface: - 6 -
2 Popá tatta záměý výbě výbě a záladě zámých vlatotí záladího oubou: jedoty vybíáme ta, aby výběový oubo byl dobým epezetatem záladího oubou áhodý (pavděpodobotí) výbě výbě a záladě předem učeé pavděpodobot zahutí jedote do výběového oubou, tedy vlatí výbě záleží a áhodě ozah výběového oubou počet jedote tvořících vývěový oubo; oz. tattcý za vlatot jedote, teá je předmětem ašeho zájmu ebo a záladě teé byl vytvoře (defová) záladí oubo (hmotot ohlíu, ychlot auta, počet záazíů,, zalot czího jazya, pohlaví, záma u zoušy ze ST, ); oz. X hodota zau výlede zjštěí - měřeí a jedotce (X ) zjštěé - aměřeé hodoty předtavují tzv. data:,,, obměy vaaty zau ůzé hodoty zau v oubou laface tattcých zaů: tattcý za vattatví valtatví tevalový poměový odálí omálí alteatví možý - vattatví (umecý) za obměy zau jou přímo vyjádřeé čílem (hmotot ohlíu, % tuu v mléu, doba letu letadla, počet aut u pumpy, ) - valtatví (ategoálí) za obměy zau jou vyjádřeé zpavdla lově (šolí laface, mía laot uzey, zalot czího jazya, ) - tevalový za obměy lze ovávat je ozdílem (teplota ve C, ) - poměový za obměy lze ovávat ozdílem a podílem (mzda pacovíů, výša ájemého, hmotot ohlíu, počet záazíů u polady, ) - pořadový (odálí) za obměy jou upořádaé a zpavdla vyjádřeé lově (záma ze ST, doočeé vzděláí, ezocé hodoceí ýu, ) - omálí za obměy jou vyjádřeé zpavdla lově a evythují pořadí (zalot czího jazya, typ bydleí, čílo ly MHD, ) - alteatví za abývá pouze obmě (ao - e, muž - žea, dobý - vadý, ) - možý za abývá více ež dvou obmě (ZŠ, SŠ bez mat., SŠ mat., VŠ - Bc, ) - 7 -
3 Popá tatta - epojtý za abývá v jtém tevalu je zolovaých hodot (počet čleů domácot, počet zmetů v é, doažeé vzděláí, typ bydleí, čílo ly MHD, ) - pojtý za může abývat v jtém tevalu všech hodot (hmotot ohlíu, doba čeáí a obluhu, šolí vědomot, mía ladot lmoády, tezta bavy, ) tatta používá typcé vyjadřovací potředy tattcé tabuly tabula ozděleí četotí, oelačí tabula, ůzé typy výpočetích tabule, tattcé gafy dagam ozptýleí, polygo a htogam ozděleí četotí, bodový gaf, výečový gaf, potoový htogam, potoový bodový gaf, Uáza vybaých tabule a gafů: Bodové ozděleí četotí N p F 79 0,06 0, , 0, , 0, , 0, ,6 0, ,08 0, ,06 Σ 50 X... výša 5-t měíčích dětí Itevalové ozděleí četotí j j N j p j F j <,00;,0),05 6 0,00 6 0,00 <,0;,0),5 9 0,50 5 0,50 <,0;,0),5 0,8 6 0,4 <,0;,40),5 0,7 9 0,650 <,40;,50),45 0 0, ,87 <,50;,60),55 9 0, ,967 <,60;,70),65 0,0 60, X... možtví pachových čátc v µg/m - 8 -
4 Popá tatta Koelačí tabula y j j X... déla odboé pae Y... platová třída Dagam ozptýleí Obah tuu v mléu 4,6 4,7 4,8 4,9 5 5, 5, 5, 5,4 5,5 5,6 Polygo četotí 8 Výša 5-t měíčích dětí 6 4 četo výša potavy - 9 -
5 Popá tatta Předáša 8 - Záladí zpacováí dat Záladí zpacováí dat předtavuje pví pác aměřeým daty, teá měřuje tomu pozat ejdůležtější vlatot ledovaého zau potředctvím jedoduchých tabule, gafů a umecých výpočtů. Z patcých důvodů ozlšujeme zpacováí dat a) učí povádí e a záladě vzoců, zpavdla využtím alulačy e tattcým ežmem (SD-, SD-, STAT, REG, ) b) počítačové povádí e využtím dotupého oftwau, apř. Utat, Statgaphc, QCEpet/Adtat, Stattca, jedoduché poceduy obahuje taé Ecel Podle počtu a zejméa chaateu měřeých dat použjeme jedu ze možotí zpacováí:. eoztříděá data vhodé po malý ozah oubou ( < 0) upořádáí dat podle velot: () () () gafcé zobazeí dat - dagam ozptýleí výpočet chaatet. bodové ozděleí četotí vhodé po velý ozah oubou, epojtý za a malý počet obmě (do 0) tabulové vyjádřeí ozděleí četotí (, p, N, F,,,,, počet obmě) gafcé zobazeí ozděleí četotí (polygo četotí, oučtová řva) výpočet chaatet. tevalové ozděleí četotí vhodé po velý ozah oubou, pojtý za ebo epojtý za velý počtem obmě otuce tevalů (počet, šířa a počáte tevalů) tabulové vyjádřeí ozděleí četotí gafcé zobazeí ozděleí četotí (htogam a oučtový htogam) výpočet chaatet Poz.: otuce tevalů (tříd) zjtíme, m, ma a učíme vaačí ozpětí R ma - m taoveí počtu tříd povedeme podle povahy a tutuy dat využtím pavdel: Stugeovo pavdlo: +,log 4 Yuleovo pavdlo:,5 já pavdla: ; 5log taoveí šířy tříd h: h R / ebo h 0,08 R až 0, R
6 Popá tatta - počáte. třídy, počet a šířu tříd budeme volt ta, aby ejvětší a ejmeší hodota padly do pvího a poledího tevalu - tevaly budeme volt zpavdla polouzavřeé zleva, tj. h / < h / - hace tředy tříd by měly být vhodě zaoouhleé - to, ja ozděleí povedeme, je dvduálí j j + Předáša 9 - Pop tattcého oubou Chaatety polohy Chaatety polohy (úově) měří obecou velot hodot zau v oubou a dělí e a půměy (počítaé ze všech dat) a otatí míy polohy (počítaé z vybaých hodot). atmetcý půmě ejčatěj užívaý duh půměu, po teý platí: oučet všech dfeecí hodot od atmetcého půměu je ove ule, tj. ( ) 0. potý atmetcý půmě vážeý atmetcý půmě Poz.: u tevalového ozděleí e do vzoců po vážeý tva doazují tředy tevalů. hamocý půmě H má pecfcé uplatěí v tuacích, dy má logcý výzam oučet převáceých hodot zau. potý hamocý půmě H vážeý hamocý půmě H - 4 -
7 Popá tatta geometcý půmě G má pecfcé uplatěí v jedoduché aalýze čaové řady, dy je myluplé tzv. půměé tempo ůtu. potý geometcý půmě G vážeý geometcý půmě G modu ˆ hodota zau ejvětší četotí. U bodového ozděleí četotí je ˆ M po M ma. U tevalového ozděleí uvažujeme tzv. modálí teval to je teval zahující ejvětší počet hodot zau. Modu je vša možé vyjádřt pomocí jedoho číla ˆ M h + + M + de h je šířa tevalu, M třed modálího tevalu, +,, M jou četot áledujícího, předchozího a modálího tevalu. vatl P je to hodota zau, po teou platí, že 00P % jedote upořádaého oubou má hodotu meší ebo ovu P a 00( P) % jedote má hodotu větší ebo ovu P. Pořadový de P vatlu muí vyhovovat eovot P < P < P +. U etříděých dat ebo bodového ozděleí četotí taovíme vatly P ( P) + ( P+ ) po P celé: P ( P ) ep. po P, P + celé: P U tevalového ozděleí uvažujeme tzv. vatlový teval - to je teval, ve teém hledaý vatl leží. Kvatl je vša možé vyjádřt pomocí jedoho číla P D P + N + de D je dolí hace tevalu v ěmž vatl leží, N D- je umulatví četot předchozího tevalu, h je šířa tevalu. vatl 0,50 medá, tj. potředí hodota upořádaého oubou j D h - 4 -
8 Popá tatta vatl 0,5 dolí vatl, vatl 0,75 hoí vatl, 0,0, 0,0,..., 0,90 decly 0,0, 0,0,..., 0,99 pecetly Chaatety vaablty Chaatety vaablty popují olíáí hodot ledovaého zau, mělvot tattcého oubou. vaačí ozpětí déla tevalu, ve teém e acházejí hodoty zau oubou. R ma m vatlové ozpětí používá e jao hubý uazatel vaablty. vatlové ozpětí R Q 0,75 0, 5 declové ozpětí R D 0,90 0, 0 pecetlové ozpětí R C 0,99 0, 0 Poz.: R Q (R D ep. R C ) je déla tevalu, ve teém e achází 50 % (80 % ep. 98 %) potředích upořádaých hodot. vatlové odchyly používají e taé jao předběžý uazatel vaablty. vatlová odchyla Q R Q : declová odchyla D R D : 8 pecetlová odchyla P R C : 98 Poz.: Q (D ep. P) předtavuje půměou délu všech potředích vatlových tevalů bez pvího a poledího tevalu. půměá odchyla atmetcý půmě abolutích odchyle jedotlvých hodot od tředí hodoty, jíž jme chaatezoval úoveň zau (půmě, medá,...). půměá odchyla od atmetcého půměu d - potý tva půměá odchyla od atmetcého půměu d - vážeý tva - 4 -
9 Popá tatta ozptyl (mometový) ejužívaější mía vaablty atmetcý půmě čtveců odchyle od atmetcého půměu po ozah oubou. potý tva ( ) vážeý tva ( ) Poz.: Po učí výpočet lze použít vztah čtvecích jedote ledovaého zau.. Rozptyl je vždy vyjádřeý ve měodatá odchyla odmoca z ozptylu, je vyjádřea ve tejých jedotách jao ledovaý za. výběový ozptyl mía vaablty čato používaá v dutví tattce. potý tva ( ) vážeý tva ( ) výběová měodatá odchyla odmoca z výběového ozptylu vaačí oefcet ejužívaější elatví mía vaablty pomě měodaté odchyly a půměu. Používá e tam, de je třeba poovat vaabltu zau ve více ouboech, zejméa dyž e pozoovaé ouboy lší úoví ledovaého zau ebo je-l v ůzých ouboech za vyjádře v ůzých jedotách. v
10 Popá tatta Chaatety šmot a špčatot Míy šmot (aymete) jou založeé a ováí tupě ocetace malých hodot ledovaého zau e tupěm ocetace velých hodot tohoto zau. Podávají tedy fomac o tvau ozděleí četotí co do ouměot. Míy špčatot jou založeé a ováí tupě ocetace potředích hodot e tupěm ocetace otatích hodot ep. všech hodot ledovaého zau. Poytují tedy fomac o ozděleí četotí co do špčatot. Nejpve zavedeme -tý obecý momet m Poz.: Atmetcý půmě je pví obecý momet. -tý cetálí momet m ( ) ( ) Poz.: Mometový ozptyl je duhý cetálí momet (odtud jeho ázev). oefcet šmot ( ) m a m m ouměé ozděleí zápoě zešmeé ladě zešmeé a 0 a < 0 a > 0 Je-l a 0, je tupeň hutoty malých a velých hodot tejý, což předtavuje ouměé ozděleí četotí. Je-l a > 0, je tupeň hutoty malých hodot ve ováí hutotou velých hodot větší a ozděleí četotí je poto zešmeé doleva. Aalogcy je-l a < 0, je ozděleí četotí zešmeé dopava
11 Popá tatta oefcet špčatot a 4 ( ) m4 4 4 m a 4 > 0 a 4 < 0 a 4 0 Je-l a 4 > 0, je tupeň ocetace potředích hodot ve ováí ocetací všech hodot větší a ozděleí četotí e potom pojeví špčatým tvaem. Aalogcy je-l a 4 < 0, má ozděleí četotí plochý tva
Statistika. Jednotlivé prvky této množiny se nazývají prvky statistického souboru (statistické jednotky).
Statstka. Základí pojmy Statstcký soubo - daá koečá, epázdá moža M předmětů pozoováí, majících jsté společé vlastost (událost, věc,.) Jedotlvé pvky této možy se azývají pvky statstckého soubou (statstcké
VíceStatistické charakteristiky (míry)
Stattcé charaterty (míry) - hrují formac, obažeou v datech (vyjadřují j v ocetrovaé formě); - charaterzují záladí ryy zoumaého ouboru dat; - umožňují porováváí více ouborů. upy tattcých charatert :. charaterty
VíceDvourozměrná tabulka rozdělení četností
ANALÝZA ZÁVILOTÍ - zouáí závlot dvou evet více poěých, ěřeí íl této závlot, atd - cíle je hlubší vutí do podtat ledovaých jevů a poceů, přblížeí tzv příčý ouvlote Dvouozěá tabula ozděleí četotí - je eleetáí
VíceVztahy mezi základním souborem a výběry. Základní pojmy a symboly. K čemu to je dobré? Výběrové metody zkoumání
K čemu to je dobé? Obvyklým případem při zpacováí homadých jevů je, že máme poměě malý počet pozoováí ějaké veličiy a chceme učiit závěy o tom, co bychom obdželi, kdybychom měli pozoováí mohokát více.
VícePoznámky k tématu Korelace a jednoduchá lineární regrese (Téma není ve skriptech)
Pozámk k tématu Koelace a jedoduchá leáí egee (Téma eí ve kptech) Mějme data, ),...,(, ), kteá jou áhodým výběem z ějaké populace. Data ted pokládáme za ezávlé ealzace dvojce áhodých velč ( X, Y ). Půmě
Více3. cvičení 4ST201 - řešení
cvčící Ig. Jaa Feclová 3. cvčeí 4ST0 - řešeí Obah: Míry varablty Rozptyl Směrodatá odchyla Varačí oefcet Rozlad rozptylu a mezupovou a vtroupovou varabltu Změa rozptylu Vyoá šola eoomcá VŠE urz 4ST0 Míry
VíceSoustava momentů. k s. Je-li tedy ve vzorci obecného momentu s = 1, získáme vzorec aritmetického průměru.
Soutava mometů Momety (Obecé, cetrálí a ormovaé) Do ytému mometových charatert patří ty ejdůležtější artmetcý průměr (mometová míra úrově) a rozptyl (mometová úroveň varablty). Obecý momet -tého tupě:
VíceCharakteristiky úrovně
Charaterty úrově Měřeí úrově Úroveň (poloha) je jedou ze záladích vlatotí tattcých dat, v úrov e mohou tattcá data lšt ebo aopa hodovat. Výzačé hodoty varačí řady ejou ctlvé a změu jedotlvých hodot Medá
Více3. cvičení 4ST201. Míry variability
cvčící Ig. Jaa Feclová 3. cvčeí 4ST0 Obah: Míry varablty Rozptyl Směrodatá odchyla Varačí oefcet Rozlad rozptylu a mezupovou a vtroupovou varabltu Změa rozptylu Vyoá šola eoomcá VŠE urz 4ST0 Míry varablty
VíceDoc. Ing. Dagmar Blatná, CSc.
PRAVDĚPODOBNOST A STATISTIKA Doc. Ig. Dagmar Blatá, CSc. Statsta statstcé údaje o hromadých jevech čost, terá vede zísáí statstcých údajů a jejch zpracováí teore statsty - věda o stavu, vztazích a vývoj
Více- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení.
MATEMATICKÁ STATISTIKA - a základě výběrových dat uuzujeme a obecější kutečot, týkající e základího ouboru; provádíme zevšeobecňující (duktví) úudek - duktví uuzováí pomocí matematcko-tattckých metod je
Více1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků
1 Pops statstcých dat 1.1 Pops omálích a ordálích zaů K zobrazeí rozděleí hodot omálích ebo ordálích zaů lze použít tabulu ebo graf rozděleí četostí. Tuto formu zobrazeí lze dooce použít pro číselé zay,
Více1 Měření závislosti statistických znaků. 1.1 Dvourozměrný statistický soubor
1 Měřeí závlot tattckých zaků 1.1 Dvourozměrý tattcký oubor Př aalýze ekoomckých kutečotí á čato ezajímají jedotlvé velč jako takové, ale vztah mez m. Ptáme e, jak záví poptávka a ceě produktu, plat zamětaců
Více7 VYUŽITÍ METOD OPERAČNÍ ANALÝZY V TECHNOLOGII DOPRAVY
7 VYUŽITÍ METOD OERAČNÍ ANALÝZY V TECHNOLOGII DORAVY Operačí aalýza jao jeda z oblatí apliovaé matematiy achází vé široé uplatěí v průmylových a eoomicých apliacích. Jedím z oborů, ve teré hraje ezatupitelou
VíceZÁKLADY POPISNÉ STATISTIKY
ZÁKLADY POPISNÉ STATISTIKY Statitia věda o metodách běru, zpracováí a vyhodocováí tatiticých údaů. Statiticé údae ou apř. údae o přirozeém přírůtu či migraci obyvateltva, obemu výroby průmylových podiů,
VícePředmět: Ročník: Vytvořil: Datum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 25. srpen 2013 Název zpracovaného celku: STATISTIKA ZÁKLADNÍ POJMY
Předmět: Ročík: Vytvořl: Datum: MATEMATIKA ČTVRTÝ Mg Tomáš MAŇÁK 5 pe 03 Název zpacovaého celku: STATISTIKA ZÁKLADNÍ POJMY STATISTIKA ZÁKLADNÍ POJMY Stattka e věda o metodách běu (pozoováí, měřeí, vážeí,
Více8 DALŠÍ SPOJITÁ ROZDĚLENÍ PRAVDĚPODOBNOSTI
8 DALŠÍ SPOJITÁ ROZDĚLENÍ PRAVDĚPODOBNOSTI Ča ke tudiu kapitoly: 60 miut Cíl: Po protudováí tohoto odtavce budete umět: charakterizovat další typy pojitých rozděleí: χ, Studetovo, Ficher- Sedocorovo -
VícePopisné (deskriptivní) metody. Statistické metody a zpracování dat. II. Popisné statistické metody. Rozdělení četností. Skupinové rozdělení četností
Popé (derptví) metody Číme závěry pouze z určtého zpracovávaého ouboru výběrového, popujeme je to, co bylo zjštěo, bez zobecňováí Stattcé metody a zpracováí dat II. Popé tattcé metody Petr Dobrovolý Derptví
Více1 STATISTICKÁ ŠETŘENÍ
STATISTICKÁ ŠETŘENÍ Záladem aždého tattcého zoumáí jou údaje (data). Lze je zíat v záadě dvěma způoby. Buď je převzít z ějaého zdroje ebo je am zjtt. Seudárí data údaje, teré převezmeme z růzých zdrojů;
VícePopisná statistika. (Descriptive statistics)
Popá tatta Decrptve tattc Výledem měřeí je oubor aměřeých hodot vytvářející datový oubor D { } V datovém ouboru e mohou vyytovat tytéž hodoty vícerát, zejméa tehdy, mají-l velčy drétí epojtou povahu počet
VíceTéma 1: Pravděpodobnost
ravděpodobot Téma : ravděpodobot ředáša - ravděpodobot áhodého evu Náhodý pou a áhodý ev Náhodý pou - aždá čot, eíž výlede eí edozačě urče podmíam, za terých probíhá apř hod otou, měřeí dély, běh a 00
VíceLekce Úroveň a její měření. aritmetický průměr; geometrický průměr; harmonický průměr; medián; mocninový
Lece Nejjedodušší Měřeí a charaterty úrově vlatotí datového ouboru je jeho úroveň, azývaá taé poloha. Charaterty úrově dělíme především podle toho, zda jou tvořey a báz výzamých hodot ebo zda jou fucem
Více1. Rozdělení četností a grafické znázornění Předpokládejme, že při statistickém šetření nás zajímá jediný statistický znak x, který nabývá
Statitická šetřeí a zpracováí dat Statitika e věda o metodách běru, zpracováí a vyhodocováí tatitických údaů. Statitika zkoumá polečeké, přírodí, techické a. evy vždy a dotatečě rozáhlém ouboru údaů. Matematická
VíceKapitola 5.: Analýza rozptylu jednoduchého třídění
Kaptola 5.: alýza ozptylu jedoduchého tříděí Cíl kaptoly Po postudováí této kaptoly budete umět - hodott vlv aktou o 3 úovích a vaabltu hodot sledovaé áhodé velčy - sestojt tabulku aalýzy ozptylu - detkovat
VíceSEMESTRÁ LNÍ PRÁ CE. Licenč ní studium STATISTICKÉZPRACOVÁ NÍ DAT PŘ I KONTROLE A Ř ÍZENÍ JAKOSTI
SEMESTRÁ LNÍ PRÁ CE Lceč í tudum STTISTICKÉZPRCOVÁ NÍ DT PŘ I KONTROLE Ř ÍZENÍ JKOSTI Předmě t MTEMTICKÉPRINCIPY NLÝ ZY VÍCEROZMĚ RNÝ CH DT Ú ta epemetá lí bofamace, Hadec Ká loé Ig. Mata Růžčkoá PDF byl
VíceInterval spolehlivosti pro podíl
Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této
Více9.3.5 Korelace. Předpoklady: 9304
935 Koelace Předpoklad: 9304 Zatím jsme se zabýval vžd pouze jedím zakem, ve statstckém výzkumu jsme však u každého jedotlvce (statstcké jedotk) sledoval zaků více Učtě spolu ěkteé zak souvsí (apříklad
VíceLineární regrese ( ) 2
Leárí regrese Častým úolem je staoveí vzájemé závslost dvou (č více) fzálích velč a její matematcé vjádřeí. K tomuto účelu se používají růzé regresí metod, pomocí chž hledáme vhodou fuc f (), apromující
Více8.2.7 Vzorce pro geometrickou posloupnost
7 Vzoce po geometicou poloupot Předpoldy: 0, 0 Př : Po geometicou poloupot pltí ; q Uči čle, iž by učovl Mohli bychom pomocí vzoce po -tý čle učit čle p pomocí tejého vzoce učit i Teto potup je ložitější
Vícea my chceme data proložit nějakou hladkou funkcí, která by vystihovala hlavní vlastnosti dat, ale ignorovala malé fluktuace a nepřesnosti.
Vyováváí dat Naše pozoováí jsou dáa tabulkou čísel, kde y y y i často bývají časové údaje, a my chceme data položit ějakou hladkou fukcí, kteá by vystihovala hlaví vlastosti dat, ale igoovala malé fluktuace
Vícea q provedeme toto nahrazení a dostane soustavu dvou rovnic o dvou neznámých: jsou nenulová čísla (jinak by na pravé straně rovnice byla 0)
..9 Úlohy geometickou poloupotí Předpokldy: 0, 0 Pedgogická pozámk: Při řešeí příkldů potupujeme tk, by Ti ejpomlejší počítli lepoň příkldy,,,. Souh vzoců pvidel po geometickou poloupot: + - pozávcí zmeí
VíceÚvodem. Vážení čtenáři,
Úvodem Vážeí čteář, rpta, terá právě otevíráte, jou určea především poluchačům druhého ročíu baalářého tuda všech oborů Vyoé šoly fačí a práví, tj. jao tudjí materál předmětům Pravděpodobot a tatta, Pravděpodobot
VíceDigitální učební materiál
Digitálí učebí mateiál Číslo pojetu CZ07/500/34080 Název pojetu Zvalitěí výuy postředictvím ICT Číslo a ázev šabloy líčové ativity III/ Iovace a zvalitěí výuy postředictvím ICT Příjemce podpoy Gymázium
VíceMěření a charakteristiky variability
Lece Měřeí a charatert varablt Po úrov je druhou vlatotí datového ouboru promělvot varablta Tato vlatot je ložtější o čemž vpovídají ja růzé ocepce chápáí promělvot dat ta začý počet dpoblích charatert
Vícestavební obzor 1 2/2014 11
tavebí obzor /04 Exploratorí aalýza výběrového ouboru dat pevoti drátobetou v tlau Ig. Daiel PIESZKA Ig. Iva KOLOŠ, Ph.D. doc. Ig. Karel KUBEČKA, Ph.D. VŠB-TU Otrava Faulta tavebí Věrohodé vyhodoceí experimetálích
VíceTéma 5: Analýza závislostí
Aalýza závlotí Téma 5: Aalýza závlotí Předáša 5 Závlot mez ev Záladí pom Předmětem této aptol ude zoumáí závlotí ouvlotí mez dvěma a více ev. Jedá e o proutí do vztahů mez ledovaým ev a tím přlížeí tzv.
VíceJednoduchá lineární závislost
Jedoduchá leárí závlot Regreí fuce: ),...,, ( 0 m f Předpolad: Fuce je leárí v parametrech: ) (... ) 0 ( 0 f f m m f 0 ()... f m () regreor 0... m regreí parametr určujeme METODOU NEJMENŠÍCH ČTVERCŮ Regreí
VíceJEDNOROZMĚRNÁ POPISNÁ STATISTIKA
JEDNOROZMĚRNÁ POPISNÁ STATISTIKA Záladí tattcé ojmy Statta - teto ojem lze cháat v záadě ve třech ojetích: ) číelé ebo loví údaje (data) a jejch ouhry o hromadých jevech ) ratcá čot očívající ve běru,
VíceSP2 Korelační analýza. Korelační analýza. Libor Žák
Koelčí lýz Přpomeutí pojmů áhodá poměá áhodý vekto áhodý vekto m Náhodý výbě: po áhodou poměou : po áhodý vekto : po áhodý vekto : m m Přpomeutí pojmů - kovce Kovce áhodých poměých kovčí koefcet popsuje
VíceANALÝZA ZÁVISLOSTÍ. Dvourozměrná tabulka rozdělení četností
ANALÝZA ZÁVILOTÍ - zouáí závlot dvou evet více poěých, ěřeí íl této závlot, atd - cíle je hlubší vutí do podtat ledovaých jevů a poceů, přblížeí tzv příčý ouvlote Dvouozěá tabula ozděleí četotí - je eleetáí
Více11 TESTOVÁNÍ PARAMETRICKÝCH HYPOTÉZ
TESTOVÁNÍ PARAMETRICKÝCH HYPOTÉZ Pojmem tetováí tatitických hypotéz ozaujeme ozhodováí o pavdivoti paametických, ep. epaametických hypotéz o populaci. V tomto ozhodovacím poceu opoti ob tojí ulová a alteativí
VíceTento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i
: ometové míry polohy zahrují růzé druhy průměrů pomocí kterých můžeme charakterzovat cetrálí tedec dat ometové míry polohy jsou jedoduché číselé charakterstky které se vyčíslují ze všech prvků výběru
VíceNEPARAMETRICKÉ METODY
NEPARAMETRICKÉ METODY Jsou to metody, dy předmětem testu hypotézy eí tvrzeí o hodotě parametru ějaého orétího rozděleí, ale ulová hypotéza je formulováa obecěji, apř. jao shoda rozděleí ebo ezávislost
VíceKorelační tabulka - dvourozměrná tabulka, ve které jsou uspořádány numerické proměnné.
Aaýza závotí (egeí a oeačí aaýza) - zoumáí závot dvou evet více poměých, měřeí í této závot, atd - cíem e huší vutí do podtat edovaých evů a poceů, přížeí tzv příčým ouvotem Koeačí taua - dvouozměá taua,
VíceMomenty a momentové charakteristiky
Lekce 3 Momety a mometové charaktertky Pokud jme e v předešlém výkladu zmňoval o ěkteré tattcké charaktertce, zpravdla jme rověž uváděl, zda j řadíme mez více ebo méě důležté. A byly to právě artmetcký
VíceStatistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY
Statitické metody ve veřejé právě ŘEŠENÉ PŘÍKLADY Ig. Václav Friedrich, Ph.D. 2013 1 Kapitola 2 Popi tatitických dat 2.1 Tabulka obahuje rozděleí pracovíků podle platových tříd: TARIF PLAT POČET TARIF
VíceDeskriptivní statistika 1
Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky
Více5. Základní statistický rozbor
5. Záladí tattcý rozbor Záladí tattcý rozbor očívá ve výočtech a rezetac číelých charatert tattcého ouboru hodot zoumaého číelého (vattatvího) tattcého zau. Číelé charaterty jou číelé hodoty, teré zhuštěím
VíceBudeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)
Předáša 7 Derivace a difereciály vyšších řádů Budeme poračovat v ahrazováí fuce f(x v oolí bodu a polyomy, tj hledat vhodé ostaty c ta, aby bylo pro malá x a f(x c 0 + c 1 (x a + c 2 (x a 2 + c 3 (x a
VícePřednáška č. 2 náhodné veličiny
Předáša č. áhodé velčy Pozámy záladím pojmům z počtu pravděpodobost Pozáma 1: Př výpočtu pravděpodobost áhodého jevu dle lascé defce je uté věovat pozorost způsobu formulace vybraého jevu. V ásledující
VíceSTATISTIKA. Základní pojmy
Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci
VíceUniverzita Karlova Přírodovědecká fakulta Katedra analytické chemie
Uivezit ov Příodovědecká fkut ted ytické chemie Sttitické vyhodoceí výedků Picip: Výedky opkových zkoušek, kteé jou ztížey áhodými chybmi, mjí učité ozděeí (ditibuci). Rozděeím e zde ozumí záviot pvděpodoboti
Více10.2.3 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI
Středí hodoty Artmetcý průměr vážeý Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI Zatím jsme počítal s tím, že četost ve vztahu pro vážeý artmetcý průměr byla přrozeá čísla Četost mohou
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství. Matematika IV. Semestrální práce
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta troího ižeýrtví Matematika IV Semetrálí práce Zpracoval: Čílo zadáí: 7 Studií kupia: Datum: 8.4. 0 . Při kotrole akoti výrobků byla ledováa odchylka X [mm] eich rozměru
VíceKorelační analýza. sdružené regresní přímky:
Koelčí lýz - ooutá závlot dvou tttckých zků; - hodot jou zíká pozoováím, ez možot ovlvěí; - eí možo ozlšt závle ezávle poměou; - hlvím átojem je ze metod ejmeších čtveců; - kždou z oou možých závlotí vthuje
VíceŠ Ú ř Ú ů Ž é ř ž ř Ž ř ů ú Ú Ú ú Ú Ž ů ř ř ř Ú é é é é é é Ž é ů ž ř ž ů ř ř ů é ů ů ů ŠŠ Ů ř ř ř ú ř é ň ř ň ř É ř ř ř ř é ř ř ř ř ř ř é é é Ž é é é é Š Ž ů ů é Ž ř ř ř Ž é ř ž Ž ř ř Ž éž ř Š éž Ž é
VíceRegrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n
Regrese Aproxmace metodou ejmeších čtverců v v ( ) = f x v v x x x x Je dáo bodů [x, ], =,,, předpoládáme závslost a x a chceme ajít fuc, terá vsthuje teto tred - Sažíme se proložt fuc = f x ta, ab v =
VíceKapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů
- 12.1 - Přehled Ifomace po odhad ákladů Míy po áklady dotazu Opeace výběu Řazeí Opeace spojeí Vyhodocováí výazů Tasfomace elačích výazů Výbě pláu po vyhodoceí Kapitola 12: Zpacováí dotazů Základí koky
VícePro statistické šetření si zvolte si statistický soubor např. všichni žáci třídy (několika tříd, školy apod.).
STATISTIKA Statistické šetřeí Proveďte a vyhodoťte statistické šetřeí:. Zvolte si statistický soubor. 2. Zvolte si určitý zak (zaky), které budete vyhodocovat. 3. Určete absolutí a relativí četosti zaků,
VícePŘÍKLAD NA VÁŽENÝ ARITMETICKÝ PRŮMĚR Z INTERVALOVÉHO ROZDĚLENÍ ČETNOSTI
PŘÍKLAD NA VÁŽENÝ ARITMETICKÝ PRŮMĚR Z INTERVALOVÉHO ROZDĚLENÍ ČETNOSTI Přílad 0.6 Pracoví, terý spravuje podovou databáz, eportoval do tabulového procesoru všechy pracovíy podu Alfa Blatá s ěterým sledovaým
VíceBeta faktor a ekvitní prémie z cizího trhu: přenositelnost a statistická spolehlivost
Beta fakto a ekvtí péme z czího thu: přeostelost a statstcká spolehlvost Veze 15. 4. 014 chal Dvořák Abstakt Cílem textu je lustovat že český buzoví th eobsahuje dostatečý počet ttulů ke koektímu staoveí
VícePřehled vztahů k problematice jednoduchého úročení a úrokové sazby
Přehled vztahů k poblematice jedoduchého úočeí a úokové sazby Pozámka: Veškeé úokové sazby /předlhůtí i polhůtí/, diskotí sazby, míy iflace a sazby daě z příjmů je do uvedeých vzoců uto dosazovat v jejich
VícePopis datového souboru
Lece 3 Pop datového ouboru Zatím jme hovořl převážě o zjšťováí dat a jejch zpracováí Údaje datového ouboru popují aždý případ zvlášť Ní e pouíme vužít údaje tomu, abchom zobecl určté tpcé vlatot datového
VíceMendelova univerzita v Brně Statistika projekt
Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4
VíceMetody zkoumání závislosti numerických proměnných
Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy
VíceDigitální učební materiál
Dgtálí učebí materál Číslo projetu CZ..07/.5.00/34.080 Název projetu Zvaltěí výuy prostředctvím ICT Číslo a ázev šabloy líčové atvty III/ Iovace a zvaltěí výuy prostředctvím ICT Příjemce podpory Gymázum,
Více11 TESTOVÁNÍ HYPOTÉZ. Čas ke studiu kapitoly: 360 minut. Cíl
TESTOVÁNÍ HYPOTÉZ Ča ke tudu kaptoly: 36 mut Cíl Po potudováí tohoto odtavce budete: zát základí pojmy a pcpy tetováí hypotéz zát kocepc klackého tetu umět ozhodovat pomocí čtého tetu výzamot umět pooudt
VíceIlustrativní příklad ke zkoušce z B_PS_A léto 2014.
Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95
VíceMocniny, odmocniny, úpravy. Repetitorium z matematiky
Mociy, odmociy, úpvy lgeických výzů epetitoium z mtemtiky Podzim Iv culová . Mociy přiozeým celým mocitelem Po kždé eálé čílo kždé přiozeé čílo pltí:... čiitelů moci Zákld mociy (mocěec) mocitel (expoet)
Více4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností
4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.
VíceOdhady parametrů základního. Ing. Michal Dorda, Ph.D.
Odhady parametrů základího souboru Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt celou populac, provádíme
VíceZávislost slovních znaků
Závislost slovích zaků Závislost slovích (kvalitativích) zaků Obměy slovího zaku Alterativí zaky Možé zaky Tříděí věcé sloví řady: seřazeí obmě je subjektiví záležitostí (podle abecedy), možé i objektiví
Více9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost
Dráha [m] 9. Měřeí závslostí ve statstce Měřeí závslostí ve statstce se zývá především zkoumáím vzájemé závslost statstckých zaků vícerozměrých souborů. Závslost přtom mohou být apříklad pevé, volé, jedostraé,
Více12. Regrese Teoretické základy
Regese Jedím z hlavích úolů matematicé statistiy je hledáí a studium závislostí mezi dvěma či více oměými Závisle oměá se zavidla ozačuje Y a ezávisle oměé X,, X i,i Závislosti mezi Y a suiou oměých X
Více6. KOMBINATORIKA 181. 6.1. Základní pojmy 181 6.1.1. Počítání s faktoriály a kombinačními čísly 182. 6.2. Variace 184. 6.3.
Zálady matematiy Kombiatoria. KOMBINATORIKA 8.. Záladí pojmy 8... Počítáí s fatoriály a ombiačími čísly 8.. Variace 8.. Permutace 85.. Kombiace 87.5. Biomicá věta 89 Úlohy samostatému řešeí 9 Výsledy úloh
VícePRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOT A TATITIKA Přpomeutí pojmů,, P m θ, R θ R - pravděpodobostí prostor - parametrcký prostor - parametrcká fukce,, T - áhodý vektor defovaý a pravděpodobostím prostoru,, P θ s hustotou f x,
VíceSTATISTICKÝ ODHAD A TESTOVÁNÍ PRŮKAZNOSTI EKONOMETRICKÉHO MODELU Výběrové metody Výhody a nevýhody Využití při statistické indukci Rozsah výběru
TATITICÝ ODHAD A TETOVÁNÍ RŮAZNOTI EONOMETRICÉHO MODELU Výěové meod Výhod a evýhod Vuží př acé duc Rozah výěu Výpočeí poup Gafcý poup Bodový odhad Ievalový odhad Oouaý a edoaý eval polehlvo Ieval polehlvo
VíceČeské vysoké učení technické v Praze. Fakulta dopravní. Semestrální práce. Statistika
České vysoké učeí techické v Praze Fakulta dopraví Semestrálí práce Statistika Čekáí vlaku ve staicích a trase Klado Ostrovec Praha Masarykovo ádraží Zouzalová Barbora 2 35 Michálek Tomáš 2 35 sk. 2 35
VíceOdhady parametrů 1. Odhady parametrů
Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:
VíceS k l á d á n í s i l
S l á d á í s i l Ú o l : Všetřovat rovováhu tří sil, působících a tuhé těleso v jedom bodě. P o t ř e b : Viz sezam v desách u úloh a pracovím stole. Obecá část: Při sládáí soustav ěolia sil působících
VíceAktivita 1 Seminář základů statistiky a workshop (Prof. Ing. Milan Palát, CSc., Ing. Kristina Somerlíková, Ph.D.)
Aktvta Semář základů tattky a workhop (Prof. Ig. Mla Palát, CSc., Ig. Krta Somerlíková, Ph.D.) Stattcké tříděí Základí metoda tattckého zpracováí. Sekupováí hodot proměé, které jou z hledka klafkačího
VíceP1: Úvod do experimentálních metod
P1: Úvod do epermetálích metod Chyby a ejstoty měřeí - Každé měřeí je zatížeo určtou epřesostí, která je způsobea ejrůzějším egatvím vlvy, vyskytujícím se v procesu měřeí. - Výsledek měřeí se díky tomu
VíceSměrnice 1/2011 Statistické vyhodnocování dat, verze 4 Verze 4 je shodná se Směrnicí 1/2011 verze 3, pouze byla rozšířena o robustní analýzu
Směrce /0 Stattcké vyhodocováí dat, verze 4 Verze 4 e hodá e Směrcí /0 verze 3, ouze byla rozšířea o robutí aalýzu. Stattcké metody ro zkoušeí zůoblot Cílem tattcké aalýzy výledků zkoušek ř zkouškách zůoblot
Více1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL
Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,
VíceOdhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.
Odhady parametrů základího souboru Ig. Mchal Dorda, Ph.D. Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl σ atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt
VíceTéma 6: Indexy a diference
dexy a dferece Téma 6: dexy a dferece ředáška 9 dvdálí dexy a dferece Základí ojmy Vedle elemetárího statstckého zracováí dat se hromadé jevy aalyzjí tzv. srováváím růzých kazatelů. Statstcký kazatel -
VícePosloupnosti ( 1) ( ) 1. Různým způsobem (rekurentně i jinak) zadané posloupnosti. 2. Aritmetická posloupnost
Poloupoti Růzým způobem (rekuretě i jik zdé poloupoti Urči prvích pět čleů poloupoti, ve které, + Urči prvích pět čleů poloupoti, je-li dáo:, + + Urči prvích pět čleů poloupoti, je-li dáo: 0,, Urči prvích
VíceMěření na D/A a A/D převodnících
Měřeí a D/A a A/D převodících. Zadáí A. Na D/A převodíku ealizovaém pomocí MDAC 8: a) Změřte závislost výstupího apětí převodíku v ozsahu až V a zvoleé vstupí kombiaci sousedích kódových slov. Měřeí poveďte
VícePravděpodobnost a aplikovaná statistika
Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 4. KAPITOLA STATISTICKÉ CHARAKTERISTIKY 16.10.2017 23.10.2017 Přehled témat 1. Pravděpodobost (defiice, využití, výpočet pravděpodobostí
VícePRAVDĚPODOBNOST A STATISTIKA
Matematka IV PRAVDĚPODOBNOT A TATITIKA Lbor Žák Matematka IV Lbor Žák Regresí aalýza Regresí aalýza zkoumá závslost mez ezávslým proměým X ( X,, X k a závsle proměou Y. Tato závslost se vjadřuje ve tvaru
VícePRAVDĚPODOBNOST A STATISTIKA
SP esty dobré shody PRAVDĚPODOBNOS A SAISIKA Lbor Žá SP esty dobré shody Lbor Žá Přpomeutí - estováí hypotéz o rozděleí Ch-vadrát test Chí-vadrát testem terý e založe a tříděém statstcém souboru. SP esty
VíceČ É É Č ď Č ž ž Ž ď ě š ě š ě ě š ě ď ž ď šť ť ďš Č ď Č Č ě ž ž Í ě Č ě š ě š š Ž ě ě ť ě ž ě Č ě ž š Í Í ě ě ď ě ě ě ě Í ě ť ě ě ď ě ť ě ď ž ě ě š ě ť Č ě Ž Ž ě ž š š Ž ě Č Ž ě ě ě ě ě ě ě Ž ž ě ť É šš
VíceNejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A
Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota
VíceOdhady a testy hypotéz o regresních přímkách
Lekce 3 Odhad a tet hpotéz o regreích přímkách Ve druhé lekc jme kotruoval kofdečí terval a formuloval tet hpotéz o korelačím koefcetu Korelačí koefcet je metrckou charaktertkou tezt závlot, u které ezáleží
Více8.2.2 Vzorce pro aritmetickou posloupnost Předpoklady: Př. 1: Př. 2: Př. 3:
8 Vzoce po itmeticou poloupot Předpoldy: 80 Př : Po itmeticou poloupot pltí 5 ; d Uči čle iž by učovl Mohli bychom pomocí vzoce po -tý čle učit čle p pomocí tejého vzoce učit i Teto potup zzuje zdáí příldu
VíceTestování statistických hypotéz
Tetováí tatitických hypotéz CHEMOMETRIE I, David MILDE Jedá e o jedu z ejpoužívaějších metod pro vyloveí závěrů o základím ouboru, který ezkoumáme celý, ale pomocí áhodého výběru. Př.: Je obah účié látky
VíceIlustrativní příklad ke zkoušce z B_PS_A léto 2013.
Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95
VíceFINANČNÍ MATEMATIKA- INFLACE
ojekt ŠABLONY NA GVM Gymázum Velké Mezříčí egstačí číslo pojektu: CZ..7/.5./34.948 V- ovace a zkvaltěí výuky směřující k ozvoj matematcké gamotost žáků středích škol FNANČNÍ MATEMATA- NFLACE Auto Jazyk
Více10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR
Středí hodoty Artmetcý průměr vážeý ze tříděí Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR Výzam a užtí vážeého artmetcého průměru uážeme a ásledujících příladech Přílad 0 Ve frmě Gama Blatá máme soubor
VíceP2: Statistické zpracování dat
P: Statistické zpracováí dat Úvodem - Statistika: věda, zabývající se shromažďováím, tříděím a ásledým popisem velkých datových souborů. - Základem statistiky je teorie pravděpodobosti, založeá a popisu
Více