Dvourozměrná tabulka rozdělení četností

Rozměr: px
Začít zobrazení ze stránky:

Download "Dvourozměrná tabulka rozdělení četností"

Transkript

1 ANALÝZA ZÁVILOTÍ - zouáí závlot dvou evet více poěých, ěřeí íl této závlot, atd - cíle je hlubší vutí do podtat ledovaých jevů a poceů, přblížeí tzv příčý ouvlote Dvouozěá tabula ozděleí četotí - je eleetáí etodou popu závlot - ozlšujee ůzé tp tabule Koelačí tabula: obě poěé jou uecé Kotgečí tabula: alepoň jeda poěá je loví Aocačí tabula: obě poěé jou alteatví Čtřpolí tabula: obě poěé abývají pouze dvou obě Dvouozěá tabula ozděleí četotí,,, j,,, j oučt četotí oučt četotí j bola: j, p j p, dužeé (ultáí) abolutí četot j oajové (agálí) abolutí četot p j dužeé elatví četot agálí elatví četot j j ; j j ; p ; j p j ; p j j j j j j

2 Podíěé ozděleí četotí: ozděleí četotí jedé poěé, teé odpovídá učté oběě duhé poěé (tj za podí, že duhá poěá abla učté obě) Podíěé elatví četot: j p j / ; p / j j j Podíěý půě: j j j j j Podíěý ozptl: j j j j j Po výpočt je čato používáa taé já foa tabul, teá uožňuje tříděí hodot poěé podle poěé do up Tabula tříděí poěé podle poěé,,, j,,, j,, 3,, 3, 4, 5,, 3, 4 Cele Podíěý půě: Podíěý ozptl: j j j j

3 Gafcé zázoěí dvouozěého ozděleí četotí - je další foou popu závlot - lze použít ůzé tp gafů čáa podíěých půěů čáa podíěých ozptlů bodový gaf (daga) ozlad ozptlu Pcp: celový ozptl poěé ( ) lze vjádřt jao oučet ozptlu podíěých půěů ( ) a půěu podíěých ozptlů ( v ) Vzoec po ozlad ozptlu: v Celový ozptl ( ) j j ; j j j jedotlvé hodot ledovaé poěé celový půě ozah výběu celový oučet čtveců ozptl podíěých půěů ( ) - ezupový ozptl - odáží vaabltu ez upa - olíáí podíěých půěů je důlede závlot a - ezupová vaablta je vvětltelá fatoe podíěý půě ezupový oučet čtveců 3

4 Půě podíěých ozptlů ( v ) - vtoupový ozptl - odáží vaabltu uvtř up - olíáí je důlede závlot a jých fatoech ež a v v podíěý ozptl vtoupový (ezduálí) oučet čtveců v Pozáa: Za účele zjedodušeí výpočtů lze používat pouze čtatele vzoců, tzv oučt čtveců, eboť jetlže platí v, platí taé v Aalýza ozptlu - jedofatoová aalýza, fatoe je poěá (číelá ebo loví) - je to tet, teý zouá, zda zě hodot uecé poěé lze vvětlt zěa fatou - louží ověřeí výzaot ozdílu výběových půěů více áhodých výběů Předpolad tetu: N je pořízeo ezávlých áhodých výběů - aždý z výběů á oálí ozděleí ezáou tředí hodotou,,, a ezáý ozptle,,, - ozptl všech up jou tejé, tj (tzv hooedatcta) - hodu ozptlů je třeba ověřt vhodý tete, apř Batlettový - počet pozoováí uí být větší ež počet up, tj > - ze záladího oubou oálí ozděleí ; Tetovací potup: ) H : (tj ezáví a ; ozděleí poěé ají a ůzých úovích fatou tejé tředí hodot) H : o H ) Tetové téu: F v ; tatta F á př platot H ozděleí F ; 4

5 3) Ktcý obo: W F F F ; ; 4) Závě tetu: Poud leží hodota tetového téa v tcé obou, zaítáe H a přjíáe H, ted poázal je hpotézu H o závlot poěé a fatou Měřeí íl (tezt, těot) závlot poěé a fatou : Poě deteace: Poě oelace: P ; P ; P P ; P ; χ tet o ezávlot v otgečí tabulce - otgečí tabula: dvouozěá tabula, de alepoň jeda poěá je loví - podtatou tetu je poováí epcých četotí teoetcý četot - teoetcé četot = četot očeávaé v případě ezávlot ( j ) Vzoec po výpočet teoetcých četotí: j j Předpolad tetu: - všecha políča otgečí tabul uí být dotatečě obazea ( 5 ) - poud podía eí plěa, uíe ěteé tříd loučt ebo zvětšt ozah výběu Tetovací potup: ) H : poěé a jou ezávlé H : o H ) Tetové téu: G j j j j ; tatta G á př platot H ozděleí j 5

6 3) Ktcý obo: W G; G 4) Závě tetu: Poud leží hodota tetového téa v tcé obou, zaítáe H a přjíáe H, ted poázal je hpotézu H o závlot poěých a Měřeí íl (tezt, těot) závlot v otgečí tabulce: Caéův oefcet otgece: Peaoův oefcet otgece: C C C P G ; C C, h h = (-; -) G ; C P, G χ tet o ezávlot v aocačí tabulce - aocačí tabula: dvouozěá čtřpolí tabula - v podtatě jde o pecálí případ otgečí tabul - za A a B jou alteatví - př zouáí aocace ledujee, ja čato jev A a B atal č eatal oučaě, a ja čato atal pouze jede z ch Tetovací potup: ) H : za (jev) A a B jou ezávlé H : o H ) Tetové téu: G ; tatta G á př platot H ozděleí 3) Ktcý obo: W G; G 4) Závě tetu: Poud leží hodota tetového téa v tcé obou, zaítáe H a přjíáe H, ted poázal je hpotézu H o závlot (aocac) poěých A a B 6

7 Měřeí íl (tezt, těot) závlot v aocačí tabulce: Koefcet aocace: AB ; AB ; Itepetace oefcetu aocace: zaéo (+/ ) udává ě aocace: AB > ladá (příá) aocace (jev čatěj atávají č eatávají polečě a éě čato atává je jede z ch) AB < zápoá (epříá) aocace (jev éě čato atávají č eatávají polečě a čatěj atává je jede z ch) AB udává ílu aocace: úplá epříá aocace (teýol z jevů pouze dž eatává jev duhý) AB úplá ladá aocace (jev atávají pouze polečě) AB labá aocace lá aocace egeí a oelačí aalýza egeí aalýza - zouáí jedotaé závlot uecé poěé (závlá, vvětlovaá) a uecé poěé (ezávlá, vvětlující) - ezávlá poěá = příča, závlá poěá = důlede - důležtý je přto ě závlot (teá poěá je závlá a teá ezávlá) - závlot většou odelujee ějaou ateatcou fucí (tzv egeí fuce) Koelačí aalýza - zabývá e předevší teztou vzájeého vztahu uecých poěých - a teztu závlot je lade větší důaz ež a její ě - zahuje í tezt závlot - coelató = vzájeá ouvlot (z lat) - z výpočetích a tepetačích hlede e egeí a oelačí aalýza políají egeí odel - ateatcé odel, teé vjadřují předtavu o půběhu závlot poěých - uožňují odhad ezáých hodot závle poěé ze záých hodot ezávle poěé 7

8 Obecý tva odelu:,,,, bola: detetcá loža áhodá (ušvá) loža Tp odelů: adtví (oučtový) jeho lož e ládají čítáí, je ejběžější ultplatví (oučový) jeho lož e ládají áobeí Teoetcá egeí fuce: - etují ůzé tp egeích fucí - ejčatější jou leáí egeí fuce - leata e ůže hodott ja z hleda poěých, ta z hleda paaetů - aždá egeí fuce á učtý počet paaetů (jejch počet začíe p) Paaet egeí fuce: - ezáé otat; bolc je začíe řecý píe,,, - jejch hodot lze odhadout z výběových dat - je třeba jejch odhadu zvolt taovou etodu, ab odhad ěl co ejlepší vlatot ) Fuce leáí z hleda paaetů přía ova adova paabola hpebola logatcá fuce polo l ) Fuce eleáí z hleda paaetů epoecálí fuce ocá fuce Tőqutova řva 8

9 Jedoduchá leáí egee - egeí fuce je leáí z hleda paaetů - á jedu vvětlující poěou (egeo) Teoetcá (hpotetcá) egeí fuce: -, paaet; egeo - uto povét odhad ezáých paaetů, - odhad paaetů leáí egeí fuce povádíe etodou eješích čtveců - dž odhadee paaet, zíáe tzv výběovou egeí fuc Epcá (výběová) egeí fuce: ˆ Y b b - b,b odhad paaetů; b ˆ ˆ ; b Metoda eješích čtveců - lze j použít pouze odhadu paaetů fucí leáích v paaetech (v leáí ege) - pcp: paaet odhadujee ta, ab po ě bl álí oučet čtveců ezduí,,,, Y ˆ b b ˆ ezduu: ˆ Y b b e b b e alzovat taovíe pacálí devace a položíe je ov vze outava dvou ovc o dvou ezáých (tzv oálí ovce) 3 vřešíe j a zíáe vzoce po výpočet b a b Vzoce po výpočet paaetů výběové egeí pří: b b b b výběový egeí oefcet (ěce výběové egeí pří) udává půěou zěu poěé odpovídající zvýšeí poěé o jedotu ovaace etcá ía, tz 9

10 dužeé egeí pří Y a b popuje závlot a X a b popuje závlot a b b - a jou oelačě ezávlé - dužeé egeí pří víají pavý úhel b b - a jou pefetě závlé - dužeé egeí pří víají ulový úhel, ted plývají Mí těot leáí závlot Koefcet deteace: b b ; ; Koefcet oelace: ; ; - paaetcá ía těot závlot dvou poěých - vžaduje plěí předpoladu oalt dat - je vel ctlvý vůč odlehlý hodotá - ěří pouze ílu leáí závlot, ol závlot obecě - teto oefcet je etcý Itepetace oefcetu oelace: zaéo (+/ ) udává ě závlot: > příá závlot < epříá závlot udává ílu závlot: leáí ezávlot fučí (pefetí) závlot labá leáí závlot lá leáí závlot

11 Tet hpotéz o ulové hodotě oelačího oefcetu ) H : (leáí ezávlot a ) H : o H ) Tetové téu: t ; tatta t á př platot H ozděleí t 3) Ktcý obo: W t; t t a t t 4) Závě tetu: Poud leží hodota tetového téa v tcé obou, zaítáe H a přjíáe H, ted poázal je hpotézu o leáí závlot poěých a peaaův oefcet pořadové oelace: 6 a b ; ; - epaaetcá vaata oelačího oefcetu - vchází pouze z pořadí aěřeých hodot - evžaduje poto plěí předpoladu oalt ozděleí dat a je obutí vůč odlehlý hodotá - eodáží pouze leáí závlot (jao lacý oefcet oelace), ale ěří, ja dobře popuje vhodá ootóí (ted eleáí) fuce závlot poěých - tepetace a tet hpotéz o ulové hodotě: tejé jao u oelačího oefcetu Mí těot závlot - obecé í, ezávlé a tpu egeí fuce - lze použít po ěřeí eleáí závlot - tto í ejou etcé Ide deteace: I T ; I ; - udává, jaý podíl vaablt poěé lze vvětlt zvoleou egeí fucí - lze ho vjádřt v % Ide oelace: I I ; I ;

12 ozlad celového oučtu čtveců T celový oučet čtveců teoetcý oučet čtveců T čát vaablt, teou lze vvětlt zvoleou egeí fucí ezduálí oučet čtveců čát vaablt, teou elze vvětlt zvoleou egeí fucí Y ; Y T Tetováí vhodot egeího odelu Celový F tet - tetuje vhodot odelu jao celu - aalýza ozptlu ) H c,,,, (egeí fuce eá žádý výza, tj eí vhodá) : H : o H ) Tetové téu: F T p p ; tatta F á př platot H ozděleí Fp ; p 3) Ktcý obo: W F F F p ; p ; 4) Závě tetu: Poud leží hodota tetového téa v tcé obou, zaítáe H a přjíáe H Model lze a daé hladě výzaot považovat za vhodý

13 Dílčí t tet - tet o ulové hodotě jedotlvých egeích paaetů - počet tetů je ove počtu paaetů odelu ) H : h, h,,, H : o H ) Tetové téu: b h th, h,,, bh tatta t h á př platot H ozděleí t p 3) Ktcý obo: W t h p a t t p ; t h t h 4) Závě tetu: Poud leží hodota tetového téa v tcé obou, zaítáe H a přjíáe H Tetovaý paaet lze a daé hladě výzaot považovat v egeí fuc za příoý Jedoduchá eleáí egee - eí-l egeí fuce leáí v paaetech, elze její paaet odhadout etodou eješích čtveců - po odhad paaetů e používá řada ůzých etod, apřílad etoda leazující tafoace (logatcá apod) ebo etoda čátečých oučtů - většou áledují další etod po zlepšeí vlatotí odhadů - výpočetě začě áočé (vužtí tattcých pogaů) Víceáobá leáí egee - zouáe závlot poěé a dvou č více vvětlujících poěých,,,, tzv egeoech - volba tpu egeí fuce je obtížá, elze zázot a gafc - vhodé použtí tattcých pogaů - z důvodu jedoduchot a chopot tepetovat výled ejčatěj volíe leáí egeí fuc Teoetcá víceáobá leáí egeí fuce: 3

14 Volba vhodého tpu egeí fuce - volba b e ěla v pvé řadě opíat o věcý ozbo vztahů poěých - př volbě ejvhodější egeí fuce lze uplatt ůzá téa, teá lze vzájeě obovat - vžd e ažíe o jedoduchot odelu (e přílš oho paaetů) - úpěšot odelu je ezbté ověřt vhodý tete - dále je třeba zěřt přlavot egeí fuce datů vhodou íou Ide deteace - za vhodější je považováa ta egeí fuce, u teé je hodota I všší Př ováváí fucí etejý počte paaetů je třeba hodotu I upavt (pealzovat), eboť u fucí všší počte paaetů vchází hodota I autoatc všší Etují ůzé fo pealzace, apřílad: I adj I p Poz: adjuted = upaveý p Tetové téu F - tetové téu celového F-tetu vhodot odelu - za vhodější je považováa fuce, u íž je hodota tatt F všší - toto téu lze použít vžd, bez ohledu a to, ol paaetů ají ovávaé egeí fuce F T p p ezduálí oučet čtveců a ezduálí ozptl ezduálí oučet čtveců: Y - za vhodější je považováa fuce, teá á ezduálí oučet čtveců žší - ezduálí oučet čtveců lze použít pouze tehd, dž ováváe fuce e tejý počte paaetů ezduálí ozptl: p - za vhodější je považováa fuce, teá á ezduálí ozptl žší - ezduálí ozptl lze použít vžd, bez ohledu a to, ol paaetů ají ovávaé egeí fuce 4

15 3 Tetové téu F F T p p - tetové téu celového F-tetu vhodot odelu - za vhodější je považováa fuce, u íž je hodota tatt F všší - toto téu lze použít vžd, bez ohledu a to, ol paaetů ají ovávaé egeí fuce 5

ANALÝZA ZÁVISLOSTÍ. Dvourozměrná tabulka rozdělení četností

ANALÝZA ZÁVISLOSTÍ. Dvourozměrná tabulka rozdělení četností ANALÝZA ZÁVILOTÍ - zouáí závlot dvou evet více poěých, ěřeí íl této závlot, atd - cíle je hlubší vutí do podtat ledovaých jevů a poceů, přblížeí tzv příčý ouvlote Dvouozěá tabula ozděleí četotí - je eleetáí

Více

Poznámky k tématu Korelace a jednoduchá lineární regrese (Téma není ve skriptech)

Poznámky k tématu Korelace a jednoduchá lineární regrese (Téma není ve skriptech) Pozámk k tématu Koelace a jedoduchá leáí egee (Téma eí ve kptech) Mějme data, ),...,(, ), kteá jou áhodým výběem z ějaké populace. Data ted pokládáme za ezávlé ealzace dvojce áhodých velč ( X, Y ). Půmě

Více

Téma 3: Popisná statistika

Téma 3: Popisná statistika Popá tatta Téma : Popá tatta Předáša 7 Záladí tattcé pojmy Pojem a úoly tatty Statta je věda, teá e zabývá zíáváím, zpacováím a aalýzou dat po potřeby ozhodováí. Zoumá tav a vývoj homadých jevů a vztahů

Více

Korelační tabulka - dvourozměrná tabulka, ve které jsou uspořádány numerické proměnné.

Korelační tabulka - dvourozměrná tabulka, ve které jsou uspořádány numerické proměnné. Aaýza závotí (egeí a oeačí aaýza) - zoumáí závot dvou evet více poměých, měřeí í této závot, atd - cíem e huší vutí do podtat edovaých evů a poceů, přížeí tzv příčým ouvotem Koeačí taua - dvouozměá taua,

Více

- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení.

- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení. MATEMATICKÁ STATISTIKA - a základě výběrových dat uuzujeme a obecější kutečot, týkající e základího ouboru; provádíme zevšeobecňující (duktví) úudek - duktví uuzováí pomocí matematcko-tattckých metod je

Více

3. cvičení 4ST201 - řešení

3. cvičení 4ST201 - řešení cvčící Ig. Jaa Feclová 3. cvčeí 4ST0 - řešeí Obah: Míry varablty Rozptyl Směrodatá odchyla Varačí oefcet Rozlad rozptylu a mezupovou a vtroupovou varabltu Změa rozptylu Vyoá šola eoomcá VŠE urz 4ST0 Míry

Více

Statistické charakteristiky (míry)

Statistické charakteristiky (míry) Stattcé charaterty (míry) - hrují formac, obažeou v datech (vyjadřují j v ocetrovaé formě); - charaterzují záladí ryy zoumaého ouboru dat; - umožňují porováváí více ouborů. upy tattcých charatert :. charaterty

Více

Téma 5: Analýza závislostí

Téma 5: Analýza závislostí Aalýza závlotí Téma 5: Aalýza závlotí Předáša 5 Závlot mez ev Záladí pom Předmětem této aptol ude zoumáí závlotí ouvlotí mez dvěma a více ev. Jedá e o proutí do vztahů mez ledovaým ev a tím přlížeí tzv.

Více

Téma 1: Pravděpodobnost

Téma 1: Pravděpodobnost ravděpodobot Téma : ravděpodobot ředáša - ravděpodobot áhodého evu Náhodý pou a áhodý ev Náhodý pou - aždá čot, eíž výlede eí edozačě urče podmíam, za terých probíhá apř hod otou, měřeí dély, běh a 00

Více

3. cvičení 4ST201. Míry variability

3. cvičení 4ST201. Míry variability cvčící Ig. Jaa Feclová 3. cvčeí 4ST0 Obah: Míry varablty Rozptyl Směrodatá odchyla Varačí oefcet Rozlad rozptylu a mezupovou a vtroupovou varabltu Změa rozptylu Vyoá šola eoomcá VŠE urz 4ST0 Míry varablty

Více

Soustava momentů. k s. Je-li tedy ve vzorci obecného momentu s = 1, získáme vzorec aritmetického průměru.

Soustava momentů. k s. Je-li tedy ve vzorci obecného momentu s = 1, získáme vzorec aritmetického průměru. Soutava mometů Momety (Obecé, cetrálí a ormovaé) Do ytému mometových charatert patří ty ejdůležtější artmetcý průměr (mometová míra úrově) a rozptyl (mometová úroveň varablty). Obecý momet -tého tupě:

Více

Charakteristiky úrovně

Charakteristiky úrovně Charaterty úrově Měřeí úrově Úroveň (poloha) je jedou ze záladích vlatotí tattcých dat, v úrov e mohou tattcá data lšt ebo aopa hodovat. Výzačé hodoty varačí řady ejou ctlvé a změu jedotlvých hodot Medá

Více

1 Měření závislosti statistických znaků. 1.1 Dvourozměrný statistický soubor

1 Měření závislosti statistických znaků. 1.1 Dvourozměrný statistický soubor 1 Měřeí závlot tattckých zaků 1.1 Dvourozměrý tattcký oubor Př aalýze ekoomckých kutečotí á čato ezajímají jedotlvé velč jako takové, ale vztah mez m. Ptáme e, jak záví poptávka a ceě produktu, plat zamětaců

Více

1 STATISTICKÁ ŠETŘENÍ

1 STATISTICKÁ ŠETŘENÍ STATISTICKÁ ŠETŘENÍ Záladem aždého tattcého zoumáí jou údaje (data). Lze je zíat v záadě dvěma způoby. Buď je převzít z ějaého zdroje ebo je am zjtt. Seudárí data údaje, teré převezmeme z růzých zdrojů;

Více

1.1. Primitivní funkce a neurčitý integrál

1.1. Primitivní funkce a neurčitý integrál Mateatia II. NEURČITÝ INTEGRÁL.. Priitiví fuce a eurčitý itegrál Defiice... Říáe, že fuce F( ) je v itervalu ( ab, ) priitiví fucí fuci f ( ), platí-li pro všecha ( ab, ) vztah F = f. Defiice... Možia

Více

Jednoduchá lineární závislost

Jednoduchá lineární závislost Jedoduchá leárí závlot Regreí fuce: ),...,, ( 0 m f Předpolad: Fuce je leárí v parametrech: ) (... ) 0 ( 0 f f m m f 0 ()... f m () regreor 0... m regreí parametr určujeme METODOU NEJMENŠÍCH ČTVERCŮ Regreí

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství. Matematika IV. Semestrální práce

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství. Matematika IV. Semestrální práce VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta troího ižeýrtví Matematika IV Semetrálí práce Zpracoval: Čílo zadáí: 7 Studií kupia: Datum: 8.4. 0 . Při kotrole akoti výrobků byla ledováa odchylka X [mm] eich rozměru

Více

8.2.7 Vzorce pro geometrickou posloupnost

8.2.7 Vzorce pro geometrickou posloupnost 7 Vzoce po geometicou poloupot Předpoldy: 0, 0 Př : Po geometicou poloupot pltí ; q Uči čle, iž by učovl Mohli bychom pomocí vzoce po -tý čle učit čle p pomocí tejého vzoce učit i Teto potup je ložitější

Více

Testování statistických hypotéz

Testování statistických hypotéz Tetováí tatitických hypotéz CHEMOMETRIE I, David MILDE Jedá e o jedu z ejpoužívaějších metod pro vyloveí závěrů o základím ouboru, který ezkoumáme celý, ale pomocí áhodého výběru. Př.: Je obah účié látky

Více

Regrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n

Regrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n Regrese Aproxmace metodou ejmeších čtverců v v ( ) = f x v v x x x x Je dáo bodů [x, ], =,,, předpoládáme závslost a x a chceme ajít fuc, terá vsthuje teto tred - Sažíme se proložt fuc = f x ta, ab v =

Více

Měření a charakteristiky variability

Měření a charakteristiky variability Lece Měřeí a charatert varablt Po úrov je druhou vlatotí datového ouboru promělvot varablta Tato vlatot je ložtější o čemž vpovídají ja růzé ocepce chápáí promělvot dat ta začý počet dpoblích charatert

Více

Statistika. Jednotlivé prvky této množiny se nazývají prvky statistického souboru (statistické jednotky).

Statistika. Jednotlivé prvky této množiny se nazývají prvky statistického souboru (statistické jednotky). Statstka. Základí pojmy Statstcký soubo - daá koečá, epázdá moža M předmětů pozoováí, majících jsté společé vlastost (událost, věc,.) Jedotlvé pvky této možy se azývají pvky statstckého soubou (statstcké

Více

SEMESTRÁ LNÍ PRÁ CE. Licenč ní studium STATISTICKÉZPRACOVÁ NÍ DAT PŘ I KONTROLE A Ř ÍZENÍ JAKOSTI

SEMESTRÁ LNÍ PRÁ CE. Licenč ní studium STATISTICKÉZPRACOVÁ NÍ DAT PŘ I KONTROLE A Ř ÍZENÍ JAKOSTI SEMESTRÁ LNÍ PRÁ CE Lceč í tudum STTISTICKÉZPRCOVÁ NÍ DT PŘ I KONTROLE Ř ÍZENÍ JKOSTI Předmě t MTEMTICKÉPRINCIPY NLÝ ZY VÍCEROZMĚ RNÝ CH DT Ú ta epemetá lí bofamace, Hadec Ká loé Ig. Mata Růžčkoá PDF byl

Více

Odhady a testy hypotéz o regresních přímkách

Odhady a testy hypotéz o regresních přímkách Lekce 3 Odhad a tet hpotéz o regreích přímkách Ve druhé lekc jme kotruoval kofdečí terval a formuloval tet hpotéz o korelačím koefcetu Korelačí koefcet je metrckou charaktertkou tezt závlot, u které ezáleží

Více

9.3.5 Korelace. Předpoklady: 9304

9.3.5 Korelace. Předpoklady: 9304 935 Koelace Předpoklad: 9304 Zatím jsme se zabýval vžd pouze jedím zakem, ve statstckém výzkumu jsme však u každého jedotlvce (statstcké jedotk) sledoval zaků více Učtě spolu ěkteé zak souvsí (apříklad

Více

S1P Popisná statistika. Popisná statistika. Libor Žák

S1P Popisná statistika. Popisná statistika. Libor Žák SP Popsá statstka Popsá statstka Lbor Žák SP Popsá statstka Lbor Žák Základí zdroje : skrpta Mateatka IV - doc. RNDr. Z. Karpíšek, CSc. ateatka o le - http://athole.fe.vutbr.cz/ Základ ateatcké statstk

Více

Korelační analýza. sdružené regresní přímky:

Korelační analýza. sdružené regresní přímky: Koelčí lýz - ooutá závlot dvou tttckých zků; - hodot jou zíká pozoováím, ez možot ovlvěí; - eí možo ozlšt závle ezávle poměou; - hlvím átojem je ze metod ejmeších čtveců; - kždou z oou možých závlotí vthuje

Více

Lekce Úroveň a její měření. aritmetický průměr; geometrický průměr; harmonický průměr; medián; mocninový

Lekce Úroveň a její měření. aritmetický průměr; geometrický průměr; harmonický průměr; medián; mocninový Lece Nejjedodušší Měřeí a charaterty úrově vlatotí datového ouboru je jeho úroveň, azývaá taé poloha. Charaterty úrově dělíme především podle toho, zda jou tvořey a báz výzamých hodot ebo zda jou fucem

Více

stavební obzor 1 2/2014 11

stavební obzor 1 2/2014 11 tavebí obzor /04 Exploratorí aalýza výběrového ouboru dat pevoti drátobetou v tlau Ig. Daiel PIESZKA Ig. Iva KOLOŠ, Ph.D. doc. Ig. Karel KUBEČKA, Ph.D. VŠB-TU Otrava Faulta tavebí Věrohodé vyhodoceí experimetálích

Více

2. Vícekriteriální a cílové programování

2. Vícekriteriální a cílové programování 2. Vícerterálí a cílové programováí Úlohy vícerterálího programováí jsou úlohy, ve terých se a možě přípustých řešeí optmalzuje ěol salárích rterálích fucí. Moža přípustých řešeí je přtom defováa podobě

Více

Interval spolehlivosti pro podíl

Interval spolehlivosti pro podíl Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této

Více

ÚLOHA VÍCE TĚLES V NEBESKÉ MECHANICE

ÚLOHA VÍCE TĚLES V NEBESKÉ MECHANICE ÚLOHA VÍCE TĚLES V NEBESKÉ ECHANICE SPECIFIKACE PROBLÉU Řeš úlohu ěles zaeá aléz pohyby ( foulova pohybové ovce a aléz ech řešeí) hoých bodů (esp ěles př zaedbáí duhoé oace) a eé působí pouze vzáeé gavačí

Více

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a) Předáša 7 Derivace a difereciály vyšších řádů Budeme poračovat v ahrazováí fuce f(x v oolí bodu a polyomy, tj hledat vhodé ostaty c ta, aby bylo pro malá x a f(x c 0 + c 1 (x a + c 2 (x a 2 + c 3 (x a

Více

Teorie chyb a vyrovnávací počet. Obsah:

Teorie chyb a vyrovnávací počet. Obsah: Teorie chyb a vyrovávací počet Obsah: Testováí statistických hypotéz.... Ověřováí hypotézy o středí hodotě základího souboru s orálí rozděleí... 4. Ověřováí hypotézy o rozptylu v základí souboru s orálí

Více

Lineární regrese ( ) 2

Lineární regrese ( ) 2 Leárí regrese Častým úolem je staoveí vzájemé závslost dvou (č více) fzálích velč a její matematcé vjádřeí. K tomuto účelu se používají růzé regresí metod, pomocí chž hledáme vhodou fuc f (), apromující

Více

Vztahy mezi základním souborem a výběry. Základní pojmy a symboly. K čemu to je dobré? Výběrové metody zkoumání

Vztahy mezi základním souborem a výběry. Základní pojmy a symboly. K čemu to je dobré? Výběrové metody zkoumání K čemu to je dobé? Obvyklým případem při zpacováí homadých jevů je, že máme poměě malý počet pozoováí ějaké veličiy a chceme učiit závěy o tom, co bychom obdželi, kdybychom měli pozoováí mohokát více.

Více

NEPARAMETRICKÉ METODY

NEPARAMETRICKÉ METODY NEPARAMETRICKÉ METODY Jsou to metody, dy předmětem testu hypotézy eí tvrzeí o hodotě parametru ějaého orétího rozděleí, ale ulová hypotéza je formulováa obecěji, apř. jao shoda rozděleí ebo ezávislost

Více

Přednáška č. 2 náhodné veličiny

Přednáška č. 2 náhodné veličiny Předáša č. áhodé velčy Pozámy záladím pojmům z počtu pravděpodobost Pozáma 1: Př výpočtu pravděpodobost áhodého jevu dle lascé defce je uté věovat pozorost způsobu formulace vybraého jevu. V ásledující

Více

Popis datového souboru

Popis datového souboru Lece 3 Pop datového ouboru Zatím jme hovořl převážě o zjšťováí dat a jejch zpracováí Údaje datového ouboru popují aždý případ zvlášť Ní e pouíme vužít údaje tomu, abchom zobecl určté tpcé vlatot datového

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA SP esty dobré shody PRAVDĚPODOBNOS A SAISIKA Lbor Žá SP esty dobré shody Lbor Žá Přpomeutí - estováí hypotéz o rozděleí Ch-vadrát test Chí-vadrát testem terý e založe a tříděém statstcém souboru. SP esty

Více

2. Směsi, směšování a ředění roztoků, vylučování látek z roztoků

2. Směsi, směšování a ředění roztoků, vylučování látek z roztoků 2. Sě ěšováí a ředěí roztoů vyučováí áte z roztoů Sožeí ě áte ůžee vyadřovat poocí hototích zoů edotvých áte (ože ě). Hototí zoe -té ožy e defová ao poěr eí hotot hotot ě : (2) Pode záoa zachováí hotot

Více

Rekonstrukce vodovodních řadů ve vztahu ke spolehlivosti vodovodní sítě

Rekonstrukce vodovodních řadů ve vztahu ke spolehlivosti vodovodní sítě Rekostrukce vodovodích řadů ve vztahu ke spolehlvost vodovodí sítě Ig. Jaa Šekapoulová Vodáreská akcová společost, a.s. Bro. ÚVOD V oha lokaltách České republky je v současost aktuálí problée zastaralá

Více

10.2.3 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI

10.2.3 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI Středí hodoty Artmetcý průměr vážeý Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI Zatím jsme počítal s tím, že četost ve vztahu pro vážeý artmetcý průměr byla přrozeá čísla Četost mohou

Více

Popisné (deskriptivní) metody. Statistické metody a zpracování dat. II. Popisné statistické metody. Rozdělení četností. Skupinové rozdělení četností

Popisné (deskriptivní) metody. Statistické metody a zpracování dat. II. Popisné statistické metody. Rozdělení četností. Skupinové rozdělení četností Popé (derptví) metody Číme závěry pouze z určtého zpracovávaého ouboru výběrového, popujeme je to, co bylo zjštěo, bez zobecňováí Stattcé metody a zpracováí dat II. Popé tattcé metody Petr Dobrovolý Derptví

Více

ZÁKLADY POPISNÉ STATISTIKY

ZÁKLADY POPISNÉ STATISTIKY ZÁKLADY POPISNÉ STATISTIKY Statitia věda o metodách běru, zpracováí a vyhodocováí tatiticých údaů. Statiticé údae ou apř. údae o přirozeém přírůtu či migraci obyvateltva, obemu výroby průmylových podiů,

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA P NOV PRVDĚPODOBNOT TTTK Lbor Žák P NOV Lbor Žák Vícvýběrové tty - NOV NOV tty provádí pomocí aalýzy rozptylů NOV ouhré tty pro víc ěž dva výběry. NOV paramtrcká ttováí charaktrtk z zámých rozdělí pokud

Více

Momenty a momentové charakteristiky

Momenty a momentové charakteristiky Lekce 3 Momety a mometové charaktertky Pokud jme e v předešlém výkladu zmňoval o ěkteré tattcké charaktertce, zpravdla jme rověž uváděl, zda j řadíme mez více ebo méě důležté. A byly to právě artmetcký

Více

Kapitola 5.: Analýza rozptylu jednoduchého třídění

Kapitola 5.: Analýza rozptylu jednoduchého třídění Kaptola 5.: alýza ozptylu jedoduchého tříděí Cíl kaptoly Po postudováí této kaptoly budete umět - hodott vlv aktou o 3 úovích a vaabltu hodot sledovaé áhodé velčy - sestojt tabulku aalýzy ozptylu - detkovat

Více

DISKRÉTNÍ MATEMATIKA II

DISKRÉTNÍ MATEMATIKA II Faulta pedagogcá Techcá uverzta v Lberc DISKRÉTNÍ MATEMATIKA II Doc. RNDr. Mroslav Koucý CSc. Lberec 4 Úvod Dsrétí ateata resp. její zálady patří jž tradčě ez stadardí téata předášeá a Techcé uverztě v

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

SP2 Korelační analýza. Korelační analýza. Libor Žák

SP2 Korelační analýza. Korelační analýza. Libor Žák Koelčí lýz Přpomeutí pojmů áhodá poměá áhodý vekto áhodý vekto m Náhodý výbě: po áhodou poměou : po áhodý vekto : po áhodý vekto : m m Přpomeutí pojmů - kovce Kovce áhodých poměých kovčí koefcet popsuje

Více

1. Přirozená topologie v R n

1. Přirozená topologie v R n MATEMATICKÁ ANALÝZA III předášy M Krupy Zií seestr 999/ Přirozeá topologie v R V prví části tohoto tetu zavádíe přirozeou topologii a ožiě R ejprve jao topologii orovaého prostoru a pa jao topologii součiu

Více

C Charakteristiky silničních motorových vozidel

C Charakteristiky silničních motorových vozidel C Chaaktetky lnčních otoových vozel Toto téa e zabývá záklaní etoa tanovení někteých povozních chaaktetk lnčních otoových vozel, kteé pak náleně louží k pouzování užtných vlatnotí těchto vozel. Stanovení

Více

USTÁLENÉ PROUDĚNÍ V OTEVŘENÝCH KORYTECH

USTÁLENÉ PROUDĚNÍ V OTEVŘENÝCH KORYTECH USTÁLENÉ POUDĚNÍ V OTEVŘENÝCH KOYTECH ovoměré prouděí Charakterstka:. Hloubka vod v kortě, průtočá plocha a průřezová rchlost jsou v každém příčém řezu kostatí.. Čára eerge, vodí hlada a do korta jsou

Více

Testování statistických hypotéz

Testování statistických hypotéz Testováí statstckých hypotéz - Testováí hypotéz je postup, sloužící k ověřeí předpokladů o ZS (hypotéz a základě výběrových dat (tj. hodot z výběrového souboru. - ypotéza = určtý předpoklad o základím

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA Matematka IV PRAVDĚPODOBNOT A TATITIKA Lbor Žák Matematka IV Lbor Žák Regresí aalýza Regresí aalýza zkoumá závslost mez ezávslým proměým X ( X,, X k a závsle proměou Y. Tato závslost se vjadřuje ve tvaru

Více

INŽENÝRSKÁ GEODÉZIE I

INŽENÝRSKÁ GEODÉZIE I VYSOKÉ UČENÍ TECHNICKÉ V RNĚ FKULT STVENÍ OTKR ŠVÁENSKÝ LEXEJ VITUL JIŘÍ UREŠ INŽENÝRSKÁ GEODÉZIE I GE6 MODUL 0 ZÁKLDY INŽENÝRSKÉ GEODÉZIE STUDIJNÍ OPORY PRO STUDIJNÍ PROGRMY S KOMINOVNOU FORMOU STUDI

Více

a my chceme data proložit nějakou hladkou funkcí, která by vystihovala hlavní vlastnosti dat, ale ignorovala malé fluktuace a nepřesnosti.

a my chceme data proložit nějakou hladkou funkcí, která by vystihovala hlavní vlastnosti dat, ale ignorovala malé fluktuace a nepřesnosti. Vyováváí dat Naše pozoováí jsou dáa tabulkou čísel, kde y y y i často bývají časové údaje, a my chceme data položit ějakou hladkou fukcí, kteá by vystihovala hlaví vlastosti dat, ale igoovala malé fluktuace

Více

S k l á d á n í s i l

S k l á d á n í s i l S l á d á í s i l Ú o l : Všetřovat rovováhu tří sil, působících a tuhé těleso v jedom bodě. P o t ř e b : Viz sezam v desách u úloh a pracovím stole. Obecá část: Při sládáí soustav ěolia sil působících

Více

k(k + 1) = A k + B. s n = n 1 n + 1 = = 3. = ln 2 + ln. 2 + ln

k(k + 1) = A k + B. s n = n 1 n + 1 = = 3. = ln 2 + ln. 2 + ln Číselé řady - řešeé přílady ČÍSELNÉ ŘADY - řešeé přílady A. Součty řad Vzorové přílady:.. Přílad. Určete součet řady + = + 6 + +.... Řešeí: Rozladem -tého čleu řady a parciálí zlomy dostáváme + = + ) =

Více

1. Rozdělení četností a grafické znázornění Předpokládejme, že při statistickém šetření nás zajímá jediný statistický znak x, který nabývá

1. Rozdělení četností a grafické znázornění Předpokládejme, že při statistickém šetření nás zajímá jediný statistický znak x, který nabývá Statitická šetřeí a zpracováí dat Statitika e věda o metodách běru, zpracováí a vyhodocováí tatitických údaů. Statitika zkoumá polečeké, přírodí, techické a. evy vždy a dotatečě rozáhlém ouboru údaů. Matematická

Více

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků 1 Pops statstcých dat 1.1 Pops omálích a ordálích zaů K zobrazeí rozděleí hodot omálích ebo ordálích zaů lze použít tabulu ebo graf rozděleí četostí. Tuto formu zobrazeí lze dooce použít pro číselé zay,

Více

Popisná statistika. (Descriptive statistics)

Popisná statistika. (Descriptive statistics) Popá tatta Decrptve tattc Výledem měřeí je oubor aměřeých hodot vytvářející datový oubor D { } V datovém ouboru e mohou vyytovat tytéž hodoty vícerát, zejméa tehdy, mají-l velčy drétí epojtou povahu počet

Více

PRAVDĚPODOBNOST A STATISTIKA. Testy hypotéz

PRAVDĚPODOBNOST A STATISTIKA. Testy hypotéz SP3 Tey hypoéz PRAVDĚPODOBNOST A STATISTIKA Tey hypoéz Lbor Žá SP3 Tey hypoéz Lbor Žá Tey hypoéz- úvod Nechť X X e áhodý výběr T X X X áhodý veor ezávlé ložy erý má rozděleí závlé a parameru θ Θ Θ R Ozačme:

Více

10 - Přímá vazba, Feedforward

10 - Přímá vazba, Feedforward 0 - Přímá vazba, Feedforward Michael Šebek Automatické řízeí 03 4--3 Motivace (FF podle Atroma) Automatické řízeí - Kberetika a robotika Už máme avržeu zpětovazebí čát Chceme zajitit přeo referece rový

Více

Doc. Ing. Dagmar Blatná, CSc.

Doc. Ing. Dagmar Blatná, CSc. PRAVDĚPODOBNOST A STATISTIKA Doc. Ig. Dagmar Blatá, CSc. Statsta statstcé údaje o hromadých jevech čost, terá vede zísáí statstcých údajů a jejch zpracováí teore statsty - věda o stavu, vztazích a vývoj

Více

7. Analytická geometrie

7. Analytická geometrie 7. Aaltická geoetrie Studijí tet 7. Aaltická geoetrie A. Příka v roviě ϕ s A s ϕ s 2 s 1 B p s ϕ = (s1, s 2 ) sěrový vektor přík p orálový vektor přík p sěrový úhel přík p k = tgϕ = s 2 s 1 sěrice příkp

Více

a q provedeme toto nahrazení a dostane soustavu dvou rovnic o dvou neznámých: jsou nenulová čísla (jinak by na pravé straně rovnice byla 0)

a q provedeme toto nahrazení a dostane soustavu dvou rovnic o dvou neznámých: jsou nenulová čísla (jinak by na pravé straně rovnice byla 0) ..9 Úlohy geometickou poloupotí Předpokldy: 0, 0 Pedgogická pozámk: Při řešeí příkldů potupujeme tk, by Ti ejpomlejší počítli lepoň příkldy,,,. Souh vzoců pvidel po geometickou poloupot: + - pozávcí zmeí

Více

Sbírka úloh z matematiky pro 9.ročník Lomené výrazy ZŠ Třešť

Sbírka úloh z matematiky pro 9.ročník Lomené výrazy ZŠ Třešť Sík úloh z tetik po 9.očík I. Loeé výz ZŠ Třešť . Loeý výz je zloek. Jeovtel zloku e eí ovt ule. U loeých výzů učujee vžd podík, po kteé á loeý výz l. Řešeý příkld Uči podík, po kteé jí výz l, řeš dlší

Více

Univerzita Karlova Přírodovědecká fakulta Katedra analytické chemie

Univerzita Karlova Přírodovědecká fakulta Katedra analytické chemie Uivezit ov Příodovědecká fkut ted ytické chemie Sttitické vyhodoceí výedků Picip: Výedky opkových zkoušek, kteé jou ztížey áhodými chybmi, mjí učité ozděeí (ditibuci). Rozděeím e zde ozumí záviot pvděpodoboti

Více

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT Základy práce s tabulkou Výukový modul III. Iovace a zkvaltěí výuky prostředctvím IC éma III..3 echcká měřeí v MS Excel Pracoví lst 5 Měřeí teploty. Ig. Jří Chobot VY_3_INOVACE_33_5 Aotace Iovace a zkvaltěí

Více

Úvod do korelační a regresní analýzy

Úvod do korelační a regresní analýzy Úvod do korelačí a regresí aalýz Bude ás zajímat, jak těsě spolu souvsí dva sledovaé jev Příklad: vztah mez rchlostí auta a brzdou dráhou vztah mez věkem žáka a rchlostí v běhu a 60 m vztah mez spotřebou

Více

8 DALŠÍ SPOJITÁ ROZDĚLENÍ PRAVDĚPODOBNOSTI

8 DALŠÍ SPOJITÁ ROZDĚLENÍ PRAVDĚPODOBNOSTI 8 DALŠÍ SPOJITÁ ROZDĚLENÍ PRAVDĚPODOBNOSTI Ča ke tudiu kapitoly: 60 miut Cíl: Po protudováí tohoto odtavce budete umět: charakterizovat další typy pojitých rozděleí: χ, Studetovo, Ficher- Sedocorovo -

Více

Aktivita 1 Seminář základů statistiky a workshop (Prof. Ing. Milan Palát, CSc., Ing. Kristina Somerlíková, Ph.D.)

Aktivita 1 Seminář základů statistiky a workshop (Prof. Ing. Milan Palát, CSc., Ing. Kristina Somerlíková, Ph.D.) Aktvta Semář základů tattky a workhop (Prof. Ig. Mla Palát, CSc., Ig. Krta Somerlíková, Ph.D.) Stattcké tříděí Základí metoda tattckého zpracováí. Sekupováí hodot proměé, které jou z hledka klafkačího

Více

7 VYUŽITÍ METOD OPERAČNÍ ANALÝZY V TECHNOLOGII DOPRAVY

7 VYUŽITÍ METOD OPERAČNÍ ANALÝZY V TECHNOLOGII DOPRAVY 7 VYUŽITÍ METOD OERAČNÍ ANALÝZY V TECHNOLOGII DORAVY Operačí aalýza jao jeda z oblatí apliovaé matematiy achází vé široé uplatěí v průmylových a eoomicých apliacích. Jedím z oborů, ve teré hraje ezatupitelou

Více

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254 Evropský socálí fod Prh & EU: Ivestuee do vší udoucost eto terál vkl díky Operčíu progru Prh dptlt CZ..7/3..00/3354 Mžerské kvtttví etody II - předášk č. - eore her eore her 96 vo Neu, Morgester kldtelé

Více

Obr. DI-1. K principu reverzibility (obrácení chodu paprsků).

Obr. DI-1. K principu reverzibility (obrácení chodu paprsků). Učebí text k předášce UFY8 Dvojvzková tererece teké vrtvě Dvojvzková tererece teké vrtvě Předpokládejme, vl o mpltudě dvou delektrk tk, že mpltud održeé vly bude o dexu lomu bude t (vz obr. DI-1). v protředí

Více

STATISTICKÝ ODHAD A TESTOVÁNÍ PRŮKAZNOSTI EKONOMETRICKÉHO MODELU Výběrové metody Výhody a nevýhody Využití při statistické indukci Rozsah výběru

STATISTICKÝ ODHAD A TESTOVÁNÍ PRŮKAZNOSTI EKONOMETRICKÉHO MODELU Výběrové metody Výhody a nevýhody Využití při statistické indukci Rozsah výběru TATITICÝ ODHAD A TETOVÁNÍ RŮAZNOTI EONOMETRICÉHO MODELU Výěové meod Výhod a evýhod Vuží př acé duc Rozah výěu Výpočeí poup Gafcý poup Bodový odhad Ievalový odhad Oouaý a edoaý eval polehlvo Ieval polehlvo

Více

Směrnice 1/2011 Statistické vyhodnocování dat, verze 3 Verze 3 je shodná s původní Směrnicí 1/2011 verze 2, za čl. 2.3 je vložen nový odstavec

Směrnice 1/2011 Statistické vyhodnocování dat, verze 3 Verze 3 je shodná s původní Směrnicí 1/2011 verze 2, za čl. 2.3 je vložen nový odstavec Směrice /0 Statitické vyhodocováí dat, verze 3 Verze 3 e hodá ůvodí Směricí /0 verze, za čl..3 e vlože ový odtavec. Statitické metody ro zkoušeí zůobiloti Statitická aalýza oužívaá ro aalýzu výledků zkoušky

Více

Přednáška č. 10 Analýza rozptylu při jednoduchém třídění

Přednáška č. 10 Analýza rozptylu při jednoduchém třídění Předáška č. 0 Aalýza roztylu ř jedoduchém tříděí Aalýza roztylu je statstcká metoda, kterou se osuzuje romělvost oakovaých realzací áhodého okusu tj. romělvost áhodé velčy. Náhodá velča vzká za relatvě

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY Statitické metody ve veřejé právě ŘEŠENÉ PŘÍKLADY Ig. Václav Friedrich, Ph.D. 2013 1 Kapitola 2 Popi tatitických dat 2.1 Tabulka obahuje rozděleí pracovíků podle platových tříd: TARIF PLAT POČET TARIF

Více

Geometrické uspořádání koleje

Geometrické uspořádání koleje Geoetricé uspořádáí oeje rají přechodice Otto Páše, doc. Ig. Ph.D. Ústav žeezičích ostrucí a staveb Tato prezetace ba vtvoře pro studijí úče studetů. ročíu baaářsého studia oboru ostruce a dopraví stavb

Více

3. DIFERENCIÁLNÍ ROVNICE

3. DIFERENCIÁLNÍ ROVNICE 3 DIFERENCIÁLNÍ ROVNICE Difereciálí rovice (dále je DR) jsou veli důležitou částí ateatické aalýz, protože uožňují řešit celou řadu úloh z fzik a techické prae Občejé difereciálí rovice: rovice, v íž se

Více

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 25. srpen 2013 Název zpracovaného celku: STATISTIKA ZÁKLADNÍ POJMY

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 25. srpen 2013 Název zpracovaného celku: STATISTIKA ZÁKLADNÍ POJMY Předmět: Ročík: Vytvořl: Datum: MATEMATIKA ČTVRTÝ Mg Tomáš MAŇÁK 5 pe 03 Název zpacovaého celku: STATISTIKA ZÁKLADNÍ POJMY STATISTIKA ZÁKLADNÍ POJMY Stattka e věda o metodách běu (pozoováí, měřeí, vážeí,

Více

3.3 Soustavy sil a silových momentů. soustava sil a momentů = seskupení sil a momentů sil působících na těleso

3.3 Soustavy sil a silových momentů. soustava sil a momentů = seskupení sil a momentů sil působících na těleso 3.3 Soustav s a sových oetů soustava s a oetů sesupeí s a oetů s působících a těeso váští případ: svae s (paps všech s soustav se potíají v jedo bodě) soustava ovoběžých s (paps všech s soustav jsou aváje

Více

9. REGRESNÍ A KORELAČNÍ ANALÝZA

9. REGRESNÍ A KORELAČNÍ ANALÝZA Pravděpodobot a tattka 9. REGRESNÍ A KORELAČNÍ ANALÝZA Průvodce tudem V předchozí kaptole jme uvedl způob, jak popat leárí závlot mez dvěma argumety a její míru. Užtím korelačích poměrů je možé zjtt, zda

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOT A TATITIKA Přpomeutí pojmů,, P m θ, R θ R - pravděpodobostí prostor - parametrcký prostor - parametrcká fukce,, T - áhodý vektor defovaý a pravděpodobostím prostoru,, P θ s hustotou f x,

Více

nazveme číselným vektorem. Čísla a Definice. Vektor, jehož všechny složky se rovnají nule, se nazývá nulový vektor o r = (0, 0, 0,, 0).

nazveme číselným vektorem. Čísla a Definice. Vektor, jehož všechny složky se rovnají nule, se nazývá nulový vektor o r = (0, 0, 0,, 0). ČÍSELNÉ VEKTORY Defce Uspořádou -tc čísel = (,,, ) zveme číselým vektoem Čísl,,, jsou složky ebol souřdce vektou Přozeé číslo zýváme ozměem ebo tké dmezí vektou Defce Vekto, jehož všechy složky se ovjí

Více

í í á í í é é Í í í ě č á í í Ž í é á á š í Ťí í Ž Ť č č č é ě č á é í í ě ě Ž č é ě Ů í á Ší č í á é čí í éž ť ě á í ě é č í Ť í í Ť ě Ť č é čá á í Ž

í í á í í é é Í í í ě č á í í Ž í é á á š í Ťí í Ž Ť č č č é ě č á é í í ě ě Ž č é ě Ů í á Ší č í á é čí í éž ť ě á í ě é č í Ť í í Ť ě Ť č é čá á í Ž í í á í í é é Í í í ě č á í í Ž í é á á š í Ťí í Ž Ť č č č é ě č á é í í ě ě Ž č é ě Ů í á Ší č í á é čí í éž ť ě á í ě é č í Ť í í Ť ě Ť č é čá á í Ž é Ťí ž é ě é í é í íž ť Ž č ě í é Ť í ž é áť ď í é

Více

ŠKOLENÍ ŘIDIČŮ

ŠKOLENÍ ŘIDIČŮ ŠKOLENÍ ŘIDIČŮ Novi k a z ě k.. v hláška č. / S. a záko č. / S. Co se ě í? Nová v hláška č. / S. provádějí í pravidla a poze í h ko u ika í h s úči ostí od. led a ruší a ahrazuje v hlášku č. / S. upravují

Více

Dynamická analýza rámu brdového listu

Dynamická analýza rámu brdového listu Dacá aalýza ráu rovéo lstu MODELOVÁNÍ MECHANICKÝCH SOUSTAV Šo Kovář 0..0 Brový lst 8..0 Brový lst průřez čů. orí če. olí če. Postrace. áě Tp závěsů těe 8..0 Použté ozačeí sol pops jeota sč oefcet tlueí

Více

11. Časové řady. 11.1. Pojem a klasifikace časových řad

11. Časové řady. 11.1. Pojem a klasifikace časových řad . Časové řad.. Pojem a klasfkace časových řad Specfckým statstckým dat jsou časové řad pomocí chž můžeme zkoumat damku jevů v čase. Časovou řadou (damcká řada, vývojová řada) rozumíme v čase uspořádaé

Více

é á é á í í í í š é é á š ž í ě ě ší á ú éá é á ž Íí č Í ě á í í í č áí é á č é é é í í í í á á Í á ď čí ášé í Ů ž Íáž í ěč í á ž á í áď ě ě š ě ž čá

é á é á í í í í š é é á š ž í ě ě ší á ú éá é á ž Íí č Í ě á í í í č áí é á č é é é í í í í á á Í á ď čí ášé í Ů ž Íáž í ěč í á ž á í áď ě ě š ě ž čá á é ě é ď é á í é í é ě á ě é ťí ď ť ť í í í á á ě Í č í č éí á á í č í ď ť ě é ď é á í č š é íť á Úč č í á ěť í č é ťí ž í á á í í é í á á ěť í ě á é í ť í ď é á í á á č í ď í ž í á á í ě í ď ě í Ó í

Více

3. Charakteristiky a parametry náhodných veličin

3. Charakteristiky a parametry náhodných veličin 3. Charateristiy a parametry áhodých veliči Úolem této apitoly je zavést pomocý aparát, terým budeme dále popisovat pomocí jedoduchých prostředů áhodé veličiy. Taovýmto aparátem jsou tzv. parametry ebo

Více

Výpočet planetových soukolí pomocí maticových metod

Výpočet planetových soukolí pomocí maticových metod Česé Vysoé Učeí Techcé v ze Fult stojí Techcá 4, h 6, 166 07 Výočet letových souolí omocí mtcových metod Výzumá záv áce byl odoová Výzumým cetem Josef Bož Záv č.: Z 02-07 Auto: Gbel Achteová Se, 2002 1

Více

10 částic. 1,0079 1, kg 1, kg. 1, kg. 6, , kg 0, kg 1,079g

10 částic. 1,0079 1, kg 1, kg. 1, kg. 6, , kg 0, kg 1,079g ..7 oláí veličiy I Předpoklady: 0 Opakováí z iulé hodiy: Ato uhlíku A C C je přibližě x těžší ež ato H. Potřebujee,0 0 atoů uhlíku C abycho dohoady získali g látky. Pokud áe,0 0 částic látky, říkáe, že

Více

1. Trapézový plech poloha pozitivní (betonem jsou vyplněna úzká žebra) TR 50/250-1mm. Tloušťka Hmotnost PL Ý PRŮŘEZ EFEKTIV Í PRŮŘEZ

1. Trapézový plech poloha pozitivní (betonem jsou vyplněna úzká žebra) TR 50/250-1mm. Tloušťka Hmotnost PL Ý PRŮŘEZ EFEKTIV Í PRŮŘEZ Příkld 0: Nvrhěte pouďte protě uložeou oelobetoovou tropii rozpětí 6 m včetě poouzeí trpézového plehu jko ztreého beděí. - rozteč tropi m - tloušťk betoové dek elkem 00 mm - oel S 5 - beto C 0/5 - užité

Více

(způsobený emisí nových peněz). To znamená, že stát na aukci přichází s

(způsobený emisí nových peněz). To znamená, že stát na aukci přichází s ažebé ve pojité čae Petr ach, yoá šola eooicá Toáš Hazá, ateatico-fyziálí faulta Uiverzity Karlovy Úvod Jedí ze způobů zíáí veřejého příju je eie ově vytištěých peěz Protože eií peěz edochází tvorbě bohattví,

Více

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota

Více