SP2 Korelační analýza. Korelační analýza. Libor Žák
|
|
- Matěj Jaroš
- před 6 lety
- Počet zobrazení:
Transkript
1 Korelačí aalýza
2 Přpomeutí pojmů áhodá proměá áhodý vetor áhodý vetor Náhodý výběr: pro áhodou proměou : pro áhodý vetor : pro áhodý vetor :
3 Přpomeutí pojmů - ovarace Kovarace áhodých proměých ovaračí oefcet popsuje leárí závslost mez áhodým proměým a. Ozačeí: Platí: E E E E E E 0 a a a a d b d c b a D D D j j D D
4 Přpomeutí pojmů - ovarace Kovarace áhodých vetorů ovaračí oefcet popsuje leárí závslost mez áhodým vetory a. Ozačeí: Platí: cov cov cov j E cov E m E E E E cov a B c D Bcov D cov cov cov cov cov
5 Přpomeutí pojmů - ovarace Varačí matce vetoru Ozačeí: var Platí: var cov cov var j j var E E E E var var a B B var B var E E E var cov cov var
6 Přpomeutí pojmů - orelace Korelace áhodých prměých orelačí oefcet popsuje leárí závslost mez áhodým proměým a.. Ozačeí: ρ ρ ρ. Nechť a jsou áhodé proměé s ladým směrodatým odchylam: 0 0 pa defujeme orelačí oefcet: Nechť a m jsou áhodé vetory. Pa pod pojmem orelačí matce rozumíme matc: cor j m
7 Přpomeutí pojmů - orelace Platí: Korelace áhodých proměých a : Korelace áhodých vetorů a : cor sg d b d c b a 0 a a a a m j cor cor cor cor cor c a
8 Korelačí aalýza Nechť je áhodý výběr z dvojrozměrého rozděleí se středí hodotou rozptylem ovarací a orelací. Výběrové statsty: Platí: Nestraé výběrové statsty E E E E E
9 Korelačí aalýza výběrové matce Nechť je -rozměrý áhodý vetor se středí hodotou μ a rozptylem Σ j. edy: E μ var Σ Dále echť = je áhodý výběr z rozděleí popsující áhodý vetor Pa E μ var Σ cov 0. j Pomocí áhodého výběru defujme výběrové matce vetory: výběrové průměry: j j Platí E μ var Σ
10 Korelačí aalýza výběrové matce Pomocí áhodého výběru dále defujme Výběrová varačí matce Platí E Σ l j l j l l j j Výběrová orelačí matce: Nechť j j 0 j l. j l j l. l j j l j Pozor jž eplatí: E
11 Nechť Korelačí aalýza výběrové matce je p-rozměrý áhodý vetor a je áhodý výběr z rozděleí popsující áhodý vetor Dále echť je q-rozměrý áhodý vetor a je áhodý výběr z rozděleí popsující áhodý vetor. Výběrová ovaračí matce vetorů a : l j p q Platí: p Výběrová orelačí matce vetorů a : echť 0 l p 0 j E cov l l l j l. j l. l j. j q p q j j q
12 Korelačí aalýza výběrové matce Nechť je p-rozměrý áhodý vetor a je áhodý výběr z rozděleí popsující áhodý vetor Dále echť je q-rozměrý áhodý vetor a je áhodý výběr z rozděleí popsující áhodý vetor. Ozačme: Náhodý výběr: Pro vetor platí: Výběrová ovaračí matce vetoru : Výběrová orelačí matce vetoru : p q q p Σ Σ Σ Σ Σ cov cov cov cov cov
13 Koefcet mohoásobé orelace Koefcet mohoásobé víceásobé celové orelace defuje míru leárí stochastcé závslost mez áhodou velčou a vhodou leárí ombací slože áhodého vetoru. Platí: Nechť ˆ Vhodá ombace je poud ˆ var cov V cov ˆ var cov V cov pa E E ovost astává pro E β E a β V cov de V var. Koefcet mohoásobé orelace se defuje jao oefcet orelace mez áhodým velčam a ˆ : ˆ β
14 Koefcet mohoásobé orelace Další vyjádřeí: β Vβ D cov ˆ D D ˆ D cor cor cor V případě áhodého vetoru:
15 Koefcet mohoásobé orelace Pro mohoásobý orelačí oefcet platí: 0 je ejvětší ze všech orelačích oefcetů a leárí ombace specálě:
16 Mějme áhodý výběr: de áhodé vetory: jsou -rozměré Ozačme matce výběrových orelačích oefcetů pro matce orelace obsahující řády a sloupce matce orelace obsahující řáde a sloupce matce orelace obsahující řády a sloupce Předpolad že matce je regulárí. Pa s pomocí vztahu defujeme výběrový oefcet mohoásobé orelace: Výběrový oefcet mohoásobá orelace cor cor cor
17 Korelačí aalýza mohoásobá orelace Další tvar: det det V případě áhodého vetoru: ealzace výběrového mohoásobého oefcetu pro 0 r 0. r 0 r 0 r r 0 r 0 r
18 Nechť je áhodý výběr z + rozměrého ormálího rozděleí s ladým rozptyly a echť pa áhodá velča: má Fscherova-edecorova rozděleí s a -- stup volost. realzace: H 0 : vzhledem alteratví hypotéze: H A : se ezamítá poud Korelačí aalýza mohoásobá orelace 0 F r r z 0 0 ; 0 F z
19 Korelačí aalýza mohoásobá orelace - přílad
20 Korelačí aalýza orelace - přílad Přílad: Ve supě matematcých žeýrů a FI byly zjštěy ásledující údaje: váha výša číslo ohy Korelačí matce váha výša číslo ohy počtěte mohoásobou orelac čísla ohy v závslost a váze a výšce. Na hladě výzamost 005 otestujte hypotézu že tato orelace je rova 0.
21 Koefcet parcálí orelace Koefcet parcálí orelace defuje míru leárí závslost mez áhodým velčam a př zostatěí slože vetoru př zrušeí vlvu změy slože vetoru. Mějme áhodý vetor: = Nechť áhodá velča ˆ β mmalzuje E ˆ a áhodá velča ˆ δ mmalzuje E ˆ ávslost mez a jel elmová vlv vetoru měříme orelačím oefcetem mez áhodým proměým: ˆ ˆ. ˆ ˆ
22 Koefcet parcálí orelace Další vyjádřeí:.. [ cor cor cor cor cor cor cor ][ cor cor cor ] V případě áhodého vetoru:
23 Mějme áhodý výběr: de áhodé vetory: jsou -rozměré Ozačme matce výběrových orelačích oefcetů pro matce orelace obsahující řády a sloupce matce orelace obsahující řáde a sloupce matce orelace obsahující řáde a sloupce _ matce orelace de byl odebrá řáde a sloupec Předpolad že matce je regulárí. Výběrový oefcet parcálí orelace: Korelačí aalýza parcálí orelace
24 Korelačí aalýza parcálí orelace Ozačme _ matce orelace de byl odebrá řáde a sloupec _ det _ pa: det _ det _ Pro p=: ealzace výběrového parcálího oefcetu pro 0 r r0r0 r0 r r 0 0
25 Nechť je áhodý výběr z + rozměrého ormálího rozděleí s ladým rozptyly a echť pa áhodá velča: má tudetova rozděleí s -p- stup volost. ealzace: H 0 : vzhledem alteratví hypotéze: H A : se ezamítá poud Korelačí aalýza parcálí orelace 0 t r r t 0 0 ; t t t
26 Korelačí aalýza parcálí orelace - přílad
27 Korelačí aalýza orelace - přílad Přílad: Ve supě matematcých žeýrů a FI byly zjštěy ásledující údaje: váha výša číslo ohy Korelačí matce váha výša číslo ohy počtěte parcálí orelac mez váhou a číslem ohy s vyloučeím výšy a a hladě výzamost 005 otestujte hypotézu že tato orelace je rova 0.
PRAVDĚPODOBNOST A STATISTIKA
Matematka IV PRAVDĚPODOBNOT A TATITIKA Lbor Žák Matematka IV Lbor Žák Regresí aalýza Regresí aalýza zkoumá závslost mez ezávslým proměým X ( X,, X k a závsle proměou Y. Tato závslost se vjadřuje ve tvaru
SP2 Korelační analýza. Korelační analýza. Libor Žák
Koelčí lýz Přpomeutí pojmů áhodá poměá áhodý vekto áhodý vekto m Náhodý výbě: po áhodou poměou : po áhodý vekto : po áhodý vekto : m m Přpomeutí pojmů - kovce Kovce áhodých poměých kovčí koefcet popsuje
PRAVDĚPODOBNOST A STATISTIKA
SP4 Přpomeutí pojmů PRAVDĚPODOBNOST A STATISTIKA SP4 Přpomeutí pojmů SP4 Přpomeutí pojmů Pravděpodobost Náhodý jev: - základí prostor - elemetárí áhodý jev A - áhodý jev, - emožý jev, jstý jev podjev opačý
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOT A TATITIKA Přpomeutí pojmů,, P m θ, R θ R - pravděpodobostí prostor - parametrcký prostor - parametrcká fukce,, T - áhodý vektor defovaý a pravděpodobostím prostoru,, P θ s hustotou f x,
PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor
SP Náhodý vektor PRAVDĚPODOBNOS A SAISIKA Náhodý vektor Lbor Žák SP Náhodý vektor Lbor Žák Náhodý vektor Náhodý vektor slouží k popsu výsledku pokusu kdy měříme více údaů o procesu. Před provedeím pokusu
PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor
SP Náhodý vektor PRAVDĚPODOBNOS A SAISIKA Náhodý vektor SP Náhodý vektor Náhodý vektor Náhodý vektor slouží k popsu výsledku pokusu kdy měříme více údaů o procesu. Před provedeím pokusu eho výsledek a
PRAVDĚPODOBNOST A STATISTIKA
SP Náhodý vektor PRAVĚPOOBNOS A SAISIKA Lbor Žák SP Náhodý vektor Lbor Žák Náhodý vektor přpomeutí pomů z SP V prví část kurzu SP s rozšíříme pomy o áhodém vektoru z SP: Nechť e áhodý vektor eho složky:
PRAVDĚPODOBNOST A STATISTIKA
SP esty dobré shody PRAVDĚPODOBNOS A SAISIKA Lbor Žá SP esty dobré shody Lbor Žá Přpomeutí - estováí hypotéz o rozděleí Ch-vadrát test Chí-vadrát testem terý e založe a tříděém statstcém souboru. SP esty
PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 2
SP3 Neparametrcké testy hypotéz PRAVDĚPODOBNOST A STATISTIKA Neparametrcké testy hypotéz čast Lbor Žák SP3 Neparametrcké testy hypotéz Lbor Žák Neparametrcké testy hypotéz - úvod Neparametrcké testy statstckých
Lineární regrese ( ) 2
Leárí regrese Častým úolem je staoveí vzájemé závslost dvou (č více) fzálích velč a její matematcé vjádřeí. K tomuto účelu se používají růzé regresí metod, pomocí chž hledáme vhodou fuc f (), apromující
Regrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n
Regrese Aproxmace metodou ejmeších čtverců v v ( ) = f x v v x x x x Je dáo bodů [x, ], =,,, předpoládáme závslost a x a chceme ajít fuc, terá vsthuje teto tred - Sažíme se proložt fuc = f x ta, ab v =
Testujeme hypotézu: proti alternativě. Jednoduché třídění:
Y,, Y je áhodý výběr z N(μ, σ ) Y,, Y je áhodý výběr z N(μ, σ ) Y,, Y je áhodý výběr z N(μ, σ ) Testujeme hypotézu: proti alterativě H : μ = μ = = μ H : e všechy středí hodoty μ,, μ jsou si rovy Jedoduché
Doc. Ing. Dagmar Blatná, CSc.
PRAVDĚPODOBNOST A STATISTIKA Doc. Ig. Dagmar Blatá, CSc. Statsta statstcé údaje o hromadých jevech čost, terá vede zísáí statstcých údajů a jejch zpracováí teore statsty - věda o stavu, vztazích a vývoj
PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru
SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru
Přednáška č. 2 náhodné veličiny
Předáša č. áhodé velčy Pozámy záladím pojmům z počtu pravděpodobost Pozáma 1: Př výpočtu pravděpodobost áhodého jevu dle lascé defce je uté věovat pozorost způsobu formulace vybraého jevu. V ásledující
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Bodové a itervalové odhady Nechť X je áhodá proměá, která má distribučí fukci F(x, ϑ). Předpokládejme, že záme tvar distribučí fukce (víme jaké má rozděleí) a ezáme parametr
Statistická rozdělení
Úvod Statstcá rozděleí Václav Adamec vadamec@medelu.cz Náhodá proměá: matematcá velča, jejíž hodot osclují. Produt áhodého procesu lze charaterzovat fucí Hodot proměé v oboru přípustých hodot Rozděleí
Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.
Odhady parametrů základího souboru Ig. Mchal Dorda, Ph.D. Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl σ atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt
Metody zkoumání závislosti numerických proměnných
Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy
Soustava momentů. k s. Je-li tedy ve vzorci obecného momentu s = 1, získáme vzorec aritmetického průměru.
Soutava mometů Momety (Obecé, cetrálí a ormovaé) Do ytému mometových charatert patří ty ejdůležtější artmetcý průměr (mometová míra úrově) a rozptyl (mometová úroveň varablty). Obecý momet -tého tupě:
a další charakteristikou je četnost výběrového souboru n.
Předáška č. 8 Testováí rozptylu, testy relatví četost, testy dobré shody, test ezávslost kvaltatvích zaků Testy rozptylu Testy se používají k ověřeí hypotézy o určté velkost rozptylu a k ověřeí vztahu
Odhady parametrů základního. Ing. Michal Dorda, Ph.D.
Odhady parametrů základího souboru Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt celou populac, provádíme
NEPARAMETRICKÉ METODY
NEPARAMETRICKÉ METODY Jsou to metody, dy předmětem testu hypotézy eí tvrzeí o hodotě parametru ějaého orétího rozděleí, ale ulová hypotéza je formulováa obecěji, apř. jao shoda rozděleí ebo ezávislost
PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru
SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru
1.1 Rozdělení pravděpodobnosti dvousložkového náhodného vektoru
Lekce Normálí rozděleí v rově V této lekc se udeme věovat měřeí korelačí závslost dvojce áhodých velč (dvousložkového áhodého vektoru) Vcházet udeme z ormálího rozděleí pravděpodoost áhodého vektoru v
Ilustrativní příklad ke zkoušce z B_PS_A léto 2013.
Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95
VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Katedra statistiky a pravděpodobnosti STATISTIKA. VZORCE PRO 4ST201 a 4ST210
VYOKÁ ŠKOLA EKONOMICKÁ V RAZE FAKULA INFORMAIKY A AIIKY Kaedra sas a pravděpodobos AIIKA VZORCE RO 4 a 4 verze 8 posledí aualzace:. 9. 8 K 8 opsá sasa p p =,,...,... () () ( ),, z, ( z ) ( z ) ( z), z
VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Katedra statistiky a pravděpodobnosti STATISTIKA VZORCE PRO 4ST201
VYOKÁ ŠKOLA EKONOMICKÁ V RAZE FAKULTA INFORMATIKY A TATITIKY Kaedra a a ravděodobo TATITIKA VZORCE RO 4T verze.3 oledí aualzace: 4.9.9 KT 9 oá aa,,..., ɶ < z < + < z < + +,5 z +, 5 z H H H G... G... R
Ilustrativní příklad ke zkoušce z B_PS_A léto 2014.
Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95
VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Katedra statistiky a pravděpodobnosti STATISTIKA VZORCE PRO 4ST201
VYOKÁ ŠKOLA EKONOMICKÁ V RAZE FAKULTA INFORMATIKY A TATITIKY Kaedra a a ravděodobo TATITIKA VZORCE RO 4T verze. oledí aalzace:.9.8 KT 8 oá aa,,..., % z z,5 z, 5 z H H H G... G... R ma - m ( ( ( ( ( ( V
Spolehlivost a diagnostika
Spolehlvost a dagostka Složté systémy a jejch spolehlvost: Co je spolehlvost? Vlv spolehlvost kompoetů systému Návrh systému z hledska spolehlvost Aplkace - žvotě důležté systémy - vojeské aplkace Teore
Pravděpodobnost a aplikovaná statistika
Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 6. KAPITOLA CENTRÁLNÍ LIMITNÍ VĚTA 6.11.2017 Opakováí: Čebyševova erovost příklad Pravděpodobost vyrobeí zmetku je 0,5. Odhaděte pravděpodobost,
Pravděpodobnost a aplikovaná statistika
Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 4. KAPITOLA STATISTICKÉ CHARAKTERISTIKY 16.10.2017 23.10.2017 Přehled témat 1. Pravděpodobost (defiice, využití, výpočet pravděpodobostí
PRAVDĚPODOBNOST A STATISTIKA. Testy hypotéz
SP3 Tey hypoéz PRAVDĚPODOBNOST A STATISTIKA Tey hypoéz Lbor Žá SP3 Tey hypoéz Lbor Žá Tey hypoéz- úvod Nechť X X e áhodý výběr T X X X áhodý veor ezávlé ložy erý má rozděleí závlé a parameru θ Θ Θ R Ozačme:
VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Katedra statistiky a pravděpodobnosti STATISTIKA VZORCE PRO 4ST201
VYOKÁ ŠKOLA EKONOMICKÁ V RAZE FAKULTA INFORMATIKY A TATITIKY Kaedra a a ravděodobo TATITIKA VZORCE RO 4T verze 4. oledí aualzace: 6.8.6 KT 6 oá aa oá aa =,,..., () ()...,,,, z z z z z H H H G... R = ma
PRAVDĚPODOBNOST A STATISTIKA. Bodové a intervalové odhady
SP Bodové a tervalové odhady PRAVDĚPODOBNOST A STATISTIKA Bodové a tervalové odhady Lbor Žák SP Bodové a tervalové odhady Lbor Žák Bodové a tervalové odhady Nechť je áhodá proměá, která má dstrbučí fukc
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Ekoomcká fakulta Semestrálí ráce S kua Jméa: Leka Pastorová, Davd arha, Ja Vtásek a Fl Urbačík Ročík: 0/06 Učtel: gr. Jří Rozkovec Obor: Podková ekoomka Datum:.. 06 Obsah
Pravděpodobnost a aplikovaná statistika
Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 3. ÚKOL JB TEST 3. Úkol zadáí pro statistické testy U každého z ásledujících testů uveďte ázev (včetě autora), předpoklady použití, ulovou
3. Charakteristiky a parametry náhodných veličin
3. Charateristiy a parametry áhodých veliči Úolem této apitoly je zavést pomocý aparát, terým budeme dále popisovat pomocí jedoduchých prostředů áhodé veličiy. Taovýmto aparátem jsou tzv. parametry ebo
ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU)
ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU) Základy teorie pravděpodobosti měřeí chyba měřeí Provádíme kvalifikovaý odhad áhodá systematická výsledek ejistota výsledku Základy teorie pravděpodobosti
Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:
Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy
Úvod do korelační a regresní analýzy
Úvod do korelačí a regresí aalýz Bude ás zajímat, jak těsě spolu souvsí dva sledovaé jev Příklad: vztah mez rchlostí auta a brzdou dráhou vztah mez věkem žáka a rchlostí v běhu a 60 m vztah mez spotřebou
12. N á h o d n ý v ý b ě r
12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých
Odhady a testy hypotéz o regresních přímkách
Lekce 3 Odhad a tet hpotéz o regreích přímkách Ve druhé lekc jme kotruoval kofdečí terval a formuloval tet hpotéz o korelačím koefcetu Korelačí koefcet je metrckou charaktertkou tezt závlot, u které ezáleží
SP NV Normalita-vlastnosti
SP - - NV Normala-vlasos Přpomeuí vlasosí Normálího rozděleí Charakerscká fukce Lévyho-Ldebergova věa - cerálí lmí věa -rozměré ormálí rozděleí -rozměré ormálí rozděleí Přpomeuí vlasosí Normálího rozděleí
V. Normální rozdělení
V. Normálí rozděleí 1. Náhodá veličia X má ormovaé ormálí rozděleí N(0; 1). Určete: a) P (X < 1, 5); P (X > 0, 3); P ( 1, 135 < x ); P (X < 3X + ). c) číslo ε takové, že P ( X < ε) = 0,
odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.
10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé
Generování dvojrozměrných rozdělení pomocí copulí
Pravděpodobost a matematcká statstka eerováí dvojrozměrých rozděleí pomocí copulí umbelova copule PRAHA 005 Vpracoval: JAN ZÁRUBA OBSAH: CÍL PRÁCE TEORIE Metoda verzí trasformace O copulích Sklarova věta
Testování statistických hypotéz
Testováí statstckých hypotéz - Testováí hypotéz je postup, sloužící k ověřeí předpokladů o ZS (hypotéz a základě výběrových dat (tj. hodot z výběrového souboru. - ypotéza = určtý předpoklad o základím
Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i
: ometové míry polohy zahrují růzé druhy průměrů pomocí kterých můžeme charakterzovat cetrálí tedec dat ometové míry polohy jsou jedoduché číselé charakterstky které se vyčíslují ze všech prvků výběru
VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Katedra statistiky a pravděpodobnosti STATISTIKA. VZORCE PRO 4ST201 a 4ST210
VYOKÁ ŠKOLA EKONOMICKÁ V RAZE FAKULA INFORMAIKY A AIIKY Kaedra sas a ravděodobos AIIKA VZORCE RO 4 a 4 verze 8 osledí aualzace:. 9. 8 K 8 osá sasa,,...,... ( ( (,, z +, ( z ( z + ( z+, z H H H G... R ma
12. Neparametrické hypotézy
. Neparametrcké hypotézy V této část se budeme zabývat specálí částí teore statstckých hypotéz tzv. eparametrckým hypotézam ebo jak řečeo eparametrckým statstckým testy. Neparametrcké se azývají proto,
14. Korelace Teoretické základy korelace Způsoby měření závislostí pro různé typy dat
4. Korelace 4. Teoretcké základy korelace 4. Způsoby měřeí závslostí pro růzé typy dat Př prác se statstckým údaj se velm často setkáváme s daty, která jsou tvořea dvojcem, trojcem hodot. Složky takovýchto
Úvod do teorie měření
Uverzta Jaa Evagelsty Purkyě v Ústí ad Labem Přírodovědecká fakulta Úvod do teore měřeí Prof. Chlář emář 0 Průměr, rozptyl a směrodatá odchylka X = X = ( X X ) = = = Výpočty pomocí vzorců a pomocí statstckých
8. cvičení 4ST201-řešení
cvičící 8. cvičeí 4ST01-řešeí Obsah: Neparametricé testy Chí-vadrát test dobréshody Kotigečí tabuly Aalýza rozptylu (ANOVA) Vysoá šola eoomicá 1 VŠE urz 4ST01 Neparametricé testy Neparametricétesty využíváme,
, jsou naměřené a vypočtené hodnoty závisle
Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,
0,063 0,937 0,063 0, P 0,048 0,078 0,95. = funkce CONFIDENCE.NORM(2α; p(1 p)
. Příklad Při průzkumu trhu projevilo 63 z dotázaých zákazíků zájem o iovovaý výrobek, který má být uvede a trh se zákazíky. Odvoďte a odhaděte proceto a počet zájemců v populaci s 95% spolehlivostí. Následě
Statistické charakteristiky (míry)
Stattcé charaterty (míry) - hrují formac, obažeou v datech (vyjadřují j v ocetrovaé formě); - charaterzují záladí ryy zoumaého ouboru dat; - umožňují porováváí více ouborů. upy tattcých charatert :. charaterty
1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků
1 Pops statstcých dat 1.1 Pops omálích a ordálích zaů K zobrazeí rozděleí hodot omálích ebo ordálích zaů lze použít tabulu ebo graf rozděleí četostí. Tuto formu zobrazeí lze dooce použít pro číselé zay,
Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu
Cvičeí 6: Výpočet středí hodoty a rozptylu, bodové a itervalové odhady středí hodoty a rozptylu Příklad 1: Postupě se zkouší spolehlivost čtyř přístrojů Další se zkouší je tehdy, když předchozí je spolehlivý
n-rozměrné normální rozdělení pravděpodobnosti
-rozměré ormálí rozděleí pravděpodobosti. Ortogoálí a pozitivě defiití symetrické matice. Reálá čtvercová matice =Ha i j L řádu se azývá ortogoálí, je-li regulárí a iverzí matice - je rova traspoovaé matici
Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu
Cvičeí 6: Bodové a itervalové odhady středí hodoty, rozptylu a koeficietu korelace, test hypotézy o středí hodotě při zámém rozptylu Příklad : Bylo zkoumáo 9 vzorků půdy s růzým obsahem fosforu (veličia
8. Analýza rozptylu.
8. Aalýza rozptylu. Lieárí model je popis závislosti, který je využívá v řadě disciplí matematické statistiky. Uvedeme jeho popis a tvrzeí, která budeme využívat. Setkáme se s ím jedak v aalýze rozptylu,
6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.
6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola
2. Vícekriteriální a cílové programování
2. Vícerterálí a cílové programováí Úlohy vícerterálího programováí jsou úlohy, ve terých se a možě přípustých řešeí optmalzuje ěol salárích rterálích fucí. Moža přípustých řešeí je přtom defováa podobě
8. cvičení 4ST201. Obsah: Neparametrické testy. Chí-kvadrát test dobréshody Kontingenční tabulky Analýza rozptylu (ANOVA) Neparametrické testy
cvičící 8. cvičeí 4ST1 Obsah: Neparametricé testy Chí-vadrát test dobréshody Kotigečí tabuly Aalýza rozptylu (ANOVA) Vysoá šola eoomicá 1 VŠE urz 4ST1 Neparametricé testy Neparametricétesty využíváme,
i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky
Téma 6.: Základí pojmy matematické statistiky Vlastosti důležitých statistik odvozeých z jedorozměrého áhodého výběru: Nechť X,..., X je áhodý výběr z rozložeí se středí hodotou μ, rozptylem σ a distribučí
Téma 5: Analýza závislostí
Aalýza závlotí Téma 5: Aalýza závlotí Předáša 5 Závlot mez ev Záladí pom Předmětem této aptol ude zoumáí závlotí ouvlotí mez dvěma a více ev. Jedá e o proutí do vztahů mez ledovaým ev a tím přlížeí tzv.
Náhodný výběr 1. Náhodný výběr
Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti
3. Charakteristiky a parametry náhodných veličin
3. Charatersty a parametry áhodýh velč Úolem této aptoly je zavést pomoý aparát, terým budeme dále popsovat pomoí jedoduhýh prostředů áhodé velčy. Taovýmto aparátem jsou tzv. parametry ebo haratersty áhodé
Při sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací
3. Náhodý výběr Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých realizací
VYSOCE PŘESNÉ METODY OBRÁBĚNÍ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,
Lineární regresní model (VJ REGMOD-2)
eárí regresí model (VJ REGOD-) Základí formace V rámc této výukové jedotky s adefujeme leárí regresí model a sezámíme se s typy proměých využtelých jako predktory (vysvětlující proměé) v takovém modelu.
3. Hodnocení přesnosti měření a vytyčování. Odchylky a tolerance ve výstavbě.
3. Hodoceí přesost měřeí a vytyčováí. Odchylky a tolerace ve výstavbě. 3.1 Úvod o měřeí obecě 3.2 Chyby měřeí a jejch děleí 3.2.1 Omyly a hrubé chyby 3.2.2 Systematcké chyby 3.2.3 Náhodé chyby 3.3 Výpočet
Intervalové odhady parametrů některých rozdělení.
4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:
Odhady parametrů 1. Odhady parametrů
Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:
Charakteristiky úrovně
Charaterty úrově Měřeí úrově Úroveň (poloha) je jedou ze záladích vlatotí tattcých dat, v úrov e mohou tattcá data lšt ebo aopa hodovat. Výzačé hodoty varačí řady ejou ctlvé a změu jedotlvých hodot Medá
HODNOCENÍ KVALITY SHLUKŮ
HODNOCENÍ KVALITY SHLUKŮ Haa Řezaová Vysoá šola eoomcá v Praze ttp://b.vse.cz/~rezaa Aalýza dat 008/II Obsa Prcpy metod sluové aalýzy Sluováí objetů (vetorů pozorováí) Porováváí se zámým zařazeím objetů
Intervalové odhady parametrů
Itervalové odhady parametrů Petr Pošík Části dokumetu jsou převzaty (i doslově) z Mirko Navara: Pravděpodobost a matematická statistika, https://cw.felk.cvut.cz/lib/ee/fetch.php/courses/a6m33ssl/pms_prit.pdf
8. Odhady parametrů rozdělení pravděpodobnosti
Pozámky k předmětu Aplikovaá statistika, 8 téma 8 Odhady parametrů rozděleí pravděpodobosti Zaměříme se a odhad středí hodoty a rozptylu a to dvěma způsoby Předpokládejme, že máme áhodý výběr X 1,, X z
} kvantitativní znaky
Měřeí tattcké závlot, korelace, regree Obecé prcpy závlot vzájemá ouvlot měřeých zaků Prof. RNDr. Jaa Zvárov rová,, DrSc. fukčí závlot x tattcká závlot átroje pro měřeí závlot leár rí regree korelace }
Přednáška č. 10 Analýza rozptylu při jednoduchém třídění
Předáška č. 0 Aalýza roztylu ř jedoduchém tříděí Aalýza roztylu je statstcká metoda, kterou se osuzuje romělvost oakovaých realzací áhodého okusu tj. romělvost áhodé velčy. Náhodá velča vzká za relatvě
Statistika. Jednotlivé prvky této množiny se nazývají prvky statistického souboru (statistické jednotky).
Statstka. Základí pojmy Statstcký soubo - daá koečá, epázdá moža M předmětů pozoováí, majících jsté společé vlastost (událost, věc,.) Jedotlvé pvky této možy se azývají pvky statstckého soubou (statstcké
Národní informační středisko pro podporu kvality
Národí iformačí střediso pro podporu vality Problémy s uazateli způsobilosti a výoosti v praxi Dr.Jiří Michále, CSc. Ústav teorie iformace a automatizace AVČR Uazatel způsobilosti C p Předpolady: ormálí
Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby.
ováí - Hru IV /6 ováí Hru IV Mila RůžR ůžička, Josef Jureka,, Zbyěk k Hrubý zbyek.hruby hruby@fs.cvut.cz ováí - Hru IV /6 ravděpodobostí úavové diagramy s uvažováím předpětí R - plocha ve čtyřrozměrém
1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL
Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,
14. B o d o v é o d h a d y p a r a m e t r ů
4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž
11. Regresní analýza. Čas ke studiu kapitoly: 60 minut. Cíl VÝKLAD Úvod
. egresí aalýza Čas ke studu kaptoly: 6 mut Cíl Po prostudováí tohoto odstavce udete umět vysvětlt pojem oecý leárí model prcp leárího regresího modelu používat výsledky regresí aalýzy verfkovat regresí
S1P Popisná statistika. Popisná statistika. Libor Žák
SP Popsá statstka Popsá statstka Lbor Žák SP Popsá statstka Lbor Žák Základí zdroje : skrpta Mateatka IV - doc. RNDr. Z. Karpíšek, CSc. ateatka o le - http://athole.fe.vutbr.cz/ Základ ateatcké statstk
Po prostudování tohoto odstavce budete umt porozumt konstrukci F-pomru rozhodovat se pomocí testu zvaného analýza rozptylu
0. AOVA Aalýza rozptylu as e studu aptoly: 60 mut Cíl Po prostudováí tohoto odstavce budete umt porozumt ostruc F-pomru rozhodovat se pomocí testu zvaého aalýza rozptylu zostruovat tabulu AOVA provést
Odhad parametrů normálního rozdělení a testy hypotéz o těchto parametrech * Věty o výběru z normálního rozdělení
Odhad parametrů ormálího rozděleí a testy hypotéz o těchto parametrech * Věty o výběru z ormálího rozděleí Nechť, X, X je áhodý výběr z rozděleí N ( µ, ) X, Ozačme výběrový průměr a = X = i = X i i = (
8 DALŠÍ SPOJITÁ ROZDĚLENÍ PRAVDĚPODOBNOSTI
8 DALŠÍ SPOJITÁ ROZDĚLENÍ PRAVDĚPODOBNOSTI Ča ke tudiu kapitoly: 60 miut Cíl: Po protudováí tohoto odtavce budete umět: charakterizovat další typy pojitých rozděleí: χ, Studetovo, Ficher- Sedocorovo -
EKONOMETRIE 9. přednáška Zobecněný lineární regresní model
EKONOMETRIE 9. předáška Zobecěý lieárí regresí model Porušeí základích podmíek klasického modelu Metoda zobecěých emeších čtverců Jestliže sou porušey ěkteré podmíky klasického modelu. E(u),. E (uu`) σ
2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT
2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic
Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz:
Ig. Marta Ltschmaová Statstka I., cvčeí 1 TESTOVÁNÍ NEPARAMETRICKÝCH HYPOTÉZ Dosud jsme se zabýval testováím parametrcký hypotéz, což jsou hypotézy o parametrech rozděleí (populace). Statstckým hypotézám
Popisná statistika. Zdeněk Janák 9. prosince 2007
Popisá statistika Zdeěk Jaák jaak@physics.mui.cz 9. prosice 007 Výsledkem měřeí atmosférické extikce z pozorováí komet a observatoři Skalaté Pleso jsou tyto hodoty extikčích koeficietů ve vlové délce 46
PRAVDĚPODOBNOST A STATISTIKA
SP Záko velkých čísel, cetrálí lmtí věta PRAVDĚPODOBNOST A STATISTIKA Lbor Žák SP Záko velkých čísel, cetrálí lmtí věta Lbor Žák Kovergece podle pravděpodobost Posloupost áhodých proměých,,,, koverguje
jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých
9 Limití věty. V aplikacích teorie pravděpodobosti (matematická statistika, metody Mote Carlo se užívají tvrzeí vět o kovergeci posloupostí áhodých veliči. Podle povahy kovergece se limití věty teorie
4. B o d o v é o d h a d y p a r a m e t r ů
4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž
Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)
Předáša 7 Derivace a difereciály vyšších řádů Budeme poračovat v ahrazováí fuce f(x v oolí bodu a polyomy, tj hledat vhodé ostaty c ta, aby bylo pro malá x a f(x c 0 + c 1 (x a + c 2 (x a 2 + c 3 (x a