APLIKACE V ROBOTICE. 1. Úvod

Rozměr: px
Začít zobrazení ze stránky:

Download "APLIKACE V ROBOTICE. 1. Úvod"

Transkript

1 Kvaternion 1 (2012), O DIFERENCIÁLNÍCH ROVNICÍCH SE ZPOŽDĚNÍM APLIKACE V ROBOTICE PETR TOMÁŠEK Abstrakt. V tomto článku jsou prezentovány některé zajímavé kvalitativní vlastnosti řešení diferenciálních rovnic se zpožděným argumentem. Naším cílem je demonstrovat skutečnost, že tyto vlastnosti se mohou dramaticky lišit v případě diferenciální rovnice se zpožděním a v jistém smyslu odpovídající klasické obyčejné diferenciální rovnice. Využití diferenciálních rovnic se zpožděním je ilustrováno aplikací z oblasti robotiky. 1. Úvod Modelování řady problémů v technické praxi i v jiných odvětvích často vede na řešení systému obyčejných diferenciálních rovnic (ODE), který lze zapsat jako ẋ(t) = f(t, x(t)), (1.1) kde x C( t 0, t f, R n ) a f C( t 0, t f R n, R). Často je nezbytné zahrnout do systému diferenciálních rovnic také členy, které obsahují hodnotu neznámé funkce v čase minulém, což vede na systém diferenciálních rovnic se zpožděním (DDE) ẏ(t) = f(t, y(t), y(t τ(t))), τ(t) 0, (1.2) kde y C( t 0 γ, t f, R n ), γ = max{τ(t), t 0 t t f }, f C( t 0, t f R n R n, R), τ C( t 0, t f, R + 0 ). Výraz τ(t) nazýváme zpožděním a člen t τ(t) zpožděným argumentem. Podle tvaru τ(t) pak rozlišujeme např. zpoždění ohraničené či neohraničené. Více k úvodu do dané problematiky lze nalézt např. v [1], [5], [6]. Ukazuje se, že tyto systémy vykazují kvalitativní vlastnosti diametrálně odlišné od řešení odpovídajících systémů obyčejných diferenciálních rovnic. V části 2 tohoto článku si zavedeme počáteční úlohu pro zpožděnou diferenciální rovnici a některé rozdíly ve vlastnostech ODE a DDE si budeme ilustrovat na jednoduchém skalárním případě. V části 3 si uvedeme aplikaci z oblasti robotiky včetně diskuse asymptotické stability řešení systému MSC. Primární 34K06, 34K25. Klíčová slova. diferenciální rovnice se zpožděním, asymptotické vlastnosti, oscilatorické vlastnosti. Práce byla podporována projektem A-Math-Net - Síť pro transfer znalostí v aplikované matematice (CZ.1.07/2.4.00/ ).

2 4 P. TOMÁŠEK 2. Specifika zpožděných diferenciálních rovnic Definice 2.1 (Počáteční problém). Uvažujme funkci φ C( t 0 γ, t 0, R n ). Úlohu určit takové řešení rovnice (1.2), které vyhovuje podmínce y(t) = φ(t), t t 0 γ, t 0, (2.1) nazveme počátečním problémem. Povšimněme si, že počáteční podmínka v případě ODE (1.1) x(t 0 ) = x 0 je dimenze jedna, zatímco počáteční podmínka (2.1) je obecně nekonečně-dimenzionální! V důsledku toho je přístup k řešení DDE zcela odlišný. Základní metodou je metoda kroků, jejíž princip spočívá v posloupnosti řešení počátečních problémů ODE na sekvenci navazujících intervalů. Délka těchto intervalů vychází ze zpoždění, které se v rovnici vyskytuje. Ilustrujme si tento postup na skalárním případě DDE s konstantním zpožděním. Příklad 2.2. Uvažujme diferenciální rovnici s konstantním zpožděním ẏ(t) = y(t 1) (2.2) a počáteční podmínkou y(t) = φ 0 (t) = 1, t 1, 0. (2.3) Protože uvažujeme konstantní zpoždění τ(t) = 1, metodou kroků budeme řešit posloupnost počátečních problémů pro ODE na intervalech délky jedna, a sice následovně: t 0, 1 : ẏ(t) = φ 0 (t 1) = 1, y(0) = 1, y(t) = t + 1. Označme φ 1 (t) := y(t). t 1, 2 : ẏ(t) = φ 1 (t 1) = t 2, y(1) = 0, y(t) = t 2 /2 2t + 3/2. Označme φ 2 (t) := y(t). t 2, 3 : ẏ(t) = φ 2 (t 1) = ((t 1) 2 /2 2(t 1) + 3/2), y(2) = 1 2, y(t) = t 3 /6 + 3t 2 /2 4t + 17/6. Označme φ 3 (t) := y(t).. Na obrázku 1 je vykresleno řešení y(t) na intervalu 1, 10.

3 DIF. ROVNICE SE ZPOŽDĚNíM 5 Obr 1. Řešení počátečního problému (2.2),(2.3) Dále si na příkladě proporcionálního zpoždění budeme ilustrovat odlišnosti v oscilatorických a asymptotických vlastnostech řešení DDE a ODE. Příklad 2.3. Uvažujme diferenciální rovnici s proporcionálním zpožděním (případ neohraničeného zpoždění) ẏ(t) = y(qt), y(0) = 1, q (0, 1), t 0. (2.4) Řešení počátečního problému (2.4) lze vyjádřit pomocí mocninného rozvoje jako y q (t) = ( 1) k q 2) (k t k. k! k=0 Uvažujme odpovídající obyčejnou diferenciální rovnici, kterou formálně získáme z rovnice (2.4) limitním přechodem q 1 : ẋ(t) = x(t), x(0) = 1. (2.5) Řešením počátečního problému (2.5) je x(t) = e t. Nejdříve porovnáme oscilatorické vlastnosti řešení. Je zřejmé, že řešením (2.5) je kladná klesající funkce. V případě zpožděné rovnice využijeme následující věty uvedené v [3]: Věta 2.4. Uvažujme rovnici ẏ(t) + p(t)y(qt) = 0, p C([0, ), R + ), 0 < q < 1. (2.6) t Nechť m = lim inf p(s)ds. Jestliže m > 1/e, pak jsou všechna řešení rovnice t qt (2.6) oscilující. V našem případě uvažujeme p(t) 1, a tedy m = > 1/e. Řešení rovnice (2.4) tedy osciluje, zatímco řešení rovnice (2.5) neosciluje.

4 6 P. TOMÁŠEK Nyní se zaměříme na chování řešení (2.4) pro t. Využijeme výsledku publikovaného v [2], který lze pro náš případ formulovat takto: společně s rovnicí (2.4) zavedeme pomocné funkce ϕ q (t) := t k (Logt) h exp( 1 2c (Logt LogLogt)2 ), kde c = Logq, k = 1/2 (1 + Logc)/c, h = c Logc. Pomocí asymptotických výsledků uvedených v [2] lze ukázat, že y q (t) = O(ϕ q (t)), t, pro všechna řešení y q rovnice (2.4) a y q (t) = o(ϕ q (t)), t, pouze pro nulové řešení rovnice (2.4). To znamená, že funkce yq(t) ϕ q(t) je ohraničená pro t a navíc tato funkce nemá nulovou limitu. Tedy existuje horní odhad M ϕ q (t), M R +, řešení y(t) a tento odhad není nikterak nadsazený (obě funkce y(t) a ϕ q (t) jsou řádově srovnatelné ). ϕ Navíc platí: lim r(t) t ϕ s(t) = 0 pro r, s (0, 1), r < s. Z toho plyne, že čím více se hodnota q blíží k jedné zleva (formálně se (2.4) blíží k (2.5)), tím větší budou amplitudy řešení (2.4) pro t (namísto předpokládané konvergence k nule: x(t) = e t )! Dochází tedy k nečekanému kvalitativnímu rozdílu mezi asymptotickým chováním řešení problémů (2.4) a (2.5). 3. Aplikace zpožděných diferenciálních rovnic Nejčastěji v praxi narazíme na příklady modelů s ohraničeným (především konstantním) zpožděním. Uveďme např. model obráběcího nástroje, kde je zahrnuto chvění vznikající při obráběcím procesu, transportní zpoždění, které je způsobeno konečnou rychlostí paliva proudícího dlouhým potrubím, procesní zpoždění před spuštěním chemické reakce, komunikační zpoždění v souvislosti s konečnou rychlostí šíření rádiového signálu v prostoru při komunikaci (řízení) na velkou vzdálenost. Dále v počítačově řízených systémech často existuje nezanedbatelné výpočetní zpoždění, způsobené množstvím operací a složitostí řídicích algoritmů. Pro ilustraci použití diferenciálních rovnic se zpožděním lze řadu modelů nalézt např. v [4], [5], [7]. Nyní se zaměříme na model z oblasti robotiky. V robotice je celá řada problémů týkajících se stability, kde zpoždění v robotickém systému hraje důležitou roli. Toto zpoždění může vzniknout v řídicím systému robota, při přenosu informací či v mechanické části robota. Systém master-slave je typickým případem, kde dochází k časové prodlevě při řízení. Např. v systému člověk stroj se promítá reflex lidského operátora do zpoždění v řízení systému (zpravidla více než 0.1 sekund). Analogicky této situaci se generuje zpoždění např. u manipulátoru řízeného počítačem. Vzorový čas digitálního řízení slouží jako základ pro hodnotu zpoždění, která je řádově v setinách až tisícinách sekundy. Další významnou skupinou problémů je zpoždění vznikající při přenosu informací. Toto zpoždění má rozhodující vliv při operacích ve vesmíru či ve velkých hloubkách pod hladinou moře. Prodleva je rovna času potřebnému k tomu, aby ultrasonická či elektromagnetická vlna urazila vzdálenost mezi řídicím centrem a konečným efektorem. Motivační příklad. Jestliže robot pracuje při obráběcím procesu, jako je frézování, soustružení apod., může rovněž vzniknout zpoždění ve zpětné vazbě čistě

5 DIF. ROVNICE SE ZPOŽDĚNíM 7 mechanické části robota. Toto zpoždění bývá nepřímo úměrné relativní rychlosti nástroje a materiálu. Tato situace bude ilustrována na matematickém modelu mechanického robota (viz [8]), kdy budeme diskutovat závislost asymptotické stability systému na jeho parametrech. Uvažujme robotický systém znázorněný na obrázku 2. Řízení robota vychází z principu kinematického sebeovládání. To znamená, že regulátor působící na první těleso v tomto modelu způsobuje rychlost q 1, která je určována polohou q 2 konečného efektoru: kde K > 0 a τ = konst. reprezentuje zpoždění v řízení. Q q 1 (t) = Kq 2 (t τ), (3.1) m 1 m 2 s f q 1 q 2 Obr 2. Elastický robot s jedním stupněm volnosti Zavedením nové proměnné v = q 2 lze tento systém popsat soustavou lineárních diferenciálních rovnic s konstantním zpožděním q 1(t) q 2 (t) = q 1(t) q 2 (t) v(t) α 2 α 2 2κα v(t) 0 K 0 q 1 (t τ) (3.2) q 2 (t τ), 0 2Kκα 0 v(t τ) kde α = s/m 2 je přirozená frekvence neřízeného netlumeného systému a κ = f 2m 2α je tzv. relativní tlumicí faktor. Následující věta (viz [8]) udává podmínky pro nastavení parametrů modelu tak, aby byla zajištěna asymptotická stabilita netlumeného systému. Věta 3.1. Uvažujme zpožděnou diferenciální rovnici (3.2), kde κ = 0. Její triviální řešení je asymptoticky stabilní, právě když existuje takové k > 0, k N, vyhovující relacím K α < 1 ατ K α < 1 ατ K α < ( 2kπ + π ) 1 2 ( 2kπ + 3π 2 ) + 1 (ατ) 3 π ( π 2ατ 2ατ ) 3, (2kπ (ατ) 3 + π ) 3, 2 ( 2kπ + 3π ) 3. 2 Relace ve výše uvedené větě určují graf asymptotické stability pro netlumený systém (3.2) v souřadnicích bezrozměrných parametrů (τ α) a (K/α), který je znázorněn na obrázku 3.

6 8 P. TOMÁŠEK Obr 3. Graf asymptotické stability netlumeného systému (3.2); N - as. nestabilní, S - as. stabilní 4. Závěr V článku byla na lineárních diferenciálních rovnicích prvního řádu s konstantním a proporcionálním zpožděním ilustrována některá jejich specifika, především pak v souvislosti s odpovídajícím případem obyčejné diferenciální rovnice. Použití zpožděných rovnic bylo ilustrováno na jednoduchém modelu z oblasti robotiky. Reference [1] C.T.H. Baker: Retarded differential equations, J. Comput. Appl. Math. 125 (2000), [2] J. Čermák: On the differential and difference equation with a power delayed argument, Electron. J. Qual. Theory Differ. Equ. 5 (2008), 1 8. [3] L. H. Erbe, Q. Kong, B.G. Zhang: Oscillation Theory for Functional Differential Equations, Marcel Dekker, New York, [4] T. Erneux: Applied Delay Differential Equations, Springer, [5] V. Kolmanovskii, A. Myshkis: Introduction to the Theory and Applications of Functional Differential Equations, Kluwer Academic, Dordrecht, [6] P. Marušiak, R. Olach: Funkcionálne diferenciálne rovnice, Žilinská univerzita, [7] H. Smith: An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer, [8] G. Stépán: Retarded Dynamical Systems: Stability and Characteristic Functions, Longman Scientific & Technical, Burnt Mill, Petr Tomášek, Ústav matematiky, Fakulta strojního inženýrství, Vysoké učení technické v Brně, Technická 2, Brno, Česká republika, tomasek@fme.vutbr.cz

Předmluva k prvnímu číslu časopisu Kvaternion

Předmluva k prvnímu číslu časopisu Kvaternion Předmluva k prvnímu číslu časopisu Kvaternion Vážení čtenáři, dostává se vám do rukou první číslo nového časopisu Kvaternion, který je orientován na aplikace matematiky v nejrůznějších oborech především

Více

Převedení okrajové úlohy na sled

Převedení okrajové úlohy na sled Převedení okrajové úlohy na sled úloh počátečních 1 Jiří Taufer Abstrakt Tento příspěvek je věnován řešení okrajových problémů pro soustavu okrajových obyčejných diferenciálních lineárních rovnic metodami,

Více

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28. INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 Báze vektorových prostorů, transformace souřadnic Michal Botur Přednáška

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 8. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 14 Derivace funkce U lineárních funkcí ve tvaru

Více

Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice

Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice Jan Tomeček Tento stručný text si klade za cíl co nejrychlejší uvedení do teorie Greenových funkcí pro obyčejné diferenciální

Více

Úvod do analytické mechaniky

Úvod do analytické mechaniky Úvod do analytické mechaniky Vektorová mechanika, která je někdy nazývána jako Newtonova, vychází bezprostředně z principů, které jsou vyjádřeny vztahy mezi vektorovými veličinami. V tomto případě např.

Více

Matematická analýza III.

Matematická analýza III. 2. Parciální derivace Miroslav Hušek, Lucie Loukotová UJEP 2010 Parciální derivace jsou zobecněním derivace funkce jedné proměnné. V této kapitole poznáme jejich základní vlastnosti a využití. Co bychom

Více

CITLIVOSTNÍ ANALÝZA DYNAMICKÝCH SYSTÉMŮ I

CITLIVOSTNÍ ANALÝZA DYNAMICKÝCH SYSTÉMŮ I Informačné a automatizačné technológie v riadení kvality produkcie Vernár,.-4. 9. 005 CITLIVOSTNÍ ANALÝZA DYNAMICKÝCH SYSTÉMŮ I KÜNZEL GUNNAR Abstrakt Příspěvek uvádí základní definice, fyzikální interpretaci

Více

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Diferenciální rovnice a jejich aplikace Zdeněk Kadeřábek (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Obsah 1 Co to je derivace? 2 Diferenciální rovnice 3 Systémy diferenciálních rovnic

Více

Diferenciální rovnice

Diferenciální rovnice Diferenciální rovnice Průvodce studiem Touto kapitolou se náplň základního kurzu bakalářské matematiky uzavírá. Je tomu tak mimo jiné proto, že jsou zde souhrnně využívány poznatky získané studiem předchozích

Více

22 Základní vlastnosti distribucí

22 Základní vlastnosti distribucí M. Rokyta, MFF UK: Aplikovaná matematika IV kap. 22: Základní vlastnosti distribucí 5 22 Základní vlastnosti distribucí 22.1 Temperované distribuce Definice. O funkci ϕ C (R m ) řekneme, že je rychle klesající

Více

Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce.

Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce. KŘIVKY Křivka = dráha pohybujícího se bodu = = množina nekonečného počtu bodů, které závisí na parametru (čase). Proto můžeme křivku také nazvat jednoparametrickou množinou bodů. Zavedeme-li souřadnicový

Více

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)

Více

Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2

Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2 Matematika 2 13. přednáška Obyčejné diferenciální rovnice Jan Stebel Fakulta mechatroniky, informatiky a mezioborových studíı Technická univerzita v Liberci jan.stebel@tul.cz http://bacula.nti.tul.cz/~jan.stebel

Více

Numerická stabilita algoritmů

Numerická stabilita algoritmů Numerická stabilita algoritmů Petr Tichý 9. října 2013 1 Numerická stabilita algoritmů Pravidla v konečné aritmetice Pro počítání v konečné aritmetice počítače platí určitá pravidla, která jsou důležitá

Více

V této kapitole si zobecníme dříve probraný pojem limita posloupnosti pro libovolné funkce.

V této kapitole si zobecníme dříve probraný pojem limita posloupnosti pro libovolné funkce. Kapitola 7 Limita funkce V této kapitole budeme studovat pojem ita funkce, který lze zařadit mezi základní pojmy matematiky, speciálně pak matematické analýzy Využití ity funkce je široké Pomocí ity lze

Více

Matematika 4 FSV UK, LS Miroslav Zelený

Matematika 4 FSV UK, LS Miroslav Zelený Matematika 4 FSV UK, LS 2017-18 Miroslav Zelený 13. Diferenční rovnice 14. Diferenciální rovnice se separovanými prom. 15. Lineární diferenciální rovnice prvního řádu 16. Lineární diferenciální rovnice

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál

Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál Jan Slovák Masarykova univerzita Fakulta informatiky 16. 9. 2008 Obsah přednášky 1 Literatura 2 Funkce a

Více

Diferenˇcní rovnice Diferenciální rovnice Matematika IV Matematika IV Program

Diferenˇcní rovnice Diferenciální rovnice Matematika IV Matematika IV Program Program Diferenční rovnice Program Diferenční rovnice Diferenciální rovnice Program Frisch a Samuelson: Systém je dynamický, jestliže jeho chování v čase je určeno funkcionální rovnicí, jejíž neznámé závisí

Více

Markovské metody pro modelování pravděpodobnosti

Markovské metody pro modelování pravděpodobnosti Markovské metody pro modelování pravděpodobnosti rizikových stavů 1 Markovský řetězec Budeme uvažovat náhodný proces s diskrétním časem (náhodnou posloupnost) X(t), t T {0, 1, 2,... } s konečnou množinou

Více

ŠIFROVACÍ METODA ZALOŽENÁ NA FRAKTÁLNÍ KOMPRESI. 1. Úvod. V posledních letech se ukázalo, že teorii fraktálů lze využít v mnoha teoretických

ŠIFROVACÍ METODA ZALOŽENÁ NA FRAKTÁLNÍ KOMPRESI. 1. Úvod. V posledních letech se ukázalo, že teorii fraktálů lze využít v mnoha teoretických Kvaternion 2 (2012, 83 89 83 ŠIFROVACÍ METODA ZALOŽENÁ NA FRAKTÁLNÍ KOMPRESI TOMÁŠ GRÍSA Abstrakt Tento článek se zabývá teoretickými principy fraktální komprese a využitím modifikovaného algoritmu fraktální

Více

Rekurentní rovnice, strukturální indukce

Rekurentní rovnice, strukturální indukce Rekurentní rovnice, strukturální indukce Jiří Velebil: A7B01MCS 26. září 2011: 1/20 Příklad (Parketáž triminy z minulé přednášky) P(n) = počet parket k vyparketování místnosti rozměru n 1 P(1) = 1. 2 P(n

Více

Petr Hasil. Prvákoviny c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

Petr Hasil. Prvákoviny c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57 Úvod do infinitezimálního počtu Petr Hasil Prvákoviny 2015 c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny 2015 1 / 57 Obsah 1 Úvod Funkce Reálná čísla a posloupnosti Limita a spojitost

Více

Dnešní látka: Literatura: Kapitoly 3 a 4 ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.

Dnešní látka: Literatura: Kapitoly 3 a 4 ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího. Předmět: MA4 Dnešní látka: Od okrajových úloh v 1D k o. ú. ve 2D Laplaceův diferenciální operátor Variačně formulované okrajové úlohy pro parciální diferenciální rovnice a metody jejich přibližného řešení

Více

ALGEBRA. Téma 5: Vektorové prostory

ALGEBRA. Téma 5: Vektorové prostory SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 5: Vektorové prostory Základní pojmy Vektorový prostor nad polem P, reálný (komplexní)

Více

7. Aplikace derivace 7E. Křivky. 7E. Křivky

7. Aplikace derivace 7E. Křivky. 7E. Křivky 7E. Křivky Derivace nacházejí uplatnění také při studiu křivek. Obrazně řečeno křivka v rovině je množina bodů, která vznikne pohybem pera po papíře. Předpokládáme přitom, že hrot pera je stále v kontaktu

Více

y +q 1 (t)y = 0 (1) z +q 2 (t)z = 0 (2)

y +q 1 (t)y = 0 (1) z +q 2 (t)z = 0 (2) Šturmova srovnávací věta Srovnávací věta se týká nulových bodů rovnic 2. řádu. Umožňuje odhadnout jejich rozložení srovnáním s jinou rovnicí. Věta 1. Necht y je netriviální řešení rovnice y +q 1 (t)y =

Více

Občas se používá značení f x (x 0, y 0 ), resp. f y (x 0, y 0 ). Parciální derivace f. rovnoběžného s osou y a z:

Občas se používá značení f x (x 0, y 0 ), resp. f y (x 0, y 0 ). Parciální derivace f. rovnoběžného s osou y a z: PARCIÁLNÍ DERIVACE Jak derivovat reálné funkce více proměnných aby bylo možné tyto derivace použít podobně jako derivace funkcí jedné proměnné? Jestliže se okopíruje definice z jedné proměnné dostane se

Více

Drsná matematika III 6. přednáška Obyčejné diferenciální rovnice vyšších řádů, Eulerovo přibližné řešení a poznámky o odhadech chyb

Drsná matematika III 6. přednáška Obyčejné diferenciální rovnice vyšších řádů, Eulerovo přibližné řešení a poznámky o odhadech chyb Drsná matematika III 6. přednáška Obyčejné diferenciální rovnice vyšších řádů, Eulerovo přibližné řešení a poznámky o odhadech chyb Jan Slovák Masarykova univerzita Fakulta informatiky 23. 10. 2006 Obsah

Více

časovém horizontu na rozdíl od experimentu lépe odhalit chybné poznání reality.

časovém horizontu na rozdíl od experimentu lépe odhalit chybné poznání reality. Modelování dynamických systémů Matematické modelování dynamických systémů se využívá v různých oborech přírodních, technických, ekonomických a sociálních věd. Použití matematického modelu umožňuje popsat

Více

1. Obyčejné diferenciální rovnice

1. Obyčejné diferenciální rovnice & 8..8 8: Josef Hekrdla obyčejné diferenciální rovnice-separace proměnných. Obyčejné diferenciální rovnice Rovnice, ve které je neznámá funkcí a v rovnici se vyskytuje spolu se svými derivacemi, se nazývá

Více

25.z-6.tr ZS 2015/2016

25.z-6.tr ZS 2015/2016 Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace Typové členy 2 25.z-6.tr ZS 2015/2016 2015 - Ing. Václav Rada, CSc. TEORIE ŘÍZENÍ třetí část tématu předmětu pokračuje. A oblastí

Více

Základy matematické analýzy

Základy matematické analýzy Základy matematické analýzy Spojitost funkce Ing. Tomáš Kalvoda, Ph.D. 1, Ing. Daniel Vašata 2 1 tomas.kalvoda@fit.cvut.cz 2 daniel.vasata@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních

Více

Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice študenti MFF 15. augusta 2008 1 7 Diferenciální rovnice Požadavky Soustavy lineárních diferenciálních rovnic prvního řádu lineární

Více

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty Soustavy lineárních diferenciálních rovnic I řádu s konstantními koeficienty Definice a) Soustava tvaru x = ax + a y + az + f() t y = ax + a y + az + f () t z = a x + a y + a z + f () t se nazývá soustava

Více

Derivace funkce. prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky BI-ZMA ZS 2009/2010

Derivace funkce. prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky BI-ZMA ZS 2009/2010 Derivace funkce prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické analýzy

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde

Více

Diferenciální rovnice

Diferenciální rovnice Obyčejné diferenciální rovnice - studijní text pro cvičení v předmětu Matematika - 2. Studijní materiál byl připraven pracovníky katedry E. Novákovou, M. Hyánkovou a L. Průchou za podpory grantu IG ČVUT

Více

Teorie měření a regulace

Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace 22.z-3.tr ZS 2015/2016 2015 - Ing. Václav Rada, CSc. TEORIE ŘÍZENÍ druhá část tématu předmětu pokračuje. oblastí matematických pomůcek

Více

Vzpěr jednoduchého rámu, diferenciální operátory. Lenka Dohnalová

Vzpěr jednoduchého rámu, diferenciální operátory. Lenka Dohnalová 1 / 40 Vzpěr jednoduchého rámu, diferenciální operátory Lenka Dohnalová ČVUT, fakulta stavební, ZS 2015/2016 katedra stavební mechaniky a katedra matematiky, Odborné vedení: doc. Ing. Jan Zeman, Ph.D.,

Více

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:

Více

1 Báze a dimenze vektorového prostoru 1

1 Báze a dimenze vektorového prostoru 1 1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější

Více

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je

Více

Rekurentní rovnice, strukturální indukce

Rekurentní rovnice, strukturální indukce , strukturální indukce Jiří Velebil: Y01DMA 23. února 2010: Strukturální indukce 1/19 Backusova-Naurova forma Například syntaxe formuĺı výrokové logiky kde a At. Poznámky 1 Relaxace BNF. ϕ ::= a tt (ϕ

Více

6 Lineární geometrie. 6.1 Lineární variety

6 Lineární geometrie. 6.1 Lineární variety 6 Lineární geometrie Motivace. Pojem lineární varieta, který budeme v této kapitole studovat z nejrůznějších úhlů pohledu, není žádnou umělou konstrukcí. Příkladem lineární variety je totiž množina řešení

Více

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve

Více

1 Projekce a projektory

1 Projekce a projektory Cvičení 3 - zadání a řešení úloh Základy numerické matematiky - NMNM20 Verze z 5. října 208 Projekce a projektory Opakování ortogonální projekce Definice (Ortogonální projekce). Uvažujme V vektorový prostor

Více

Zpětná vazba, změna vlastností systému. Petr Hušek

Zpětná vazba, změna vlastností systému. Petr Hušek Zpětná vazba, změna vlastností systému etr Hušek Zpětná vazba, změna vlastností systému etr Hušek husek@fel.cvut.cz katedra řídicí techniky Fakulta elektrotechnická ČVUT v raze MAS 2012/13 ČVUT v raze

Více

Pozorovatel, Stavová zpětná vazba

Pozorovatel, Stavová zpětná vazba Pozorovatel, Stavová zpětná vazba Teorie dynamických systémů Obsah Úvod 2 Příklady 2 3 Domácí úlohy 6 Reference 8 Úvod Pozorovatel stavu slouží k pozorování (odhadování) zejména neměřitelných stavů systému.

Více

6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2

6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2 6 Skalární součin Skalární součin 1 je operace, která dvěma vektorům (je to tedy binární operace) přiřazuje skalár (v našem případě jde o reálné číslo, obecně se jedná o prvek nějakého tělesa T ). Dovoluje

Více

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky Matematika III Řady Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská Ústav matematiky Přednášky ZS 202-203 Obsah Číselné řady. Součet nekonečné řady. Kritéria konvergence 2 Funkční řady. Bodová konvergence.

Více

8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice

8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice 9. Lineární diferenciální rovnice 2. řádu Cíle Diferenciální rovnice, v nichž hledaná funkce vystupuje ve druhé či vyšší derivaci, nazýváme diferenciálními rovnicemi druhého a vyššího řádu. Analogicky

Více

MOORE-PENROSEOVA INVERZE MATICE A JEJÍ APLIKACE. 1. Úvod

MOORE-PENROSEOVA INVERZE MATICE A JEJÍ APLIKACE. 1. Úvod Kvaternion 1/2013, 7 14 7 MOORE-PENROSEOVA INVERZE MATICE A JEJÍ APLIKACE LADISLAV SKULA Abstrakt V článku je uvedena definice pseudoinverzní matice, ukázána její existence a jednoznačnost a zmíněny dvě

Více

DISKRÉTNÍ PROCESY V ELEKTROTECHNICE

DISKRÉTNÍ PROCESY V ELEKTROTECHNICE Výuka předmětu DISKRÉTNÍ PROCESY V ELEKTROTECHNICE Jaromír Baštinec, Ústav matematiky, Fakulta elektrotechniky a komunikačních technologií, VUT v Brně e-mail: bastinec@feec.vutbr.cz Irena Hlavičková Ústav

Více

Homogenní rovnice. Uvažujme rovnici. y = f(x, y), (4) kde

Homogenní rovnice. Uvažujme rovnici. y = f(x, y), (4) kde Homogenní rovnice Uvažujme rovnici kde y = f(, y), (4) f(λ, λy) = f(, y), λ. Tato rovnice se nazývá homogenní rovnice 1. řádu. Ukážeme, že tuto rovnici lze převést substitucí na rovnici se separovanými

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY ANALÝZA STABILITY DIFERENCIÁLNÍCH ROVNIC SE

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY ANALÝZA STABILITY DIFERENCIÁLNÍCH ROVNIC SE VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATEMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MATHEMATICS ANALÝZA STABILITY DIFERENCIÁLNÍCH ROVNIC

Více

Matematická analýza pro informatiky I. Limita posloupnosti (I)

Matematická analýza pro informatiky I. Limita posloupnosti (I) Matematická analýza pro informatiky I. 3. přednáška Limita posloupnosti (I) Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 25. února 2011 tomecek@inf.upol.cz

Více

Aplikovaná numerická matematika

Aplikovaná numerická matematika Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

Úvod do zpracování signálů

Úvod do zpracování signálů 1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování

Více

Experimentální realizace Buquoyovy úlohy

Experimentální realizace Buquoyovy úlohy Experimentální realizace Buquoyovy úlohy ČENĚK KODEJŠKA, JAN ŘÍHA Přírodovědecká fakulta Univerzity Palackého, Olomouc Abstrakt Tato práce se zabývá experimentální realizací Buquoyovy úlohy. Jedná se o

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Úloha 1 1. a = s : 45 = 9.10180 45 = 9.101+179 45 = 9.10.10179

Více

Úvod do lineární algebry

Úvod do lineární algebry Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky

Více

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady

Více

Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory

Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Zkouška ověřuje znalost základních pojmů, porozumění teorii a schopnost aplikovat teorii při

Více

Funkce komplexní proměnné a integrální transformace

Funkce komplexní proměnné a integrální transformace Funkce komplexní proměnné a integrální transformace Fourierovy řady I. Marek Lampart Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na

Více

7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí

7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí 202-m3b2/cvic/7slf.tex 7. Derivace složené funkce. Budeme uvažovat složenou funkci F = fg, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce, které mají

Více

1 Topologie roviny a prostoru

1 Topologie roviny a prostoru 1 Topologie roviny a prostoru 1.1 Základní pojmy množin Intervaly a okolí Intervaly v rovině nebo prostoru jsou obdélníky nebo hranoly se stranami rovnoběžnými s osami souřadnic. Podmnožiny intervalů se

Více

6. Vektorový počet Studijní text. 6. Vektorový počet

6. Vektorový počet Studijní text. 6. Vektorový počet 6. Vektorový počet Budeme se pohybovat v prostoru R n, což je kartézská mocnina množiny reálných čísel R; R n = R R. Obvykle nám bude stačit omezení na případy n = 1, 2, 3; nicméně teorie je platná obecně.

Více

Co jsme udělali: Au = f, u D(A)

Co jsme udělali: Au = f, u D(A) Předmět: MA4 Dnešní látka: Od okrajových úloh v 1D k o. ú. ve 2D Laplaceův diferenciální operátor Variačně formulované okrajové úlohy pro parciální diferenciální rovnice a metody jejich přibližného řešení

Více

BIOMECHANIKA KINEMATIKA

BIOMECHANIKA KINEMATIKA BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti

Více

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y 9. T r a n s f o r m a c e n á h o d n é v e l i č i n y Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota y závisí nějakým způsobem na vstupní, je její funkcí y = f(x).

Více

Lineární algebra : Metrická geometrie

Lineární algebra : Metrická geometrie Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních

Více

Obyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých

Obyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých Obyčejné diferenciální rovnice Obyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých se vyskytují derivace neznámé funkce jedné reálné proměnné. Příklad. Bud dána funkce f : R R.

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic Soustavy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních diferenciálních rovnic y = a (x)y + a (x)y + + a n (x)y n + f (x) y = a (x)y + a (x)y + + a n (x)y n + f (x). y n = a

Více

Numerické řešení diferenciálních rovnic

Numerické řešení diferenciálních rovnic Numerické řešení diferenciálních rovnic Omezení: obyčejné (nikoli parciální) diferenciální rovnice, Cauchyho počáteční úloha, pouze jedna diferenciální rovnice 1. řádu 1/1 Numerické řešení diferenciálních

Více

SIGNÁLY A LINEÁRNÍ SYSTÉMY

SIGNÁLY A LINEÁRNÍ SYSTÉMY SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cziba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické

Více

Matematika 5 FSV UK, ZS Miroslav Zelený

Matematika 5 FSV UK, ZS Miroslav Zelený Matematika 5 FSV UK, ZS 2018-19 Miroslav Zelený 1. Stabilita řešení soustav diferenciálních rovnic 2. Úvod do variačního počtu 3. Globální extrémy 4. Teorie optimálního řízení 5. Různé 1. Stabilita řešení

Více

MATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze

MATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze Fakulta strojního inženýrství Univerzity J. E. Purkyně v Ústí nad Labem Pasteurova 7 Tel.: 475 285 511 400 96 Ústí nad Labem Fax: 475 285 566 Internet: www.ujep.cz E-mail: kontakt@ujep.cz MATEMATIKA III

Více

Úvodní informace. 17. února 2018

Úvodní informace. 17. února 2018 Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

3 Lineární kombinace vektorů. Lineární závislost a nezávislost

3 Lineární kombinace vektorů. Lineární závislost a nezávislost 3 Lineární kombinace vektorů. Lineární závislost a nezávislost vektorů. Obrázek 5: Vektor w je lineární kombinací vektorů u a v. Vektory u, v a w jsou lineárně závislé. Obrázek 6: Vektor q je lineární

Více

6. ANALYTICKÁ GEOMETRIE

6. ANALYTICKÁ GEOMETRIE Vektorová algebra 6. ANALYTICKÁ GEOMETRIE Pravoúhlé souřadnice bodu v prostoru Poloha bodu v prostoru je vzhledem ke třem osám k sobě kolmým určena třemi souřadnicemi, které tvoří uspořádanou trojici reálných

Více

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi

Více

Algoritmizace diskrétních. Ing. Michal Dorda, Ph.D.

Algoritmizace diskrétních. Ing. Michal Dorda, Ph.D. Algoritmizace diskrétních simulačních modelů Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Při programování simulačních modelů lze hlavní dílčí problémy shrnout do následujících bodů: 1) Zachycení statických

Více

Kapitola 2: Spojitost a limita funkce 1/20

Kapitola 2: Spojitost a limita funkce 1/20 Kapitola 2: Spojitost a limita funkce 1/20 Okolí bodu 2/20 Značení: a R, ε > 0 O ε (a) = (a ε, a + ε) ε-ové okolí bodu a O + ε (a) = a, a + ε) pravé okolí, O ε (a) = (a ε, a levé okolí P ε (a) = O ε (a)

Více

KMS cvičení 9. Ondřej Marek

KMS cvičení 9. Ondřej Marek KMS cvičení 9 Ondřej Marek SYSTÉM S n DOF ŘEŠENÍ V MODÁLNÍCH SOUŘADNICÍCH Pohybové rovnice lineárního systému: U je modální matice, vlastní vektory u 1, u 2,..., u n jsou sloupce v matici U x - vektor

Více

ANALYTICKÁ GEOMETRIE V ROVINĚ

ANALYTICKÁ GEOMETRIE V ROVINĚ ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii

Více

x 2 = a 2 + tv 2 tedy (a 1, a 2 ) T + [(v 1, v 2 )] T A + V Příklad. U = R n neprázdná množina řešení soustavy Ax = b.

x 2 = a 2 + tv 2 tedy (a 1, a 2 ) T + [(v 1, v 2 )] T A + V Příklad. U = R n neprázdná množina řešení soustavy Ax = b. 1. Afinní podprostory 1.1. Motivace. Uvažujme R 3. Jeho všechny vektorové podprostory jsou počátek, přímky a roviny procházející počátkem a celé R 3. Chceme-li v R 3 dělat geometrii potřebujeme i jiné

Více

Přednáška 11, 12. prosince Část 5: derivace funkce

Přednáška 11, 12. prosince Část 5: derivace funkce Přednáška 11, 12. prosince 2014 Závěrem pasáže o spojitých funkcích zmíníme jejich podtřídu, lipschitzovské funkce, nazvané podle německého matematika Rudolfa Lipschitze (1832 1903). Fukce f : M R je lipschitzovská,

Více

i=1 Přímka a úsečka. Body, které leží na přímce procházející body a a b můžeme zapsat pomocí parametrické rovnice

i=1 Přímka a úsečka. Body, které leží na přímce procházející body a a b můžeme zapsat pomocí parametrické rovnice I. Funkce dvou a více reálných proměnných 1. Úvod Značení: V textu budeme používat označení: N pro množinu všech přirozených čísel; R pro množinu všech reálných čísel; R n pro množinu všech uspořádaných

Více

Cvičení z Lineární algebry 1

Cvičení z Lineární algebry 1 Cvičení z Lineární algebry Michael Krbek podzim 2003 2392003 Hodina Jsou dána komplexní čísla z = +2 i a w = 2 i Vyjádřete c algebraickém tvaru (z + w) 3,, (zw), z w 2 Řešte v komplexním oboru rovnice

Více

MKI Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0.

MKI Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0. MKI -00 Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0. V jakém rozmezí se může pohybovat poloměr konvergence regulární

Více

9.7. Vybrané aplikace

9.7. Vybrané aplikace Cíle V rámci témat zaměřených na lineární diferenciální rovnice a soustavy druhého řádu (kapitoly 9.1 až 9.6) jsme dosud neuváděli žádné aplikace. Je jim společně věnována tato závěrečné kapitola, v níž

Více

Přijímací zkouška na navazující magisterské studium 2017

Přijímací zkouška na navazující magisterské studium 2017 Přijímací zkouška na navazující magisterské studium 27 Studijní program: Studijní obor: Matematika Finanční a pojistná matematika Varianta A Řešení příkladů pečlivě odůvodněte. Věnujte pozornost ověření

Více

Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe.

Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. 4 Afinita Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. Poznámka. Vzájemně jednoznačným zobrazením rozumíme zobrazení,

Více

doplněk, zřetězení, Kleeneho operaci a reverzi. Ukážeme ještě další operace s jazyky, na které je

doplněk, zřetězení, Kleeneho operaci a reverzi. Ukážeme ještě další operace s jazyky, na které je 28 [181105-1236 ] 2.7 Další uzávěrové vlastnosti třídy regulárních jazyků Z předchozích přednášek víme, že třída regulárních jazyků je uzavřena na sjednocení, průnik, doplněk, zřetězení, Kleeneho operaci

Více

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 "

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 ŘEŠENÉ PŘÍKLADY Z MB ČÁST Příklad Nalezněte pomocí Laplaceovy transformace řešení dané Cauchyho úlohy lineární diferenciální rovnice prvního řádu s konstantními koeficienty v intervalu 0,, které vyhovuje

Více