Derivace funkce. prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky BI-ZMA ZS 2009/2010
|
|
- Nela Pešková
- před 7 lety
- Počet zobrazení:
Transkript
1 Derivace funkce prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické analýzy 0. přednáška BI-ZMA ZS 2009/200 Evropský sociální fond. Praha & EU: Investujeme do vaší budoucnosti (FIT) Derivace funkce BI-ZMA ZS 2009/200 / 8
2 Derivace funkce Definice Necht existuje takové okoĺı H a bodu a, že H a D f. Limitu (pokud existuje) f (x) f (a) lim nazveme derivací funkce f v bodě a a značíme f (a). Je-li f (a) R, říkáme, že f je diferencovatelná v bodě a. f (a) lze ekvivalentně zapsat f f (a + h) f (a) (a). h 0 h (FIT) Derivace funkce BI-ZMA ZS 2009/200 2 / 8
3 Geometrický význam derivace Rovnice přímky, která prochází body [a, f (a)] a [b, f (b)] na grafu funkce y = f (b) f (a) (x a) + f (a) b a Definice Necht existuje f (a). i) Je-li funkce f spojitá v bodě a a f (a) = ±, nazýváme přímku o rovnici x = a tečnou funkce f v bodě a. ii) Je-li f (a) R, nazýváme přímku o rovnici y = f (a)(x a) + f (a) tečnou funkce f v bodě a. (FIT) Derivace funkce BI-ZMA ZS 2009/200 3 / 8
4 Příklad Ukažme, že derivace konstantní funkce f (x) = c je všude rovna 0. f (x) f (a) c c lim 0 = 0. x a (FIT) Derivace funkce BI-ZMA ZS 2009/200 4 / 8
5 Věta Funkce f diferencovatelná v bodě a je v bodě a spojitá, tj. Důkaz. Plyne to z jednoduché úpravy f (a) R = lim x a f (x) = f (a). ( ) f (x) f (a) lim f (x) f (a) (x a) x a f (x) f (a) lim (x a) = f (a).0 = 0. x a (FIT) Derivace funkce BI-ZMA ZS 2009/200 5 / 8
6 Příklad Uvažujme funkci signum danou předpisem, když x > 0, sgn x = 0, když x = 0,, když x < 0. Pro derivaci této funkce v bodě 0 platí sgn x sgn 0 sgn x lim x 0 x 0 x 0 x x 0 x = +. Tento příklad ukazuje, že i funkce, která není spojitá v bodě a, může mít v bodě a derivaci. Ta ovšem není konečná. (FIT) Derivace funkce BI-ZMA ZS 2009/200 6 / 8
7 Příklad Spočítejme derivaci funkce f (x) = 3 x v bodě 0. lim x 0 3 x 3 0 x 0 x 0 3 = +. x 2 Tedy i funkce spojitá v bodě a může mít nekonečnou derivaci v bodě a. Proto implikaci ve větě nelze obrátit. (FIT) Derivace funkce BI-ZMA ZS 2009/200 7 / 8
8 V kapitole Limita funkce, jsme odvodili, že sin x sin a x α a α lim = cos a, lim x a x a x a x a = αaα, e x e a lim x a x a = ln x ln a ea a lim = x a x a a. To ovšem znamená, že jsme už odvodili vzorce (sin x) = cos x, (x α ) = αx α, (e x ) = e x a (ln x) = x. Další derivací nebudeme počítat přímo z definice pomocí limit, ale si odvodíme elegantní pravidlo. (FIT) Derivace funkce BI-ZMA ZS 2009/200 8 / 8
9 Věta Necht f a g jsou funkce diferencovatelné v bodě a. Pak platí (f + g) (a) = f (a) + g (a), (f.g) (a) = f (a)g(a) + f (a)g (a), ( ) f (a) g = f (a)g(a) f (a)g (a), pokud g(a) 0. g 2 (a) Předpoklady věty jsou: existence a konečnost derivací f f (x) f (a) (a) R a g g(x) g(a) (a) R (FIT) Derivace funkce BI-ZMA ZS 2009/200 9 / 8
10 Důkaz pravidla pro derivaci součinu (f.g) f (x)g(x) f (a)g(a) (a) = =0 {}}{ f (x)g(x) f (a)g(x) + f (a)g(x) f (a)g(a) = ( ) ( ) f (x) f (a) g(x) f (a) g(x) g(a) + lim = x a g(x) }{{} g(a) f (x) f (a) x a lim x a }{{} f (a) g(x) g(a) +f (a) lim x a }{{ x a } g (a) V posledním kroku jsem využili toho, že funkce diferencovatelná v bodě a je v tomto bodě spojitá.. (FIT) Derivace funkce BI-ZMA ZS 2009/200 0 / 8
11 Derivace násobku funkce Je-li v součinu jedna funkce konstantní, řekněme g(x) = c, dostaneme ze vzorce pro součin Příklad (cf (x)) = }{{} c f (x) + cf (x) = cf (x). =0 (3 sin x) = 3 cos x (FIT) Derivace funkce BI-ZMA ZS 2009/200 / 8
12 Věta Necht g je diferencovatelná v bodě a, f je diferencovatelná v bodě g(a). Pak funkce f g je diferencovatelná v bodě a, přičemž platí ( f g ) (a) = f ( g(a) ).g (a). Důkaz. Zkoumejme případ g (a) 0. Na jistém okoĺı bodu a je g(x) g(a) a lze použít větu o limitě složené funkce. Přímo z definice derivace a rozšíření nenulovým výrazem g(x) g(a) dostaneme (f g) (a) f (g(x)) f (g(a)) f (g(x)) f (g(a)) g(x) g(a) lim x a g(x) g(a) = f (g(a)).g (a) Případ, kdy g (a) = 0 je trochu techničtější a vynecháme ho. (FIT) Derivace funkce BI-ZMA ZS 2009/200 2 / 8
13 Příklad Z definice funkcí sin a cos na jednotkové kružnici vidíme sin ( π 2 x) = cos x a cos ( π 2 x) = sin x Na funkci cos x lze tedy nahĺıžet jako na funkci složenou f g, kde vnější funkce je f (x) = sin x s derivací f (x) = cos x a vnitřní funkce je Předchozí vzorec dává g(x) = π 2 x s derivací g (x) =. (cos x) = f (g(x))g (x) = cos ( π 2 x).( ) = sin x. (FIT) Derivace funkce BI-ZMA ZS 2009/200 3 / 8
14 Příklad Pro výpočet derivace funkce tangens použijeme vzorec pro derivaci podílu dvou funkcí. ( ) ( sin x ) (sin x) cos x sin x(cos x) tg x = = cos x (cos x) 2 = (cos x)2 + (sin x) 2 (cos x) 2 = cos 2 x. (FIT) Derivace funkce BI-ZMA ZS 2009/200 4 / 8
15 Derivace inverzní funkce Víme, že pro složení funkce f a funkce k ní inverzní platí f ( f (x) ) = x. Zderivujeme-li obě strany (pokud to lze) podle pravidla pro derivaci složené funkce, dostaneme Proto lze odvodit následující větu. Věta f ( f (x) ).(f ) (x) =. (f ) (x) = f ( f (x) ), za přepokladu, že funkce f je diferencovatlená v bodě f (x) a navíc derivace v tomto bodě není nulová. (FIT) Derivace funkce BI-ZMA ZS 2009/200 5 / 8
16 Příklad Uvažujme funkci f (x) = sin x na intervalu π 2, π 2 a k ní inverzní f (x) = arcsin x, která má definiční obor,. Derivací funkce sin x je cos x a derivace existuje na celém π 2, π 2. V krajních bodech intervalu π 2 = arcsin( ) a π 2 = arcsin je však derivace rovna 0. Proto právě odvozený vzorec použijeme pouze na body x (, ). Dostaneme (arcsin x) = cos(arcsin x). Jelikož sin 2 α + cos 2 α =, dostaneme pro úhel α ( π 2, π 2 ) vztah cos α = sin 2 α. Lze tedy dál upravit (arcsin x) = cos(arcsin x) = ( sin(arcsin x) ) =. 2 x 2 V posledním kroku jsme opět využili, že složením funkce inverzní a původní dostaneme identitu. (FIT) Derivace funkce BI-ZMA ZS 2009/200 6 / 8
17 Tabulka derivací f (x) f (x) pro x α α x α α R, x > 0 e x e x x R ln x x x > 0 sin x cos x x R cos x sin x x R tg x x R, x π cos 2 x 2 + kπ, k Z cotg x x R, x kπ, k Z sin 2 x arcsin x x x (, ) 2 arccos x x 2 x (, ) arctg x x R +x 2 arccotg x x R +x 2 (FIT) Derivace funkce BI-ZMA ZS 2009/200 7 / 8
18 Poznámka Analogicky lze definovat derivaci funkce f v bodě a zleva i zprava jako limity f +(a) f (x) f (a) x a+ x a resp. f (a) f (x) f (a). x a x a Příklad Pro funkci f (x) = x a bod a = 0 odvodíme po úpravě f (x) f (a) x a = x x = sgn x pro x 0 vztahy f +(0) =, f (0) =, f (0) = neexistuje (FIT) Derivace funkce BI-ZMA ZS 2009/200 8 / 8
prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. BI-ZMA ZS 2009/2010
Věty o přírustku funkce prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické
Více2 Fyzikální aplikace. Předpokládejme, že f (x 0 ) existuje. Je-li f (x 0 ) vlastní, pak rovnice tečny ke grafu funkce f v bodě [x 0, f(x 0 )] je
Derivace funkce a jej geometrický význam Je dána funkce f) 3 6 + 9 + a naším úkolem je určit směrnici tečny v bodě [; f)] Pro libovolné lze směrnici sečny danou body [; f)] a [; f)] spočítat jako f) f)
VíceDerivace funkce. Obsah. Aplikovaná matematika I. Isaac Newton. Mendelu Brno. 2 Derivace a její geometrický význam. 3 Definice derivace
Derivace funkce Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Směrnice přímk Derivace a její geometrický význam 3 Definice derivace 4 Pravidla a vzorce pro derivování 5 Tečna a normála 6 Derivace
VíceMatematika 1. 1 Derivace. 2 Vlastnosti a použití. 3. přednáška ( ) Matematika 1 1 / 16
Matematika 1 3. přednáška 1 Derivace 2 Vlastnosti a použití 3. přednáška 6.10.2009) Matematika 1 1 / 16 1. zápočtový test již během 2 týdnů. Je nutné se něj registrovat přes webové rozhraní na https://amos.fsv.cvut.cz.
VíceLimita funkce. FIT ČVUT v Praze. (FIT) Limita funkce 3.týden 1 / 39
Limita funkce FIT ČVUT v Praze 3.týden (FIT) Limita funkce 3.týden 1 / 39 Definice funkce. Zobrazení (f, D f ), jehož definiční obor D f i obor hodnot H f je podmnožinou množiny reálných čísel, se nazývá
VíceDerivace funkce. Přednáška MATEMATIKA č Jiří Neubauer
Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady
Více3. Derivace funkce Definice 3.1. Nechť f : R R je definována na nějakém okolí U(a) bodu a R. Pokud existuje limita f(a + h) f(a) lim
3 a b s = (a + b) 2 f(s) 3,46 4,680 3,93-2,9422 3,93 4,680 4,2962-2,034 4,2962 4,680 4,4886-0,0954 4,4886 4,680 4,5848 3,2095 4,4886 4,5848 4,5367,0963 4,4886 4,5367 4,526 0,427 4,4886 4,526 4,5006 0,508
VíceZáklady matematické analýzy
Základy matematické analýzy Spojitost funkce Ing. Tomáš Kalvoda, Ph.D. 1, Ing. Daniel Vašata 2 1 tomas.kalvoda@fit.cvut.cz 2 daniel.vasata@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
VíceZimní semestr akademického roku 2014/ prosince 2014
Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 7. prosince 2014 Předmluva
VíceZáklady matematiky pro FEK
Základy matematiky pro FEK 8. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 14 Derivace funkce U lineárních funkcí ve tvaru
Více. 1 x. Najděte rovnice tečen k hyperbole 7x 2 2y 2 = 14, které jsou kolmé k přímce 2x+4y 3 = 0. 2x y 1 = 0 nebo 2x y + 1 = 0.
Diferenciální počet příklad s výsledky ( Najděte definiční obor funkce f() = ln arcsin + ) D f = (, 0 Najděte rovnici tečny ke grafu funkce f() = 3 +, která je rovnoběžná s přímkou y = 4 4 y 4 = 0 nebo
VíceMatematika 1. Matematika 1
5. přednáška Elementární funkce 24. října 2012 Logaritmus a exponenciální funkce Věta 5.1 Existuje právě jedna funkce (značíme ji ln a nazýváme ji přirozeným logaritmem), s následujícími vlastnostmi: D(ln)
VíceMatematická analýza pro informatiky I. Derivace funkce
Matematická analýza pro informatiky I. 7. přednáška Derivace funkce Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 31. března 2011 Jan Tomeček, tomecek@inf.upol.cz
VíceZobrazení. prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky BI-ZMA ZS 2009/2010
Zobrazení prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické analýzy 2.
VíceMatematika 1 pro PEF PaE
Derivace funkcí jedné proměnné / 9 Matematika pro PEF PaE 4. Derivace funkcí jedné proměnné Přemysl Jedlička Katedra matematiky, TF ČZU Derivace funkcí jedné proměnné Nejjednodušší derivace 2 / 9 Derivace
VíceFunkce a limita. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
Funkce a limita Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu
VíceDiferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.
Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin
VíceText může být postupně upravován a doplňován. Datum poslední úpravy najdete u odkazu na stažení souboru. Veronika Sobotíková
Tento text není samostatným studijním materiálem. Jde jen o prezentaci promítanou na přednáškách, kde k ní přidávám slovní komentář. Některé důležité části látky píšu pouze na tabuli a nejsou zde obsaženy.
VíceDerivace. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)
VíceKapitola 2: Spojitost a limita funkce 1/20
Kapitola 2: Spojitost a limita funkce 1/20 Okolí bodu 2/20 Značení: a R, ε > 0 O ε (a) = (a ε, a + ε) ε-ové okolí bodu a O + ε (a) = a, a + ε) pravé okolí, O ε (a) = (a ε, a levé okolí P ε (a) = O ε (a)
VícePřednáška 11, 12. prosince Část 5: derivace funkce
Přednáška 11, 12. prosince 2014 Závěrem pasáže o spojitých funkcích zmíníme jejich podtřídu, lipschitzovské funkce, nazvané podle německého matematika Rudolfa Lipschitze (1832 1903). Fukce f : M R je lipschitzovská,
Vícef( x) x x 4.3. Asymptoty funkce Definice lim f( x) =, lim f( x) =, Jestliže nastane alespoň jeden z případů
3 Výklad Definice 3 Jestliže nastane alespoň jeden z případů lim =, lim =, + + lim =, lim =, kde ( D ), pak říkáme, že přímka = je asymptotou funkce f() v bodě f Jestliže lim ( k q) =, resp lim ( k q)
VíceDefinice derivace v bodě
Definice derivace v bodě tgϕ = f ( ) f () f () : = tgϕ = lim f f () tgϕ = f f () Obecně: f f f ( ) ( ) : = lim f ( + h) f f : = lim h h Derivace zleva (zprava): f ( ) : = lim f f ( ) f ( ) : = lim + +
VíceText m ºe být postupn upravován a dopl ován. Datum poslední úpravy najdete u odkazu na staºení souboru. Veronika Sobotíková
Tento text není samostatným studijním materiálem. Jde jen o prezentaci promítanou na p edná²kách, kde k ní p idávám slovní komentá. N které d leºité ásti látky pí²u pouze na tabuli a nejsou zde obsaºeny.
VíceMatematika vzorce. Ing. Petr Šídlo. verze
Matematika vzorce Ing. Petr Šídlo verze 0050409 Obsah Jazyk matematiky 3. Výrokový počet.......................... 3.. Logické spojky...................... 3.. Tautologie výrokového počtu...............
Víceprof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. BI-ZMA ZS 2009/2010
Základní pojmy prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické analýzy
Více1. Písemka skupina A...
. Písemka skupina A.... jméno a příjmení Načrtněte grafy funkcí (v grafu označte všechny průsečíky funkce s osami a asymptoty). y y sin 4 y y arccos ) Určete, jestli je funkce y ln prostá? ) Je funkce
Více1 Množiny, výroky a číselné obory
1 Množiny, výroky a číselné obory 1.1 Množiny a množinové operace Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Definice. Dvě množiny jsou
VíceIntegrální počet - I. část (neurčitý integrál a základní integrační metody)
Integrální počet - I. část (neurčitý integrál a základní integrační metody) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 6. přednáška z AMA Michal Fusek (fusekmi@feec.vutbr.cz) / 23 Obsah
Více30. listopadu Derivace. VŠB-TU Ostrava. Dostupné: s1a64/cd/index.htm.
KMA/MAT1 Přednáška a cvičení č. 11 30. listopadu 2017 [KS] Jaromír Kuben Petra Šarmanová: Diferenciální počet funkcí jedné proměnné. VŠB-TU Ostrava. Dostupné: http://homel.vsb.cz/ s1a64/cd/inde.htm. 1
VíceDERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem
Více(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí
1. Reálná funkce reálné proměnné, derivování (FAPPZ) Petr Gurka aktualizováno 12. října 2011 Obsah 1 Přehled některých elementárních funkcí 1 1.1 Polynomické funkce.......................... 1 1.2 Racionální
VíceBakalářská matematika I
1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,
VíceMATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel
MATEMATIKA Příklady pro 1. ročník bakalářského studia II. část II.1. Posloupnosti reálných čísel Rozhodněte, zda posloupnost a n (n = 1, 2, 3,...) je omezená (omezená shora, omezená zdola) resp. monotónní
VícePetr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
Neurčitý integrál Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu
VíceFunkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015
Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární
Více8. Elementární funkce. I. Exponenciální funkce Definice: Pro komplexní hodnoty z definujeme exponenciální funkci předpisem ( ) e z z k k!.
8. Elementární funkce I. Exponenciální funkce Definice: Pro komplexní hodnoty z definujeme exponenciální funkci předpisem ( ) e z z k = k!. Vlastnosti exponenciální funkce: a) řada ( ) konverguje absolutně
VíceTeorie. Hinty. kunck6am
kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže
VíceLimita a spojitost funkce
Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu
VíceDiferenciál funkce. L Hospitalovo pravidlo. 22. a 23. března 2011
Diferenciál funkce Derivace vyšších řádů L Hospitalovo pravidlo Jiří Fišer 22. a 23. března 2011 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT2 Přednáška č. 6 22. a 23. března 2011 1 / 18 y ω(h) dy O x Obrázek:
VíceCyklometrické funkce
4 Cyklometrické funkce V minulé kapitole jsme zkoumali první funkci inverzní ke funkci goniometrické (tyto funkce se nazývají cyklometrické) funkci y = arcsin x (inverzní k funkci y = sin x ) Př: Nakresli
VíceObsah. Aplikovaná matematika I. Gottfried Wilhelm Leibniz. Základní vlastnosti a vzorce
Neurčitý integrál Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Primitivní funkce, neurčitý integrál Základní vlastnosti a vzorce Základní integrační metody Úpravy integrandu Integrace racionálních
VíceTeorie. Hinty. kunck6am
kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže
VícePřednáška 4: Derivace
4 / / 7, :5 Přednáška 4: Derivace Pojem derivace ormuloval v 7. století Isaac Newton při výpočtec poybu planet sluneční soustavy. Potřeboval spočítat úlovou ryclost planet. Její směr je dán tečnou ke dráze
VíceManagement rekreace a sportu. 10. Derivace
Derivace Derivace Před mnoha lety se matematici snažily o obecné vyřešení úlohy, jak sestrojit tečnu k dané křivce a také yzici zápolili s problémem určení rychlosti nerovnoměrného pohybu K zásadnímu obratu
Více4.2. CYKLOMETRICKÉ FUNKCE
4.. CYKLOMETRICKÉ FUNKCE V této kapitole se dozvíte: jak jsou definovány cyklometrické funkce a jaký je jejich vztah k funkcím goniometrickým; základní vlastnosti cyklometrických funkcí; nejdůležitější
VíceLineární algebra : Lineární (ne)závislost
Lineární algebra : Lineární (ne)závislost (4. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních technologií
Vícearcsin x 2 dx. x dx 4 x 2 ln 2 x + 24 x ln 2 x + 9x dx.
Neurčitý integrál arcsin. Integrál najdeme integrací per partes. Pomocí této metody dostaneme arcsin = arcsin 4 = arcsin + 4 + C, (,. ln + 4 ln + 9. Tento integrál lze převést substitucí ln = y na integrál
VíceDerivace funkce Otázky
funkce je jedním z hlavních nástrojů matematické analýzy. V příští části ukážeme, jak mnoho různorodých aplikací derivace má. Geometricky lze derivaci funkce v nějakém bodě chápat jako směrnici tečny grafu
VícePRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE
PIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí
VíceLimita a spojitost funkce
Přednáška 5 Limita a spojitost funkce V této přednášce se konečně dostaneme k diferenciálnímu počtu funkce jedné reálné proměnné. Diferenciální počet se v podstatě zabývá lokálním chováním funkce v daném
VícePRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim.
PRIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí
VíceI. Úvod. I.1. Množiny. I.2. Výrokový a predikátový počet
I. Úvod I.1. Množiny Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Značení. Symbol x A značí, že element x je prvkem množiny A. Značení x
VíceDerivace funkce DERIVACE A SPOJITOST DERIVACE A KONSTRUKCE FUNKCÍ. Aritmetické operace
Derivace funkce Derivace je jedním z hlavních nástrojů matematické analýzy. V příští části ukážeme, jak mnoho různorodých aplikací derivace má. Geometricky lze derivaci funkce v nějakém bodě chápat jako
VíceJe založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y =
0.1 Diferenciální počet Je částí infinitezimálního počtu, což je souhrnný název pro diferenciální a integrální počet. Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si
VíceObsah. Derivace funkce. Petr Hasil. L Hospitalovo pravidlo. Konvexnost, konkávnost a inflexní body Asymptoty
Petr Hasil Přednáška z Matematické analýzy I c Petr Hasil (MUNI) MA I (M0) / 46 Obsah Základní vlastnosti derivace Geometrický význam derivace Věty o střední hodnotě L Hospitalovo pravidlo 2 Etrémy Konvenost,
VíceZákladní elementární funkce
Základní elementární funkce Základní elementární funkce Za základní elementární funkce považujeme funkce: a) eponenciální a logaritmické; b) obecné mocninné; c) goniometrické a cklometrické; d) hperbolické
VíceSeznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné.
INTEGRÁLNÍ POČET FUNKCÍ JEDNÉ PROMĚNNÉ NEURČITÝ INTEGRÁL NEURČITÝ INTEGRÁL Průvodce studiem V kapitole Diferenciální počet funkcí jedné proměnné jste se seznámili s derivováním funkcí Jestliže znáte derivace
VíceI. 4. l Hospitalovo pravidlo
I. 4. l Hospitalovo pravidlo 235 I. 4. l Hospitalovo pravidlo Věta (l Hospitalovo pravidlo). Buď 0 R. Nechť je splněna jedna z podmínek 0 f() 0 g() 0, 0 g() +. Eistuje-li (vlastní nebo nevlastní) 0 0 f
VíceZimní semestr akademického roku 2015/ ledna 2016
Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Zimní semestr akademického roku 015/016 5. ledna 016 Obsah Cvičení Předmluva iii
VíceÚvodní informace. 17. února 2018
Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní
VíceZimní semestr akademického roku 2014/ prosince 2014
Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 24/25 2. prosince 24 Předmluva iii
VíceDerivace funkcí více proměnných
Derivace funkcí více proměnných Pro studenty FP TUL Martina Šimůnková 16. května 019 1. Derivace podle vektoru jako funkce vektoru. Pro pevně zvolenou funkci f : R d R n a bod a R d budeme zkoumat zobrazení,
VíceMatematická analýza III.
2. Parciální derivace Miroslav Hušek, Lucie Loukotová UJEP 2010 Parciální derivace jsou zobecněním derivace funkce jedné proměnné. V této kapitole poznáme jejich základní vlastnosti a využití. Co bychom
VíceLimita a spojitost funkce a zobrazení jedné reálné proměnné
Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé
Více1 1 x. (arcsinx) = (arccosx) = (arctanx) = x 2. (arcctg) = (e x ) = e x
.cvičení 0..009 Teorie Definice. Necht f je reálná funkce a a R. Jestliže eistuje lim h 0 f(a + h) f(a), h pak tuto limitu nazýváme derivací funkce f v bodě a. Značíme f f(a + h) f(a) (a) := lim. h 0 h
VíceMetody výpočtu limit funkcí a posloupností
Metody výpočtu limit funkcí a posloupností Martina Šimůnková, 6. listopadu 205 Učební tet k předmětu Matematická analýza pro studenty FP TUL Značení a terminologie R značí množinu reálných čísel, rozšířenou
VíceDiferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy
Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy funkcí, průběh funkce) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 5. přednáška z AMA1 Michal Fusek (fusekmi@feec.vutbr.cz)
VíceVII. Limita a spojitost funkce
VII. Limita a spojitost funkce VII.1. Limita funkce Úvodní poznámky: Limita funkce f v bodě c R hodnota a R, k níž se přibližují hodnoty f(x), jestliže x se blíží k hodnotě c; funkce f nemusí být definovaná
VíceTeorie. Hinty. kunck6am
kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 2. cvičení Teorie Věta (Aritmetika derivací). Necht a R a necht f a g jsou funkce definované na nějakém okolí bodu a. Necht existují f (a) R a g (a) R.
VíceVI. Derivace složené funkce.
VI. Derivace složené funkce. 17. Parciální derivace složené funkce Budeme uvažovat složenou funkci F = f(g, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce,
VíceDefinice (Racionální mocnina). Buď,. Nechť, kde a a čísla jsou nesoudělná. Pak: 1. je-li a sudé, (nebo) 2. je-li liché, klademe
Úvodní opakování. Mocnina a logaritmus Definice ( -tá mocnina). Pro každé klademe a dále pro každé, definujeme indukcí Dále pro všechna klademe a pro Později budeme dokazovat následující větu: Věta (O
VíceFUNKCE A JEJICH VLASTNOSTI
PŘEDNÁŠKA 3 FUNKCE A JEJICH VLASTNOSTI Pojem zobrazení a funkce Uvažujme libovolné neprázdné množiny A, B. Přiřadíme-li každému prvku x A právě jeden prvek y B, dostáváme množinu F uspořádaných dvojic
VíceÚvod, základní pojmy, funkce
Úvod, základní pojmy, funkce Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 1. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 69 Obsah 1 Matematická logika 2 Množiny 3 Funkce,
VíceF (x) = f(x). Je-li funkce f spojitá na intervalu I, pak existuje k funkci f primitivní funkce na intervalu I.
KAPITOLA 7: 7. Úvod Primitivní funkce [MA-6:P7.] Definice: Funkce F je primitivní funkcí k funkci f na intervalu I, jestliže pro každé I eistuje F a platí F f. Poznámky: Obsahuje-li I některý z krajních
VícePavlína Matysová. 5. listopadu 2018
Soubor řešených úloh Vyšetřování průběhu funkce Pavlína Matysová 5. listopadu 018 1 Soubor řešených úloh Tento text obsahuje 7 úloh na téma vyšetřování průběhu funkce. Každé úloha je řešena dvěma způsoby
VíceDerivace úvod. Jak zjistit míru změny?
Derivace úvod P ČEZ Jak zjistit míru změny? Derivace nám dá odpověď jestli je funkce: rostoucí/klesající konkávní/konvení jak moc je strmá jak moc roste kde má maimum/minimum 1000 700 P ČEZ P ČEZ 3% 4%
VíceCyklometrické funkce
4..7 Cyklometrické funkce Předpoklady: 46 Cyklometrické funkce: funkce inverzní k funkcím goniometrickým z minulé hodiny známe první cyklometrickou funkci y = arcsin x (inverzní k funkci y = sin x ). Př.
VíceMatematická analýza ve Vesmíru. Jiří Bouchala
Matematická analýza ve Vesmíru Jiří Bouchala Katedra aplikované matematiky jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala - p. /8 3. Elementární funkce. 3. Elementární funkce. Matematická analýza ve Vesmíru.
Více2. FUNKCE JEDNÉ PROMĚNNÉ
2. FUNKCE JEDNÉ PROMĚNNÉ Funkce 2.. Definice Říkáme, že na množině D reálných čísel je definována funkce f jedné reálné proměnné, je-li dán předpis, podle kterého je ke každému číslu x D přiřazeno právě
VíceMatematická analýza pro informatiky I. Spojitost funkce
Matematická analýza pro informatiky I. 6. přednáška Spojitost funkce Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 18. března 2011 Jan Tomeček, tomecek@inf.upol.cz
Více{ } Ox ( 0) 4.2. Konvexnost, konkávnost, inflexe. Definice Obr. 52. Poznámka. nad tečnou
Konvenost, konkávnost, inflee 4.. Konvenost, konkávnost, inflee Definice 4... Nechť eistuje f ( ), D f. Řekneme, že funkce f ( ) je v bodě konkávní, jestliže eistuje { } O ( ) tak, že platí D : O( )\ f(
VíceKapitola 1: Reálné funkce 1/20
Kapitola 1: Reálné funkce 1/20 Funkce jedné proměnné 2/20 Definice: Necht M R. Jestliže každému x M je přiřazeno jistým předpisem f právě jedno y R, říkáme, že y je funkcí x. x... nezávisle proměnná (neboli
VíceDoporučená literatura 1. Jako doplněk k přednáškám: V. Hájková, M. Johanis, O. John, O.F.K. Kalenda a M. Zelený: Matematika (kapitoly I IV)
Přednáška Matematika I v prvním semestru 2013-2014 Spojení na přednášejícího a konzultace Petr Holický, Matematicko fyzikální fakulta Katedra matematické analýzy Sokolovská 83, 2. patro e-mail: holicky@karlin.mff.cuni.cz
Více8 Limita. Derivace. 8.1 Okolí bodu. 8.2 Limita funkce
8 Limita Derivace 81 Okolí bodu Okolím bodu a nazveme otevřený interval (a r, a + r), kde a, r jsou reálná čísla Číslo r je poloměr okolí, a jeho střed Okolí bodu a lze zapsat a
Vícedx se nazývá diferenciál funkce f ( x )
6 Výklad Definice 6 Nechť je 0 vnitřním bodem definičního oboru D f funkce f ( ) Funkce proměnné d = 0 definovaná vztahem df ( 0) = f ( 0) d se nazývá diferenciál funkce f ( ) v bodě 0, jestliže platí
VíceMonotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné
66 I. Diferenciální počet funkcí jedné proměnné I. 5. Vyšetřování průběhu funkce Monotonie a lokální etrémy Důsledek. Nechť má funkce f) konečnou derivaci na intervalu I. Je-li f ) > 0 pro každé I, pak
VíceLimita a spojitost LDF MENDELU
Limita a spojitost Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu
VícePřednáška 3: Limita a spojitost
3 / 1 / 17, 1:38 Přednáška 3: Limita a spojitost Limita funkce Nejdříve je potřeba upřesnit pojmy, které přesněji popisují (topologickou) strukturu množiny reálných čísel, a to zejména pojem okolí 31 Definice
Více6. Derivace 6A. Pojem derivace funkce. 6. Derivace. 6A. Pojem derivace funkce
6 Derivace 6A Pojem derivace funkce 6 Derivace Verze 6 března 07 Po limitě a spojitosti je derivace dalším základním pojmem diferenciálnío počtu Derivace funkce f() v bodě 0 je číslo označované f ( 0 ),
Více1. sin(x + y) = sin(x) cos(y) + cos(x) sin(y) pro x, y R, cos(x + y) = cos(x) cos(y) sin(x) sin(y) pro x, y R;
3. Elementární funkce. Věta C. Existují funkce sin(x) a cos(x) z R do R a číslo π (0, ) tak, že platí: 1. sin(x + y) = sin(x) cos(y) + cos(x) sin(y) pro x, y R, cos(x + y) = cos(x) cos(y) sin(x) sin(y)
VíceNejčastějšími funkcemi, s kterými se setkáváme v matematice i v jejích aplikacích, jsou
4 Cíle Nejčastějšími funkcemi, s kterými se setkáváme v matematice i v jejích aplikacích, jsou funkce, jejichž ita v bodě 0 je rovna funkční hodnotě v tomto bodě Seznámíme se s vlastnostmi takových funkcí
VíceAplikace derivace a průběh funkce
Aplikace derivace a průběh funkce Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného
VíceZimní semestr akademického roku 2014/ prosince 2014
Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 2. prosince 2014 Předmluva
VíceMatematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0
Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud
VíceKapitola 7: Neurčitý integrál. 1/14
Kapitola 7: Neurčitý integrál. 1/14 Neurčitý integrál 2/14 Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f (x) x I nazýváme primitivní
Vícei=1 Přímka a úsečka. Body, které leží na přímce procházející body a a b můžeme zapsat pomocí parametrické rovnice
I. Funkce dvou a více reálných proměnných 1. Úvod Značení: V textu budeme používat označení: N pro množinu všech přirozených čísel; R pro množinu všech reálných čísel; R n pro množinu všech uspořádaných
VíceFunkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Funkce RNDR. Yvetta Bartáková Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Derivace funkce VY INOVACE_05 0_M Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Definice Mějme funkci f definovanou v okolí bodu 0. Eistuje-li
Více1. Písemka skupina A1..
1. Psemka skupina A1.. Nartněte grafy funkc (v grafu oznate všechny průseky funkce s osami) 3 y y sin( ) y y log ( 1) 1 y 1 y = arccotg - 1) Urete, jestli je funkce y = - + 1 omezená zdola nebo shora?
VíceZáklady matematické analýzy (BI-ZMA)
Příklady ke cvičení z předmětu Základy matematické analýzy (BI-ZMA) Matěj Tušek Katedra matematiky České vysoké učení technické v Praze BI-ZMA ZS 009/00 Evropský sociální fond Praha & EU: Investujeme do
Více