Matematika a fyzika. René Kalus KAM, FEI, VŠB-TUO
|
|
- Radovan Slavík
- před 6 lety
- Počet zobrazení:
Transkript
1 Matematika a fyzika René Kalus KAM, FEI, VŠB-TUO
2 Úvod Příroda k nám promlouvá řečí matematiky Galileo Galilei
3 Úvod Philosophy is written in this grand book I mean the universe It is written in the language of mathematics, and its characters are triangles, circles, and other geometric figures, without which it is humanly impossible to understand a single word of it Galileo Galilei, Il Saggiatore, 1623, str. 171 překlad Richard Henry Popkin, citováno v The Philosophy of the Sixteenth and Seventeenth Centuries, 1966
4 Úvod Příklad - fyzika EMPIRIE pozorování a experiment data a vztahy mezi nimi TEORIE matematické odvozování nová data a nové vztahy
5 Úvod Příklad - fyzika EMPIRIE pozorování a experiment data a vztahy mezi nimi TEORIE matematické odvozování nová data a nové vztahy
6 Úvod Příklad - fyzika EMPIRIE pozorování a experiment data a vztahy mezi nimi čísla funkce statistika TEORIE matematické odvozování nová data a nové vztahy
7 Úvod Příklad - fyzika EMPIRIE pozorování a experiment data a vztahy mezi nimi TEORIE matematické odvozování nová data a nové vztahy primitivní pojmy axiomy (modely)
8 Úvod Příklad - fyzika EMPIRIE pozorování a experiment data a vztahy mezi nimi TEORIE matematické odvozování nová data a nové vztahy matematické struktury rovnice primitivní pojmy axiomy (modely)
9 Úvod Příklad - fyzika EMPIRIE pozorování a experiment data a vztahy mezi nimi TEORIE matematické odvozování nová data a nové vztahy primitivní pojmy axiomy (modely)
10 Úvod Příklad - fyzika EMPIRIE pozorování a experiment data a vztahy mezi nimi TEORIE matematické odvozování nová data a nové vztahy matematika matematika primitivní pojmy axiomy (modely)
11 Úvod Příklad - fyzika EMPIRIE pozorování a experiment data a vztahy mezi nimi TEORIE matematické odvozování nová data a nové vztahy primitivní pojmy axiomy (modely) předpovědi pochopení
12 Úvod Příklad - fyzika EMPIRIE pozorování a experiment data a vztahy mezi nimi TEORIE matematické odvozování nová data a nové vztahy přibližné, numerické, výpočetní metody primitivní pojmy axiomy (modely) předpovědi pochopení
13 Úvod Příklad - fyzika EMPIRIE pozorování a experiment data a vztahy mezi nimi TEORIE matematické odvozování nová data a nové vztahy primitivní pojmy axiomy (modely) předpovědi pochopení
14 Úvod Příklad racionální fyzika EMPIRIE pozorování a experiment data a vztahy mezi nimi TEORIE matematické odvozování nová data a nové vztahy primitivní pojmy axiomy (modely) předpovědi pochopení
15 Úvod Cíl dnešní přednášky Na jednoduchém příkladě materiálových rovnic pro dielektrika ilustrovat explicitní oddělení empirie a teorie a ukázat, že v deduktivní fázi si matematika vystačí sama se sebou i při odvozování docela konkrétních závěrů
16 EMPIRIE (primitivní pojmy a model)
17 Teorie elektromagnetického pole Maxwellovy rovnice B rot E t divd D rot H j t divb 0 Materiálové rovnice D D( E, H) B H j 0 D() 0 0
18 Materiálový vztah D = D(E) D D D D ( E, E, E ) D ( E, E, E ) D ( E, E, E )
19 TEORIE I D = D(E) pro slabá pole
20 Taylorova věta 1 f( x) f( x ) f ( x )( x x ) f ( x )( x x ) ! 0 0
21 Taylorova věta 1 f( x) f( x ) f ( x )( x x ) f ( x )( x x ) ! 0 0 n f f( x,..., x ) f( x,..., x ) ( x,..., x )( x x ) 1 n 01 0n 01 0n j 0 j j1 x j n n 2 1 f 2! ( x01,..., x0n)( x j x0 j )( xk x0k )... x x j1 k1 j k
22 Taylorova věta (lineární přiblížení) n f f( x,..., x ) f( x,..., x ) ( x,..., x )( x x ) 1 n 01 0n 01 0n j 0 j j1 x j
23 Taylorova věta (lineární přiblížení) n f f( x,..., x ) f( x,..., x ) ( x,..., x )( x x ) 1 n 01 0n 01 0n j 0 j j1 x j a její aplikace na D 1 D1 D1 D1 D ( E1, E2, E3 ) D (0,0,0) (0,0,0) E (0,0,0) E (0, 0,0) E E E E
24 Taylorova věta (lineární přiblížení) n f f( x,..., x ) f( x,..., x ) ( x,..., x )( x x ) 1 n 01 0n 01 0n j 0 j j1 x j a její aplikace na D x D1 D1 D1 D ( E1, E2, E3 ) D (0,0,0) (0,0,0) E (0,0,0) E (0, 0,0) E E E E D ( E, E, E ) E E x x y z E
25 Obecný tvar D = D(E) pro slabá pole D D 1 2 E E E E E D E E E E 3
26 Obecný tvar D = D(E) pro slabá pole D D 1 2 E E E E E D E E E E 3 D E1 D E2 D E3
27 Obecný tvar D = D(E) pro slabá pole V přiblížení slabých polí lze materiálové vlastnosti dielektrik charakterizovat devíti čísly. D D 1 2 E E E E E D E E E E 3 D E1 D E2 D E3
28 Obecný tvar D = D(E) pro slabá pole V přiblížení slabých polí lze materiálové vlastnosti dielektrik charakterizovat devíti čísly. D D 1 2 E E E E E D E E E E 3 D E1 D E2 D E3 Poznámky lineární vs. nelineární optika proč jsou pole zpravidla slabá transformační vlastnosti (tenzor)
29 TEORIE II Další omezení tvaru D = D(E) (slabá pole)
30 II. zákon termodynamický (EMPIRIE) ε je symetrická a pozitivně definitní
31 Šest čísel. II. zákon termodynamický (EMPIRIE) ε je symetrická a pozitivně definitní
32 Věta (TEORIE) pozitivně definitní (symetrickou) matici A ortogonální matice Q taková, že Q T.A.Q je diagonální a její prvky na diagonále jsou kladné. Věta (TEORIE) Množina všech rotací na R 3 je izomorfní s množinou všech ortogonálních matic 3 x 3. Galileův Einsteinův princip relativity (EMPIRIE) Fyzikální zákony mají ve všech inerciálních vztažných soustavách stejný tvar.
33 Věta (TEORIE) pozitivně definitní (symetrickou) matici A ortogonální matice Q taková, že Q T.A.Q je diagonální a její prvky na diagonále jsou kladné. Věta (TEORIE) Množina všech rotací na R 3 je izomorfní s množinou všech ortogonálních matic 3 x 3. Galileův Einsteinův princip relativity (EMPIRIE) Fyzikální zákony mají ve všech inerciálních vztažných soustavách stejný tvar.
34 Věta (TEORIE) pozitivně definitní (symetrickou) matici A ortogonální matice Q taková, že Q T.A.Q je diagonální a její prvky na diagonále jsou kladné. Věta (TEORIE) Množina všech rotací na R 3 je izomorfní s množinou všech ortogonálních matic 3 x 3. Galileův Einsteinův princip relativity (EMPIRIE) Fyzikální zákony mají ve všech inerciálních vztažných soustavách stejný tvar.
35 Věta (TEORIE) pozitivně definitní (symetrickou) matici A ortogonální matice Q taková, že Q T.A.Q je diagonální a její prvky na diagonále jsou kladné. Věta (TEORIE) Množina všech rotací na R 3 je izomorfní s množinou všech ortogonálních matic 3 x 3. Galileův Einsteinův princip relativity (EMPIRIE) Fyzikální zákony mají ve všech inerciálních vztažných soustavách stejný tvar. ε
36 Věta (TEORIE) pozitivně definitní (symetrickou) matici A ortogonální matice Q taková, že Q T.A.Q je diagonální a její prvky na diagonále jsou kladné. Věta (TEORIE) Množina všech rotací na R 3 je izomorfní s množinou všech ortogonálních matic 3 x 3. Galileův Einsteinův princip relativity (EMPIRIE) Fyzikální zákony mají ve všech inerciálních vztažných soustavách stejný tvar. ε Tři (kladná) čísla
37 TEORIE III Závěry
38 Závěr V přiblížení slabých polí je možno materiálové (elektrické, optické) vlastnosti dielektrik popsat třemi kladnými čísly.
39 Závěr V přiblížení slabých polí je možno materiálové (elektrické, optické) vlastnosti dielektrik popsat třemi kladnými čísly. Klasifikace dielektrik 1 = 2 = = izotropní dielektrika (D = E) jednoosé krystaly dvojosé krystaly
40 Závěr V přiblížení slabých polí je možno materiálové (elektrické, optické) vlastnosti dielektrik popsat třemi kladnými čísly. Klasifikace dielektrik 1 = 2 = = Ingredience izotropní dielektrika (D = E) jednoosé krystaly dvojosé krystaly Taylorova věta (věta o totálním diferenciálu) věta o diagonalizaci symetrických matic izomorfie rotací a ortogonálních matic II. zákon termodynamiky princip relativity
41 Shrnutí Take-home message(s) role matematiky ve fyzice nenahraditelná na všech úrovních je možno / užitečné oddělit empirii od teorie a empirii náležitě formalizovat (racionální fyzika) (velmi) konkrétní závěry bez dalšího empirického vstupu vše souvisí se vším ne vždy vystačíme s počítáním na prstech jedné ruky Domácí úkol jak netriviální matematiku (a její použití ve fyzice) zprostředkovat (přinejmenším) nadaným SŠ studentům
42 Shrnutí Take-home message(s) role matematiky ve fyzice nenahraditelná na všech úrovních je možné / užitečné oddělit empirii od teorie a empirii náležitě formalizovat (racionální fyzika) (velmi) konkrétní závěry bez dalšího empirického vstupu vše souvisí se vším ne vždy vystačíme s počítáním na prstech jedné ruky Domácí úkol jak netriviální matematiku (a její použití ve fyzice) zprostředkovat (přinejmenším) nadaným SŠ studentům
43 Shrnutí Take-home message(s) role matematiky ve fyzice nenahraditelná na všech úrovních je možné / užitečné oddělit empirii od teorie a empirii náležitě formalizovat (racionální fyzika) (velmi) konkrétní závěry bez dalšího empirického vstupu vše souvisí se vším ne vždy vystačíme s počítáním na prstech jedné ruky Domácí úkol jak netriviální matematiku (a její použití ve fyzice) zprostředkovat (přinejmenším) nadaným SŠ studentům
44 Shrnutí Take-home message(s) role matematiky ve fyzice nenahraditelná na všech úrovních je možné / užitečné oddělit empirii od teorie a empirii náležitě formalizovat (racionální fyzika) (velmi) konkrétní závěry bez dalšího empirického vstupu vše souvisí se vším ne vždy vystačíme s počítáním na prstech jedné ruky Domácí úkol jak netriviální matematiku (a její použití ve fyzice) zprostředkovat (přinejmenším) nadaným SŠ studentům
45 Shrnutí Take-home message(s) role matematiky ve fyzice nenahraditelná na všech úrovních je možné / užitečné oddělit empirii od teorie a empirii náležitě formalizovat (racionální fyzika) (velmi) konkrétní závěry bez dalšího empirického vstupu vše souvisí se vším ne vždy vystačíme s počítáním na prstech jedné ruky Domácí úkol jak netriviální matematiku (a její použití ve fyzice) zprostředkovat (přinejmenším) nadaným SŠ studentům
46 Shrnutí Take-home message(s) role matematiky ve fyzice nenahraditelná na všech úrovních je možné / užitečné oddělit empirii od teorie a empirii náležitě formalizovat (racionální fyzika) (velmi) konkrétní závěry bez dalšího empirického vstupu vše souvisí se vším ne vždy vystačíme s počítáním na prstech jedné ruky Domácí úkol jak netriviální matematiku (a její použití ve fyzice) zprostředkovat (přinejmenším nadaným) SŠ studentům
47 Douška na úplný závěr Jak zformulovat lidsky (v kontextu této přednášky)? Nechť M n je množina všech n-prvkových množin kladných reálných čísel (s opakováním). Zaveďme na každé z těchto n-prvkových množin relaci ekvivalence EQ1 totožnou s rovností v. Dále přiřaďme každé n-prvkové množině uspořádanou m-tici (m n), jejíž jednotlivé složky odpovídají počtům prvků v jednotlivých třídách ekvivalence EQ1 uspořádaným vzestupně. Na M n definujme relaci ekvivalence EQ2 tak, že ekvivalentní n-prvkové množiny mají tyto vektory stejné (dokažte, že se jedná o relaci ekvivalence). Kolik tříd ekvivalence EQ2 na M n existuje?
2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC
.6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom
Laserová technika prosince Katedra fyzikální elektroniky.
Laserová technika 1 Aktivní prostředí Šíření rezonančního záření dvouhladinovým prostředím Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 22. prosince 2016 Program
Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda
Předmět: MA 4 Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Četba: Text o lineární algebře v Příručce přežití na webových
POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY
POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY Bakalářský studijní program B1101 (studijní obory - Aplikovaná matematika, Matematické metody v ekonomice, Aplikovaná matematika pro řešení krizových situací)
Vlastní číslo, vektor
[1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost
Obsah PŘEDMLUVA...9 ÚVOD TEORETICKÁ MECHANIKA...15
Obsah PŘEDMLUVA...9 ÚVOD...11 1. TEORETICKÁ MECHANIKA...15 1.1 INTEGRÁLNÍ PRINCIPY MECHANIKY... 16 1.1.1 Základní pojmy z mechaniky... 16 1.1.2 Integrální principy... 18 1.1.3 Hamiltonův princip nejmenší
Lineární algebra : Skalární součin a ortogonalita
Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace
Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi
Primitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program
Program Primitivní funkce a Riemannův integrál Program Primitivní funkce a Riemannův integrál Lineární algebra Program Primitivní funkce a Riemannův integrál Lineární algebra Taylorův polynom Program Primitivní
ALGEBRA. Téma 4: Grupy, okruhy a pole
SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,
Fyzika I. Něco málo o fyzice. Petr Sadovský. ÚFYZ FEKT VUT v Brně. Fyzika I. p. 1/20
Fyzika I. p. 1/20 Fyzika I. Něco málo o fyzice Petr Sadovský petrsad@feec.vutbr.cz ÚFYZ FEKT VUT v Brně Fyzika I. p. 2/20 Fyzika Motto: Je-li to zelené, patří to do biologie. Smrdí-li to, je to chemie.
Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení.
Předmět: MA4 Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení. Literatura: Kapitola 2 a)-c) a kapitola 4 a)-c) ze skript Karel Rektorys: Matematika 43, ČVUT,
Podobnost matic. Definice 8.6. Dány matice A, B M n (C). Jestliže existuje regulární matice P M n (C) tak,
Podobnost matic Definice 84 Dány matice A, B M n (C) Jestliže existuje regulární matice P M n (C) tak, že B = P 1 AP, pak říkáme, že matice B je podobná matici A a píšeme A B Takto zavedená binární relace
Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).
Předmět: MA 4 Dnešní látka Vlastní čísla a vektory Google Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost matic Četba:
Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).
Předmět: MA 4 Dnešní látka Lineární (vektorový) prostor Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost matic Četba:
Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost
SVD rozklad a pseudoinverse
SVD rozklad a pseudoinverse Odpřednesenou látku naleznete v kapitole 12 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: Lineární algebra 19.12.2016: SVD rozklad a pseudoinverse 1/21 Cíle
Teorie náhodných matic aneb tak trochu jiná statistika
Teorie náhodných matic aneb tak trochu jiná statistika B. Vlková 1, M.Berg 2, B. Martínek 3, O. Švec 4, M. Neumann 5 Gymnázium Uničov 1, Gymnázium Václava Hraběte Hořovice 2, Mendelovo gymnázium Opava
10 Funkce více proměnných
M. Rokyta, MFF UK: Aplikovaná matematika II kap. 10: Funkce více proměnných 16 10 Funkce více proměnných 10.1 Základní pojmy Definice. Eukleidovskou vzdáleností bodů x = (x 1,...,x n ), y = (y 1,...,y
Základní pojmy teorie množin Vektorové prostory
Základní pojmy teorie množin Přednáška MATEMATIKA č. 1 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 7. 10. 2010 Základní pojmy teorie množin Základní pojmy
Lineární algebra : Skalární součin a ortogonalita
Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 30. dubna 2014, 09:00 1 2 15.1 Prehilhertovy prostory Definice 1. Buď V LP nad
1 Báze a dimenze vektorového prostoru 1
1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější
Netradiční výklad tradičních témat
Netradiční výklad tradičních témat J. Musilová, P. Musilová: Matematika pro porozumění i praxi I. VUTIUM, Brno 2006 (291 s.), 2009 (349 s.). J. Musilová, P. Musilová: Matematika pro porozumění i praxi
Hisab al-džebr val-muqabala ( Věda o redukci a vzájemném rušení ) Muhammada ibn Músá al-chvárizmího (790? - 850?, Chiva, Bagdád),
1 LINEÁRNÍ ALGEBRA 1 Lineární algebra Slovo ALGEBRA pochází z arabského al-jabr, což znamená nahrazení. Toto slovo se objevilo v názvu knihy islámského matematika Hisab al-džebr val-muqabala ( Věda o redukci
Aplikovaná numerická matematika - ANM
Aplikovaná numerická matematika - ANM 3 Řešení soustav lineárních rovnic iterační metody doc Ing Róbert Lórencz, CSc České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových
Základy maticového počtu Matice, determinant, definitnost
Základy maticového počtu Matice, determinant, definitnost Petr Liška Masarykova univerzita 18.9.2014 Matice a vektory Matice Matice typu m n je pravoúhlé (nebo obdélníkové) schéma, které má m řádků a n
Slovo ALGEBRA pochází z arabského al-jabr, což znamená nahrazení. Toto slovo se objevilo v názvu knihy
1 Lineární algebra Slovo ALGEBRA pochází z arabského al-jabr, což znamená nahrazení. Toto slovo se objevilo v názvu knihy islámského matematika Hisab al-džebr val-muqabala ( Věda o redukci a vzájemném
Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:
3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...
2. Schurova věta. Petr Tichý. 3. října 2012
2. Schurova věta Petr Tichý 3. října 2012 1 Podobnostní transformace a výpočet vlastních čísel Obecný princip: Úloha: Řešíme-li matematickou úlohu, je často velmi vhodné hledat její ekvivalentní formulaci
Gymnázium, Brno. Matice. Závěrečná maturitní práce. Jakub Juránek 4.A Školní rok 2010/11
Gymnázium, Brno Matice Závěrečná maturitní práce Jakub Juránek 4.A Školní rok 2010/11 Konzultant: Mgr. Aleš Kobza Ph.D. Brno, 2011 Prohlášení Prohlašuji, že jsem předloženou práci zpracoval samostatně
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Zkouška ověřuje znalost základních pojmů, porozumění teorii a schopnost aplikovat teorii při
5. 9. FYZIKA Charakteristika předmětu
5. 9. FYZIKA 5. 9. 1. Charakteristika předmětu Předmět Fyzika vede žáky ke zkoumání přírody a jejích zákonitostí. Učí je pozorovat, experimentovat a měřit, zkoumat příčiny přírodních procesů, souvislosti
Co je obsahem numerických metod?
Numerické metody Úvod Úvod Co je obsahem numerických metod? Numerické metody slouží k přibližnému výpočtu věcí, které se přesně vypočítat bud nedají vůbec, nebo by byl výpočet neúměrně pracný. Obsahem
Vybrané kapitoly z matematiky
Vybrané kapitoly z matematiky VŠB-TU Ostrava 2017-2018 Vybrané kapitoly z matematiky 2017-2018 1 / 19 Základní informace předmět: 714-0513, 5 kreditů přednáší: Radek Kučera kontakt: radek.kucera@vsb.cz,
Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách
Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Ústní zkouška z oboru Náročnost zkoušky je podtržena její ústní formou a komisionálním charakterem. Předmětem bakalářské zkoušky
Simulace (nejen) fyzikálních jevů na počítači
Simulace (nejen) fyzikálních jevů na počítači V. Kučera Katedra numerické matematiky, MFFUK Praha 7.2.2013 Aerodynamický flutter Tacoma bridge, 1940 Fyzikální model Realita je komplikovaná Navier-Stokesovy
[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}
Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost s diagonální
MATEMATIKA I. Marcela Rabasová
MATEMATIKA I Marcela Rabasová Obsah: 1. Úvod 1.1. Osnovy předmětu 1.2. Literatura 1.3. Podmínky absolvování předmětu 1.4. Použité označení a symbolika 2. Funkce jedné reálné proměnné 2.1. Definice 2.2.
VĚTY Z LINEÁRNÍ ALGEBRY
VĚTY Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. věta Nechť M = {x 1, x 2,..., x k } je množina vektorů z vektorového prostoru
Okruhy k maturitní zkoušce z fyziky
Okruhy k maturitní zkoušce z fyziky 1. Fyzikální obraz světa - metody zkoumaní fyzikální reality, pojem vztažné soustavy ve fyzice, soustava jednotek SI, skalární a vektorové fyzikální veličiny, fyzikální
21. Úvod do teorie parciálních diferenciálních rovnic
21. Úvod do teorie parciálních diferenciálních rovnic Aplikovaná matematika IV, NMAF074 M. Rokyta, KMA MFF UK LS 2014/15 21.1 Základní termíny Definice Vektor tvaru α = (α 1,...,α m ), kde α j N {0}, j
RELACE, OPERACE. Relace
RELACE, OPERACE Relace Užití: 1. K popisu (evidenci) nějaké množiny objektů či jevů, které lze charakterizovat pomocí jejich vlastnostmi. Entita je popsána pomocí atributů. Ty se vybírají z domén. Různé
Obsah PŘEDMLUVA 11 ÚVOD 13 1 Základní pojmy a zákony teorie elektromagnetického pole 23
Obsah PŘEDMLUVA... 11 ÚVOD... 13 0.1. Jak teoreticky řešíme elektrotechnické projekty...13 0.2. Dvojí význam pojmu pole...16 0.3. Elektromagnetické pole a technické projekty...20 1. Základní pojmy a zákony
Bakalářská matematika I
do předmětu Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Podmínky absolvování předmětu Zápočet Zkouška 1 účast na přednáškách alespoň v minimálním rozsahu,
PROSTORY SE SKALÁRNÍM SOUČINEM. Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti
PROSTORY SE SKALÁRNÍM SOUČINEM Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx, y) = λ(x,
Linearní algebra příklady
Linearní algebra příklady 6. listopadu 008 9:56 Značení: E jednotková matice, E ij matice mající v pozici (i, j jedničku a jinak nuly. [...]... lineární obal dané soustavy vektorů. Popište pomocí maticového
Vlastní (charakteristická) čísla a vlastní (charakteristické) Pro zadanou čtvercovou matici A budeme řešit maticovou
1 Vlastní (charakteristická) čísla a vlastní (charakteristické) vektory matice Pro zadanou čtvercovou matici A budeme řešit maticovou rovnici A x = λ x, kde x je neznámá matice o jednom sloupci (sloupcový
2 Vektorové normy. Základy numerické matematiky - NMNM201. Definice 1 (Norma). Norma je funkcionál splňující pro libovolné vektory x a y a pro
Cvičení 1 Základy numerické matematiky - NMNM201 1 Základní pojmy opakování Definice 1 (Norma). Norma je funkcionál splňující pro libovolné vektory x a y a pro libovolný skalár α C následující podmínky:
Základy matematiky pro FEK
Základy matematiky pro FEK 2. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 20 Co nás dneska čeká... Závislé a nezávislé
Nelineární problémy a MKP
Nelineární problémy a MKP Základní druhy nelinearit v mechanice tuhých těles: 1. materiálová (plasticita, viskoelasticita, viskoplasticita,...) 2. geometrická (velké posuvy a natočení, stabilita konstrukcí)
Globální matice konstrukce
Globální matice konstrukce Z matic tuhosti a hmotnosti jednotlivých prvků lze sestavit globální matici tuhosti a globální matici hmotnosti konstrukce, které se využijí v řešení základní rovnice MKP: [m]{
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ107/2200/280141 Soustavy lineárních rovnic Michal Botur Přednáška 4 KAG/DLA1M: Lineární
Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat
Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání
Symetrické a kvadratické formy
Symetrické a kvadratické formy Aplikace: klasifikace kvadrik(r 2 ) a kvadratických ploch(r 3 ), optimalizace(mpi) BI-LIN (Symetrické a kvadratické formy) 1 / 20 V celé přednášce uvažujeme číselné těleso
MATEMATICKÁ STATISTIKA - XP01MST
MATEMATICKÁ STATISTIKA - XP01MST 1. Úvod. Matematická statistika (statistics) se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného
Podobnostní transformace
Schurova věta 1 Podobnostní transformace a výpočet vlastních čísel Obecný princip: Úloha: Řešíme-li matematickou úlohu, je často velmi vhodné hledat její ekvivalentní formulaci tak, aby se řešení úlohy
7. Důležité pojmy ve vektorových prostorech
7. Důležité pojmy ve vektorových prostorech Definice: Nechť Vje vektorový prostor a množina vektorů {v 1, v 2,, v n } je podmnožinou V. Pak součet skalárních násobků těchto vektorů, tj. a 1 v 1 + a 2 v
a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.
Výpočet vlastních čísel a vlastních vektorů S pojmem vlastního čísla jsme se již setkali například u iteračních metod pro řešení soustavy lineárních algebraických rovnic. Velikosti vlastních čísel iterační
Několik poznámek na téma lineární algebry pro studenty fyzikální chemie
Několik poznámek na téma lineární algebry pro studenty fyzikální chemie Jiří Kolafa Vektory. Vektorový prostor Vektor je často zaveden jako n-tice čísel, (v,..., v n ), v i R (pro reálný vektorový prostor);
Soustavy lineárních rovnic
Přednáška MATEMATIKA č 4 Katedra ekonometrie FEM UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz 27 10 2010 Soustava lineárních rovnic Definice Soustava rovnic a 11 x 1 + a 12 x 2 + + a
SOUSTAVY LINEÁRNÍCH ROVNIC
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA SOUSTAVY LINEÁRNÍCH ROVNIC Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny
AVDAT Vektory a matice
AVDAT Vektory a matice Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Vektory x = x 1 x 2. x p y = y 1 y 2. y p Řádkový vektor dostaneme transpozicí sloupcového vektoru x
Doporučené příklady k Teorii množin, LS 2018/2019
Doporučené příklady k Teorii množin, LS 2018/2019 1. přednáška, 21. 2. 2019 1. Napište množina x je prázdná (přesněji množina x nemá žádné prvky ) formulí základního jazyka teorie množin. 2. Dokažte ((x
Matematická analýza pro informatiky I.
Matematická analýza pro informatiky I. 10. přednáška Diferenciální počet funkcí více proměnných (II) Jan Tomeček jan.tomecek@upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci
Učitelství 2. stupně ZŠ tématické plány předmětů matematika
Učitelství 2. stupně ZŠ tématické plány předmětů matematika Povinné předměty: Matematická analýza I (KMD/MANA1)...2 Úvod do teorie množin (KMD/TMNZI)...4 Algebra 2 (KMD/ALGE2)...6 Konstruktivní geometrie
2. ZÁKLADY MATICOVÉ ALGEGRY 2.1. ZÁKLADNÍ POJMY
2. ZÁKLADY MAICOVÉ ALGEGRY 2.1. ZÁKLADNÍ POJMY V této kapitole se dozvíte: jak je definována reálná nebo komplexní matice a co rozumíme jejím typem; co jsou to prvky matice, co vyjadřují jejich indexy
Odpřednesenou látku naleznete v kapitolách skript Abstraktní a konkrétní lineární algebra.
nad obecným tělesem a lineární kombinace Odpřednesenou látku naleznete v kapitolách 1.1 1.4 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: A7B01LAG 1.10.2015: 1/20 nad obecným tělesem Co
15 Maticový a vektorový počet II
M. Rokyta, MFF UK: Aplikovaná matematika III kap. 15: Maticový a vektorový počet II 1 15 Maticový a vektorový počet II 15.1 Úvod Opakování z 1. ročníku (z kapitoly 8) Označení. Množinu všech reálných resp.
1 Vektorové prostory a podprostory
Pro nahrazení účasti v jednotlivých cvičeních (resp. pro studenty kombinované formy) je dostačující vypracování a odevzdání tučně vyznačených příkladů. 1 Vektorové prostory a podprostory Definujte vektorový
TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému
TENSOR NAPĚTÍ A DEFORMACE Obrázek 1: Volba souřadnicového systému Pole posunutí, deformace, napětí v materiálovém bodě {u} = { u v w } T (1) Obecně 9 složek pole napětí lze uspořádat do matice [3x3] -
Úlohy nejmenších čtverců
Úlohy nejmenších čtverců Petr Tichý 7. listopadu 2012 1 Problémy nejmenších čtverců Ax b Řešení Ax = b nemusí existovat, a pokud existuje, nemusí být jednoznačné. Často má smysl hledat x tak, že Ax b.
Připomenutí co je to soustava lineárních rovnic
Připomenutí co je to soustava lineárních rovnic Příklad 2x 3y + z = 5 3x + 5y + 2z = 4 x + 2y z = 1 Soustava lineárních rovnic obecně Maticový tvar: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a
Vlastní čísla a vlastní vektory
Vlastní čísla a vlastní vektory 1 Motivace Uvažujme lineární prostor všech vázaných vektorů v rovině, které procházejí počátkem, a lineární zobrazení tohoto prostoru do sebe(lineární transformaci, endomorfismus)
DRN: Soustavy linárních rovnic numericky, norma
DRN: Soustavy linárních rovnic numericky, norma Algoritmus (GEM: Gaussova eliminace s částečným pivotováním pro převod rozšířené regulární matice na horní trojúhelníkový tvar). Zadána matice C = (c i,j
Matematická analýza 1
Matematická analýza 1 ZS 2019-20 Miroslav Zelený 1. Logika, množiny a základní číselné obory 2. Limita posloupnosti 3. Limita a spojitost funkce 4. Elementární funkce 5. Derivace 6. Taylorův polynom Návod
Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s
Kapitola 13 Kvadratické formy Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru f(x 1,..., x n ) = a ij x i x j, kde koeficienty a ij T. j=i Kvadratická forma v n proměnných
1 Linearní prostory nad komplexními čísly
1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)
Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).
Předmět: MA 4 Dnešní látka Vektorový (lineární) prostor (připomenutí) Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost
16. Matematický popis napjatosti
p16 1 16. Matematický popis napjatosti Napjatost v bodě tělesa jsme definovali jako množinu obecných napětí ve všech řezech, které lze daným bodem tělesa vést. Pro jednoznačný matematický popis napjatosti
Měření dat Filtrace dat, Kalmanův filtr
Měření dat Filtrace dat, Matematické metody pro ITS (11MAMY) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 3. přednáška 11MAMY čtvrtek 28. února 2018 verze: 2018-02-28 12:20 Obsah
8 Matice a determinanty
M Rokyta, MFF UK: Aplikovaná matematika II kap 8: Matice a determinanty 1 8 Matice a determinanty 81 Matice - definice a základní vlastnosti Definice Reálnou resp komplexní maticí A typu m n nazveme obdélníkovou
FP - SEMINÁŘ Z NUMERICKÉ MATEMATIKY. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
FP - SEMINÁŘ Z NUMERICKÉ MATEMATIKY Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci OBSAH A CÍLE SEMINÁŘE: Opakování a procvičení vybraných
Matematika I. Přednášky: Mgr. Radek Výrut, Zkouška:
Přednášky: Mgr. Radek Výrut, Matematika I katedra matematiky, UL-605, rvyrut@kma.zcu.cz tel.: 377 63 2658 Zkouška: Písemná část zkoušky - příklady v rozsahu zápočtových prací Ústní část zkoušky - základní
Kvantová fyzika atomárních soustav letní semestr VIII. KOTLÁŘSKÁ 23. DUBNA 2014
F40 Kvantová fyzika atomárních soustav letní semestr 03-04 VIII. Vibrace víceatomových molekul cvičení KOTLÁŘSKÁ 3. DUBNA 04 Úvodem capsule o maticích a jejich diagonalisaci definice "vibračních módů"
6.1 Vektorový prostor
6 Vektorový prostor, vektory Lineární závislost vektorů 6.1 Vektorový prostor Nechť je dán soubor nějakých prvků, v němž je dána jistá struktura vztahů mezi jednotlivými prvky nebo v němž jsou předepsána
stránkách přednášejícího.
Předmět: MA 4 Dnešní látka Iterační metoda Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Superrelaxační metoda (metoda SOR) Metoda sdružených gradientů Četba: Text o lineární algebře v Příručce
Kapitola 11: Vektory a matice 1/19
Kapitola 11: Vektory a matice 1/19 2/19 Prostor R n R n = {(x 1,..., x n ) x i R, i = 1,..., n}, n N x = (x 1,..., x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i =
Základy matematiky pro FEK
Základy matematiky pro FEK 3. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 21 Co nás dneska čeká... Co je to soustava lineárních
Analýza napjatosti PLASTICITA
Analýza napjatosti PLASTICITA TENZOR NAPĚTÍ Teplota v daném bodě je skalár, je to tenzor nultého řádu, který nezávisí na změně souřadného systému Síla je vektor, je to tenzor prvního řádu, v trojrozměrném
Soustavy lineárních rovnic-numerické řešení. October 2, 2008
Soustavy lineárních rovnic-numerické řešení October 2, 2008 (Systém lin. rovnic) Systém rovnic a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2... a n1 x 1 + a n2 x 2 + + a
[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů...
[1] Báze Každý lineární (pod)prostor má svou bázi Vzhledem ke zvolené bázi určujeme souřadnice vektorů... a) base, 4, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l. Viz p.
Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová
Tematický plán Vyučující: Ing. Joanna Paździorová 1. r o č n í k 5 h o d i n t ý d n ě, c e l k e m 1 7 0 h o d i n Téma- Tematický celek Z á ř í 1. Opakování a prohloubení učiva základní školy 18 1.1.
Arnoldiho a Lanczosova metoda
Arnoldiho a Lanczosova metoda 1 Částečný problém vlastních čísel Ne vždy je potřeba (a někdy to není ani technicky možné) nalézt celé spektrum dané matice (velké řídké matice). Úloze, ve které chceme aproximovat
MATEMATIKA A 3 Metodický list č. 1
Metodický list č. 1 Název tématického celku: Úvod do problematiky diskrétní matematiky Cíl: Cílem tohoto tématického celku je vymezení oblasti diskrétní matematiky a příprava na další výklad kurzu. Jedná
2.6. Vlastní čísla a vlastní vektory matice
26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť
Zimní semestr akademického roku 2014/ prosince 2014
Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 2. prosince 2014 Předmluva
Aplikovaná numerická matematika
Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 Báze vektorových prostorů, transformace souřadnic Michal Botur Přednáška
ftp://math.feld.cvut.cz/pub/olsak/linal/
Petr Olšák Výcuc z textu Lineární algebra určeno pro promítání na přednášce Úvod do algebry http://www.olsak.net/linal.html ftp://math.feld.cvut.cz/pub/olsak/linal/ http://math.feld.cvut.cz/skripta/ua/