SVD rozklad a pseudoinverse

Rozměr: px
Začít zobrazení ze stránky:

Download "SVD rozklad a pseudoinverse"

Transkript

1 SVD rozklad a pseudoinverse Odpřednesenou látku naleznete v kapitole 12 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: Lineární algebra : SVD rozklad a pseudoinverse 1/21

2 Cíle této přednášky 1 Každá symetrická matice A : R n R n má pouze reálné vlastní hodnoty a je diagonalisovatelná. a Navíc: vlastní vektory symetrické matice tvoří hezkou bázi prostoru R n. 2 Jako důsledek předchozího ukážeme, že každou matici M : R s R r lze napsat jako b M = USV T }{{} SVD rozklad M kde S je diagonální a U 1 = U T a V 1 = V T. 3 Ukážeme aplikace SVD rozkladu. a Tento výsledek nebudeme dokazovat, vyžaduje hlubší znalosti z reálné analýzy. b Výpočty z této přednášky jsou časově velmi náročné. U zkoušky bude vyžadováno základní pochopení teorie, nikoli výpočty. Jiří Velebil: Lineární algebra : SVD rozklad a pseudoinverse 2/21

3 Věta o hlavních osách (pro standardní skalární součin) Pro každou symetrickou reálnou matici A : R n R n existuje ortonormální báze R n složená z vlastních vektorů matice A. Navíc matice A má pouze reálné vlastní hodnoty. Důkaz. Bez důkazu (je těžký). Viz Důsledek skript. Vysvětlení A zobrazuje jednotkovou kouli na (případně degenerovaný) elipsoid. Jiří Velebil: Lineární algebra : SVD rozklad a pseudoinverse 3/21

4 Důsledek SVD rozklad matice pro stand. skalární součin Libovolnou matici M : R s R r lze zapsat ve tvaru USV T, kde 1 V : R s R s a U : R r R r jsou ortogonální, tj. V T = V 1 a U T = U 1. 2 S : R s R r má na hlavní diagonále kladná čísla σ 1 σ 2... σ h (tzv. singulární hodnoty matice M), kde h = rank(m). Všude jinde má matice S nuly. Myšlenka důkazu. 1 Matice A = M T M : R s R s je symetrická. Její vlastní hodnoty jsou nezáporné. Seřad te je: λ 1 λ 2... λ s 0. Označte příslušnou ortonormální bázi jako (v 1,..., v s ). 2 Definujte σ 1 = λ 1,..., σ s = λ s. Vyberte nenulová σ i : σ 1 σ 2... σ h > 0 a definujte u i = Mv i /σ i pro i = 1,..., h a doplňte na ortonormální bázi (u 1,..., u r ). Jiří Velebil: Lineární algebra : SVD rozklad a pseudoinverse 4/21

5 Příklad (SVD rozklad) ( ) Nalezneme SVD rozklad pro M = ( ) 14 2 ( ) ( ) M T M = 4 8 = Vlastní hodnoty M T M jsou λ 1 = 360, λ 2 = 90, λ 3 = 0. Příslušná ( ) ( ortonormální ) ( báze ) vlastních vektorů ( je ) 2/3 2/3 1/3 2/3 2/3 1/3 ( 1/3, 2/3, 2/3 ). Tudíž V = 1/3 2/3 2/3. 2/3 1/3 2/3 2/3 1/3 2/3 3 Singulární hodnoty M jsou σ 1 = λ 1 = 6 10, σ 2 = λ 2 = Jiří Velebil: Lineární algebra : SVD rozklad a pseudoinverse 5/21

6 Příklad (SVD rozklad, pokrač.) 4 u 1 = Mv 1 /σ 1 a u 2 = Mv 2 /σ 2 : ( ) ( ) ( ) 2/3 ( 1/3 = 2/3 ) ( 2/3 2/3 1/3 ( = 3/ 10 1/ 10 ) 1/ 10 3/ 10 5 Plný SVD rozklad M je: ( ) ( / 10 1/ ) ( 10 = / 10 3/ 6 ) ( 2/3 2/3 1/ /3 2/3 2/ /3 1/3 2/3 ) ) T Jiří Velebil: Lineární algebra : SVD rozklad a pseudoinverse 6/21

7 Geometrie SVD rozkladu M = USV T Matice V = (v 1,..., v s ) a U = (u 1,..., u r ) jsou tvořeny vektory nových ortonormálních bází V a U prostorů R s a R r, ve kterých se M : R s R r jeví jako změna měřítka S : R s R r. R s T Ks V R s S R r T U Kr R r Protože T Ks V = (T V Ks ) 1 = V 1 = V T a T U Kr = U, znázorňuje vrchní obrázek opravdu R s V T R s S R r U R r A to je přesně SVD rozklad matice M. Jiří Velebil: Lineární algebra : SVD rozklad a pseudoinverse 7/21

8 Geometrie SVD rozkladu M = USV T (pokrač.) Obraz jednotkové koule v R s při zobrazení x Mx: 1 Rotace (případně nevlastní) V T : R s R s : V T 2 Změna měřítka (případně i s degenerací) S : R s R r : S 3 Rotace (případně nevlastní) U : R r R r : U Jiří Velebil: Lineární algebra : SVD rozklad a pseudoinverse 8/21

9 Redukce SVD rozkladu a aproximace SVD rozkladem Plný SVD rozklad USV T matice M hodnosti h lze psát jako h M = σ j u j vj T j=1 kde u j jsou sloupce U a v j jsou sloupce V. Částečné součty k M k = σ j u j vj T j=1 pro k h mají hodnost k a platí M M k F = min { M X F X : R s R r, rank(x) k} kde s X F = x T s r j x j = j=1 j=1 i=1 je Frobeniova norma matice X = (x 1,..., x s ) = (x ij ). x 2 ij Jiří Velebil: Lineární algebra : SVD rozklad a pseudoinverse 9/21

10 Příklad ( ) Pro M = lze psát její SVD rozklad ( 3/ 10 1/ ) 10 M = 1/ 10 3/ 10 ( ) ( 2/3 ) T 2/3 1/3 1/3 2/3 2/3 2/3 1/3 2/3 jako M = 6 ( 3/ ) / (2/3 1/3 2/3)+3 ( 1/ ) / ( 2/3 2/3 1/3) 10 a M 1 = 6 ( 3/ ) ( ) / 18/15 9/15 18/15 (2/3 1/3 2/3) = 10 6/15 3/15 6/15 Platí M M 1 F = M F 450 Jiří Velebil: Lineární algebra : SVD rozklad a pseudoinverse 10/21

11 Chyba při nahrazení částečným součtem SVD rozkladu Platí rovnost: M M k F = σ 2 k σ2 h Speciálně: M F = σ σ2 h Podílu M M k F M F = σ 2 k σ2 h σ σ2 h říkáme relativní změna matice M (při nahrazení M k-tým částečným součtem jejího SVD rozkladu). Jiří Velebil: Lineární algebra : SVD rozklad a pseudoinverse 11/21

12 SVD rozklad matice lze použít ke kompresi dat Obrázek lze zadat maticí M = kde 0 = bílá, 0.5 = šedá, 1 = černá. Jiří Velebil: Lineární algebra : SVD rozklad a pseudoinverse 12/21

13 SVD rozklad matice lze použít ke kompresi dat (pokrač.) SVD rozklad matice M má tvar USV T, kde matice S je zaokrouhlena na exponenciální formát se dvěma desetinnými místy: S = Ke kompresi stačí použít první čtyři singulární hodnoty (prvky na hlavní diagonále S) matice M, protože pátá až osmá singulární hodnota je prakticky rovna nule. Jiří Velebil: Lineární algebra : SVD rozklad a pseudoinverse 13/21

14 SVD rozklad matice lze použít ke kompresi dat (pokrač.) Obrázky pro první čtyři aproximace matice M vypadají takto: Relativní změny matice M jsou následující: M M 1 F M F M M 2 F M F M M 3 F M F M M 4 F M F = Jiří Velebil: Lineární algebra : SVD rozklad a pseudoinverse 14/21

15 Co dělat, když matice A : R s R r nemá inversi? R s A + R r b A + b im(a + ) o ker(a) A o proj im(a) (b) rej im(a) (b) im(a) ker(a + ) Jiří Velebil: Lineární algebra : SVD rozklad a pseudoinverse 15/21

16 Tvrzení At A : R s R r je matice. Potom existuje nanejvýš jedna matice A + : R r R s, která splňuje následující čtyři podmínky a AA + A = A, A + AA + = A +, (A + A) T = A + A, (AA + ) T = AA + A. a Matici A +, která tyto čtyři podmínky splňuje, říkáme pseudoinverse matice Důkaz. Bez důkazu (není těžký, ale není zajímavý). Pro zájemce, viz Tvrzení skript. Jiří Velebil: Lineární algebra : SVD rozklad a pseudoinverse 16/21

17 Příklady pseudoinversí 1 At A : R n R n je regulární matice. Potom A + = A 1. Platí totiž rovnosti: 1 AA 1 A = A 2 A 1 AA 1 = A 1 3 (A 1 A) T = E n = A 1 A 4 (AA 1 ) T = E n = AA 1 2 At O s,r : R s R r. Potom (O s,r ) + = O r,s. Platí totiž rovnosti: 1 O s,r O r,s O s,r = O s,r 2 O r,s O s,r O r,s = O r,s 3 (O r,s O s,r ) T = O s,s = O r,s O s,r 4 (O s,r O r,s ) T = O r,r = O s,r O r,s Jiří Velebil: Lineární algebra : SVD rozklad a pseudoinverse 17/21

18 Příklady pseudoinversí (pokrač.) 3 At A : R k R n má hodnost k. Potom A + = (A T A) 1 A T. Platí totiž rovnosti: 1 A(A T A) 1 A T A = A 2 (A T A) 1 A T A(A T A) 1 A T = (A T A) 1 A T 3 ((A T A) 1 A T A) T = (A T A) 1 A T A 4 (A(A T A) 1 A T ) T = A(A T A) 1 A T Pozorování: v tomto případě platí AA + b = proj im(a) (b) To nás nepřekvapuje: tak jsme pseudoinversi vymysleli! Jiří Velebil: Lineární algebra : SVD rozklad a pseudoinverse 18/21

19 Věta (nalezení pseudoinverse pomocí SVD rozkladu) At A = USV T je plný SVD rozklad matice A : R s R r. Potom platí: 1 Matice je pseudoinverse matice S. 2 Matice je pseudoinverse matice A. S + = ( 1 e 1,..., 1 e h, o,..., o ) σ 1 σ h }{{} (r h)-krát A + = VS + U T Důkaz. Bez důkazu. Viz Důsledek skript. Jiří Velebil: Lineární algebra : SVD rozklad a pseudoinverse 19/21

20 Příklad (výpočet pseudoinverse pomocí SVD rozkladu) Nalezneme M + pro matici ( ) M = Plný SVD rozklad matice M je roven ( 3/ 10 1/ ) 10 1/ 10 3/ 10 ( a proto ( ) 2/3 2/3 1/3 M + = 1/3 2/3 2/3 2/3( 1/3 2/3 ) = ) ( 2/3 ) T 2/3 1/3 1/3 2/3 2/3 2/3 1/3 2/3 ( ) 1/(6 10) 0 ( 0 1/(3 10) 0 0 3/ 10 1/ 10 1/ 10 3/ 10 ) T Jiří Velebil: Lineární algebra : SVD rozklad a pseudoinverse 20/21

21 Další aplikace SVD rozkladu nepovinné 1 Pseudoinverse matic souvisí s metodou nejmenších čtverců, viz Dodatek C skript. Metoda nejmenších čtverců slouží k proložení optimální křivky naměřenými daty s nejmenší kvadratickou chybou. 2 Latentní sémantické indexování databází (také: LSI), viz Dodatek E skript. Pro databáze lze vytvořit vektorový model a SVD rozklad lze použít k vyhledání skrytých sémantických konceptů v databázi. 3 Analýza hlavní komponenty (také: PCA), viz Dodatek E skript. Při analýze multidimensionálních dat lze objevit hlavní komponenty dat, tj. lze nalézt podstatné naměřené veličiny. 4 A mnoho dalších aplikací... Jiří Velebil: Lineární algebra : SVD rozklad a pseudoinverse 21/21

Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s

Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s Kapitola 13 Kvadratické formy Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru f(x 1,..., x n ) = a ij x i x j, kde koeficienty a ij T. j=i Kvadratická forma v n proměnných

Více

Singulární rozklad. Petr Tichý. 31. října 2013

Singulární rozklad. Petr Tichý. 31. října 2013 Singulární rozklad Petr Tichý 31. října 2013 1 Outline 1 Úvod a motivace 2 Zavedení singulárního rozkladu a jeho vlastnosti 3 Výpočet a náklady na výpočet singulárního rozkladu 4 Moor-Penroseova pseudoinverze

Více

AVDAT Mnohorozměrné metody metody redukce dimenze

AVDAT Mnohorozměrné metody metody redukce dimenze AVDAT Mnohorozměrné metody metody redukce dimenze Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Opakování vlastní čísla a vlastní vektory A je čtvercová matice řádu n. Pak

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

Transformace souřadnic

Transformace souřadnic Transformace souřadnic Odpřednesenou látku naleznete v kapitolách 8.2 a 8.3 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: A7B01AG 5.11.2015: Transformace souřadnic 1/17 Minulá přednáška

Více

Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2,

Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2, Úlohy k přednášce NMAG a : Lineární algebra a geometrie a Verze ze dne. května Toto je seznam přímočarých příkladů k přednášce. Úlohy z tohoto seznamu je nezbytně nutné umět řešit. Podobné typy úloh se

Více

Základy maticového počtu Matice, determinant, definitnost

Základy maticového počtu Matice, determinant, definitnost Základy maticového počtu Matice, determinant, definitnost Petr Liška Masarykova univerzita 18.9.2014 Matice a vektory Matice Matice typu m n je pravoúhlé (nebo obdélníkové) schéma, které má m řádků a n

Více

Báze a dimense. Odpřednesenou látku naleznete v kapitolách a 3.6 skript Abstraktní a konkrétní lineární algebra.

Báze a dimense. Odpřednesenou látku naleznete v kapitolách a 3.6 skript Abstraktní a konkrétní lineární algebra. Báze a dimense Odpřednesenou látku naleznete v kapitolách 3.1 3.3 a 3.6 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: A7B01LAG 15.10.2015: Báze a dimense 1/19 Minulé přednášky 1 Lineární

Více

Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda

Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Předmět: MA 4 Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Četba: Text o lineární algebře v Příručce přežití na webových

Více

5. Singulární rozklad

5. Singulární rozklad 5. Singulární rozklad Petr Tichý 31. října 2012 1 Singulární rozklad matice Jeden z nejdůležitějších teoretických i praktických nástrojů maticových výpočtů. Umožňuje určit hodnost či normu matice, ortogonální

Více

EUKLIDOVSKÉ PROSTORY

EUKLIDOVSKÉ PROSTORY EUKLIDOVSKÉ PROSTORY Necht L je lineární vektorový prostor nad tělesem reálných čísel R. Zobrazení (.,.) : L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx,

Více

15 Maticový a vektorový počet II

15 Maticový a vektorový počet II M. Rokyta, MFF UK: Aplikovaná matematika III kap. 15: Maticový a vektorový počet II 1 15 Maticový a vektorový počet II 15.1 Úvod Opakování z 1. ročníku (z kapitoly 8) Označení. Množinu všech reálných resp.

Více

Numerické metody a programování

Numerické metody a programování Projekt: Inovace výuky optiky se zaměřením na získání experimentálních dovedností Registrační číslo: CZ.1.7/2.2./28.157 Numerické metody a programování Lekce 4 Tento projekt je spolufinancován Evropským

Více

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC .6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom

Více

Lineární algebra : Skalární součin a ortogonalita

Lineární algebra : Skalární součin a ortogonalita Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních

Více

2 Vektorové normy. Základy numerické matematiky - NMNM201. Definice 1 (Norma). Norma je funkcionál splňující pro libovolné vektory x a y a pro

2 Vektorové normy. Základy numerické matematiky - NMNM201. Definice 1 (Norma). Norma je funkcionál splňující pro libovolné vektory x a y a pro Cvičení 1 Základy numerické matematiky - NMNM201 1 Základní pojmy opakování Definice 1 (Norma). Norma je funkcionál splňující pro libovolné vektory x a y a pro libovolný skalár α C následující podmínky:

Více

PROSTORY SE SKALÁRNÍM SOUČINEM. Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti

PROSTORY SE SKALÁRNÍM SOUČINEM. Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti PROSTORY SE SKALÁRNÍM SOUČINEM Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx, y) = λ(x,

Více

AVDAT Vektory a matice

AVDAT Vektory a matice AVDAT Vektory a matice Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Vektory x = x 1 x 2. x p y = y 1 y 2. y p Řádkový vektor dostaneme transpozicí sloupcového vektoru x

Více

Numerické metody a programování. Lekce 4

Numerické metody a programování. Lekce 4 Numerické metody a programování Lekce 4 Linarní algebra soustava lineárních algebraických rovnic a 11 a 12 x 2 a 1, N x N = b 1 a 21 a 22 x 2 a 2, N x N = b 2 a M,1 a M,2 x 2 a M,N x N = b M zkráceně A

Více

Co byste měl/a zvládnout po 6. týdnu

Co byste měl/a zvládnout po 6. týdnu Co byste měl/a zvládnout po 6. týdnu Zde je uveden naprostý základ. Nejde o úplný výčet všech dovedností. Jiří Velebil: A7B01LAG Zvládnutá látka po 6. týdnu 1/8 Slovník základních pojmů Monomorfismus,

Více

Úlohy nejmenších čtverců

Úlohy nejmenších čtverců Úlohy nejmenších čtverců Petr Tichý 7. listopadu 2012 1 Problémy nejmenších čtverců Ax b Řešení Ax = b nemusí existovat, a pokud existuje, nemusí být jednoznačné. Často má smysl hledat x tak, že Ax b.

Více

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R} Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost s diagonální

Více

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního

Více

Operace s maticemi

Operace s maticemi Operace s maticemi Seminář druhý 17.10. 2018 Obsah 1 Operace s maticemi 2 Hodnost matice 3 Regulární matice 4 Inverzní matice Matice Definice (Matice). Reálná matice typu m n je obdélníkové schema A =

Více

Lineární algebra : Skalární součin a ortogonalita

Lineární algebra : Skalární součin a ortogonalita Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 30. dubna 2014, 09:00 1 2 15.1 Prehilhertovy prostory Definice 1. Buď V LP nad

Více

Symetrické a kvadratické formy

Symetrické a kvadratické formy Symetrické a kvadratické formy Aplikace: klasifikace kvadrik(r 2 ) a kvadratických ploch(r 3 ), optimalizace(mpi) BI-LIN (Symetrické a kvadratické formy) 1 / 20 V celé přednášce uvažujeme číselné těleso

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 2. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 20 Co nás dneska čeká... Závislé a nezávislé

Více

DEFINICE Z LINEÁRNÍ ALGEBRY

DEFINICE Z LINEÁRNÍ ALGEBRY DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které

Více

Odpřednesenou látku naleznete v kapitole 3.1 skript Abstraktní a konkrétní lineární algebra.

Odpřednesenou látku naleznete v kapitole 3.1 skript Abstraktní a konkrétní lineární algebra. Odpřednesenou látku naleznete v kapitole 3.1 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: Lineární algebra 14.10.2016: 1/13 Minulé přednášky 1 Lineární kombinace. 2 Definice lineárního

Více

2. Schurova věta. Petr Tichý. 3. října 2012

2. Schurova věta. Petr Tichý. 3. října 2012 2. Schurova věta Petr Tichý 3. října 2012 1 Podobnostní transformace a výpočet vlastních čísel Obecný princip: Úloha: Řešíme-li matematickou úlohu, je často velmi vhodné hledat její ekvivalentní formulaci

Více

VĚTY Z LINEÁRNÍ ALGEBRY

VĚTY Z LINEÁRNÍ ALGEBRY VĚTY Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. věta Nechť M = {x 1, x 2,..., x k } je množina vektorů z vektorového prostoru

Více

stránkách přednášejícího.

stránkách přednášejícího. Předmět: MA 4 Dnešní látka Iterační metoda Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Superrelaxační metoda (metoda SOR) Metoda sdružených gradientů Četba: Text o lineární algebře v Příručce

Více

Matice. Předpokládejme, že A = (a ij ) je matice typu m n: diagonálou jsou rovny nule.

Matice. Předpokládejme, že A = (a ij ) je matice typu m n: diagonálou jsou rovny nule. Matice Definice. Maticí typu m n nazýváme obdélníkové pole, tvořené z m n reálných čísel (tzv. prvků matice), zapsaných v m řádcích a n sloupcích. Značíme např. A = (a ij ), kde i = 1,..., m, j = 1,...,

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory Kapitola 11 Vlastní čísla a vlastní vektory Základní motivace pro studium vlastních čísel a vektorů pochází z teorie řešení diferenciálních rovnic Tato teorie říká, že obecné řešení lineární diferenciální

Více

vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých mocnin). Rozhodněte o definitnosti kvadratické formy κ(x).

vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých mocnin). Rozhodněte o definitnosti kvadratické formy κ(x). Řešené příklady z lineární algebry - část 6 Typové příklady s řešením Příklad 6.: Kvadratickou formu κ(x) = x x 6x 6x x + 8x x 8x x vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory 5 Vlastní čísla a vlastní vektor Poznámka: Je-li A : V V lineární zobrazení z prostoru V do prostoru V někd se takové zobrazení nazývá lineárním operátorem, pak je přirozeným požadavkem najít takovou bázi

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést

maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést Úlohy k zamyšlení 1. Zdůvodněte, proč třetí řádek Hornerova schématu pro vyhodnocení polynomu p v bodě c obsahuje koeficienty polynomu r, pro který platí p(x) = (x c) r(x) + p(c). 2. Dokažte, že pokud

Více

Lineární algebra - I. část (vektory, matice a jejich využití)

Lineární algebra - I. část (vektory, matice a jejich využití) Lineární algebra - I. část (vektory, matice a jejich využití) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 2. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 40 Obsah 1 Vektory

Více

Operace s maticemi. 19. února 2018

Operace s maticemi. 19. února 2018 Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice

Více

Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru

Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru 1 1. Lineární algebra 1.1. Lineární závislost a nezávislost vektorů. Hodnost matice Aritmetické vektory Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ).

Více

11. Skalární součin a ortogonalita p. 1/16

11. Skalární součin a ortogonalita p. 1/16 11. Skalární součin a ortogonalita 11. Skalární součin a ortogonalita p. 1/16 11. Skalární součin a ortogonalita p. 2/16 Skalární součin a ortogonalita 1. Definice skalárního součinu 2. Norma vektoru 3.

Více

Definice : Definice :

Definice : Definice : KAPITOLA 7: Spektrální analýza operátorů a matic [PAN16-K7-1] Definice : Necht H je komplexní Hilbertův prostor. Řekneme, že operátor T B(H) je normální, jestliže T T = T T. Operátor T B(H) je normální

Více

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi

Více

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího). Předmět: MA 4 Dnešní látka Lineární (vektorový) prostor Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost matic Četba:

Více

ALG2: Lineární Algebra (Skripta Horák, jako doplněk i skripta Kovár v IS)

ALG2: Lineární Algebra (Skripta Horák, jako doplněk i skripta Kovár v IS) ALG2: Lineární Algebra (Skripta Horák, jako doplněk i skripta Kovár v IS) Info ke zkoušce: zkouška Algebra 2 je typu kolokvium (= ústní zkouška), tj. u zkoušky není žádná písemka, jen ústní část. Máte

Více

Kapitola 11: Vektory a matice:

Kapitola 11: Vektory a matice: Kapitola 11: Vektory a matice: Prostor R n R n = {(x 1,, x n ) x i R, i = 1,, n}, n N x = (x 1,, x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i = 1,, n : x i = y i

Více

1 Báze a dimenze vektorového prostoru 1

1 Báze a dimenze vektorového prostoru 1 1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější

Více

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: 3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...

Více

A0M15EZS Elektrické zdroje a soustavy ZS 2011/2012 cvičení 1. Jednotková matice na hlavní diagonále jsou jedničky, všude jinde nuly

A0M15EZS Elektrické zdroje a soustavy ZS 2011/2012 cvičení 1. Jednotková matice na hlavní diagonále jsou jedničky, všude jinde nuly Matice Matice typu (m, n) je uspořádaná m-tice prvků z řádky matice.. Jednotlivé složky této m-tice nazýváme Matice se zapisují Speciální typy matic Nulová matice všechny prvky matice jsou nulové Jednotková

Více

Podobnostní transformace

Podobnostní transformace Schurova věta 1 Podobnostní transformace a výpočet vlastních čísel Obecný princip: Úloha: Řešíme-li matematickou úlohu, je často velmi vhodné hledat její ekvivalentní formulaci tak, aby se řešení úlohy

Více

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Tomáš Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 / 63 1 2 3 4 5 6 7 8 9 10 11 2 / 63 Aritmetický vektor Definition 1 Aritmetický vektor x je uspořádaná

Více

Soustava m lineárních rovnic o n neznámých je systém

Soustava m lineárních rovnic o n neznámých je systém 1 1.2. Soustavy lineárních rovnic Soustava lineárních rovnic Soustava m lineárních rovnic o n neznámých je systém a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2...

Více

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru 2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních

Více

(Cramerovo pravidlo, determinanty, inverzní matice)

(Cramerovo pravidlo, determinanty, inverzní matice) KMA/MAT1 Přednáška a cvičení, Lineární algebra 2 Řešení soustav lineárních rovnic se čtvercovou maticí soustavy (Cramerovo pravidlo, determinanty, inverzní matice) 16 a 21 října 2014 V dnešní přednášce

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání

Více

Interpolace, ortogonální polynomy, Gaussova kvadratura

Interpolace, ortogonální polynomy, Gaussova kvadratura Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu 2013 1 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť

Více

Kapitola 11: Vektory a matice 1/19

Kapitola 11: Vektory a matice 1/19 Kapitola 11: Vektory a matice 1/19 2/19 Prostor R n R n = {(x 1,..., x n ) x i R, i = 1,..., n}, n N x = (x 1,..., x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i =

Více

Program SMP pro kombinované studium

Program SMP pro kombinované studium Zadání příkladů k procvičení na seminář Program SMP pro kombinované studium Nejdůležitější typy příkladů - minimum znalostí před zkouškovou písemkou 1) Matice 1. Pro matice 1 0 2 1 0 3 B = 7 3 4 4 2 0

Více

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29 Matematika 1 11. přednáška MA1 1 Opakování 2 Determinant 3 Adjungovaná matice 4 Cramerovo pravidlo 5 Vlastní čísla a vlastní vektory matic 6 Zkouška; konzultace; výběrová matematika;... 11. přednáška (15.12.2010

Více

Odpřednesenou látku naleznete v kapitolách skript Abstraktní a konkrétní lineární algebra.

Odpřednesenou látku naleznete v kapitolách skript Abstraktní a konkrétní lineární algebra. nad obecným tělesem a lineární kombinace Odpřednesenou látku naleznete v kapitolách 1.1 1.4 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: A7B01LAG 1.10.2015: 1/20 nad obecným tělesem Co

Více

7. Lineární vektorové prostory

7. Lineární vektorové prostory 7. Lineární vektorové prostory Tomáš Salač MÚ UK, MFF UK LS 2017/18 Tomáš Salač ( MÚ UK, MFF UK ) 7. Lineární vektorové prostory LS 2017/18 1 / 62 7.1 Definice a příklady Definice 7.1 Množina G s binární

Více

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího). Předmět: MA 4 Dnešní látka Vektorový (lineární) prostor (připomenutí) Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost

Více

NALG 001 Lineární algebra a geometrie 1, zimní semestr MFF UK Doba řešení: 3 hodiny

NALG 001 Lineární algebra a geometrie 1, zimní semestr MFF UK Doba řešení: 3 hodiny NALG 001 Lineární algebra a geometrie 1, zimní semestr MFF UK Závěrečná zkouška verze cvičná 9.1.2013 Doba řešení: 3 hodiny Přednášející: L. Barto, J. Tůma Křestní jméno: Příjmení: Instrukce Neotvírejte

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

[1] Determinant. det A = 0 pro singulární matici, det A 0 pro regulární matici

[1] Determinant. det A = 0 pro singulární matici, det A 0 pro regulární matici [1] Determinant je číslo jistým způsobem charakterizující čtvercovou matici det A = 0 pro singulární matici, det A 0 pro regulární matici používá se při řešení lineárních soustav... a v mnoha dalších aplikacích

Více

Množinu všech matic typu m n nad tělesem T budeme označovat M m n (T ), množinu všech čtvercových matic stupně n nad T pak M n (T ).

Množinu všech matic typu m n nad tělesem T budeme označovat M m n (T ), množinu všech čtvercových matic stupně n nad T pak M n (T ). Matice Definice 4.1 Necht (T ; +, je číselné těleso, m, n N a dále necht a ij T pro všechny indexy i = 1, 2,..., m a j = 1, 2,..., n. Potom schéma a 11 a 12... a 1n a 21 a 22... a 2n... = (a ij m n a m1

Více

9 Kolmost vektorových podprostorů

9 Kolmost vektorových podprostorů 9 Kolmost vektorových podprostorů Od kolmosti dvou vektorů nyní přejdeme ke kolmosti dvou vektorových podprostorů. Budeme se zabývat otázkou, kdy jsou dva vektorové podprostory na sebe kolmé a jak to poznáme.

Více

z = a bi. z + v = (a + bi) + (c + di) = (a + c) + (b + d)i. z v = (a + bi) (c + di) = (a c) + (b d)i. z v = (a + bi) (c + di) = (ac bd) + (bc + ad)i.

z = a bi. z + v = (a + bi) + (c + di) = (a + c) + (b + d)i. z v = (a + bi) (c + di) = (a c) + (b d)i. z v = (a + bi) (c + di) = (ac bd) + (bc + ad)i. KOMLEXNÍ ČÍSLA C = {a + bi; a, b R}, kde i 2 = 1 Číslo komplexně sdružené k z = a + bi je číslo z = a bi. Operace s komplexními čísly: z = a + bi, kde a, b R v = c + di, kde c, d R Sčítání Odčítání Násobení

Více

Čtvercové matice. Čtvercová matice je taková matice, jejíž počet řádků je roven počtu jejích sloupců

Čtvercové matice. Čtvercová matice je taková matice, jejíž počet řádků je roven počtu jejích sloupců Determinant matice Čtvercové matice Čtvercová matice je taková matice, jejíž počet řádků je roven počtu jejích sloupců Determinant je zobrazení, které přiřadí každé čtvercové matici A skalár (reálné číslo).

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic Přednáška MATEMATIKA č 4 Katedra ekonometrie FEM UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz 27 10 2010 Soustava lineárních rovnic Definice Soustava rovnic a 11 x 1 + a 12 x 2 + + a

Více

10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo

10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo 0. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo (PEF PaA) Petr Gurka aktualizováno 9. prosince 202 Obsah Základní pojmy. Motivace.................................2 Aritmetický vektorový

Více

Necht L je lineární prostor nad R. Operaci : L L R nazýváme

Necht L je lineární prostor nad R. Operaci : L L R nazýváme Skalární součin axiomatická definice odvození velikosti vektorů a úhlu mezi vektory geometrická interpretace ortogonalita vlastnosti ortonormálních bázi [1] Definice skalárního součinu Necht L je lineární

Více

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je

Více

POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY

POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY Bakalářský studijní program B1101 (studijní obory - Aplikovaná matematika, Matematické metody v ekonomice, Aplikovaná matematika pro řešení krizových situací)

Více

1 Projekce a projektory

1 Projekce a projektory Cvičení 3 - zadání a řešení úloh Základy numerické matematiky - NMNM20 Verze z 5. října 208 Projekce a projektory Opakování ortogonální projekce Definice (Ortogonální projekce). Uvažujme V vektorový prostor

Více

Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika.

Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Lineární kódy, část 2 Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Jiří Velebil: A7B01LAG 22.12.2014: Lineární kódy, část 2 1/12 Dnešní přednáška 1 Analýza Hammingova (7, 4)-kódu.

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde

Více

19. Druhý rozklad lineární transformace

19. Druhý rozklad lineární transformace Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan Úmluva. Všude P = C. Vpřednášce o vlastních vektorech jsme se seznámili s diagonalizovatelnými

Více

Úvod do lineární algebry

Úvod do lineární algebry Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky

Více

Zdrojem většiny příkladů je sbírka úloh 1. cvičení ( ) 2. cvičení ( )

Zdrojem většiny příkladů je sbírka úloh   1. cvičení ( ) 2. cvičení ( ) Příklady řešené na cvičení LA II - LS 1/13 Zdrojem většiny příkladů je sbírka úloh http://kam.mff.cuni.cz/~sbirka/ 1. cvičení (..13) 1. Rozhodněte, které z následujících operací jsou skalárním součinem

Více

Lineární algebra Operace s vektory a maticemi

Lineární algebra Operace s vektory a maticemi Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................

Více

Michal Zamboj. December 23, 2016

Michal Zamboj. December 23, 2016 Meziřádky mezi kuželosečkami - doplňkový materiál k přednášce Geometrie Michal Zamboj December 3, 06 Pozn. Najdete-li chybu, neváhejte mi napsat, může to ušetřit tápání Vašich kolegů. Pozn. v dokumentu

Více

Michal Zamboj. January 4, 2018

Michal Zamboj. January 4, 2018 Meziřádky mezi kuželosečkami - doplňkový materiál k přednášce Geometrie Michal Zamboj January 4, 018 Pozn. Najdete-li chybu, neváhejte mi napsat, může to ušetřit tápání Vašich kolegů. Pozn. v dokumentu

Více

1 Determinanty a inverzní matice

1 Determinanty a inverzní matice Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

GEOMETRICKÁ ZOBRAZENÍ. Josef Janyška

GEOMETRICKÁ ZOBRAZENÍ. Josef Janyška GEOMETRICKÁ ZOBRAZENÍ Josef Janyška 21. února 2019 Obsah 1 LINEÁRNÍ ZOBRAZENÍ NA VEKTOROVÝCH PROSTORECH 1 1.1 Lineární zobrazení vektorových prostorů.............. 1 1.2 Invariantní podprostory.......................

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

MOORE-PENROSEOVA INVERZE MATICE A JEJÍ APLIKACE. 1. Úvod

MOORE-PENROSEOVA INVERZE MATICE A JEJÍ APLIKACE. 1. Úvod Kvaternion 1/2013, 7 14 7 MOORE-PENROSEOVA INVERZE MATICE A JEJÍ APLIKACE LADISLAV SKULA Abstrakt V článku je uvedena definice pseudoinverzní matice, ukázána její existence a jednoznačnost a zmíněny dvě

Více

Matematika I 12a Euklidovská geometrie

Matematika I 12a Euklidovská geometrie Matematika I 12a Euklidovská geometrie Jan Slovák Masarykova univerzita Fakulta informatiky 3. 12. 2012 Obsah přednášky 1 Euklidovské prostory 2 Odchylky podprostorů 3 Standardní úlohy 4 Objemy Plán přednášky

Více

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava Lineární algebra 9. přednáška: Ortogonalita Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la Text byl vytvořen

Více

Linearní algebra příklady

Linearní algebra příklady Linearní algebra příklady 6. listopadu 008 9:56 Značení: E jednotková matice, E ij matice mající v pozici (i, j jedničku a jinak nuly. [...]... lineární obal dané soustavy vektorů. Popište pomocí maticového

Více

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n [1] Základní pojmy [2] Matice mezi sebou sčítáme a násobíme konstantou (lineární prostor) měníme je na jiné matice eliminační metodou násobíme je mezi sebou... Matice je tabulka čísel s konečným počtem

Více

Soustavy linea rnı ch rovnic

Soustavy linea rnı ch rovnic [1] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení a) soustavy, 10, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l.

Více

ftp://math.feld.cvut.cz/pub/olsak/linal/

ftp://math.feld.cvut.cz/pub/olsak/linal/ Petr Olšák Výcuc z textu Lineární algebra určeno pro promítání na přednášce Úvod do algebry http://www.olsak.net/linal.html ftp://math.feld.cvut.cz/pub/olsak/linal/ http://math.feld.cvut.cz/skripta/ua/

Více

z textu Lineární algebra

z textu Lineární algebra 2 Úvodní poznámky Petr Olšák Výcuc z textu Lineární algebra určeno pro promítání na přednášce Úvod do algebry http://www.olsak.net/linal.html ftp://math.feld.cvut.cz/pub/olsak/linal/ http://math.feld.cvut.cz/skripta/ua/

Více

Lineární algebra. Matice, operace s maticemi

Lineární algebra. Matice, operace s maticemi Lineární algebra Matice, operace s maticemi Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory Vlastní čísla a vlastní vektory 1 Motivace Uvažujme lineární prostor všech vázaných vektorů v rovině, které procházejí počátkem, a lineární zobrazení tohoto prostoru do sebe(lineární transformaci, endomorfismus)

Více

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a Matematika I A ukázkový test 1 pro 2011/2012 1. Je dána soustava rovnic s parametrem a R x y + z = 1 a) Napište Frobeniovu větu. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a b) Vyšetřete počet řešení soustavy

Více