K = Kooperativní efekty. Hillova rovnice = K ] 1 1. kooperativita - interakce biomakromolekuly (obvykle ené z podjednotek) se 2 a více v.
|
|
- Otto Radovan Beneš
- před 6 lety
- Počet zobrazení:
Transkript
1 ooperativí efekty kooperativita - iterakce biomakromolekuly (obvykle tvoře eé z podjedotek) se 2 a více v ligady vazba prvího ligadu usadí (zesadí) ) vazbu další šího ligadu - pozitiví (egativí) ) kooperativita 90 - objevil Hill pozitiví kooperativitu při p i vazbě kyslíku ku a hemoglobi alosterie - vlastost biomolekuly změit strukturu při i vazbě ligadu do esubstrátov tového místam Hillova rovice upravit: M L ML frakčí saturace Y: [ML ] Y [ML ] [M] [M] [ML ] Y Y a log: log [M] [ML ] Hillův v graf výos log[y/( /(-Y)] proti log jeho směrice Hillův v koeficiet H pozitiví kooperativita H > (. hodota koeficietu udává miimál lí počet iteragujících ch podjedotek ) ) (( a H jsou růzr zé pojmy!) egativí kooperativita H < Y Y log log
2 Rozší šířeí teorie a ezymy [E][S] [E ] 963 Mood: E S ES studium kietiky a základz kladě počáte tečí rychlosti ezymové reakce [ES ] v v Y log [E] 0 V log[s] log V v grafické projevy: Y sigmoidí kietika /Y - - S / MWN model (Mood, Wyma, Chageaux) každá podjedotka ezymu má buď vysokou (R) ebo ízkou (T) afiitu k substrátu tu v molekule ezymu mají vždy všechy podjedotky stejou dvě formy: koformaci (všechy v T, ebo T tesed všechy v R) R relaxed bez substrátu tu převlp evládá T, přejdep ejde-li v přítomosti p substrátu tu jeda z ich a R, tak se staou všechy v R přechody mezi T a R stavy mohou způsobit i jié efektorové molekuly: P S alosterický ihibitor aktivátor tor (heterotropí) 2
3 Příklad alosterie - fosfofruktokiasa fruktosa-6-fosf fosfát t ATP fruktosa-,6,6-bisfosfát t ADP alosterický aktivátor tor - AMP alosterický ihibitor - ATP ukázka přímého p výosu reakčí rychlosti: v AMP ATP [ fruktosa-6-fosf fosfát ] Aalýza pomocí Scatchardova výosu ezym M tvoře z podjedotek m (tj. M ~ m ), každá m mám vazebé místo pro ligad L (substrát, t, ihibitor, aktivátor, tor, ) probíhá postupá iterakce s ligadem: m L m L m L L m L 2 m L - L m L experimetál lí studium: směs s volého ezymu (výchozí kocetrace [E] 0 ) a volého ligadu (( 0 ) echá se ustavit rovováha a určí se kocetrace volého ligadu kocetrace vázav zaého ligadu je pak v 0 - kocetrace zbylých volých vazebých místm za rovováhy: [m] [m] 0 - v [M] 0 - v průměrý rý rozsah vazby r (platí: 0 < r < ), je to vlastě podíl kocetrace obsazeých vazebých míst m a celkové kocetrace ezymu, tj. r v /[M] 0 3
4 Vazebá místa v M se eovlivňuj ují lze uvažovat jediou rovováhu: m L ml a příslup slušou disoc. kostatu: lze upravit pomocí předchozích defiovaých kocetrací aj.: ([M] 0 - v v ) r dále lze modifikovat do tvaru aalogického saturačí kietice ezymové reakce: vyhodocuje se liearizací dle Scatcharda: r [m] [ml] r r/ směrice -/ / r r [0,0] r výsledek: počet podjedotek disociačí kostata Vazebá místa se ovlivňuj ují projevy: sigmoidí kietika r/ - určí se, určit elze r [0,0] r vyhodoceí - použije se Hillova rovice upraví se a tvar: zlogaritmuje: r H r ( α ) r log r H r ( α ) H H log log 4
5 Vliv ph a aktivitu důvod: disociace skupi účastících ch se ezymové reakce obsah BH obsah A - aktivita kombiace disociačích ch závislostí pak určuje uje koečý ý vliv a aktivitu iterpretace a úrovi kietiky pomocí vlivu a parametry m a V Vliv ph a ezymovou reakci molekuly ezymu, substrátu tu i komplexu ezym-substr substrát t obsahují disociující skupiy ve vodém m prostřed edí za daého ph vystupují jako růzr zé formy liší šící se možstv stvím m vázaých v protoů (apř.. ezym je přítome p ve formách EH 2, EH a E) ze všech v daých forem však v pouze jeda forma substrátu tu reaguje s jedou formou ezymu (zde EH) za vziku komplexu ezym- substrát pouze jeda z forem komplexu (zde EHS) pak reaguje a produkt k k - k 2 P 5
6 podíl žádaé formy (apř.. EH) lze vyjádřit jako: f EH [EH] [E] [EH] [EH ] obdobý vztah platí i pro EHS a ebo pro substrát, t, pokud disociuje po zlogaritmováí lze pak uvažovat krají hodoty výsledého výrazu pro růzr zé meze ph: log f EH lze dále d odvodit, že: e: 2 [E] [EH] [H ] 2E log E [H ] V ' V f EHS [EH2] [EH] [H ph log 0 E ph log ' m m f f E ] [H 2E EHS EH ph ízk zké 2E ] ph kolem 7 ph vysoké a dále d po zlogaritmováí: px -logx) lze iterpretovat p závislosti obou parametrů a ph logv' logv ' logv log f m m ' p log f log f EHS EHS EH aproximací závíslostí pak lze určit hodoty p disociujících ch skupi iformace o aktivím místě ezymu p' m -logf EHS logf EH p ES p E p 2E p 2ES ph 6
7 Iterpretace alezeé hodoty pp pro skupiy v aktivím m místm stě se porovají s tabelovaými rozsahy pp pro zámé amiokyseliy při i shodě lze usuzovat, že e v aktivím m místm stě se vyskytuje daá amiokyselia praktický výzam zjištěí ph optima - alezeí ejvhodější ších podmíek pro ezymovou reakci - dosaže eí ejvyšší ššího výtěž ěžku Vliv teploty a ezymovou reakci obecě chemické reakce běžb ěží rychleji při p zvýše eí teploty a druhou strau biomolekuly při p i vyšší teplotě ztrácí aktiví koformaci a deaturují (áhod hodá struktura klubka) výsledkem je existece idividuál lího teplotího ho optima pro každý ezym a zvýšeí aktivity při růstu teploty aktiví deaturace iaktiví t 7
8 Vliv doby ikubace kratší ikubačí čas při i ez. reakci vede k posuu teplotího optima k vyšší šším m teplotám delší čas ikubace za daé teploty mám opačý vliv Vliv teploty a stabilitu při i vyšší teplotě ztrácí ezym aktivitu mohem rychleji pokles je velmi strmý v důsledku d rel. vysoké G 200 aža 300 kj/mol, takže e po překrop ekročeí kritické teploty je deaturace velmi rychlá 8
9 Vliv teploty a ki. kostaty kietické rychlostí kostaty - Arrheiova rovice: k E Aexp RT a rovovážé kostaty - vat Hoffova rovice: l H RT S často v alterativím m tvaru: l 2 H T2 T Praktické aspekty ezymy uchováváme v chladu dlouhodobě zmraže eé,, vyvarovat se opakovaému zmražov ováí a rozmražov ováí přidat kryoprotektiví čiidla (glycerol, polyoly - maitol) přesé (%) měřm ěřeí rychlosti vyžaduje temperaci lepší ež 0. o C teplotí kvociet Q 0 - kolikrát t se zvýší reakčí rychlost, jestliže e teplota vzroste o 0 o C (obvykle kolem 2) 9
Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:
Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Iovace studia molekulárí a buěčé biologie reg. č. CZ.1.07/2.2.00/07.0354 Předmět: LRR/CHP1/Chemie pro biology 1 Roztoky, teorie kyseli a zásad Mgr. Karel Doležal Dr. Cíl předášky: sezámit posluchače s
ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU)
ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU) Základy teorie pravděpodobosti měřeí chyba měřeí Provádíme kvalifikovaý odhad áhodá systematická výsledek ejistota výsledku Základy teorie pravděpodobosti
6. FUNKCE A POSLOUPNOSTI
6. FUNKCE A POSLOUPNOSTI Fukce Dovedosti:. Základí pozatky o fukcích -Chápat defiici fukce,obvyklý způsob jejího zadáváí a pojmy defiičí obor hodot fukce. U fukcí zadaých předpisem umět správě operovat
Kinetická teorie plynů - tlak F S F S F S. 2n V. tlak plynu. práce vykonaná při stlačení plynu o dx: celková práce vykonaná při stlačení plynu:
Kietická teorie plyů - tlak tlak plyu p práce vykoaá při stlačeí plyu o d: d celková práce vykoaá při stlačeí plyu: kdyby všechy molekuly měly stejou -ovou složku rychlost v : hybost předaá při árazu molekuly
1.3. POLYNOMY. V této kapitole se dozvíte:
1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí
základním prvkem teorie křivek v počítačové grafice křivky polynomiální n
Petra Suryková Modelováí křivek základím prvkem teorie křivek v počítačové grafice křivky polyomiálí Q( t) a a t... a t polyomiálí křivky můžeme sado vyčíslit sado diferecovatelé lze z ich skládat křivky
6. Posloupnosti a jejich limity, řady
Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme
vají statistické metody v biomedicíně
Statistika v biomedicísk ském m výzkumu a ve zdravotictví Prof. RNDr. Jaa Zvárov rová,, DrSc. EuroMISE Cetrum Ústav iformatiky AV ČR R v.v.i. Proč se používaj vají statistické metody v biomedicíě Biomedicísk
veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou
1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i
Deskriptivní statistika 1
Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky
Experimentální postupy. Koncentrace roztoků
Experimetálí postupy Kocetrace roztoků Kocetrace roztoků možství rozpuštěé látky v roztoku. Hmotostí zlomek (hmotostí proceta) Objemový zlomek (objemová proceta) Molárí zlomek Molarita (molárí kocetrace)
6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.
6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola
Závislost slovních znaků
Závislost slovích zaků Závislost slovích (kvalitativích) zaků Obměy slovího zaku Alterativí zaky Možé zaky Tříděí věcé sloví řady: seřazeí obmě je subjektiví záležitostí (podle abecedy), možé i objektiví
vají statistické metody v biomedicíně Literatura Statistika v biomedicínsk nském výzkumu a ve zdravotnictví
Statistika v biomedicísk ském výzkumu a ve zdravotictví Prof. RNDr. Jaa Zvárov rová,, DrSc. EuroMISE Cetrum Ústav iformatiky AV ČR R v.v.i. Literatura Edice Biomedicísk ská statistika vydáva vaá a Uiverzitě
Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková
Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují
3. Lineární diferenciální rovnice úvod do teorie
3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se
Modelování jednostupňové extrakce. Grygar Vojtěch
Modelováí jedostupňové extrakce Grygar Vojtěch Soutěží práce 009 UTB ve Zlíě, Fakulta aplikovaé iformatiky, 009 OBSAH ÚVOD...3 1 MODELOVÁNÍ PRACÍCH PROCESŮ...4 1.1 TERMODYNAMIKA PRACÍHO PROCESU...4 1.
Číslicové filtry. Použití : Analogové x číslicové filtry : Analogové. Číslicové: Separace signálů Restaurace signálů
Číslicová filtrace Použití : Separace sigálů Restaurace sigálů Číslicové filtry Aalogové x číslicové filtry : Aalogové Číslicové: + levé + rychlé + velký dyamický rozsah (v amplitudě i frekveci) - evhodé
1. Základy měření neelektrických veličin
. Základy měřeí eelektrických veliči.. Měřicí řetězec Měřicí řetězec (měřicí soustava) je soubor měřicích čleů (jedotek) účelě uspořádaých tak, aby bylo ožě split požadovaý úkol měřeí, tj. získat iformaci
Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby.
ováí - Hru IV /6 ováí Hru IV Mila RůžR ůžička, Josef Jureka,, Zbyěk k Hrubý zbyek.hruby hruby@fs.cvut.cz ováí - Hru IV /6 ravděpodobostí úavové diagramy s uvažováím předpětí R - plocha ve čtyřrozměrém
} kvantitativní znaky. korelace, regrese. Prof. RNDr. Jana Zvárov. Obecné principy
Měřeí statistické závislosti, korelace, regrese Prof. RNDr. Jaa Zvárov rová,, DrSc. MĚŘENÍZÁVISLOSTI Cílem statistické aalýzy vepidemiologii bývá eje staovit, zda oemocěí závisí a výskytu rizikového faktoru,
STUDIUM MAXWELLOVA ZÁKONA ROZDĚLENÍ RYCHLSOTÍ MOLEKUL POMOCÍ DERIVE 6
Středoškolská techika 00 Setkáí a prezetace prací středoškolských studetů a ČVUT STUDIUM MAXWELLOVA ZÁKONA ROZDĚLENÍ RYCHLSOTÍ MOLEKUL POMOCÍ DERIVE 6 Pavel Husa Gymázium Jiřího z Poděbrad Studetská 66/II
IAJCE Přednáška č. 12
Složitost je úvod do problematiky Úvod praktická realizace algoritmu = omezeí zejméa: o časem o velikostí paměti složitost = vztah daého algoritmu k daým prostředkům: časová složitost každé možiě vstupích
VYSOCE PŘESNÉ METODY OBRÁBĚNÍ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,
L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATED RA F YZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméo TUREČEK Daiel Datum měřeí 8.11.2006 Stud. rok 2006/2007 Ročík 2. Datum odevzdáí 15.11.2006 Stud.
1 PSE Definice základních pojmů. (ω je elementární jev: A ω (A ω) nebo (A );
1 PSE 1 Náhodý pokus, áhodý jev. Operace s jevy. Defiice pravděpodobosti jevu, vlastosti ppsti. Klasická defiice pravděpodobosti a její použití, základí kombiatorické vzorce. 1.1 Teoretická část 1.1.1
je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n
8.3. Limity ěkterých posloupostí Předpoklady: 83 Pedagogická pozámka: Tuto a tři ásledující hodiy je možé probrat za dvě vyučovací hodiy. V této hodiě je možé vyechat dokazováí limit v příkladu 3. Opakováí
je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n
8.3. Limity ěkterých posloupostí Předpoklady: 83 Opakováí z miulé hodiy: 8 Hodoty poslouposti + se pro blížící se k ekoeču blíží k a to tak že mezi = posloupostí a číslem eexistuje žádá mezera říkáme že
8.2.1 Aritmetická posloupnost
8.. Aritmetická posloupost Předpoklady: 80, 80, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Př. : V továrě dokočí každou hodiu motáž
Pružnost a pevnost. 9. přednáška, 11. prosince 2018
Pružost a pevost 9. předáška, 11. prosice 2018 1) Krouceí prutu s kruhovým průřezem 2) Volé krouceí prutu s průřezem a) masivím b) otevřeým tekostěým c) uzavřeým tekostěým 3) Ohybové (vázaé) krouceí Rovoměré
Odhady parametrů 1. Odhady parametrů
Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:
Rozklad přírodních surovin minerálními kyselinami
Laboratoř aorgaické techologie Rozklad přírodích surovi mierálími kyseliami Rozpouštěí přírodích materiálů v důsledku probíhající chemické reakce patří mezi základí techologické operace řady průmyslových
8.2.1 Aritmetická posloupnost I
8.2. Aritmetická posloupost I Předpoklady: 80, 802, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Čley posloupostí pak při kotrole vypíšu
Petr Šedivý Šedivá matematika
LIMITA POSLOUPNOSTI Úvod: Kapitola, kde poprvé arazíme a ekoečo. Argumety posloupostí rostou ade všechy meze a zkoumáme, jak vypadají hodoty poslouposti. V kapitole se sezámíte se základími typy it a početími
Pro statistické šetření si zvolte si statistický soubor např. všichni žáci třídy (několika tříd, školy apod.).
STATISTIKA Statistické šetřeí Proveďte a vyhodoťte statistické šetřeí:. Zvolte si statistický soubor. 2. Zvolte si určitý zak (zaky), které budete vyhodocovat. 3. Určete absolutí a relativí četosti zaků,
Inovace studia molekulární a buněčné biologie
Ivestice do rozvoje vzděláváí Iovace studia olekulárí a buěčé biologie Teto projekt je spolufiacová Evropský sociálí fode a státí rozpočte České republiky. Ivestice do rozvoje vzděláváí Předět: LRR/CHPI/Cheie
Intervalové odhady parametrů
Itervalové odhady parametrů Petr Pošík Části dokumetu jsou převzaty (i doslově) z Mirko Navara: Pravděpodobost a matematická statistika, https://cw.felk.cvut.cz/lib/ee/fetch.php/courses/a6m33ssl/pms_prit.pdf
7. Analytická geometrie
7. Aaltická geoetrie Studijí tet 7. Aaltická geoetrie A. Příka v roviě ϕ s A s ϕ s 2 s 1 B p s ϕ = (s1, s 2 ) sěrový vektor přík p orálový vektor přík p sěrový úhel přík p k = tgϕ = s 2 s 1 sěrice příkp
Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb:
ruhlář Michal 8.. 5 Laboratorí práce č. Úloha č. 9 Polarizace světla a Browův pohyb: ϕ p, C 4% 97,kPa Úkol: - Staovte polarizačí schopost daého polaroidu - Určete polarimetrem úhel stočeí kmitavé roviy
MĚŘENÍ PARAMETRŮ OSVĚTLOVACÍCH SOUSTAV VEŘEJNÉHO OSVĚTLENÍ NAPÁJENÝCH Z REGULÁTORU E15
VŠB - T Ostrava, FE MĚŘENÍ PARAMETRŮ OVĚTLOVACÍCH OTAV VEŘEJNÉHO OVĚTLENÍ NAPÁJENÝCH Z REGLÁTOR E5 Řešitelé: g. taislav Mišák, Ph.D., Prof. g. Karel okaský, Cc. V Ostravě de.8.2007 g. taislav Mišák, Prof.
I. Výpočet čisté současné hodnoty upravené
I. Výpočet čisté současé hodoty upraveé Příklad 1 Projekt a výrobu laserových lamp pro dermatologii vyžaduje ivestici 4,2 mil. Kč. Předpokládají se rovoměré peěží příjmy po zdaěí ve výši 1,2 mil. Kč ročě
STATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson
STATISTIKA Statistika se těší pochybému vyzameáí tím, že je ejvíce epochopeým vědím oborem. H. Leviso Charakterizace statistického souboru Statistický soubor Prvek souboru Zak prvku kvatitativí teplota,
Rovnice. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Rovice RNDr. Yvetta Bartáková Gymázium, SOŠ a VOŠ Ledeč ad Sázavou Rovice kombiatorické VY INOVACE_5 9_M Gymázium, SOŠ a VOŠ Ledeč ad Sázavou Skupiy prvků, kde záleží a pořadí Bez opakováí Počet Vk( )
Komplexní čísla. Definice komplexních čísel
Komplexí čísla Defiice komplexích čísel Komplexí číslo můžeme adefiovat jako uspořádaou dvojici reálých čísel [a, b], u kterých defiujeme operace sčítáí, ásobeí, apod. Stadardě se komplexí čísla zapisují
SRÁŽECÍ REAKCE. Srážecí reakce. RNDr. Milan Šmídl, Ph.D. Cvičení z analytické chemie ZS 2014/
1.1.01 SRÁŽECÍ REACE RNDr. Mila Šídl, Ph.D. Cvičeí z aalytické cheie ZS 01/015 Srážecí reakce působeí srážedla a ějakou látku vziká obtížě rozpustá látka sražeia vzik takové sražeiy je popsá součie rozpustosti
23. Mechanické vlnění
3. Mechaické vlěí Mechaické vlěí je děj, při kterém částice pružého prostředí kmitají kolem svých rovovážých poloh a teto kmitavý pohyb se přeáší (postupuje) od jedé částice k druhé vlěí může vzikout pouze
SOUHRN ÚDAJŮ O PŘÍPRAVKU
Sp.z.sukls240754/2012, sukls240755/2012 SOUHRN ÚDAJŮ O PŘÍPRAVKU 1. NÁZEV PŘÍPRAVKU Solifeaci PMCS 5 mg Solifeaci PMCS 10 mg potahovaé tablety 2. KVALITATIVNÍ A KVANTITATIVNÍ SLOŽENÍ Solifeaci PMCS 5 mg:
UPLATNĚNÍ ZKOUŠEK PŘI PROHLÍDKÁCH MOSTŮ
3..- 4.. 2009 DIVYP Bro, s.r.o., Filipova, 635 00 Bro, http://www.divypbro.cz UPLATNĚNÍ ZKOUŠEK PŘI PROHLÍDKÁCH MOSTŮ autoři: prof. Ig. Mila Holický, PhD., DrSc., Ig. Karel Jug, Ph.D., doc. Ig. Jaa Marková,
Základní požadavky a pravidla měření
Základí požadavky a pravidla měřeí Základí požadavky pro správé měřeí jsou: bezpečost práce teoretické a praktické zalosti získaé přípravou a měřeí přesost a spolehlivost měřeí optimálí orgaizace průběhu
Přijímací řízení akademický rok 2013/2014 Bc. studium Kompletní znění testových otázek matematika
Přijímací řízeí akademický rok 0/0 c. studium Kompletí zěí testových otázek matematika Koš Zěí otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správá. Které číslo doplíte místo 8? 6 6 8 C. Které číslo
7.2.4 Násobení vektoru číslem
7..4 Násobeí vektor číslem Předpoklady: 703 Tetokrát začeme hed defiicí. Násobek lového vektor číslem k je lový vektor. Násobek elového vektor = B Ačíslem k je vektor C A, přičemž C je bod, pro který platí:
4EK311 Operační výzkum. 4. Distribuční úlohy LP část 2
4EK311 Operačí výzkum 4. Distribučí úlohy LP část 2 4.1 Dopraví problém obecý model miimalizovat za podmíek: m z = c ij x ij i=1 j=1 j=1 m i=1 x ij = a i, i = 1, 2,, m x ij = b j, j = 1, 2,, x ij 0, i
1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE
1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE V této kapitole se dozvíte: jak je axiomaticky defiová vektor a vektorový prostor včetě defiice sčítáí vektorů a ásobeí vektorů skalárem;
Geometrická optika. Zákon odrazu a lomu světla
Geometrická optika Je auka o optickém zobrazováí. Je vybudováa a 4 zákoech, které vyplyuly z pozorováí a ke kterým epotřebujeme zalosti o podstatě světla: ) přímočaré šířeí světla (paprsky) ) ezávislost
Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti
Úvod Opakováí Poslouposti Příklady Matematika 1 Katedra matematiky, Fakulta stavebí ČVUT v Praze středa 10-11:40 posluchára D-1122 2012 / 13 Úvod Opakováí Poslouposti Příklady Úvod Opakováí Poslouposti
ln ln (c Na + c OH ) L = (c Na + c OH ) P (c H + c Cl ) L = (c H + c Cl ) P
1. MEMRÁNOÉ RONOÁY Ilustračí příklad 1 Doaova rovováha, Doaův poteciál...1 01 Doaova rovováha...3 0 Doaova rovováha...3 0 Doaova rovováha, Doaův poteciál...3 05 Doaova rovováha, Doaův poteciál...3 06 Doaova
Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti
Předáška VI. Itervalové odhady Motivace Směrodatá odchylka a směrodatá chyba Cetrálí limití věta Itervaly spolehlivosti Opakováí estraé a MLE Jaký je pricip estraých odhadů? Jaký je pricip odhadů metodou
EKONOMETRIE 9. přednáška Zobecněný lineární regresní model
EKONOMETRIE 9. předáška Zobecěý lieárí regresí model Porušeí základích podmíek klasického modelu Metoda zobecěých emeších čtverců Jestliže sou porušey ěkteré podmíky klasického modelu. E(u),. E (uu`) σ
Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus
Podklady předmětu pro akademický rok 006007 Radim Faraa Obsah Tvorba algoritmů, vlastosti algoritmu. Popis algoritmů, vývojové diagramy, strukturogramy. Hodoceí složitosti algoritmů, vypočitatelost, časová
Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A
Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota
Užití binomické věty
9..9 Užití biomické věty Předpoklady: 98 Často ám z biomického rozvoje stačí pouze jede kokrétí čle. Př. : x Urči šestý čle biomického rozvoje xy + 4y. Získaý výraz uprav. Biomický rozvoj začíá: ( a +
1.7.4 Těžiště, rovnovážná poloha
74 ěžiště, rovovážá poloha Předpoklady: 00703 Př : Polož si sešit a jede prst tak, aby espadl Záleží a místě, pod kterým sešit podložíš? Proč? Musíme sešit podložit prstem přesě uprostřed, jiak spade Sešit
Teorie chyb a vyrovnávací počet. Obsah:
Teorie chyb a vyrovávací počet Obsah: Testováí statistických hypotéz.... Ověřováí hypotézy o středí hodotě základího souboru s orálí rozděleí... 4. Ověřováí hypotézy o rozptylu v základí souboru s orálí
Aritmetická posloupnost, posloupnost rostoucí a klesající Posloupnosti
8 Aritmetická posloupost, posloupost rostoucí a klesající Poslouposti Posloupost je fukci s defiičím oborem celých kladých čísel - apř.,,,,,... 3 4 5 Jako fukci můžeme také posloupost zobrazit do grafu:
Analýza a zpracování signálů. 4. Diskrétní systémy,výpočet impulsní odezvy, konvoluce, korelace
Aalýza a zpracováí sigálů 4. Diskrétí systémy,výpočet impulsí odezvy, kovoluce, korelace Diskrétí systémy Diskrétí sytém - zpracovává časově diskrétí vstupí sigál ] a produkuje časově diskrétí výstupí
Syntézy makromolekulárních sloučenin
Sytézy makromolekulárích sloučei Podmíky sytéz makromolekulárích sloučei: A + B C reakce proběhe pokud G < 0 G = ebo G = -T S ebo G = -T S 1) 0 2) >0 S > >0 3) S < 0 < 0 (vzik makromolekul z moomerů)
2. Náhodná veličina. je konečná nebo spočetná množina;
. Náhodá veličia Většia áhodých pokusů koaých v přírodích ebo společeských vědách má iterpretaci pomocí reálé hodoty. Při takovýchto dějích přiřazujeme tedy reálá čísla áhodým jevům. Proto je důležité
P2: Statistické zpracování dat
P: Statistické zpracováí dat Úvodem - Statistika: věda, zabývající se shromažďováím, tříděím a ásledým popisem velkých datových souborů. - Základem statistiky je teorie pravděpodobosti, založeá a popisu
MATEMATICKÁ INDUKCE. 1. Princip matematické indukce
MATEMATICKÁ INDUKCE ALEŠ NEKVINDA. Pricip matematické idukce Nechť V ) je ějaká vlastost přirozeých čísel, apř. + je dělitelé dvěma či < atd. Máme dokázat tvrzeí typu Pro každé N platí V ). Jeda možost
2 STEJNORODOST BETONU KONSTRUKCE
STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů
Přijímací řízení akademický rok 2012/2013 Kompletní znění testových otázek matematické myšlení
Přijímací řízeí akademický rok 0/0 Kompletí zěí testových otázek matematické myšleí Koš Zěí otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správá odpověď. Které číslo doplíte místo otazíku? 6 8 8 6?.
10.3 GEOMERTICKÝ PRŮMĚR
Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo
Doporučená dávka je 5 mg solifenacin sukcinátu jednou denně. Pokud je to nutné, dávka může být zvýšena na 10 mg solifenacin sukcinátu jednou denně.
sp.z. sukls132863/2014 sukls87952/2014 SOUHRN ÚDAJŮ O PŘÍPRAVKU 1 NÁZEV PŘÍPRAVKU Setacuri 5 mg potahovaé tablety 2 KVALITATIVNÍ A KVANTITATIVNÍ SLOŽENÍ Setacuri 5 mg potahovaé tablety: Jeda tableta obsahuje
Funkce. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Fukce RNDr. Yvetta Bartáková Gymázium, SOŠ a VOŠ Ledeč ad Sázavou Limita poslouposti a fukce VY INOVACE_0 9_M Gymázium, SOŠ a VOŠ Ledeč ad Sázavou A) Limita poslouposti Říkáme, že posloupost a je kovergetí,
OVMT Přesnost měření a teorie chyb
Přesost měřeí a teorie chyb Základí pojmy Naměřeé údaje ejsou ikdy absolutě přesé, protože skutečé podmíky pro měřeí se odlišují od ideálích. Při každém měřeí vzikají odchylky od správých hodot chyby.
1 ROVNOMĚRNOST BETONU KONSTRUKCE
ROVNOMĚRNOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí rovoměrosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů
Cvičení 3 - teorie. Teorie pravděpodobnosti vychází ze studia náhodných pokusů.
Cvičeí 3 - teorie Téma: Teorie pravděpodobosti Teorie pravděpodobosti vychází ze studia áhodých pokusů. Náhodý pokus Proces, který při opakováí dává ze stejých podmíek rozdílé výsledky. Výsledek pokusu
Základní vlastnosti polovodičů
Základí vlastosti olovodičů Volé osiče áboje - elektroy -e m, - díry +e m V termodyamické rovováze latí Kocetrace osičů je možo vyjádřit omocí Fermiho eergie W F dotace doory ty N dotace akcetory ty P
definované pro jednotlivé řády takto: ) řádu n nazýváme číslo A = det( A) a a a11 a12
Předáška 3: Determiaty Pojem determiatu se prosadil původě v souvislosti s potřebou řešit soustavy lieárích rovic v 8 století (C Maclauri, G Cramer) Teprve později se pojem osamostatil, zjedodušilo se
Regulace frekvence a velikosti napětí Řízení je spojeno s dodávkou a přenosem činného a jalového výkonu v soustavě.
18. Řízeí elektrizačí soustavy ES je spojeí paralelě pracujících elektráre, přeosových a rozvodých sítí se spotřebiči. Provoz je optimálě spolehlivá hospodárá dodávka kvalití elektrické eergie. Stěžejími
4EK212 Kvantitativní management 4. Speciální úlohy lineárního programování
4EK212 Kvatitativí maagemet 4. Speciálí úlohy lieárího programováí 3. Typické úlohy LP Úlohy výrobího pláováí (alokace zdrojů) Úlohy fiačího pláováí (optimalizace portfolia) Směšovací problémy Nutričí
Sekvenční logické obvody(lso)
Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách
S polynomy jste se seznámili již v Matematice 1. Připomeňme definici polynomické
5 Itegrace racioálích fukcí 5 Itegrace racioálích fukcí Průvodce studiem V předcházejících kapitolách jsme se aučili počítat eurčité itegrály úpravou a základí itegrály, metodou per partes a substitučí
REGRESNÍ DIAGNOSTIKA. Regresní diagnostika
4.11.011 REGRESNÍ DIAGNOSTIKA Chemometrie I, David MILDE Regresí diagostika Obsahuje postupy k posouzeí: kvality dat pro regresí model (přítomost vlivých bodů), kvality modelu pro daá data, splěí předpokladů
8. Odhady parametrů rozdělení pravděpodobnosti
Pozámky k předmětu Aplikovaá statistika, 8 téma 8 Odhady parametrů rozděleí pravděpodobosti Zaměříme se a odhad středí hodoty a rozptylu a to dvěma způsoby Předpokládejme, že máme áhodý výběr X 1,, X z
n-rozměrné normální rozdělení pravděpodobnosti
-rozměré ormálí rozděleí pravděpodobosti. Ortogoálí a pozitivě defiití symetrické matice. Reálá čtvercová matice =Ha i j L řádu se azývá ortogoálí, je-li regulárí a iverzí matice - je rova traspoovaé matici
Zformulujme PMI nyní přesně (v duchu výrokové logiky jiný kurz tohoto webu):
Pricip matematické idukce PMI) se systematicky probírá v jié části středoškolské matematiky. a tomto místě je zařaze z důvodu opakováí matka moudrosti) a proto, abychom ji mohli bez uzarděí použít při
1.1. Definice Reálným vektorovým prostorem nazýváme množinu V, pro jejíž prvky jsou definovány operace sčítání + :V V V a násobení skalárem : R V V
Předáška 1: Vektorové prostory Vektorový prostor Pro abstraktí defiici vektorového prostoru jsou podstaté vlastosti dvou operací, sčítáí vektorů a ásobeí vektoru (reálým číslem) Tyto dvě operace musí být
pravděpodobnostn podobnostní jazykový model
Pokročilé metody rozpozáváířeči Předáška 8 Rozpozáváí s velkými slovíky, pravděpodobost podobostí jazykový model Rozpozáváí s velkým slovíkem Úlohy zaměřeé a diktováíči přepis řeči vyžadují velké slovíky
Vytápění BT01 TZB II - cvičení
CZ..07/2.2.00/28.030 Středoevropské cetrum pro vytvářeí a realizaci iovovaých techicko-ekoomických studijích programů Vytápěí BT0 TZB II - cvičeí Zadáí Pro vytápěé místosti vašeho objektu avrhěte otopá
f x a x DSM2 Cv 9 Vytvořující funkce Vytvořující funkcí nekonečné posloupnosti a0, a1,, a n , reálných čísel míníme formální nekonečnou řadu ( )
DSM Cv 9 Vytvořující fukce Vytvořující fukcí ekoečé poslouposti a0, a,, a, reálých čísel mííme formálí ekoečou řadu =. f a i= 0 i i Příklady: f = + = + + + + + ) Platí: (biomická věta). To zameá, že fukce
Náhodný výběr 1. Náhodný výběr
Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti
n=0 a n, n=0 a n = ±. n=0 n=0 a n diverguje k ±, a píšeme n=0 n=0 b n = t. Pak je konvergentní i řada n=0 (a n + b n ) = s + t. n=0 k a n a platí n=0
Nekoečé řady, geometrická řada, součet ekoečé řady Defiice Výraz a 0 a a a, kde {a i } i0 je libovolá posloupost reálých čísel, azveme ekoečou řadou Číslo se azývá -tý částečý součet Defiice Nekoečá řada
Vzorový příklad na rozhodování BPH_ZMAN
Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha
2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly.
0. KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Dovedosti :. Chápat pojem faktoriál a ovládat operace s faktoriály.. Zát defiici kombiačího čísla a základí vlastosti kombiačích čísel. Ovládat jedoduché operace
5. Výpočty s využitím vztahů mezi stavovými veličinami ideálního plynu
. ýpočty s využití vztahů ezi stavovýi veličiai ideálího plyu Ze zkušeosti víe, že obje plyu - a rozdíl od objeu pevé látky ebo kapaliy - je vyeze prostore, v ěž je ply uzavře. Přítoost plyu v ádobě se
1. K o m b i n a t o r i k a
. K o m b i a t o r i k a V teorii pravděpodobosti a statistice budeme studovat míru výskytu -pravděpodobostvýsledků procesů, které mají áhodý charakter, t.j. při opakováí za stejých podmíek se objevují
3. DIFERENCIÁLNÍ ROVNICE
3 DIFERENCIÁLNÍ ROVNICE Difereciálí rovice (dále je DR) jsou veli důležitou částí ateatické aalýz, protože uožňují řešit celou řadu úloh z fzik a techické prae Občejé difereciálí rovice: rovice, v íž se
2. Definice plazmatu, základní charakteristiky plazmatu
2. efiice plazmatu, základí charakteristiky plazmatu efiice plazmatu Plazma bývá obyčejě ozačováo za čtvrté skupeství hmoty. Pokud zahříváme pevou látku, dojde k jejímu roztaveí, při dalším zahříváí se