Minkowského operace a jejich aplikace
|
|
- Kateřina Nováková
- před 9 lety
- Počet zobrazení:
Transkript
1 KMA FAV ZČU Plzeň 1. února 2012
2 Obsah Aplikace Minkowského suma Minkowského rozdíl Minkowského součin v E 2 Minkowského součin kvaternionů Akce
3 Úvod Použití Rozmist ování (packing, nesting, containment problem) Plánování pohybu robota mezi překážkami Hledání offsetu (ekvidistantní plochy) Využití v optice Další způsoby popisu křivek a ploch
4 Rozmist ování Containment problem Packing problem Nesting problem Cutting plan Compaction Pálící programy Pokrývání rovinné oblasti kruhy (sférami)
5 Robot Motion Planning - řešíme úlohu v E 2 můžeme tuto úlohu rozdělit podle tvaru robota a překážek (konvexní, nekonvexní, aproximace polygonem apod.) podle způsobu pohybu (jestli bude pohyb realizován pouze pomocí posunutí, nebo je možné přidat i otočení) pracovní prostor (angl. work space) počet parametrů, který koresponduje s počtem stupňů volnosti robota v rovině, realizovaný pouze pomocí posunutí, jsou to dva stupně volnosti, pokud přidáme otočení, jsou to tři stupně volnosti Parametrický prostor robota nazýváme konfigurační prostor (angl. configuration space) Část kofiguračního prostoru, kam robot nesmí, se nazývá zakázaný prostor (forbidden space), zbytek kofiguračního prostoru je volný prostor (free space).
6 Offset Definice Rovnoběžné, neboli Bertrandovy křivky, jsou takové křivky, které mají společné hlavní normály. Je-li c(t) jedna křivka tohoto páru, pak druhá má rovnici c d (t) = c(t) + d n(t), kde d je konstanta a n(t) jednotkový vektor hlavní normály. Necht s(u, v) je plocha v E 3, pak její offset s d (u, v) ve vzdálenosti d definujeme předpisem s d (u, v) = s(u, v) + d n(u, v), kde n(u, v) je jednotkový normálový vektor plochy s(u, v). Offset můžeme také definovat jako obálku soustavy kružnic s poloměrem d, jejichž střed se pohybuje po křivce c(t).
7 Caustica a anticaustika V rovině bychom anticaustiku mohli popsat jako křivku, která je evolventou caustiky, což je křivka, kterou dostaneme jako obálku odražených paprsků w.
8 Minkowského suma Definice Necht A a B jsou množiny bodů v E n. Minkowského sumou A B množin A a B rozumíme A B = b B A b, kde množina A b = {a + b a A} = A + b je množina A posunutá o vektor b. Necht A a B jsou množiny bodů v E n. Pak A B = {a + b a A b B}.
9 Vlastnosti Minkowského sumy A B = B A (A B) C = A (B C) (A B) (C D) = (A C) (A D) (B C) (B D) A s B t = (A B) s+t
10 Minkowského suma dvou krychlí
11 Věta Necht A a B jsou dvě množiny v E n a x je libovolný bod. Pak A B x x A ( B), kde B = { b b B}. Důsledek 1 A s B t t s A ( B). 2 A B (mají společný bod), právě když (0, 0) A ( B).
12 Algoritmy pro výpočet Minkowského sumy Algoritmus prostor výpočetní složitost naivní E 2 O(mn log mn) přímý výpočet E 2 O(m + n) naivní E 3 O(mn log mn) geometricko-grafový E 3 - grafový E 3 - založený na orientovaném grafu E 3 O(e P + e Q + k) Tabulka: Tabulka algoritmů pro výpočet Minkowského sumy
13 Příklad Minkowského suma C = A B konvexních množin A, B je konvexní množina, jak ale vypadá Minkowského suma množin, které nejsou konvexní?
14 Příklad Minkowského suma C = A B konvexních množin A, B je konvexní množina, jak ale vypadá Minkowského suma množin, které nejsou konvexní?
15 Minkowského rozdíl R. Farouki, H. P. Moon a B. Ravani {a b a A b B} Zhenyu Li b B A b
16 Minkowského rozdíl Definice Necht A a B jsou množiny bodů v E n. Minkowského rozdílem A B množin A a B rozumíme množinu A B = b B A b, kde množina A b = {a b a A} = A b je množina, která vznikne posunutím množiny A o vektor b.
17 Vlastnosti Minkowského rozdílu A s B t = (A B) s t, A B = (A ( B)), A B = (A ( B)),
18 Vlastnosti Minkowského rozdílu Věta Necht A a B jsou dvě konvexní, uzavřené a omezené množiny v E n, pak platí (A B) B = A, tedy operace A B je pro konvexní, uzavřené a omezené množiny vratná (zprava inverzní) k operaci A B.
19 Proč předpokládáme ve větě množiny konvexní, uzavřené a omezené? Uved me si několik příkladů. Konvexní množinu jsme mohli získat jako Minkowského sumu dvou konvexních stejně jako dvou nekonvexních množin, nebo dokonce jedné konvexní a jedné nekonvexní množiny Minkowského rozdílem dvou konvexních množin je ale vždy množina konvexní (je to průnik konvexních množin). Minkowského suma dvou opačných polorovin je celá rovina. Minkowského rozdíl bude ale počítán jako průnik shodných rovin, tedy výsledkem bude celá rovina. Minkowského suma uzavřených a omezených množin je uzavřená množina, ale Minkowského suma dvou otevřených nebo otevřené a uzavřené množiny je množina otevřená. Minkowského rozdíl dvou otevřených množin je množina otevřená, tj. uzavřenou množinu nemůžeme získat.
20 Příklad Minkowského rozdíl ale může být zprava inverzní operací i v některých případech, kdy předpoklady věty splněny nejsou. Necht množinou A je kruh a množina B = {b 1, b 2 } obsahuje dva body. Minkowského rozdílem C = C B je průnik dvou množin, z nichž každá obsahuje dva kruhy, tj. výsledkem je původní množina A.
21 Vlastnosti Minkowského rozdílu Věta Necht C a B jsou dvě konvexní, uzavřené a omezené množiny v E n, pak platí (C B) B C. Minkowského rozdíl A = C B
22 Vlastnosti Minkowského rozdílu Věta Necht C a B jsou dvě konvexní, uzavřené a omezené množiny v E n, pak platí (C B) B C.
23 Podmínky pro nepřekrývání dvou množin můžeme modifikovat pro problém umístění jedné množiny do jiné to je tzv. containment problem. Definice Množina B leží v množině A, právě když B A. Věta Necht B x A, pak x A B. Minkowského rozdíl tedy určuje všechna posunutí, kterými můžeme přemístit množinu B, tak aby ležela uvnitř množiny A. Pokud je A B prázdná množina, pak B do A pomocí posunutí umístit nelze. Jestliže bod [0, 0] A B, pak B A.
24 Podmínky pro nepřekrývání dvou množin můžeme modifikovat pro problém umístění jedné množiny do jiné to je tzv. containment problem.
25 Minkowského součin Definice Necht A a B jsou bodové množiny v E 2. Minkowského součinem A B množin A a B rozumíme A B = {a b a A, b B}, kde a b je součin komplexních čísel. Vlastnosti Minkowského součinu A B = B A, (A B) C = A (B C), (A B) C (A C) (B C).
26 Násobení bodem Vynásobením množiny B jednobodovou množinou A = {z} provedeme otočení komplexní množiny B okolo počátku o úhel ϕ a stejnolehlost (scaling) se středem v počátku a koeficientem z. Je-li A křivka v E 2, můžeme A B považovat za sjednocení jednoparametrické soustavy množin, které dostaneme rotací a stejnolehlostí množiny B, tj. A B = ab. a A
27 Násobení dvou přímek Necht A, B jsou přímky v E 2. Pak jestliže žádná z přímek neprochází počátkem, pak A B je vnějšek paraboly, jestliže jedna z přímek prochází počátkem, pak A B je sjednocením počátku a dvou otevřených polorovin oddělených přímkou, která prochází počátkem, jestliže obě přímky prochází počátkem, pak A B je přímka procházející počátkem.
28 Násobení křivky a přímky Necht A je hladká křivka c v komplexní rovině a B svislá přímka procházející bodem [1, 0]. Pak hranice (A B) množiny A B je podmnožinou inverzní úpatnice křivky c vzhledem k počátku O. Úpatnice a inverzní úpatnice mají speciální význam v optice. Pól P reprezentuje zdroj světla a křivka c představuje zrcadlo.
29 Násobení kružnice a přímky-přímka prochází počátkem
30 Násobení kružnice a přímky-přímka neprochází počátkem
31 Umístění množiny B do množiny A při použití rotace Necht A a B jsou dvě množiny v E 2 a K = {cos t + i sin t t 0, 2π)} je jednotková kružnice se středem v počátku. Pak množinu B můžeme umístit do množiny A, tj. existuje x tak, že B x A, právě když A ({z} B). z K
32 Minkowského součin množin kvaternionů Definice Necht A a B jsou množiny kvaternionů (A, B H). Minkowského součinem A B množin A a B rozumíme kde ab je součin kvaternionů. A B = {ab a A, b B}, Necht A a B jsou množiny kvaternionů. Pak A B = ab. a A
33 Zobecnění Minkowského součinu množin kvaternionů Definice Necht A R H 3 a X H. Akcí A X množiny A na množinu X rozumíme A X = {a s a l x a r + a t (a s, a l, a r, a t ) A, x X }. Takto definovaná akce je zobecněním Minkowského součinu množin kvaternionů. Jestliže A H a A = {(1, a, 1, 0) a A}, pak A X = {a x a A, x X }, tj. A X = A X. Pro X A bychom volili A = {(1, 1, a, 0) a A} a A X = {x a a A, x X } = X A.
34 Geometrická interpretace akce Anuloid A X, kde A = {(a s, cos u 2 + k sin u 2, cos u 2 + k sin u 2, a(i cos u + j sin u)) u 0, 2π)} a X = {i cos v + k sin v v 0, 2π)}. a s = b a s = sin u 2
35 Geometrická interpretace akce Šroubové plochy Křivka a t je šroubovicí, A = {(a s, cos u 2 + k sin u 2, cos u 2 + k sin u 2, a(i cos u + j sin u) + k v 0u) u 0, 2π)}. X = {i v v 1, 1 } X = {i cos v + k sin v v 0, 2π)}
36 Literatura de Berg, Mark; van Kreveld, Marc; Overmars, Mark; Schwarzkopf, Otfried: Computational geometry. Algorithms and applications. Berlin: Springer Verlag Brechner, Eric, L.: General offset Curves and Surfaces. In Geometry Processing for Design and Manufacturing, ed. Barnhill, R.E., SIAM,Philadelphia, pp , Farouki, Rida T.; Moon, H. P.; Ravani, B.: Minkowski geometric algebra of complex sets. Geometriae Dedicata 85: , Farouki, Rida T.; Chastang, Jean-Claude A.: Curves and surfaces in Geometrical Optics. Mathematical Methods in Computer Aided Geometric Design II. Academic Press Pottmann, Helmut: General offset surfaces. Neural, Parallel & Scientific Computations 5, 55-80, Smukler, Micah: Geometry, Topology and aplications of the Minkowski Product and Action. Harvey Mudd College. Senior thesis, Tomiczková, Světlana:. ZČU v Plzni, disertační práce, Wallner, J., Sakkalis, T., Maekawa, T., Pottmann, H., Yu, G.: Self-Intersection of Offset Curves and Surfaces. March 30, Weiner, Ian; Gu, Weiqing: Minkowski geometric algebra of quaternion sets. International Journal of Pure and Applied Mathematics, Vol. 3, No.4: , Zhenyu Li: Compaction Algorithms for Non-Convex Polygons and Their Applications. Massachusetts: Harvard University. PhD. thesis, 1994.
37 Závěr Děkuji za pozornost
Minkowského operace. Použití. Světlana Tomiczková. Rozmisťování Robot Motion Planning Offset Optics. Pojmy:
Minkowského operace Hermann Minkowski Narodil se 22. 6. 1864. Studoval na univerzitách v Berlíně a Königsbergu. Učil na univerzitách v Bonnu, Königsbergu and Zurichu. V Zurichu byl jeho studentem A. Einstein.
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Světlana Tomiczková Minkowského množinové operace a jejich aplikace Pokroky matematiky, fyziky a astronomie, Vol. 52 (2007), No. 4, 311 322 Persistent URL: http://dml.cz/dmlcz/141371
KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE
Voroného konstrukce na mapě světa
na mapě světa Jan Ústav matematiky, FSI VUT, 7. 6. 2011 na mapě světa Jan Ústav matematiky, FSI VUT, 7. 6. 2011 Základní myšlenka Je dána konečná množina M bodů v rovině X (obecně v metrickém prostoru).
Základy matematiky kombinované studium 714 0365/06
Základy matematiky kombinované studium 714 0365/06 1. Některé základní pojmy: číselné množiny, intervaly, operace s intervaly (sjednocení, průnik), kvantifikátory, absolutní hodnota čísla, vzorce: 2. Algebraické
Úvod do mobilní robotiky AIL028
zbynek.winkler at mff.cuni.cz, md at robotika.cz http://robotika.cz/guide/umor05/cs 5. prosince 2005 1 Mapa světa Exaktní plánování 2 3 Plánování s otáčením (náznak řešení) Mapa světa - příklad Obsah Mapa
Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS )
LINEÁRNÍ ALGEBRA Úvod vektor Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS ) Kartézský souřadnicový systém -je taková soustava
Semestrální práce z předmětu KMA/MM. Voroneho diagramy
Semestrální práce z předmětu KMA/MM Voroneho diagramy Jméno a příjmení: Lenka Skalová Osobní číslo: A08N0185P Studijní obor: Finanční informatika a statistika Datum: 22. 1. 2010 Obsah Obsah... 2 1 Historie...
Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa
2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace
Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie pro FST 1. Pomocný učební text
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Geometrie pro FST 1 Pomocný učební text František Ježek, Marta Míková, Světlana Tomiczková Plzeň 29. srpna 2005 verze 1.0 Předmluva
Geometrie pro FST 2. Plzeň, 28. srpna 2013, verze 6.0
Geometrie pro FST 2 Pomocný učební text František Ježek, Světlana Tomiczková Plzeň, 28. srpna 2013, verze 6.0 Předmluva Tento pomocný text vznikl pro potřeby předmětu Geometrie pro FST 2, který vyučujeme
A0M15EZS Elektrické zdroje a soustavy ZS 2011/2012 cvičení 1. Jednotková matice na hlavní diagonále jsou jedničky, všude jinde nuly
Matice Matice typu (m, n) je uspořádaná m-tice prvků z řádky matice.. Jednotlivé složky této m-tice nazýváme Matice se zapisují Speciální typy matic Nulová matice všechny prvky matice jsou nulové Jednotková
Seminář z matematiky. jednoletý volitelný předmět
Název předmětu: Zařazení v učebním plánu: Seminář z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je koncipován pro přípravu studentů k úspěšnému zvládnutí profilové (školní)
Euklidovský prostor Stručnější verze
[1] Euklidovský prostor Stručnější verze definice Eulidovského prostoru kartézský souřadnicový systém vektorový součin v E 3 vlastnosti přímek a rovin v E 3 a) eprostor-v2, 16, b) P. Olšák, FEL ČVUT, c)
Komplexní číslo. Klíčové pojmy: Komplexní číslo, reálná část, imaginární část, algebraické počty s komplexním číslem
Komplexní číslo Cíl kapitoly: seznámení s použitím komplexního čísla v pythonu Klíčové pojmy: Komplexní číslo, reálná část, imaginární část, algebraické počty s komplexním číslem Komplexní číslo Opakování
Edita Kolářová ÚSTAV MATEMATIKY
Přípravný kurs z matematik Edita Kolářová ÚSTAV MATEMATIKY Přípravný kurs z matematik 1 Obsah 1 Přehled použité smbolik 3 Základní pojm matematické logik a teorie množin 4.1 Element matematické logik.........................
+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity
Tlumené kmit V praxi téměř vžd brání pohbu nějaká brzdicí síla, jejíž původ je v třecích silách mezi reálnými těles. Matematický popis těchto sil bývá dosti komplikovaný. Velmi často se vsktuje tzv. viskózní
Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál
Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál Jan Slovák Masarykova univerzita Fakulta informatiky 16. 9. 2008 Obsah přednášky 1 Literatura 2 Funkce a
Studentská tvůrčí činnost. O letu volejbalového míče při podání
Studentská tvůrčí činnost O letu volejbalového míče při podání Jan Dumek Vedoucí práce : Prof. Ing. Pavel Šafařík, CSc O letu volejbalového míče při podání Jan Dumek Abstrakt Práce se zabývá pozorováním
Matematická analýza III.
1. - limita, spojitost Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Co bychom měli znát limity posloupností v R základní vlastnosti funkcí jedné proměnné (definiční obor, monotónnost, omezenost,... )
FAKULTA STAVEBNÍ MATEMATIKA II MODUL 2 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA II MODUL KŘIVKOVÉ INTEGRÁLY STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Typeset by L A TEX ε c Josef Daněček, Oldřich Dlouhý,
VE 2D A 3D. Radek Výrut. Abstrakt Tento článek obsahuje postupy pro výpočet Minkowského sumy dvou množin v rovině a pro výpočet Minkowského sumy
25. KONFERENCE O GEOMETRII A POČÍTAČOVÉ GRAFICE Radek Výrut VÝPOČET MINKOWSKÉHO SUMY VE 2D A 3D Abstrakt Tento článek obsahuje postupy pro výpočet Minkowského sumy dvou množin v rovině a pro výpočet Minkowského
Gymnázium Jiřího Ortena, Kutná Hora. volné rovnoběžné promítání průmětna
Předmět: Matematika Náplň: Stereometrie, Analytická geometrie, Komplexní čísla Třída: 3. ročník Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor Volné rovnoběžné promítání Zobrazí ve volném rovnoběžném
Matice se v některých publikacích uvádějí v hranatých závorkách, v jiných v kulatých závorkách. My se budeme držet zápisu s kulatými závorkami.
Maticové operace Definice Skalár Představme si nějakou množinu, jejíž prvky lze sčítat a násobit. Pěkným vzorem jsou čísla, která už známe od mala. Prvky takové množiny nazýváme skaláry. Matice Matice
Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021
Maturitní témata MATEMATIKA 1. Funkce a jejich základní vlastnosti. Definice funkce, def. obor a obor hodnot funkce, funkce sudá, lichá, monotónnost funkce, funkce omezená, lokální a globální extrémy funkce,
Rovnice. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Rovnice RNDr. Yvetta Bartáková Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Grafické řešení soustav rovnic a nerovnic VY INOVACE_0 0_M Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Soustav lineárních rovnic Soustavou
. Určete hodnotu neznámé x tak, aby
Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 015 Kód uchazeče ID:.................. Varianta: 1 1. Původní cena knihy byla 50 Kč. Pak byla zdražena o 15 %. Jelikož nešla
1 Topologie roviny a prostoru
1 Topologie roviny a prostoru 1.1 Základní pojmy množin Intervaly a okolí Intervaly v rovině nebo prostoru jsou obdélníky nebo hranoly se stranami rovnoběžnými s osami souřadnic. Podmnožiny intervalů se
Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009)
Střední průmyslová škola Jihlava tř. Legionářů 1572/3, Jihlava Dodatek č. 3 ke školnímu vzdělávacímu programu Strojírenství (platné znění k 1. 9. 09) Tento dodatek nabývá platnosti dne 1. 9. 13 (počínaje
FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2003 2004
PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 003 004 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO M 0030 Vyjádřete jedním desetinným číslem (4 ½ 4 ¼ ) (4 ½ + 4 ¼ ) Správné řešení: 0,5 Zjednodušte výraz : ( 4)
Matematické symboly a značky
Matematické symboly a značky Z Wikipedie, otevřené encyklopedie Matematický symbol je libovolný znak, používaný v. Může to být znaménko pro označení operace s množinami, jejich prvky, čísly či jinými objekty,
ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS SBORNÍK MENDELOVY ZEMĚDĚLSKÉ A LESNICKÉ UNIVERZITY V BRNĚ
ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS SBORNÍK MENDELOVY ZEMĚDĚLSKÉ A LESNICKÉ UNIVERZITY V BRNĚ Ročník LII 6 Číslo 3, 2004 Gasser-Müllerův odhad J. Poměnková Došlo: 8.
6. ANALYTICKÁ GEOMETRIE
Vektorová algebra 6. ANALYTICKÁ GEOMETRIE Pravoúhlé souřadnice bodu v prostoru Poloha bodu v prostoru je vzhledem ke třem osám k sobě kolmým určena třemi souřadnicemi, které tvoří uspořádanou trojici reálných
Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech.
Kapitola 9 Skalární součin Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Definice 9.1 Je-li x = (x 1,..., x n ) T R n 1 reálný
Univerzita Pardubice Fakulta ekonomicko-správní. Počítačová grafika a geometrické transformace v rovině a prostoru. Eva Hladíková
Univerzita Pardubice Fakulta ekonomicko-správní Počítačová grafika a geometrické transformace v rovině a prostoru Eva Hladíková Bakalářská práce 2010 Čestné prohlášení Prohlašuji, že jsem tuto práci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Kružnice, kruh, tečny, obsahy, goniometrické funkce, integrace
Počítačová geometrie I
0 I RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info Osnova předmětu Pojem výpočetní geometrie, oblasti
Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce.
KŘIVKY Křivka = dráha pohybujícího se bodu = = množina nekonečného počtu bodů, které závisí na parametru (čase). Proto můžeme křivku také nazvat jednoparametrickou množinou bodů. Zavedeme-li souřadnicový
Kristýna Kuncová. Matematika B2
(8) Funkce více proměnných Kristýna Kuncová Matematika B2 Kristýna Kuncová (8) Funkce více proměnných 1 / 19 Parciální derivace Definice Derivaci funkce f : R R v bodě a definujeme jako limitu f f (a +
Úvodní informace. 17. února 2018
Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní
Fraktály. krásné obrázky v matematice
Fraktály aneb krásné obrázky v matematice Mgr. Jan Šustek 22. 10. 2009 Grafy funkcí Mějme funkce f, g : [ 6, 6] R definované vztahy f(x) = 2 3 Jak vypadají jejich grafy? x 2 + x 6 x 2 + x + 2 + 36 x 2
Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y].
Konzultace č. 6: Rovnice kružnice, poloha přímky a kružnice Literatura: Matematika pro gymnázia: Analytická geometrie, kap. 5.1 a 5. Sbírka úloh z matematiky pro SOŠ a studijní obory SOU. část, kap. 6.1
Určete a graficky znázorněte definiční obor funkce
Určete a grafick znázorněte definiční obor funkce Příklad. z = ln( + ) Řešení: Vpíšeme omezující podmínk pro jednotlivé části funkce. Jmenovatel zlomku musí být 0, logaritmická funkce je definovaná pro
analytické geometrie v prostoru s počátkem 18. stol.
4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami
BAKALÁŘSKÁ PRÁCE. Numerické metody jednorozměrné minimalizace
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Numerické metody jednorozměrné minimalizace Vedoucí bakalářské práce: RNDr. Horymír
Několik poznámek na téma lineární algebry pro studenty fyzikální chemie
Několik poznámek na téma lineární algebry pro studenty fyzikální chemie Jiří Kolafa Vektory. Vektorový prostor Vektor je často zaveden jako n-tice čísel, (v,..., v n ), v i R (pro reálný vektorový prostor);
ROTAČNÍ KVADRIKY. Definice, základní vlastnosti, tečné roviny a řezy, průsečíky přímky s rotační kvadrikou
ROTAČNÍ KVADRIKY Definice, základní vlastnosti, tečné roviny a řezy, průsečíky přímky s rotační kvadrikou Rotační kvadriky jsou rotační plochy, které vzniknou rotací kuželosečky kolem některé její osy.
Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují
Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),
KMA/GPM Barycentrické souřadnice a
KMA/GPM Barycentrické souřadnice a trojúhelníkové pláty František Ježek jezek@kma.zcu.cz Katedra matematiky Západočeské univerzity v Plzni, 2008 19. dubna 2009 1 Trojúhelníkové pláty obecně 2 Barycentrické
9.1 Definice a rovnice kuželoseček
9. Kuželosečky a kvadriky 9.1 Definice a rovnice kuželoseček Kuželosečka - řez na kruhovém kuželi, množina bodů splňujících kvadratickou rovnici ve dvou proměnných. Elipsa parametricky: X(t) = (a cos t,
8. Posloupnosti, vektory a matice
. jsou užitečné matematické nástroje. V Mathcadu je často používáme například k rychlému zápisu velkého počtu vztahů s proměnnými parametry, ke zpracování naměřených hodnot, k výpočtům lineárních soustav
PODŘÍZNUTÍ PŘI BROUŠENÍ TVAROVÝCH DRÁŽEK
Transfer inovácií 5/009 009 PODŘÍZNUTÍ PŘI BROUŠENÍ TVAROVÝCH DRÁŽEK Prof. Ing. Karel Jandečka, CSc. Katedra technologie obrábění, FST, ZČU v Plzni, Univerzitní 8, 306 4, Plzeň, ČR e-mail: jandecka@kto.zcu.cz
1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:
Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky
Výpočet průsečíků paprsku se scénou
Výpočet průsečíků paprsku se scénou 1996-2018 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Intersection 2018 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 26 Průsečík
zejména Dijkstrův algoritmus pro hledání minimální cesty a hladový algoritmus pro hledání minimální kostry.
Kapitola Ohodnocené grafy V praktických aplikacích teorie grafů zpravidla graf slouží jako nástroj k popisu nějaké struktury. Jednotlivé prvky této struktury mají často přiřazeny nějaké hodnoty (může jít
ANALYTICKÉ PROGRAMOVÁNÍ
ZVYŠOVÁNÍODBORNÝCH KOMPETENCÍAKADEMICKÝCH PRACOVNÍKŮ OSTRAVSKÉUNIVERZITY V OSTRAVĚ A SLEZSKÉ UNIVERZITY V OPAVĚ ANALYTICKÉ PROGRAMOVÁNÍ Eva Volná Zuzana Komínková Oplatková Roman Šenkeřík OBSAH PRESENTACE
5. Maticová algebra, typy matic, inverzní matice, determinant.
5. Maticová algebra, typy matic, inverzní matice, determinant. Matice Matice typu m,n je matice složená z n*m (m >= 1, n >= 1) reálných (komplexních) čísel uspořádaných do m řádků a n sloupců: R m,n (resp.
KULOVÁ ZRCADLA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - Septima
KULOVÁ ZRCADLA Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - Septima Zakřivená zrcadla Zrcadla, která nejsou rovinná Platí pro ně zákon odrazu, deformují obraz My se budeme zabývat speciálním typem zakřivených
Mária Sadloňová. Fajn MATIKA. 150 řešených příkladů (vzorek)
Mária adloňová Fajn MATIKA (nejen) na přijímačky 50 řešených příkladů (vorek) 0 Mgr. Mária adloňová FajnMATIKA (nejen) na přijímačky 50 řešených příkladů (reklamní vorek) Mgr. Mária adloňová, 0 Vydavatel
MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (13 15 hodin týdně celkem)
MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (13 15 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14.června
Matematika pro studenty ekonomie
w w w g r a d a c z vydání upravené a doplněné vydání Armstrong Grada Publishing as U Průhonu 7 Praha 7 tel: + fax: + e-mail: obchod@gradacz wwwgradacz Matematika pro studenty ekonomie MATEMATIKA PRO STUDENTY
Matematika I: Aplikované úlohy
Matematika I: Aplikované úlohy Zuzana Morávková Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava 260. Řy 283 - Pálkař Zadání Pálkař odpálí míč pod úhlem α = 30 a rychlostí
LBP, HoG Ing. Marek Hrúz Ph.D. Plzeň Katedra kybernetiky 29. října 2015
LBP, HoG Ing. Marek Hrúz Ph.D. Plzeň Katedra kybernetiky 29. října 2015 1 LBP 1 LBP Tato metoda, publikovaná roku 1996, byla vyvinuta za účelem sestrojení jednoduchého a výpočetně rychlého nástroje pro
MATEMATIKA rozšířená úroveň
Krok za krokem k nové maturitě Maturita nanečisto 005 MA4 MATEMATIKA rozšířená úroveň profilová část maturitní zkoušky Sešit obsahuje úloh. Na řešení úloh máte 60 minut. Odpovědi pište do záznamového archu.
5. Konstrukční planimetrické úlohy
5 Konstrukční planimetrické úlohy 5.1 Řešení konstrukčních úloh 5. Konstrukční planimetrické úlohy Konstrukční úlohou rozumíme úlohu, ve které je požadováno sestrojení jistého geometrického útvaru (alespoň
Operace s maticemi Sčítání matic: u matic stejného typu sečteme prvky na stejných pozicích: A+B=(a ij ) m n +(b ij ) m n =(a ij +b ij ) m n.
1 Sylvestrova věta Platí: Nechť A je symetrická matice řádu n, označme a 11 a 12... a 1i a D i = 21 a 22... a 2i.... a i1 a i2... a ii Pak A(a příslušná KF) je pozitivně definitní, právěkdyž D i >0provšechna
2. RBF neuronové sítě
2. RBF neuronové sítě Kapitola pojednává o neuronových sítích typu RBF. V kapitole je popsána základní struktura tohoto typu neuronové sítě. Poté následuje definice a charakteristika jednotlivých radiálně
Soustavy lineárních rovnic
7 Matice. Determinant Soustavy lineárních rovnic 7.1 Matice Definice 1. Matice typu (m, n) jesoustavam n reálných čísel uspořádaných do m řádků a n sloupců a 11, a 12, a 13,..., a 1n a 21, a 22, a 23,...,
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u
Matice. Přednáška MATEMATIKA č. 2. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.
Přednáška MATEMATIKA č. 2 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 13. 10. 2010 Uspořádané schéma vytvořené z m n reálných čísel, kde m, n N a 11 a 12 a
Funkce základní pojmy a vlastnosti
Funkce základní pojm a vlastnosti Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Pojem funkce Vlastnosti funkcí Inverzní funkce 4 Základní elementární funkce Mocninné Eponenciální Logaritmické
I C T V M A T E M A T I C E
I C T V M A T E M A T I C E Dynamická geometrie v interaktivních metodách výuky Mgr. Horáčková Bronislava Ostrava 2009 Využití dynamické geometrie Geometrie, ať rovinná či prostorová patří k velmi obtížným
maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést
Úlohy k zamyšlení 1. Zdůvodněte, proč třetí řádek Hornerova schématu pro vyhodnocení polynomu p v bodě c obsahuje koeficienty polynomu r, pro který platí p(x) = (x c) r(x) + p(c). 2. Dokažte, že pokud
Vzorce počítačové grafiky
Vektorové operace součet vektorů rozdíl vektorů opačný vektor násobení vektoru skalárem úhel dvou vektorů velikost vektoru a vzdálenost dvojice bodů v rovině (v prostoru analogicky) u = B A= b a b a u
2 Spojité modely rozhodování
2 Spojité modely rozhodování Jak již víme z přednášky, diskrétní model rozhodování lze zapsat ve tvaru úlohy hodnocení variant: f(a i ) max, a i A = {a 1, a 2,... a p }, kde f je kriteriální funkce a A
Funkce zadané implicitně
Kapitola 8 Funkce zadané implicitně Začneme několika příklady. Prvním je známá rovnice pro jednotkovou kružnici x 2 + y 2 1 = 0. Tato rovnice popisuje křivku, kterou si však nelze představit jako graf
MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]
MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě
Pokročilé metody fotorealistického zobrazování
Pokročilé metody fotorealistického zobrazování 14.5.2013 Úvod Motivace Základní informace Shrnutí metod Představení programu RayTracer Reference Motivace Základní informace Motivace snaha o vytvoření realistických
ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika analytická geometrie. Mgr. Pavel Liška
Název projektu ICT podporuje moderní způsoby výuky Číslo projektu CZ.1.07/1.5.00/34.0717 Název školy Gymnázium, Turnov, Jana Palacha 804, přísp. organizace Číslo a název šablony klíčové aktivity IV/2 Inovace
Těleso racionálních funkcí
Těleso racionálních funkcí Poznámka. V minulém semestru jsme libovolnému oboru integrity sestrojili podílové těleso. Pro libovolné těleso R je okruh polynomů R[x] oborem integrity, máme tedy podílové těleso
PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ
PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky
Učební texty k státní bakalářské zkoušce Matematika Matice. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Matice študenti MFF 15. augusta 2008 1 12 Matice Požadavky Matice a jejich hodnost Operace s maticemi a jejich vlastnosti Inversní matice Regulární matice,
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ107/2200/280141 Soustavy lineárních rovnic Michal Botur Přednáška 4 KAG/DLA1M: Lineární
Výpočet průsečíků paprsku se scénou
Výpočet průsečíků paprsku se scénou 1996-2008 Josef Pelikán, MFF UK Praha http://cgg.ms.mff.cuni.cz/~pepca/ Josef.Pelikan@mff.cuni.cz NPGR004, intersection.pdf 2008 Josef Pelikán, http://cgg.ms.mff.cuni.cz/~pepca
ŠROUBOVÝ A PROSTOROVÝ POHYB ROTAČNĚ SYMETRICKÉHO TĚLESA
ŠROUBOVÝ A PROSTOROVÝ POHYB ROTAČNĚ SYMETRICKÉHO TĚLESA Zpracoval Doc. RNDr. Zdeněk Hlaváč, CSc Pojem šroubového pohybu Šroubový pohyb je definován jako pohyb, jejž lze ve vhodném referenčním bodě rozložit
Maturitní otázky z předmětu MATEMATIKA
Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti
a n (z z 0 ) n, z C, (1) n=0
Mocniné řady Nechť 0, a 0, a, a 2,... jsou konečná komplexní čísla. Pak řadu funkcí a n ( 0 ) n, C, () naýváme mocninou řadou. Číslo 0 koeficienty mocniné řady. Onačme dále: se naývá střed mocniné řady,
Úvodní opakování, kladná a záporná čísla, dělitelnost, osová a středová souměrnost
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika (MAT) Úvodní opakování, kladná a záporná, dělitelnost, osová a středová souměrnost Prima 4 hodiny týdně Učebna s PC a dataprojektorem (interaktivní
Perspektiva jako matematický model objektivu
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra informatiky a výpočetní techniky Semestrální práce z předmětu KMA/MM Perspektiva jako matematický model objektivu Martin Tichota mtichota@students.zcu.cz
2. Matice, soustavy lineárních rovnic
Matice, soustavy lineárních rovnic Tento učební text byl podpořen z Operačního programu Praha- Adaptabilita Irena Sýkorová Některé vlastnosti matic Uvažujmečtvercovoumatici A=(a ij ) n n Matice Asenazývásymetrická,jestližeplatí
ŠROUBOVICE. 1) Šroubový pohyb. 2) Základní pojmy a konstrukce
1) Šroubový pohyb ŠROUBOVICE Šroubový pohyb vznikne složením dvou pohybů : otočení kolem dané osy o a posunutí ve směru této osy. Velikost posunutí je přitom přímo úměrná otočení. Konstantou této přímé
KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE
Příklady na testy předmětu Seminář z matematiky pro studenty fakulty strojní TUL.
Příklady na testy předmětu Seminář z matematiky pro studenty fakulty strojní TUL. Jméno a příjmení(čitelně): varianta č. 90 Přezdívka(nepovinné): Zde pište své výsledky Napište rovnici přímky procházející
Kapitola 11. Vzdálenost v grafech. 11.1 Matice sousednosti a počty sledů
Kapitola 11 Vzdálenost v grafech V každém grafu lze přirozeným způsobem definovat vzdálenost libovolné dvojice vrcholů. Hlavním výsledkem této kapitoly je překvapivé tvrzení, podle kterého lze vzdálenosti
Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika)
Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Kartézská soustava souřadnic je dána počátkem O a uspořádanou trojicí bodů E x,
6. Střídavý proud. 6. 1. Sinusových průběh
6. Střídavý proud - je takový proud, který mění v čase svoji velikost a smysl. Nejsnáze řešitelný střídavý proud matematicky i graficky je sinusový střídavý proud, který vyplývá z konstrukce sinusovky.
f(x) = 9x3 5 x 2. f(x) = xe x2 f(x) = ln(x2 ) f(x) =
Zadání projektů Projekt 1 f(x) = 9x3 5 2. Určete souřadnice vrcholů obdélníka ABCD, jehož dva vrcholy mají kladnou y-ovou souřadnici a leží na parabole dané rovnicí y = 16 x 2 a další dva vrcholy leží
Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j.
Kapitola 3 Počítání s maticemi Matice stejného typu můžeme sčítat a násobit reálným číslem podobně jako vektory téže dimenze. Definice 3.1 Jsou-li A (a ij ) a B (b ij ) dvě matice stejného typu m n, pak
Kinematická geometrie
Gymnázium Christiana Dopplera Kinematická geometrie Autor: Vojtěch Šimeček Třída: 4.C Školní rok: 2011/2012 Zadavatel: Mgr. Ondřej Machů Ročníkovou práci jsem zhotovil samostatně, pouze s pomocí zdrojů
Parametrická rovnice přímky v rovině
Parametrická rovnice přímky v rovině Nechť je v kartézské soustavě souřadnic dána přímka AB. Nechť vektor u = B - A. Pak libovolný bod X[x; y] leží na přímce AB právě tehdy, když vektory u a X - A jsou