7.7 Proudění kapalin a plynů
|
|
- Vladimíra Horáková
- před 5 lety
- Počet zobrazení:
Transkript
1 7.7 Proudění kapalin a plynů a) hydrodynamika studuje vlastnosti a zákonitosti pohybujících se tekutin (význam proudění potrubím, konstrukce letadel, lodí, ) b) proudění pohyb tekutin (převážně) v jednom směru jednotlivé částice tekutiny se pohybují, mohou měnit svoji vzájemnou polohu každá částice má určitou rychlost v (velikost i směr se může měnit v závislosti na místě a času) c) proudnice myšlená čára, jejíž tečna v libovolném bodě má směr rychlosti v pohybující se částice znázorňujeme jimi trajektorie jednotlivých částic v místech, kde tekutina proudí rychleji, jsou proudnice blíže u sebe d) stacionární (ustálené) proudění rychlost částic procházejících libovolným zvoleným místem je stálá, tj. nemění se s časem v = konst. (směr i velikost) e) objemový průtok Q V objem kapaliny, který proteče daným průřezem za jednotku času pro ustálené proudění h = s = vt t = s h = v Q V = V t Q V = Sh t Q V = Sv = Ss t S vt = = Sv t [Q V ] = m 2 m s = m3 s = m3 s př. korytem řeky v kolmém průřezu o obsahu S = 50 m 2 protéká voda rychlostí v = 2 m s Q V = Sv = 00 m 3 s vodoměr (plynoměr): zařízení, které měří objem vody (plynu), který proteče daným potrubím za určitou dobu f) rovnice kontinuity (spojitosti) toku objemový průtok při ustáleném proudění je v každém průřezu trubice v určitém okamžiku stejný (ideální kapalina je nestlačitelná nemůže se hromadit) Q V = konst. Sv = konst. rovnice kontinuity (spojitosti) toku [Při ustáleném proudění ideální kapaliny je součin obsahu průřezu S a rychlosti proudu v v každém místě stejný.] uvažujme trubici nestejného průřezu Q V = Q V2 S v = S 2 v 2 v v 2 = S 2 S je-li S > S 2 v 2 > v v užším průřezu trubice proudí kapalina větší rychlostí než v širším [např. u zahradní hadice dosáhneme větší rychlosti tryskající vody, jestliže zúžíme její konec (a tím dostříkneme do větší vzdálenosti)] 3
2 g) příklady Určete objemový průtok vody rourou průřezu 20 dm 2, má-li proud rychlost 5 m s? [ m 3 s ] 2 Průřezem potrubí o obsahu 500 cm 2 proteče za 0 minut litrů vody. Určete a) objemový průtok vody, b) velikost rychlosti proudící vody. [0,05 m 3 s, m s ] 3 Průměr hadice je 8 cm. Průměr koncovky 2 cm. Voda stříká rychlostí 20 m s. Jakou rychlostí teče hadicí? [,25 m s ] 4 Hadicí s průřezem o obsahu 2 cm 2 protéká voda rychlostí o velikosti m s. Jak velkou rychlostí tryská voda ze zúžené koncovky, jejíž průřez má obsah 0,6 cm 2? [20 m s ] 5 Z trysky vodotrysku s průřezem o obsahu,5 cm 2 vystřikuje voda rychlostí o velikosti 24 m s 2. Jak velká je rychlost proudu v přívodním potrubí, jehož průřez má obsah 8 cm 2? [2 m s 2 ] 4
3 7.8 Bernoulliho rovnice a) proudění tekutiny z hlediska mechanické energie ve vodorovné trubici nestejného průřezu se podle rovnice kontinuity mění velikost rychlosti proudící kapaliny v mění se kinetická energie E k podle zákona zachování mechanické energie se musí přírůstek E k v užší části (větší v) projevit úbytkem potenciální energie E p E k = E p (změny energie) změna E p : změna tzv. potenciální energie tlakové jde o změnu energie související s tlakem proudící kapaliny (např. voda z roztrženého potrubí koná mechanickou práci tím, že pod tlakem odplavuje zeminu, poškozuje povrch silnice apod.) nejde o změnu potenciální energie tíhové (vodorovná trubice) ani o změnu potenciální energie pružnosti (kapalina je nestlačitelná) b) potenciální energie tlaková E p rovna práci, kterou vykoná tlaková síla F při posunutí pístu ve vodorovném potrubí o obsahu S o délce l E p = W = Fl = psl = pv [p = F F = ps, S V = Sl] E p = pv c) Bernoulliho rovnice vyjadřuje zákon zachování mechanické energie pro proudění ideální kapaliny ve vodorovném potrubí (jednotkového objemu) E k + E p = konst. 2 mv2 + pv = konst. [ρ = m m = ρv] V 2 ρvv2 + pv = konst. V 2 ρv2 + p = konst. Bernoulliho rovnice Součet kinetické energie a tlakové potenciální energie proudící kapaliny jednotkového objemu je ve všech částech vodorovné trubice stejný. d) hydrodynamické paradoxon Bernoulliho rovnice pro 2 různé průřezy trubice ρv p = ρv p 2 v zúžené části trubice má kapalina větší rychlost (tedy i větší E k ), ale menší tlak (tj. menší E p ) [dojde ke snížení tlaku, ale ke zvětšení rychlosti proudící tekutiny] pro S 2 < S v 2 > v a p < p 2 z rce kont. z Bern. rce [pozn.: na tlak usuzujeme z výšky kapaliny v manometrických trubicích] e) užití při značném zúžení trubice v velká, p malý tlak může poklesnout pod hodnotu tlaku atmosférického vzniká podtlak a do trubice se nasává vzduch vodní vývěva 5
4 pro plyny Bernoulliho rovnice složitější, mění se i hustota plynu užití: rozprašovače, stříkací pistole, karburátory spalovacích motorů nad trubičkou vznikne podtlak, kapalina se nasaje do trubičky a je rozprašována f) aerodynamické paradoxon foukání mezi 2 listy papíru vzniká podtlak listy se přitahují (proudící vzduch mezi listy papíru snižuje tlak vzduchu v prostoru mezi nimi, vnější atmosférická síla pak listy papíru přimáčkne k sobě) 2 svíčky, při foukání mezi ně plameny k sobě g) rychlost kapaliny vytékající otvorem v nádobě tlaková potenciální energie E p v hloubce h se mění v kinetickou energii E k (uvažujeme jednotkové objemy) E p = pv V E k = 2 mv2 = 2 ρvv2 V E p E = p (p = hgρ) V hgρ = 2 ρv2 ρ 2hg = v 2 v = 2hg k V = 2 ρv2 rychlost vytékající kapaliny je větší u otvoru, který je ve větší hloubce (pozn. kapalina vytéká z otvoru stejně velkou rychlostí, jakou by dopadla z této výšky) h) příklady Potrubím s průřezem S = 50 cm 2 proudí voda rychlostí v = 4 m s - při tlaku 200 kpa. Určete v 2, p 2 v zúženém průřezu o obsahu S 2 = 0 cm 2. 2 Jakou rychlostí vytéká voda z nádoby otvorem v hloubce a) 20 cm, b) 80 cm? 6
5 7.9 Proudění reálné kapaliny a) proudění reálné kapaliny proti pohybu částic působí tzv. síly vnitřního tření odporové síly, které brzdí částečně jejich pohyb charakterizuje je tzv. viskozita (olej viskóznější než voda) rychlost proudící reálné kapaliny není v celém průřezu trubice stejná! tzv. mezní vrstva kapaliny (vrstva kapaliny, která se stýká se stěnami trubice) má nejmenší rychlost nebo je v klidu, tj. v = 0 m s (v důsledku tření mezi kapalinou a stěnou) po mezní vrstvě se posouvají postupně větší a větší rychlostí další vrstvy kapaliny největší rychlost mají částice kapaliny, které procházejí středem průřezu jevy spojené s vnitřním třením lze pozorovat na řece v různých vzdálenostech od břehu, při vtékání znečištěného potoku do čistého jezera apod. Bernoulliho rovnice neplatí přesně pro reální kapaliny část E k se mění díky vnitřnímu tření v teplo (práce k překonání vnitřního tření se koná na úkor E p tlakové změna vnitřní energie projevuje se zvýšením teploty) b) proudění. laminární (vrstvové) při malých rychlostech, vrstvy se posouvají ve směru proudu, není porušena celistvost, vektory v zhruba rovnoběžné (i proudnice zobrazující trajektorie jednotlivých částic kapaliny) 2. turbulentní při větších rychlostech, vrstvy se začnou rozpadávat, promíchávat, vířit (tvoří se víry) c) výskyt turbulentního proudění v přírodě řeky a říčky s velkým spádem (živočichové zde žijící mají různé přísavky, přidržovací vlákna nebo zesílené končetiny) vznik turbulentního proudění se projevuje např. šumem vody ve vodovodním potrubí při měření krevního tlaku zúžení tepny pomocí nafouknuté manžety zrychluje proud krve v místě podvázání, což vede k turbulenci a vzniku zvuku při prvním zaslechnutí zvuku fonendoskopem přiloženým v loketní jamce se odečítá systolický tlak krve na stupnici manometru (tonometru), při snižování tlaku v manžetě se odečítá ve chvíli vymizení zvukových vjemů diastolický tlak krve, (proudění krve přechází v laminární proudění) systolický krevní tlak: nejvyšší tlak krve, kterého je dosaženo během srdečního stahu srdce (systoly) kolem 20 mmhg diastolický krevní tlak: tlak, jakým se plní srdeční komory krví při diastole (v období mezi stahy srdečního svalu) kolem 80 mmhg např. normální 20/80 mmhg, 0/75 mmhg; vysoký 40/95 mmhg a více tlaku mmhg odpovídá přibližně tlak 33,3 Pa při proudění vzduchu v atmosféře vlétnutí letadla do oblasti se silnou turbulencí se piloti snaží vyhnout (chvěním, otřásání letounu až změna letové hladiny, přistání na jiném letišti, odložení letu; brázdu vzdušných turbulencí vytváří za sebou i samotné letící letadlo např. při startu listy větrných elektráren vytvářejí vzdušné turbulence, které se mohou šířit kilometry daleko od těchto elektráren 7
6 7.0 Obtékání těles reálnou kapalinou a) obtékaní těles jev, při kterém je pevné těleso a tekutina v relativním pohybu dochází k přemísťování částic tekutiny vzhledem k povrchu tělesa překážka v cestě tekutiny (např. voda obtéká pilíř; proudící vzduch obtéká tělesa, ) tekutina v klidu, těleso se v ní pohybuje (např. parník plující na moři, jedoucí auto obtékáno vzduchem) v důsledku vnitřního tření vznikají odporové síly (působí proti směru relativního pohybu tělesa v tekutině) vznik odporu prostředí hydrodynamická odporová síla (u kapalin), aerodynamická odporová síla (u plynů) při rychlostech. menších proudění kolem tělesa laminární odporová síla F přímo úměrná relativní rychlosti v F~v závislost na tvaru se uplatňuje méně 2. větších proudění kolem tělesa turbulentní za tělesem se tvoří víry odporová síla F se zvětšuje s druhou mocninou relativní rychlosti v F~v 2 uplatňuje se závislost na tvaru tělesa b) velikost odporové síly (pro aerodynamickou odvodil pokusně Newton) F = 2 CρSv2 C součinitel odporu ρ hustota tekutiny (vzduchu, vody) S obsah průřezu tělesa kolmého ke směru pohybu v relativní rychlost hodnoty součinitele odporu závisí na tvaru tělesa C: dutá polokoule těleso proudnicového tvaru největší (padáky) (ryby, ptáci, karoserie, letadla, ) c) základy fyziky letu. při malých a středních rychlostech profily nosných ploch mají aerodynamický tvar 8
7 nad křídlem dochází ke zhuštění proudnic podle Bernoulliho rovnice: větší rychlost v, menší tlak p podtlak pod křídlem mírné zředění proudnic podle Bernoulliho rovnice: menší rychlost v, větší tlak p přetlak (ale menší než podtlak) tlak na horní stěnu nosné plochy menší než na dolní a na celou nosnou plochu působí tzv. aerodynamická vztlaková síla F y na nosnou plochu působí tedy 2 síly: aerodynamická vztlaková síla F y (působí proti tíhové síle a udržuje letadlo ve vzduchu) odporová síla F x (překonává ji tažná síla motorů) výsledná aerodynamická síla F = F x + F y 2. při větších rychlostech (než je rychlost zvuku) velikost odporové síly je přibližně úměrná třetí mocnině velikosti rychlosti v F~v 3 těleso vytváří v prostředí rázovou vlnu, která např. způsobuje při přeletu nadzvukových letadel silné zvukové třesky profily křídel a trupů jsou odlišné od letadel létajících menší rychlostí snahou konstruktérů je vytvořit profily letadel s co největší vztlakovou sílou a co nejmenší odporovou d) příklady Ponorka, jejíž čelní průřez má obsah 5 m 2, se pohybuje pod vodou rychlostí 4 m s. Jak velká odporová síla na ni působí, je-li součinitel odporu 0,030. [3 600 N] 2 Automobil, jehož čelní průřez má obsah 400 dm 2, překonává při rychlosti 90 km h odporovou sílu 650 N. Určete součinitel odporu, je-li hustota vzduchu je,3 kg m 3. [0,4] 9
MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
MECHANIKA KAPALIN A PLYNŮ Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Mechanika kapalin a plynů Hydrostatika - studuje podmínky rovnováhy kapalin. Aerostatika - studuje podmínky rovnováhy
BIOMECHANIKA. Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D.
BIOMECHANIKA 8, Disipativní síly II. (Hydrostatický tlak, hydrostatický vztlak, Archimédův zákon, dynamické veličiny, odporové síly, tvarový odpor, Bernoulliho rovnice, Magnusův jev) Studijní program,
6. Mechanika kapalin a plynů
6. Mechanika kapalin a plynů 1. Definice tekutin 2. Tlak 3. Pascalův zákon 4. Archimedův zákon 5. Rovnice spojitosti (kontinuity) 6. Bernoulliho rovnice 7. Fyzika letu Tekutiny: jejich rozdělení, jejich
Mechanika tekutin. Tekutiny = plyny a kapaliny
Mechanika tekutin Tekutiny = plyny a kapaliny Vlastnosti kapalin Kapaliny mění tvar, ale zachovávají objem jsou velmi málo stlačitelné Ideální kapalina: bez vnitřního tření je zcela nestlačitelná Viskozita
Tlak v kapalinách a plynech Vztlaková síla Prodění kapalin a plynů
Mechanika tekutin Tlak v kapalinách a plynech Vztlaková síla Prodění kapalin a plynů Vlastnosti kapalin a plynů Tekutiny = kapaliny + plyny Ideální kapalina - dokonale tekutá - bez vnitřního tření - zcela
PROUDĚNÍ KAPALIN A PLYNŮ, BERNOULLIHO ROVNICE, REÁLNÁ TEKUTINA
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Vladislav Válek MGV_F_SS_1S2_D16_Z_MECH_Proudeni_kapalin_bernoulliho_ rovnice_realna_kapalina_aerodynamika_kridlo_pl
Mechanika kapalin a plynů
Mechanika kapalin a plynů Petr Pošta pposta@karlin.mff.cuni.cz 24. listopadu 2010 Obsah Tekutiny Tlak Tlak v kapalině vyvolaný vnější silou Tlak v kapalině vyvolaný tíhovou silou Tlak v kapalině vyvolaný
Hydrodynamika. Archimédův zákon Proudění tekutin Obtékání těles
Hydrodynamika Archimédův zákon Proudění tekutin Obtékání těles Opakování: Osnova hodin 1. a 2. Archimédův zákon Proudění tekutin Obtékání těles reálnou tekutinou Využití energie proudící tekutiny Archimédes
7. MECHANIKA TEKUTIN - statika
7. - statika 7.1. Základní vlastnosti tekutin Obecným pojem tekutiny jsou myšleny. a. Mají společné vlastnosti tekutost, částice jsou od sebe snadno oddělitelné, nemají vlastní stálý tvar apod. Reálné
2.3 Tlak v kapalině vyvolaný tíhovou silou... 4. 2.4 Tlak ve vzduchu vyvolaný tíhovou silou... 5
Obsah 1 Tekutiny 1 2 Tlak 2 2.1 Tlak v kapalině vyvolaný vnější silou.............. 3 2.2 Tlak v kapalině vyvolaný tíhovou silou............. 4 2.3 Tlak v kapalině vyvolaný tíhovou silou............. 4
Mechanika tekutin. Hydrostatika Hydrodynamika
Mechanika tekutin Hydrostatika Hydrodynamika Hydrostatika Kapalinu považujeme za kontinuum, můžeme využít předchozí úvahy Studujeme kapalinu, která je v klidu hydrostatika Objem kapaliny bude v klidu,
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. = (pascal) tlak je skalár!!! F p = =
MECHANIKA TEKUTIN I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í Tekutiny zahrnují kapaliny a plyny. Společnou vlastností tekutin je, že částice mohou být snadno od sebe odděleny (nemají vlastní
8. Mechanika kapalin a plynů
8. Mechanika kapalin a plynů 8. Vlastnosti kapalin a plynů Základní vlastností je tekutost. Tekutost je, když částečky se po sobě velmi snadno a velmi dobře pohybují (platí to pro tekutiny i plyny). Díky
Proudění ideální kapaliny
DUM Základy přírodních věd DUM III/-T3-9 Téma: Rovnice kontinuity Střední škola Rok: 0 03 Varianta: A Zpracoval: Mgr. Pavel Hrubý VÝKLAD Proudění ideální kapaliny Rovnice kontinuity toku = spojitosti toku
Teoretické otázky z hydromechaniky
Teoretické otázky z hydromechaniky 1. Napište vztah pro modul pružnosti kapaliny (+ popis jednotlivých členů a 2. Napište vztah pro Newtonův vztah pro tečné napětí (+ popis jednotlivých členů a 3. Jaká
1 Vlastnosti kapalin a plynů
1 Vlastnosti kapalin a plynů hydrostatika zkoumá vlastnosti kapalin z hlediska stavu rovnováhy kapalina je v klidu hydrodynamika zkoumá vlastnosti kapalin v pohybu aerostatika, aerodynamika analogicky
Mechanika tekutin Tekutost Nemají stálý tvar pružné při změně objemu stlačitelné Kapaliny stálý objem, málo stlačitelné volnou hladinu Plyny nemají
Mechanika tekutin FyzikaII základní pojmy Mechanika tekutin studuje podmínky rovnováhy a zákonitosti pohybu kapalin, plynů a pevných těles do nich ponořených Vlastnosti: Částice tekutiny jsou od sebe ve
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D.
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Modelování termohydraulických jevů 3.hodina Hydraulika Ing. Michal Kabrhel, Ph.D. Letní semestr 008/009 Pracovní materiály pro výuku předmětu.
1141 HYA (Hydraulika)
ČVUT v Praze, fakulta stavební katedra hydrauliky a hydrologie (K4) Přednáškové slidy předmětu 4 HYA (Hydraulika) verze: 09/008 K4 Fv ČVUT Tato webová stránka nabízí k nahlédnutí/stažení řadu pdf souborů
FYZIKA. Hydrodynamika
Brno 2007 1 Jak je z obrázku patrné, původní studijní pomůcka (opora) vznikla v roce 1992 pro opakování středoškolské fyziky. Pro výrobu byl použit autorský systém Genie, jehož výstupem jsou DOSové aplikace.
Krevní oběh. Helena Uhrová
Krevní oběh Helena Uhrová Z hydrodynamického hlediska uzavřený systém, složený ze: srdce motorický orgán, zdroj mechanické energie cév rozvodný systém, tvořený elastickými roztažitelnými a kontraktilními
Fyzika kapalin. Hydrostatický tlak. ρ. (6.1) Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné.
Fyzika kapalin Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné. Plyny nemají stálý tvar ani stálý objem, jsou velmi snadno stlačitelné. Tekutina je společný název pro kapaliny
MECHANIKA KAPALIN A PLYNŮ
MECHANIKA KAPALIN A PLYNŮ Věda, která oisuje kaaliny v klidu se nazývá Věda, která oisuje kaaliny v ohybu se nazývá Věda, která oisuje lyny v klidu se nazývá Věda, která oisuje lyny v ohybu se nazývá VLATNOTI
Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
4. Kolmou tlakovou sílu působící v kapalině na libovolně orientovanou plochu S vyjádříme jako
1. Pojem tekutiny je A) synonymem pojmu kapaliny B) pojmem označujícím souhrnně kapaliny a plyny C) synonymem pojmu plyny D) označením kapalin se zanedbatelnou viskozitou 2. Příčinou rozdílné tekutosti
Výsledný tvar obecné B rce je ve žlutém rámečku
Vychází N-S rovnice, kterou ovšem zjednodušuje zavedením určitých předpokladů omezujících předpokladů. Bernoulliova rovnice v základním tvaru je jednorozměrný model stacionárního proudění nevazké a nestlačitelné
MECHANIKA TEKUTIN TEKUTINY
Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 28. 3. 2013 Název zpracovaného celku: MECHANIKA TEKUTIN TEKUTINY Tekutiny jsou společný název pro kapaliny a plyny. Společná vlastnost tekutin
Václav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF
Václav Uruba uruba@fst.zcu.cz home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF 0.11.14 Mechanika tekumn 1/13 1 Mechanika teku,n - přednášky 1. Úvod, pojmy, definice.
čas t s 60s=1min rychlost v m/s 1m/s=60m/min
TEKUTINOVÉ MECHANIMY UČEBNÍ TEXTY PRO VÝUKU MECHATRONIKY OBAH: Hydraulika... 3 Základní veličiny a jednotky... 3 Molekulové vlastnosti tekutin... 3 Tlak v kapalinách... 4 Hydrostatický tlak... 6 Atmosférický
PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -2.
PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -. Řešené příklady z hydrodynamiky 1) Příklad užití rovnice kontinuity Zadání: Vodorovným
BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY
BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala
MECHANIKA KAPALIN A PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D07_Z_OPAK_M_Mechanika_kapalin_a_plynu_T Člověk a příroda Fyzika Mechanika kapalin
Ilustrační animace slon a pírko
Disipativní síly Kopírování a šíření tohoto materiálu lze pouze se souhlasem autorky PhDr. Evy Tlapákové, CSc. Určeno pro základní kurz biomechaniky studentů FTVS UK, školní rok 2008/2009 Disipativní síly
Příklady - rovnice kontinuity a Bernouliho rovnice
DUM Základy přírodních věd DUM III/2-T3-20 Téma: Mechanika tekutin a rovnice kontinuity Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý Příklady Příklady - rovnice kontinuity a Bernouliho
1.8.9 Bernoulliho rovnice
89 Bernoulliho ronice Předpoklady: 00808 Pomůcky: da papíry, přicucáadlo, fixírka Konec minulé hodiny: Pokud se tekutina proudí trubicí s různými průměry, mění se rychlost jejího proudění mění se její
Základy fyziky + opakovaná výuka Fyziky I
Ústav fyziky a měřicí techniky Pohodlně se usaďte Přednáška co nevidět začne! Základy fyziky + opakovaná výuka Fyziky I Web ústavu: ufmt.vscht.cz : @ufmt444 1 Otázka 8 Rovinná rotace, valení válce po nakloněné
Mechanika kontinua. Mechanika elastických těles Mechanika kapalin
Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování
Proudění viskózní tekutiny. Renata Holubova renata.holubov@upol.cz. Viskózní tok, turbulentní proudění, Poiseuillův zákon, Reynoldsovo číslo.
PROMOTE MSc POPIS TÉMATU FYZKA 1 Název Tematický celek Jméno a e-mailová adresa autora Cíle Obsah Pomůcky Poznámky Proudění viskózní tekutiny Mechanika kapalin Renata Holubova renata.holubov@upol.cz Popis
F 2. Na píst s plochou o větším obsahu působí kapalina tolikrát větší silou, kolikrát je obsah pístu větší než obsah plochy užšího pístu.
Fyzika pro střední školy I 61 R8 M E C H A N I K A T E K U T I N R8.1 Princip hydraulických zařízení V praxi používaná hydraulická zařízení mají nejrůznější účel a konstrukci, mají však společný princip
Síla, vzájemné silové působení těles
Síla, vzájemné silové působení těles Síla, vzájemné silové působení těles Číslo DUM v digitálním archivu školy VY_32_INOVACE_07_02_01 Vytvořeno Leden 2014 Síla, značka a jednotka síly, grafické znázornění
Hydrodynamika. ustálené proudění. rychlost tekutiny se v žádném místě nemění. je statické vektorové pole
Hydrodynamika ustálené proudění rychlost tekutiny se žádném místě nemění je statické ektoroé pole proudnice čáry k nimž je rychlost neustále tečnou při ustáleném proudění jsou proudnice skutečné trajektorie
34_Mechanické vlastnosti kapalin... 2 Pascalův zákon _Tlak - příklady _Hydraulické stroje _PL: Hydraulické stroje - řešení...
34_Mechanické vlastnosti kapalin... 2 Pascalův zákon... 2 35_Tlak - příklady... 2 36_Hydraulické stroje... 3 37_PL: Hydraulické stroje - řešení... 4 38_Účinky gravitační síly Země na kapalinu... 6 Hydrostatická
CVIČENÍ č. 7 BERNOULLIHO ROVNICE
CVIČENÍ č. 7 BERNOULLIHO ROVNICE Výtok z nádoby, Průtok potrubím beze ztrát Příklad č. 1: Určete hmotnostní průtok vody (pokud otvor budeme považovat za malý), která vytéká z válcové nádoby s průměrem
1.8.10 Proudění reálné tekutiny
.8.0 Proudění reálné tekutiny Předpoklady: 809 Ideální kapalina: nestlačitelná, dokonale tekutá, bez nitřního tření. Reálná kapalina: zájemné posouání částic brzdí síly nitřního tření. Jaké mají tyto rozdíly
Proudění Sborník článků z on-line pokračujícího zdroje Transformační technologie.
Proudění Sborník článků z on-line pokračujícího zdroje Transformační technologie. 37. Škrcení plynů a par 38. Vznik tlakové ztráty při proudění tekutiny 39. Efekty při proudění vysokými rychlostmi 40.
V případě, že je rychlost letadla větší jak 400 km/h je třeba provést korekci na stlačenost vzduchu a změnu hustoty vzduchu.
VLASTNOSTI PLYNŮ LÉTÁNÍ Letecký výškoměr Výškoměr u letadla je vlastně barometr, kterým se měří atmosférický tlak v dané výšce. Jeho stupnice je cejchována v metrech podle vztahu pro tlak v různých nadmořských
PRÁCE, VÝKON, ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika
PRÁCE, VÝKON, ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika Mechanická práce Závisí na velikosti síly, kterou působíme na těleso, a na dráze, po které těleso posuneme Pokud má síla stejný
Hydromechanické procesy Obtékání těles
Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak
Na libovolnou plochu o obsahu S v atmosférickém vzduchu působí kolmo tlaková síla, kterou vypočítáme ze vztahu: F = pa. S
MECHANICKÉ VLASTNOSTI PLYNŮ. Co už víme o plynech? Vlastnosti ply nů: 1) jsou snadno stlačitelné a rozpínavé 2) nemají vlastní tvar ani vlastní objem 3) jsou tekuté 4) jsou složeny z částic, které se neustále
Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině.
Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině. Přehled proudění Vazkost - nevazké - vazké (newtonské, nenewtonské) Stlačitelnost - nestlačitelné (kapaliny
, Brno Připravil: Tomáš Vítěz Petr Trávníček. Úvod do předmětu
7..03, Brno Připravil: Tomáš Vítěz Petr Trávníček Mechanika tekutin Úvod do předmětu strana Mechanika tekutin Zabývá se podmínkami rovnováhy kapalin a plynu v klidu, zákonitostmi pohybu kapalin a plynu,
Pokud proudění splňuje všechny výše vypsané atributy, lze o něm prohlásit, že je turbulentní (atributy je třeba znát).
Laminární proudění je jeden z typů proudění reálné, tedy vazké, tekutiny. Laminární proudění vzniká obecně při nižších rychlostech (přesněji Re). Proudnice laminárního proudu jsou rovnoběžné a vytvářejí
CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM
CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM Místní ztráty, Tlakové ztráty Příklad č. 1: Jistá část potrubí rozvodného systému vody se skládá ze dvou paralelně uspořádaných větví. Obě potrubí mají průřez
(1) Řešení. z toho F 2 = F1S2. 3, 09 m/s =. 3, 1 m/s. (Proč se zde nemusí převádět jednotky?)
() Která kapalina se více odlišuje od ideální kapaliny, voda nebo olej? Zdůvodněte Popište princip hydraulického lisu 3 Do nádob A, B, C (viz tabule), které mají stejný obsah S dna, je nalita voda do stejné
nafty protéká kruhovým potrubím o průměru d za jednu sekundu jestliže rychlost proudění nafty v potrubí je v. Jaký je hmotnostní průtok m τ
HYDRODYNAMIKA 5.37 Jaké objemové nmožství nafty protéká kruhovým potrubím o průměru d za jednu sekundu jestliže rychlost proudění nafty v potrubí je v. Jaký je hmotnostní průtok m τ. d 0mm v 0.3ms.850kgm
Příklad 1. Jak velká vztlakovásíla bude zhruba působit na ocelové těleso o objemu 1 dm 3 ponořené do vody? /10 N/ p 1 = p 2 F 1 = F 2 S 1 S 2.
VII Mechanika kapalin a plynů Příklady označené symbolem( ) jsou obtížnější Příklad 1 Jak velká vztlakovásíla bude zhruba působit na ocelové těleso o objemu 1 dm 3 ponořené do vody? /10 N/ Stručné řešení:
FYZIKA Mechanika tekutin
Výukový materiál zpracován v rámci operačního projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0512 Střední škola ekonomiky, obchodu a služeb SČMSD Benešov, s.r.o. FYZIKA Mechanika
Pokud uvažujeme v dynamice tekutin nestlačitelné proudění, lze si vystačit pouze s rovnicí kontinuity a hybnostními rovnicemi. Pokud je ale uvažováno
Stlačitelnost je schopnost látek zmenšovat svůj objem při zvyšování tlaku, přičemž hmotnost sledované látky se nezmění. To znamená, že se mění hustota dané látky. Stlačitelnost lze také charakterizovat
Hmotnost atomu, molární množství. Atomová hmotnost
Hmotnost atomu, molární množství Atomová hmotnost Hmotnosti jednotlivých atomů (atomové hmotnosti) se vyjadřují v násobcích tzv atomové hmotnostní jednotky u: Dohodou bylo stanoveno, že atomová hmotnostní
Mechanické vlastnosti kapalin hydromechanika
Mechanické vlastnosti kapalin hydromechanika Vlastnosti kapalných látek nemají vlastní tvar, mění tvar podle nádoby jsou tekuté, dají se přelévat jejich povrch je vodorovný se Zemí jsou téměř nestlačitelné
p gh Hladinové (rovňové) plochy Tlak v kapalině, na niž působí pouze gravitační síla země
Hladinové (rovňové) plochy Plochy, ve kterých je stálý statický tlak. Při posunu po takové ploše je přírůstek tlaku dp = 0. Hladinová plocha musí být všude kolmá ke směru výsledného zrychlení. Tlak v kapalině,
Mechanika tekutin. Tekutiny = plyny a kapaliny
Mechanika tekutin Tekutiny = plyny a kapaliny 1 Zařazení mechaniky tekutin 2 Rozdělení tekutin 3 Základní pojmy Tekutina je pojem zahrnující kapaliny a plyny. Je to spojité prostředí, které je homogenní
Počítačová dynamika tekutin (CFD) Základní rovnice. - laminární tok -
Počítačová dynamika tekutin (CFD) Základní rovnice - laminární tok - Základní pojmy 2 Tekutina nemá vlastní tvar působením nepatrných tečných sil se částice tekutiny snadno uvedou do pohybu (výjimka některé
3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9
Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................
11. Mechanika tekutin
. Mechanika tekutin.. Základní poznatky Pascalův zákon Působí-li na tekutinu vnější tlak pouze v jednom směru, pak uvnitř tekutiny působí v každém místě stejně velký tlak, a to ve všech směrech. Hydrostatický
Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu
Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ.1.07/2.2.00/28.0326 PROJEKT
2. DOPRAVA KAPALIN. h v. h s. Obr. 2.1 Doprava kapalin čerpadlem h S sací výška čerpadla, h V výtlačná výška čerpadla 2.1 HYDROSTATICKÁ ČERPADLA
2. DOPRAVA KAPALIN Zařízení pro dopravu kapalin dodávají tekutinám energii pro transport kapaliny, pro hrazení ztrát způsobených jejich viskozitou (vnitřním třením), překonání výškových rozdílů, umožnění
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno. Biofyzika kardiovaskulárního
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Biofyzika kardiovaskulárního systému 1 Obsah přednášky Mechanické vlastnosti cév Reynoldsovo číslo Proudění
III. STRUKTURA A VLASTNOSTI PLYNŮ
III. STRUKTURA A VLASTNOSTI PLYNŮ 3.1 Ideální plyn a) ideální plyn model, předpoklady: 1. rozměry molekul malé (ve srovnání se střední vzdáleností molekul). molekuly na sebe navzálem silově nepůsobí (mimo
KAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda
KAPALINY Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Vlastnosti molekul kapalin V neustálém pohybu Ve stejných vzdálenostech, nejsou ale vázány Působí na sebe silami: odpudivé x přitažlivé Vlastnosti kapalin
Laboratorní práce č. 1: Určení výtokové rychlosti kapaliny
Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Laboratorní práce č. 1: Určení výtokové rychlosti kapaliny Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY FYZIKÁLNA 2. ročník šestiletého studia
5b MĚŘENÍ VISKOZITY KAPALIN POMOCÍ PADAJÍCÍ KULIČKY
Laboratorní cvičení z předmětu Reologie potravin a kosmetických prostředků 5b MĚŘENÍ VISKOZITY KAPALIN POMOCÍ PADAJÍCÍ KULIČKY 1. TEORIE: Měření viskozity pomocí padající kuličky patří k nejstarším metodám
Práce, výkon, energie
Práce, výkon, energie (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 11. listopadu 2009 Obsah Mechanická práce Výkon, příkon, účinnost Mechanická energie Kinetická energie Potenciální
5. Duté zrcadlo má ohniskovou vzdálenost 25 cm. Jaký je jeho poloměr křivosti? 1) 0,5 m 2) 0,75 m 3) Žádná odpověď není správná 4) 0,25 m
1. Vypočítejte šířku jezera, když zvuk šířící se ve vodě se dostane k druhému břehu o 1 s dříve než ve vzduchu. Rychlost zvuku ve vodě je 1 400 m s -1. Rychlost zvuku ve vzduchu je 340 m s -1. 1) 449 m
mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s
1 Mechanická práce mechanická práce W jednotka: [W] = J (joule) skalární veličina a) síla rovnoběžná s vektorem posunutí F s s dráha, kterou těleso urazilo 1 J = N m = kg m s -2 m = kg m 2 s -2 vyjádření
1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N?
MECHANICKÁ PRÁCE 1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N? l = s = 6 cm = 6 10 2 m F = 120 N W =? (J) W = F. s W = 6 10 2 120 = 7,2 W = 7,2 J
UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. Katedra fyziky ZÁKLADY FYZIKY I. Pro obory DMML, TŘD a AID prezenčního studia DFJP
UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ Katedra fyziky ZÁKLADY FYZIKY I Pro obory DMML, TŘD a AID prezenčního studia DFJP RNDr. Jan Z a j í c, CSc., 2004 5. M E C H A N I K A T E K U T I N
Otázky pro Státní závěrečné zkoušky
Obor: Název SZZ: Strojírenství Mechanika Vypracoval: Doc. Ing. Petr Hrubý, CSc. Doc. Ing. Jiří Míka, CSc. Podpis: Schválil: Doc. Ing. Štefan Husár, PhD. Podpis: Datum vydání 8. září 2014 Platnost od: AR
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í
DYNAMIKA SÍLA 1. Úvod dynamos (dynamis) = síla; dynamika vysvětluje, proč se objekty pohybují, vysvětluje změny pohybu. Nepopisuje pohyb, jak to dělá... síly mohou měnit pohybový stav těles nebo mohou
15 MECHANIKA IDEÁLNÍCH TEKUTIN. Hydrostatika ideální kapaliny Hydrodynamika ideální tekutiny
125 15 MECHANIKA IDEÁLNÍCH TEKUTIN Hydrostatika ideální kapaliny Hydrodynamika ideální tekutiny Na rozdíl od pevných látek, které zachovávají při pohybu svůj tvar, setkáváme se v přírodě s látkami, které
MECHANICKÉ VLASTNOSTI KAPALIN.
MECHANICKÉ VLASTNOSTI KAPALIN. VLASTNOSTI KAPALIN A PLYNŮ (opakování) Co už víme? Kapaliny: jsou tekuté hladina je vždy vodorovná tvar zaujímají podle nádoby jsou téměř nestlačitelné jsou snadno dělitelné
Mechanické vlastnosti kapalin a plynů. opakování
Mechanické vlastnosti kapalin a plynů opakování 1 Jakým směrem se šíří tlak? 2 Chlapci si zhotovili model hydraulického lisu podle obrázku. Na písty ručních stříkaček působí stejnou silou. Který chlapec
Hydromechanické procesy Hydrostatika
Hydromechanické procesy Hydrostatika M. Jahoda Hydrostatika 2 Hydrostatika se zabývá chováním tekutin, které se vzhledem k ohraničujícímu prostoru nepohybují - objem tekutiny bude v klidu, pokud výslednice
Práce, výkon, energie
Práce, výkon, energie (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 23. října 2009 Obsah Mechanická práce Výkon, příkon, účinnost Mechanická energie Kinetická energie Potenciální energie
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA V
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109 Josef Gruber MECHANIKA V HYDROMECHANIKA PRACOVNÍ SEŠIT Vytvořeno v rámci Operačního programu Vzdělávání
MECHANIKA HYDROSTATIKA A AEROSTATIKA Implementace ŠVP
Projekt Efektivní Učení Reformou oblastí gymnaziálního vzdělávání je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MECHANIKA HYDROTATIKA A AEROTATIKA Implementace ŠVP
Základní pojmy a jednotky
Základní pojmy a jednotky Tlak: p = F S [N. m 2 ] [kg. m. s 2. m 2 ] [kg. m 1. s 2 ] [Pa] (1) Hydrostatický tlak: p = h. ρ. g [m. kg. m 3. m. s 2 ] [kg. m 1. s 2 ] [Pa] (2) Převody jednotek tlaku: Bar
Vnitřní energie, práce a teplo
Vnitřní energie, práce a teplo Zákon zachování mechanické energie V izolované soustavě těles je v každém okamžiku úhrnná mechanická energie stálá. Mění se navzájem jen potenciální energie E p a kinetická
Dynamika. Dynamis = řecké slovo síla
Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při
Název: Proudění kapalin
Název: Proudění kapalin Téma: proudění, rovnice spojitosti, hmotnostní průtok Čas: 90 minut Věk: 12-15 Hydrologie, zeměpis Diferenciace: Pokyny, ICT podpora: Pracujte s apletem. Pracujte s mapou - zeměpis.
Cvičení Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí (
Cvičení 11 1. Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí ( σxx τ xy τ xy σ yy ) (a) Najděte vyjádření tenzoru napětí v soustavě souřadnic pootočené v rovině xy o
Hydraulika a hydrologie
Hydraulika a hydrologie Cvičení č. 1 - HYDROSTATIKA Příklad č. 1.1 Jaký je tlak v hloubce (5+P) m pod hladinou moře (Obr. 1.1), je-li průměrná hustota mořské vody ρ mv = 1042 kg/m 3 (měrná tíha je tedy
i j antisymetrický tenzor místní rotace částice jako tuhého tělesa. Každý pohyb částice lze rozložit na translaci, deformaci a rotaci.
KOHERENTNÍ STRUKTURY Kinematika proudění Rozhodující je deformace částic tekutiny wi wi ( x j + dx j, t) = wi ( x j, t) + dx j x j tenzor rychlosti deformace: wi 1 w w i j w w i j 1 = + + = sij + r x j
BIOMECHANIKA. 9, Energetický aspekt pohybu člověka. (Práce, energie pohybu člověka, práce pohybu člověka, zákon zachování mechanické energie, výkon)
BIOMECHANIKA 9, Energetický aspekt pohybu člověka. (Práce, energie pohybu člověka, práce pohybu člověka, zákon zachování mechanické energie, výkon) Studijní program, obor: Tělesná výchovy a sport Vyučující:
Rychlostní a objemové snímače průtoku tekutin
Rychlostní a objemové snímače průtoku tekutin Rychlostní snímače průtoku Rychlostní snímače průtoku vyhodnocují průtok nepřímo měřením střední rychlosti proudu tekutiny v STŘ. Ta závisí vzhledem k rychlostnímu
Základy vakuové techniky
Základy vakuové techniky Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova konstanta), k = 1,38. 10-23 J/K.. Boltzmannova konstanta, T.. absolutní
FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2006 2007
TEST Z FYZIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-F-2006-01 1. Převeďte 37 mm 3 na m 3. a) 37 10-9 m 3 b) 37 10-6 m 3 c) 37 10 9 m 3 d) 37 10 3 m 3 e) 37 10-3 m 3 2. Voda v řece proudí rychlostí 4 m/s. Kolmo
Potenciální proudění
Hydromechanické procesy Potenciální proudění + plíživé obtékání koule M. Jahoda Proudění tekutiny Pohyby elementu tekutiny 2 čas t čas t + dt obecný pohyb posunutí lineární deformace rotace úhlová deformace
Přednáška 5. Martin Kormunda
Přednáška 5 Metody získávání nízkých tlaků : čerpací rychlost, časový průběh čerpacího procesu, mezní tlak, zbytková atmosféra, rozdělení tlaku v systému při čerpání. Zásady návrhu vakuových systémů. Metody
TERMODYNAMIKA Ideální plyn TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.
TERMODYNAMIKA Ideální plyn TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Ideální plyn je zjednodušená představa skutečného plynu. Je dokonale stlačitelný