19. Pythagorova věta a goniometrické funkce ostrého úhlu Vypracovala: Ing. Všetulová Ludmila, prosinec 2013
|
|
- Patrik Bláha
- před 8 lety
- Počet zobrazení:
Transkript
1 19. Pythagorova věta a goniometriké funke ostrého úhlu Vypraovala: Ing. Všetulová Ludmila, prosine 2013 Název školy Ohodní akademie a Střední odorné učiliště Veselí nad Moravou Název a číslo OP OP Vzdělávání pro konkureneshopnost, CZ 1.5 Název šalony klíčové aktivity Číslo šalony, sady a materiálu Vzdělávaí olast dle RVP Tematiký elek dle ŠVP Předmět, oor, ročník Anotae III/2 Zvyšování kvality výuky prostřednitvím ICT VY_32_INOVACE_10_01_19 Matematika Pythagorova věta a goniometriké funke ostrého úhlu Matematika, Oráěč kovů, Strojní mehanik, Opravář zemědělskýh stojů, 1. ročník Praovní list je určen k využití Pythagorovy k výpočtům ovládání pojmů prvočíslo, složené číslo. Znát pravidla dělitelnosti, rozklad čísla na prvočísla (prvočinitele) strana 1
2 Pythagorova věta a goniometriké funke ostrého úhlu Pythagorova věta Patří k nejstarším matematikým poznatkům, má jméno po řekém matematikovi a filosofovi, který žil v 6. století př. n.l. Osah čtvere sestrojeného nad přeponou pravoúhlého trojúhelníka se rovná součtu osahů čtverů sestrojenýh nad oěma odvěsnami Pravoúhlý trojúhelník Přepona je strana ležíí proti pravému úhlu,je nejdelší stranou, oa přilehlé úhly jsou ostré a jejih součet je 90 Odvěsny jsou ramena pravého úhlu v pravoúhlém trojúhelníku. strana 2
3 Příklady: 1. Jaká je délka odvěsny pravoúhlého trojúhelníku, je-li dáno a = 168 m; =4,39 m 2. Je trojúhelník pravoúhlý je-li dáno a) a = 3 m; = 5 m; = 6 m ) a = 15 m; = 12 m; = 9 m 3. Délka strany čtvere je 2,68 dm; urči jeho úhlopříčku 4. Je dán odélník š = 7,5 m; u = 9,25 m. urči jeho ovod a osah 5. Jak vysoko dosáhne žeřík délky 8 metrů, je-li odstaven od zdi ve vzdálenosti 2,5 metrů 6. V trojúhelníku je dáno a = = 12 m; = 15 m; vypočítejte výšku v a osah trojúhelníka 7. Vypočítejte osah a ovod rovnostranného trojúhelníka je li délka strany a) 1,64 m; ) 6,4 m; ) 7,5 m 8. Čtveri o straně 8 m je opsaná a vepsaná kružnie, urči poloměry oou kružni 9. Pyramida má čtverovou základnu je vysoká 50 metrů a výška oční stěny je 80 metrů. Určete délku základny pyramidy. Jaká y yla délka základny v případě, že y yla dána délka oční hrany 80 metrů. 10. Závodník vyjel z místa A ryhlostí 20 km/h, po šesti minutáh odočil na pravoúhlé křižovate a za 12 minut dorazil do místa B stejnou ryhlostí. Určete přímou vzdálenost míst A a B. Řešení: 1. = 4,06 m; 2. a) není pravoúhlý; ) je pravoúhlý; 3. u = 3,79 dm; 4. o = 25,8m; S = 40,6 m 2 ; 5.v = 7,6 m; 6.v = 9,4m; S = 70,5 m 2 ; 7. a) o = 4,92 m; S= 1,16 m 2 ; ) o = 19,2 m; S =17,7 m 2 ; ) o = 22,5 m; S = 24,4 m 2 8. vepsaná r = 4 m; opsaná r = 5,66 m; 9.a) 124,9 m; ) 88,3 m; 10. 4,47 km strana 3
4 Goniometriké funke ostrého úhlu Goniometriké funke ostrého úhlu nám umožňují určit velikost stran a úhlů v trojúhelníku Podle věty o podonosti trojúhelníků uu platí ABC AB 1 C 1 AB 2 C 2 AB 3 C 3 Znamená to, že poměr velikostí stran je konstantní: = = = = = = = = = Se změnou velikosti úhlu se mění poměry délek stran pravoúhlého trojúhelníku. Poměry velikostí stran v pravoúhlém trojúhelníku jsou funkemi ostrého úhlu f( ) Každé velikosti úhlu přísluší určité poměry délek stran = goniometriké funke strana 4
5 Máme pravoúhlý trojúhelník: Funke sinus Funke osinus Funke tangens Funke otangens Jestliže platí = 90 = 90 ; = 90 - ; = 90 - Platí : sin = os (90 - ) = os os = sin (90 - ) = sin tg = otg (90 - ) = otg otg = tg (90 - ) = tg strana 5
6 Hodnoty goniometrikýh funkí stanovíme na kalkulače, neo vyhledáním v taulkáh Významné hodnoty goniometrikýh funkí Úlohy: 1. Označte úhly v daném pravoúhlém trojúhelníku BAC, zapište čemu je roven sin; os; tg; otg ostrýh úhlů Řešení sin = a os = a tg = otg = sin = a os = a tg = otg = 2. Doplňte hyějíí velikosti úhlů sin 50 = os 40 tg = otg sin = os28 40 strana 6
7 os 18 = sin 70 otg = tg os = sin54 25 tg = otg sin = os62 48 otg = tg Určete hodnoty funkí na kalkulače a správnost si ověřte v taulkáh: sin = 0,8418 otg 5 10 = 11,059 os = 0,0755 tg = 0,6371 os 3 10 = 0,9984 sin = 0,6648 otg = 2,960 sin = 0,7698 os 8 50 = 0,9881 tg = 3,8667 os 82 = 0,1391 otg = 4, K následujíím hodnotám funkí přiřaďte velikost úhlů a) tg = 12,251 = g) os = 0,8936 = ) sin = 0,6041 = h) otg = 0,1405 = ) otg = 6,314 = h) sin = 0,9957 = d) os = 0,0785 = i) tg = 0,3673 = e) sin = 0,854 = j) os = 0,5225 = 5. Sestrojte úhly, jestliže jestli že hodnoty goniometrikýh funkí se rovnají a) sin = d) tg = 3,732 ) os = e) sin = 0,4226 ) tg = f) os = Řešení: 4. a) ) ) 9 d) e) f) g) h)82 h) ) i)20 10 j)58 30 k) a) 37 ; ) ; ) ; d) 75 ; e) 25 ; f) Použitá literatura: CALDA, Emil: Matematika pro dvouleté a tříleté oory středníh odornýh učilišť, 1. díl, 2. upravené vydání Nakladatelství Prometheus, Praha s ; s HUDCOVÁ, Milada; KUBIČÍKOVÁ, Liuše: Sírka úloh z matematiky pro střední odorná učiliště a střední odorné školy, 1. Vydání Nakladatelství Prometheus, Praha 2001 s. 90 FUCHS, Eduard; BINTEROVÁ, Helena a kolektiv: Standardy a testové úlohy z matematiky pro střední odorná učiliště, 1. Vydání Nakladatelství Prometheus Praha 2004 s. 27 strana 7
16. Trojúhelník vlastnosti, prvky, konstrukční úlohy Vypracovala: Ing. Ludmila Všetulová, prosinec 2013
16. Trojúhelník vlastnosti, prvky, konstrukční úlohy Vypracovala: Ing. Ludmila Všetulová, prosinec 2013 Název školy Obchodní akademie a Střední odborné učiliště Veselí nad Moravou Název a číslo OP OP Vzdělávání
Více18. Shodnost a podobnost trojúhelníků Vypracovala: Ing. Všetulová Ludmila, prosinec 2013
18. Shodnost a podobnost trojúhelníků Vypracovala: Ing. Všetulová Ludmila, prosinec 2013 Název školy Obchodní akademie a Střední odborné učiliště Veselí nad Moravou Název a číslo OP OP Vzdělávání pro konkurenceschopnost,
VíceGeometrie. Mgr. Jarmila Zelená. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Geometrie Mgr. Jrmil Zelená Gymnázium, SOŠ VOŠ Ledeč nd Sázvou Výpočty v prvoúhlém trojúhelníku VY_3_INOVACE_05_3_1_M Gymnázium, SOŠ VOŠ Ledeč nd Sázvou PRAVOÚHLÝ TROJÚHELNÍK 1 Pojmy oznčení:,.odvěsny
Více10)(- 5) 2 = 11) 5 12)3,42 2 = 13)380 2 = 14)4, = 15) = 16)0, = 17)48,69 2 = 18) 25, 23 10) 12) ) )
Druhá mocnina z tabulek 1) (- 6) = 10)(- 5) = ) 7 = 4 11) 5 = ) 4,8 = 4) 40 = 5),785 = 6) 65 8 = 7) 0,01485 = 8) 5,7 = 9) = 4 1),4 = 1)80 = 14)4,6787 = 15)467 56 = 16)0,014 = 17)48,69 = 1 18) Druhá odmocnina
Více4.4.3 Další trigonometrické věty
443 Další trigonometriké věty Předpoklady: 440 Věty, které ojevíme v této hodině, mohou usnadnit některé výpočty, ale je možné se ez nih (na rozdíl od kosinové a sinové věty) oejít Pedagogiká poznámka:
Víceje-li dáno: a) a = 4,6 cm; α = 28 ; b) b = 8,4 cm; β = 64. Při výpočtu nepoužívejte Pythagorovu větu!
-----Pravoúhlý trojúhelník----- 156 V pravoúhlém trojúhelníku ABC má pravý úhel vrchol C. Vypočítejte velikost jeho ostrých úhlů, je-li dáno: a) a = 62 mm, b = 37 mm, b) a = 36 mm, c = 58 mm, c) b = 8,4
VíceTrojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy
5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,
VícePLANIMETRIE. Mgr. Zora Hauptová TROJÚHELNÍK VY_32_INOVACE_MA_1_04
PLANIMETRIE Mgr. Zora Hauptová TROJÚHELNÍK VY_32_INOVACE_MA_1_04 OPVK 1.5 EU peníze středním školám CZ.1.07/1.500/34.0116 Modernizace výuky na učilišti Název školy Název šablony Předmět Tematický celek
VíceGEODETICKÉ VÝPOČTY I.
SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. TROJÚHELNÍK PYTHAGOROVA VĚTA TROJÚHELNÍK Geodetické výpočty I. trojúhelník je geometrický rovinný útvar určený třemi
VíceTrojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů.
Trojúhelník Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů. C Body se nazývají vrcholy trojúhelníku Úsečky
VíceModelové úlohy přijímacího testu z matematiky
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a
VíceModelové úlohy přijímacího testu z matematiky
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a
VícePYTHAGOROVA VĚTA, EUKLIDOVY VĚTY
Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol PYTHAGOROVA
VíceCZ.1.07/1.5.00/34.0619 CZ.1.07/1.5.00/34.0619 Zvyšování vzdělanosti pomocí e-prostoru OP Vzdělávání pro konkurenceschopnost
CZ.1.07/1.5.00/34.0619 CZ.1.07/1.5.00/34.0619 Zvyšování vzdělanosti pomocí e-prostoru OP Vzdělávání pro konkurenceschopnost Soukromá střední škola a jazyková škola s právem státní jazykové zkoušky Č. Budějovice,
VíceDigitální učební materiál
Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_1_02 ŠVP Podnikání RVP 64-41-L/51
VíceZvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV.2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.2.1 Algebraické výrazy, výrazy s mocninami
VíceDigitální učební materiál
Digitální učební materiál Projekt: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.057 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova
VíceDigitální učební materiál
Digitální učení mteriál Projekt: Digitální učení mteriály e škole registrční číslo projektu CZ.1.07/1..00/4.07 Příjeme: Střední zdrotniká škol Vyšší odorná škol zdrotniká Huso 71 60 České Budějoie Náze
VíceDigitální učební materiál
Digitální učební materiál Projekt Šablona CZ..07/.5.00/34.045 Inovujeme, inovujeme III/ Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_3_INOVACE_CH9 ŠVP Podnikání RVP 64-4-L/5 Podnikání
Více6 Planimetrie. 6.1 Trojúhelník. body A, B, C vrcholy trojúhelníku. vnitřní úhly BAC = α, ABC = β, BCA = γ. konvexní (menší než 180º)
6 Planimetrie Planimetrie = část matematiky, která se zabývá geometrií (původně věda o měřené země) v rovině (obrazce, jejich vlastnosti, shodnost a podobnost, zobrazení). 6.1 Trojúhelník Každé tři body,
VíceZvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV.2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.2.1 Algebraické výrazy, výrazy s mocninami
VíceÚlohy k procvičení kapitoly Obsahy rovinných obrazců
Úlohy k procvičení kapitoly Obsahy rovinných obrazců 1. Vypočtěte obvod a obsah obrazců nakreslených na obrázku 1. (Rozměry jsou udány v mm.) Obrázek 1 2. Na pokrytí 1 m 2 střechy se spotřebuje 26 ražených
VíceDigitální učební materiál
Digitální učební materiál Projekt: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova
VíceVýukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné
VícePříklady k opakování učiva ZŠ
Příklady k opakování učiva ZŠ 1. Číslo 78 je dělitelné: 8 7 3. Rozhodněte, které z následujících čísel je dělitelem čísla 94: 4 14 15 3. Určete všechny dělitele čísla 36:, 18, 4, 9, 6, 3, 1, 3, 6, 1 3,
VíceČtyřúhelník. O b s a h : Čtyřúhelník. 1. Jak definovat čtyřúhelník základní vlastnosti. 2. Názvy čtyřúhelníků Deltoid Tětivový čtyřúhelník
Čtyřúhelník : 1. Jak definovat čtyřúhelník základní vlastnosti 2. Názvy čtyřúhelníků 2.1. Deltoid 2.2. Tětivový čtyřúhelník 2.3. Tečnový čtyřúhelník 2.4. Rovnoběžník 2.4.1. Základní vlastnosti 2.4.2. Výšky
VíceRozpis výstupů zima 2008 Geometrie
Rozpis výstupů zima 2008 Geometrie 20. 10. porovnávání úseček grafický součet úseček grafický rozdíl úseček... porovnávání úhlů grafický součet úhlů grafický rozdíl úhlů... osa úhlu úhly vedlejší a vrcholové...
VícePodobnost. pracovní list. Základní škola Zaječí, okres Břeclav Školní 402, , příspěvková organizace
Podobnost pracovní list Název školy: Číslo projektu: Autor: Základní škola Zaječí, okres Břeclav Školní 402, 691 05, příspěvková organizace CZ.1.07/1.4.00/21.1131 Mgr. Lenka Němetzová Datum vytvoření:
VíceDigitální učební materiál
Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_3_17 ŠVP Podnikání RVP 64-41-L/51
VíceZákladní příklady. 18) Určete velikost úhlu δ, jestliže velikost úhlu α je 27.
Zákldní příkld 1) Stín věže je dlouhý 55 m stín tče vsoké 1,5 m má v tutéž dou délku 150 cm. Vpočtěte výšku věže. ) Určete měřítko mp, jestliže odélníkové pole o rozměrech 600 m 450 m je n mpě zkresleno
VícePředmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ MGR. JÜTTNEROVÁ Název zpracovaného celku: PODOBNOST A STEJNOLEHLOST PODOBNOST
Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ MGR. JÜTTNEROVÁ 7. 5. 0 Název zpracovaného celku: PODOBNOST A STEJNOLEHLOST PODOBNOST Je každé zobrazení v rovině takové, že pro libovolné body roviny
VíceRůznostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna
16. Trojúhelník, Mnohoúhelník, Kružnice (typy trojúhelníků a jejich vlastnosti, Pythagorova věta, Euklidovy věty, čtyřúhelníky druhy a jejich vlastnosti, kružnice obvodový a středový, úsekový úhel, vzájemná
VíceGONIOMETRIE A TRIGONOMETRIE
GONIOMETRIE A TRIGONOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu. století - využití ICT ve vyučování matematiky na gymnáziu
VíceANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ
ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Mgr. Zora Hauptová ANALYTICKÁ GEOMETRIE PŘÍMKY TEST VY_32_INOVACE_MA_3_20 OPVK 1.5 EU peníze středním školám CZ.1.07/1.500/34.0116 Modernizace výuky na učilišti
VíceMoravské gymnázium Brno s.r.o. Mgr. Věra Jeřábková, Mgr. Marie Chadimová. Matematika, Goniometrické funkce v pravoúhlém trojúhelníku
Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Moravské gymnázium Brno s.r.o. Autor Mgr. Věra Jeřábková, Mgr. Marie Chadimová Tematická oblast Matematika, Goniometrické funkce v pravoúhlém trojúhelníku
Více3. Mocnina a odmocnina. Pythagorova věta
. Mocnina a odmocnina. Pythagorova věta 7. ročník -. Mocnina, odmocnina, Pythagorovavěta.. Mocnina... Vymezení pojmu Součin stejných činitelů můţeme napsat v podobě mocniny. Například : součin...... můţeme
VíceM - Pythagorova věta, Eukleidovy věty
M - Pythagorova věta, Eukleidovy věty Určeno jako učební text pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací
VíceA STEJNOLEHLOST,, EUKLIDOVYE VĚTY 2.
PODOBNOST A STEJNOLEHLOST,, EUKLIDOVYE VĚTY 2. ČÁST MAT. OT 2. OT. Č.. 15: SHODNÁS HODNÁ ZOBRAZENÍ V ROVINĚ, PODOBNOST A STEJNOLEHLOST,, EUKLIDOVYE VĚTY PODOBNOST KDE LÁTKU NAJDETE Kapitola Základy planimetrie
VíceDigitální učební materiál
Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_2_13 ŠVP Podnikání RVP 64-41-L/51
VíceMgr. Monika Urbancová. a vepsané trojúhelníku
Název projektu Život jako leporelo Registrační číslo CZ.1.07/1.4.00/21.3763 Autor Mgr. Monika Urbancová Datum 28. 8. 2014 Ročník 6. ročník Vzdělávací oblast MATEMATIKA A JEJÍ APLIKACE Vzdělávací obor MATEMATIKA
VíceFebruary 05, Čtyřúhelníky lichoběžníky.notebook. 1. Vzdělávací oblast: Matematika a její aplikace
Registrační číslo projektu: Název projektu: Název a číslo globálního grantu: CZ.1.07/1.1.12/02.0010 Šumavská škola = evropská škola Zvyšování kvality ve vzdělání v Plzeňském kraji CZ.1.07/1.1.12 Název
VíceDigitální učební materiál
Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_3_14 ŠVP Podnikání RVP 64-41-L/51
VíceCVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 35 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Vypočtěte [( 3 3 ) ( 1 4 5 3 0,5 ) ] : 1 6 1. 1 bod VÝCHOZÍ TEXT K ÚLOZE
VíceARITMETIKA - TERCIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
ARITMETIKA - TERCIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro nižší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu
VíceKlíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
Přípravný kurz - Matematika Téma: Výpočtová geometrie v rovině Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
VíceKlíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
Přípravný kurz - Matematika Téma: Výpočtová geometrie v rovině Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
VíceCVIČNÝ TEST 29. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 29 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Smrk má vysokou klíčivost, jen 5 % semen nevyklíčí.
VíceDigitální učební materiál
Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/ Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_3_INOVACE_CH9_1_07 ŠVP Podnikání RVP 64-41-L/51
VícePLANIMETRIE 2 mnohoúhelníky, kružnice a kruh
PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh Lomená čára A 0 A 1 A 2 A 3..., A n (n 2) se skládá z úseček A 0 A 1, A 1 A 2, A 2 A 3,..., A n 1 A n, z nichž každé dvě sousední mají společný jeden krajní
VíceKlíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
Přípravný kurz - Matematika Téma: Výpočtová geometrie v rovině Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
Více4. GONIOMETRICKÉ A CYKLOMETRICKÉ FUNKCE, ROVNICE A NEROVNICE 4.1. GONIOMETRICKÉ FUNKCE
GONIOMETRICKÉ A CYKLOMETRICKÉ FUNKCE, ROVNICE A NEROVNICE V této kapitole se dozvíte: GONIOMETRICKÉ FUNKCE vztah mezi stupňovou a obloukovou mírou; jak jsou definovány čtyři základní goniometrické funkce:
VíceII. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.
Ukázky typových maturitních příkladů z matematiky..reálná čísla. 3} x R; I. Zobrazte množiny A = {x є 3} < + x R; B = {x є II. Zapište ve tvaru zlomku číslo, 486.Komplexní čísla. I. Určete a + b, a - b,
VíceObecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.
5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených
VíceDigitální učební materiál
Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_2_12 ŠVP Podnikání RVP 64-41-L/51
Víceβ 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra:
GONIOMETRIE Veliost úhlu v oblouové a stupňové míře: Stupňová míra: Jednota (stupeň) 60 600 jeden stupeň 60 minut 600 vteřin Př. 5,4 5 4 0,4 0,4 60 4 Oblouová míra: Jednota radián radián je veliost taového
VíceStřední průmyslová škola strojnická Olomouc, tř.17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné
VíceCVIČNÝ TEST 3. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 7 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 3 Mgr. Zdeňka Strnadová OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Jsou dány intervaly A = ( ; 2), B = 1; 3, C = 0;
VíceALGEBRAICKÉ VÝRAZY FUNKCE
ALGEBRAICKÉ VÝRAZY. Násobení a dělení mnohočlenů definovat základní pojmy (jednočlen, mnohočlen, koeficient) pro učivo násobení a dělení mnohočlenů a) Dokažte algebraickou identitu ab cd ac bd a d b c.
VíceShodná zobrazení v rovině osová a středová souměrnost Mgr. Martin Mach
Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice
Více5. P L A N I M E T R I E
5. P L A N I M E T R I E 5.1 Z Á K L A D N Í P L A N I M E T R I C K É P O J M Y Bod (definice, značení, znázornění) Přímka (definice, značení, znázornění) Polopřímka (definice, značení, znázornění, počáteční
VíceDigitální učební materiál
Digitální učební materiál Projekt: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova
VíceZvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma V..1 Posloupnosti a finanční matematika Kapitola
Vícep ACD = 90, AC = 7,5 cm, CD = 12,5 cm
Úloha Je dán pravoúhlý trojúhelník ACD s pravým úhlem při vrcholu C, AC = 7,5 cm, CD =,5 cm. Na přímce CD určete bod B tak, aby AB = BD Řešení: Úlohu vyřešíme nejprve geometrickou konstrukcí. a) Z rozboru
VíceMáme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB.
8. Trojúhelník 6. ročník 8. Trojúhelník 8.1. Základní pojmy 8.1.1. Trojúhelník Máme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB. Trojúhelník popisujeme proti chodu hodinových
VíceSINOVÁ A KOSINOVÁ VĚTA VZORCE PRO OBSAH TROJÚHELNÍKU
Projekt ŠLONY N GVM Gymnázium Velké Meziříčí registrační číslo projektu: Z.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol SINOVÁ KOSINOVÁ
VíceTest Zkušební přijímací zkoušky
Test Zkušební přijímací zkoušky 1. Vypočtěte: ( 10 1.5) ( 4 ).( 15). ( 5 6). Doplňte číslo do rámečku, aby platila rovnost:.1. 4 11 10. 8 16 6.. 49 7 1.. + 1. Proveďte početní operace:.1. 6x 4x ( 4x x)
VíceTrigonometrie - Sinová a kosinová věta
Trigonometrie - Sinová kosinová vět jejih užití v Tehniké mehnie Dn Říhová, Pvl Kotásková Mendelu rno Perspektiv krjinného mngementu - inove krjinářskýh disipĺın reg.č. Z.1.7/../15.8 Osh 1 Goniometriké
Více2) Přednáška trvala 80 minut a skončila v 17:35. Jirka na ni přišel v 16:20. Kolik úvodních minut přednášky Jirka
Téma 4: (převody jednotek, funkce, konstrukční úlohy, osová a středová souměrnost) Převody jednotek 1) Kolik gramů je pět třetin z 2,1 kilogramu? a) 1 260 g b) 3 500 g c) 17 000 g d) 700 g 2) Přednáška
VíceFUNKCE SINUS A KOSINUS
203 FUNKCE SINUS A KOSINUS opis způsou použití: teorie k smostudiu (i- lerning) pro 3. ročník střední škol tehnikého změření, teorie ke konzultím dálkového studi Vprovl: Ivn Klozová Dtum vprování: 2. prosine
VíceMetodické pokyny k pracovnímu listu č Pythagorova věta
Název projektu: Spokojená škola Číslo projektu: OPVK.CZ.1.07/1..33/0.0039 Metodické pokyny k pracovnímu listu č. 8.03 Pythagorova věta Pracovní list slouží k upevnění učiva týkajícího se jedné z nejvýznamnějších
VícePodobnosti trojúhelníků, goniometrické funkce
1116 Podonosti trojúhelníků, goniometriké funke Předpokldy: 010104, úhel Pedgogiká poznámk: Zčátek zryhlit α γ β K α' l M γ' m k β' L Trojúhelníky KLM n nšem orázku mjí stejný tvr (vypdjí stejně), le liší
VíceM - Řešení pravoúhlého trojúhelníka
M - Řešení pravoúhlého trojúhelníka Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz VARIACE 1 Tento dokument byl
VíceZvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV..1 Algebraické výrazy, výrazy s mocninami
VíceCVIČNÝ TEST 40. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 40 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 Vypočtěte pro a 1; 3 hodnotu výrazu 4 + a 3 + a 3 ( 2). 1 bod VÝCHOZÍ TEXT
VíceZvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV.2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.2.1 Algebraické výrazy, výrazy s mocninami
VíceZákladní škola Karviná Nové Město tř. Družby 1383
Základní škola Karviná Nové Město tř. Družby 1383 Projekt OP VK oblast podpory 1.4 Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo projektu: CZ.1.07/1.4.00/21.3526 Název projektu:
VíceRovinné obrazce. 1) Určete velikost úhlu α. (19 ) 2) Určete velikost úhlu δ, jestliže velikost úhlu α je 27. (99 )
Rovinné orze 1) Určete velikost úhlu α. (19 ) 32 103 2) Určete velikost úhlu δ, jestliže velikost úhlu α je 27. (99 ) x d y x y 3) Vypočítejte osh orze znázorněného ve čtverové síti. (2 500 m 2 ) C A B
VíceFunkce 1) Zakreslete body K, L a M do souřadného systému Oxy, jsou-li dány jejich souřadnice: K[-3;0]; L[0;-2]; M[4;3].
Téma 4: (převody jednotek, funkce, konstrukční úlohy, osová a středová souměrnost) Převody jednotek 1) Kolik gramů je pět třetin z 2,1 kilogramu? a) 1 260 g b) 3 500 g c) 17 000 g d) 700 g 2) Přednáška
VíceCVIČNÝ TEST 43. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 43 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 bod 1 Pro a, b R + určete hodnotu výrazu ( a b) 2 ( a + b) 2, víte-li,
VíceJak by mohl vypadat test z matematiky
Jak by mohl vypadat test z matematiky 1 Zapište zlomkem trojnásobek rozdílu, 2 Vypočtěte: 2.1 0,05: 0,001 0,7 0,3 = 2.2 : = 3 Vypočtěte a výsledek zapište zlomkem v základním tvaru: 36 3 3 16 + 1 6 = 4
VícePythagorova věta výpočet odvěsny - přirozená čísla
Pythagorova věta výpočet odvěsny - přirozená čísla Sada materiálů je určena pro procvičování výpočtu odvěsen pravoúhlého trojúhelníku. Obsahuje 3 pracovní listy a jejich výsledky pro jednoduchou kontrolu
VíceDigitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuk prostřednictvím ICT Číslo a název šablon klíčové aktivit III/2 Inovace a zkvalitnění výuk prostřednictvím
VíceSTEREOMETRIE 9*. 10*. 11*. 12*. 13*
STEREOMETRIE Bod, přímka, rovina, polorovina, poloprostor, základní symboly označující přímku, bod, polorovinu, patří, nepatří, leží, neleží, vzájemná poloha dvou přímek v prostoru, vzájemná poloha dvou
VíceCVIČNÝ TEST 51. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 51 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V obchodě s kouzelnickými potřebami v Kocourkově
VíceVzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9.
Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Školní rok 2013/2014 Mgr. Lenka Mateová Kapitola Téma (Učivo) Znalosti a dovednosti (výstup)
VíceSTEREOMETRIE. Odchylky přímek. Mgr. Jakub Němec. VY_32_INOVACE_M3r0114
STEREOMETRIE Odchylky přímek Mgr. Jakub Němec VY_32_INOVACE_M3r0114 ODCHYLKA DVOU PŘÍMEK V PROSTORU Další typy příkladů, v nichž budeme počítat vzdálenost dvou objektů, by bylo velmi složité počítat bez
VíceDigitální učební materiál
Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_1_09 ŠVP Podnikání RVP 64-41-L/51
Vícea se nazývá aritmetická právě tehdy, když existuje takové číslo d R
Předmět: Ročník: Vytvořil: Datum: MATEMATIKA TŘETÍ Mgr. Tomáš MAŇÁK. březen 014 Název zpracovaného celku: ARITMETICKÁ POSLOUPNOST A JEJÍ UŽITÍ ARITMETICKÁ POSLOUPNOST Teorie: Posloupnost každé ( ) n n1
VíceProjekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín. Rovnoběžníky čtverec, obdélník, kosočtverec, kosodélník
Projekt OP VK č. CZ.1.07/1.5.00/34.0420 Šablony Mendelova střední škola, Nový Jičín NÁZEV MATERIÁLU: Rovnoběžníky čtverec, obdélník, kosočtverec, kosodélník Autor: Mgr. Břetislav Macek Rok vydání: 2014
VíceVyužití Pythagorovy věty III
.8. Využití Pythagorovy věty III Předpoklady: 008 Př. 1: Urči obsah rovnoramenného trojúhelníku se základnou 8 cm a rameny 5,8 cm. Pro výpočet obsahu potřebujeme znát jednu ze stran a odpovídající výšku.
VíceCVIČNÝ TEST 14. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21
CVIČNÝ TEST 14 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21 I. CVIČNÝ TEST 1 bod 7x 11 1 Určete hodnotu výrazu pro x = 27. 11 7x 32 2 Aritmetický průměr
VíceSčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444
ARITMETIKA CELÁ ČÍSLA Celá čísla jsou. -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, Celá čísla rozdělujeme na záporná (-1, -2, -3, ) kladná (1, 2, 3,.) nula 0 (není číslo kladné ani záporné) absolutní
VíceProjekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - Z.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: eometrie radovaný řetězec úloh Téma: Komolý jehlan utor: Kubešová Naděžda Klíčové pojmy: Komolý
VíceSOUTĚŽNÍ ÚLOHY 37. ročník regionální matematické soutěže žáků středních odborných škol, středních odborných učilišť a integrovaných středních škol
Krajský úřad Pardubického kraje - odbor školství Jednota českých matematiků a fyziků, pobočka Pardubice Střední škola automobilní Ústí nad Orlicí 26.3.2019 SOUTĚŽNÍ ÚLOHY 37. ročník regionální matematické
VíceCVIČNÝ TEST 2. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 2 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Od součtu libovolného čísla x a čísla 256 odečtěte číslo x zmenšené o 256.
VíceDigitální učební materiál
Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_2_01 ŠVP Podnikání RVP 64-41-L/51
VíceProjekt: Zlepšení výuky na ZŠ Schulzovy sady registrační číslo: CZ.1.07./1.4.00/ Mgr. Jakub Novák. Datum: Ročník: 9.
Projekt: Zlepšení výuky na ZŠ Schulzovy sady registrační číslo: CZ.1.07./1.4.00/1.581 VY_4_INOVACE_1NOV40 Autor: Mgr. Jakub Novák Datum: 10. 3. 013 Ročník: 9. Vzdělávací oblast: Matematika a její aplikace
VíceDigitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
VíceRepetitorium z matematiky
Goniometrické funkce a rovnice Repetitorium z matematiky Podzim 01 Ivana Medková 1 GONIOMETRICKÉ FUNKCE OSTRÉHO ÚHLU B odvěsna a C β c b přepona. α odvěsna A sin α a c b cos α c a tgαα b b cotg α a délka
Více