9.3.5 Korelace. Předpoklady: 9304

Rozměr: px
Začít zobrazení ze stránky:

Download "9.3.5 Korelace. Předpoklady: 9304"

Transkript

1 935 Koelace Předpoklad: 9304 Zatím jsme se zabýval vžd pouze jedím zakem, ve statstckém výzkumu jsme však u každého jedotlvce (statstcké jedotk) sledoval zaků více Učtě spolu ěkteé zak souvsí (apříklad výška a hmotost) jde souvslost zachtt matematck (výpočtem)? Koelačí koefcet zaků a :, ( )( ) Jak vzoec pozá, že spolu dva zak souvsí? Vzkoušíme jeho fukc a kokétím případě ěkolka studetů uvedeých v tabulce: Výška Hmotost Potože se ve vzoc vsktují ještě půmě, musíme předpokládat, že záme půměé hodot výšk (apříklad 75 cm) a hmotost (apříklad 75 kg) s s Př : Pojd hodot uvedeé v tabulce a ajd sloupce, kteé podpoují hpotézu, že větší ldé jsou v půměu těžší Kteé sloupce této hpotéze odpoují? Hpotézu podpoují sloupce, ve kteých je jak výška, tak hmotost větší ež půmě, ebo sloupce, ve kteých jsou obě hodot meší ež půmě Naopak hpotéze odpoují sloupce, ve kteých je jeda z hodot větší ež půmě a duhá je meší hpotézu podpoují sloupce (obě hodot větší ež půmě) a 2 (obě hodot meší ež půmě) hpotéze odpoují sloupce 3 a 4 (jedo hodota větší ež půmě, duhá meší) Př 2: Dosaď jedotlvé sloupce tabulk do výazu ( )( ) přspívají k celkovému součtu ( )( ) sloupec: ( )( ) ( )( ) a zhodoť, jak získal jsme kladé číslo, kteé je tím větší, čím větší jsou obě hodot s poováí s půmě získal 2 sloupec: ( )( ) ( )( ) ( ) ( ) jsme kladé číslo, kteé je tím větší, čím meší jsou obě hodot s poováí s půmě získal jsme 3 sloupec: ( )( ) ( )( ) ( ) zápoé číslo, kteé je tím větší, čím více se obě hodot lší od svých půměů získal jsme 4 sloupec: ( )( ) ( )( ) ( ) zápoé číslo, kteé je tím větší, čím více se obě hodot lší od svých půměů V příkladu jsme s ukázal, že statstcké jedotk, kteé potvzují hpotézu větší je těžší, přspívají do sum kladým čísla, statstcké jedotk, kteé hpotézu popíají, přspívají zápoým čísl

2 Zkusíme ozvažovat obecě a sledovat hodotu souču v sumě: vsoká a těžká statstcká jedotka (v souladu s představou, že oba zak spolu souvsí) >, > souč ( )( ) je součem dvou kladých čísel do sum přdáváme kladé číslo (zvětšujeme její hodotu), malá a lehká statstcká jedotka (v souladu s představou, že oba zak spolu souvsí) <, < souč ( )( ) je součem dvou zápoých čísel do sum přdáváme kladé číslo (zvětšujeme její hodotu), vsoká a lehká statstcká jedotka (odpouje představě, že oba zak spolu souvsí) >, > souč ( )( ) je součem kladého čísla ( ) a zápoého čísla ( ) do sum přdáváme zápoé číslo (zmešujeme její hodotu), malá a těžká statstcká jedotka (odpouje představě, že oba zak spolu souvsí) >, > souč ( )( ) je součem zápoého čísla ( ) a kladého čísla ( ) do sum přdáváme zápoé číslo (zmešujeme její hodotu) Pokud větša jedotek odpovídá představě, že oba zak spolu souvsí, získáme sumací kladé číslo, pokud je počet čleů, kteé představě odpovídají přblžě stejé jako počet čleů, kteé j vvací, získáme sumací číslo blízké ule Jaký výzam mají zbývající část vzoce? - záme z výpočtu půměu ozptlu, zabaňuje tomu, ab př větším počtu čleů všel větší výsledek s s - sumou sčítáme ásobk odchlek od půměů po soubo s větším ozptlem bchom získal větší hodotu př meší míře závslost po vděleí součem s s odstaíme závslost a ozptlu hodot a získáme výsledek v tevalu ; Př 3: Co vpovídá o vztahu velč a hodota koelace blízká: a) b) c) 0? a) (, ) se blíží je ejvšší možá hodota koefcetu souč ( )( ) musel do sum přspívat kladým čísl velč, jsou svázá úzkým vztahem větší zameá větší b) (, ) se blíží - - je ejžší možá hodota koefcetu souč ( )( ) musel do sum přspívat téměř pořád zápoým čísl (popíal hpotézu větší zameá těžší ) velč, jsou svázá úzkým vztahem větší zameá meší c) (, ) se blíží 0 2

3 souč ( )( ) musel do sum přspívat stejě kladým zápoým čísl velč, ejsou svázá vztahem větší zameá meší (a vztahem opačým) Pedagogcká pozámka: Následující odvozeí opět pouze ukáž pomocí pojektou Tva, ( )( ) s s umožňuje tepetovat vtří logku vzoce, ale a paktcké výpočt je přílš složtý Čtatel zlomku je možé upavt takto: ( )( ) ( + ) ( + + ) ( + ( ) + ( ) ) + ( ) + ( ) Upavíme jedotlvé sum: ( ) ( ) 0 se odchlk a obě sta avzájem odečetl), ( ) ( ) 0 se odchlk a obě sta avzájem odečetl), (-kát sčítáme stále stejou hodotu souču půměů ) ( )( ) ( + ) (z mulé hod půmě je taková hodota, ab (z mulé hod půmě je taková hodota, ab, s s Paktčtější vztah po výpočet koelace: Př 4: V tabulce je uvedeo pvích šest dvojc zaků zámka z matematk a zámka z fzk Uč jejch koelačí koefcet (zámka z matematk (zámka z fzk) Pomocé výpočt: 2,67, 2, ( ) 2,67 0,733 6 s ( ) 2,7 0,677 6 s ( ) 2,67 2,7 6 0, 75, s s 0,733 0,677 3

4 Hodota, 0, 75 zameá jž začou míu závslost Ručí výpočet koelačího koefcetu je začě zdlouhavý po pouhých šest dvojc hodot Výpočet je možé (z přízvých okolostí) uchlt tím, že sestavíme a vužjeme tabulku četostí, tetokát četostí dvojc hodot zaků a tabulka emůže mít pouze jede řádek a záps četostí, sledujeme dvojc zaků a každá možá dvojce hodot potřebuje své políčko Pedagogcká pozámka: Následující příklad eí vede jako příklad, abch ho mohl jedak postupě vsvětlovat u tabule (hlavě začátek je těžký) a jedak lbovolě uchlovat tak, ab a příklad 2 zbla alespoň čtvthoda Například po dvojce zaků zámka z matematk (pět hodot) a doba stáveá studem (pět hodot), potřebujeme políček Doba stáveá studem Zámka z matematk Tojka v duhém sloupc a čtvté řádce zameá, že tř žác mají z matematk dvojku (duhý sloupec) a záoveň táví studem tochu větší ež půměé možství času Z tabulk můžeme sado získat četost po jedotlvé zak, apříklad 2 z matematk má pět žáků, kteé získáme součtem hodot ve duhém sloupc tabulk zámka z matematk, doba stáveá studem Pomocé výpočt: 2,79, * ( ) 2,79 0,764 9 s * ( ) 3 0,562 j 9 s, ( ) 2, , 494 0,764 0,562 Co zameá zápoá hodota koelačího koefcetu? Žác, kteří se více saží (více hod), mají lepší zámku z matematk více hod studa zameá meší zámku z matematk oba zak jsou a sobě závslé, adpůměým hodotám času, odpovídají podpůměé hodot zámk (větša čleů v sumě b bla zápoá) 4

5 Př 5: Sestav tabulku elatvích četostí a uč koelac zaků Zámka z matematk a Matuta z matematk Studetům, kteří matuovat ebudou přřaď hodotu 0, studetům, kteří matuovat budou hodotu Matuta z matematk () Zámka z matematk () zámka z matematk, matuta z matematk Pomocé výpočt: 2,79, , ( ) 2,79 0,764 9 s * ,36 2 0,465 j 9 s ( ) 2,79 0,36 9, s s 0,764 0,465 0,556 Na závě je uté upozot, že pomocí koelace můžeme pokázat vzájemou souvslost dvou zaků Ze vzájemé souvslost však jak evplývá příčý vztah Například je zřejmé, že výška platu koeluje s ceou soukomého automoblu Tvdt však, že s musíme koupt dahé auto, ab ám zvýšl mzdu, b blo velm odvážé Každý cítí, že příčá souvslost je zřejmě opačá Shutí: Koelace umožňuje zachtt vzájemou souvslost dvou velč 5

Statistika. Jednotlivé prvky této množiny se nazývají prvky statistického souboru (statistické jednotky).

Statistika. Jednotlivé prvky této množiny se nazývají prvky statistického souboru (statistické jednotky). Statstka. Základí pojmy Statstcký soubo - daá koečá, epázdá moža M předmětů pozoováí, majících jsté společé vlastost (událost, věc,.) Jedotlvé pvky této možy se azývají pvky statstckého soubou (statstcké

Více

FINANČNÍ MATEMATIKA- INFLACE

FINANČNÍ MATEMATIKA- INFLACE ojekt ŠABLONY NA GVM Gymázum Velké Mezříčí egstačí číslo pojektu: CZ..7/.5./34.948 V- ovace a zkvaltěí výuky směřující k ozvoj matematcké gamotost žáků středích škol FNANČNÍ MATEMATA- NFLACE Auto Jazyk

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

10.2.3 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI

10.2.3 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI Středí hodoty Artmetcý průměr vážeý Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI Zatím jsme počítal s tím, že četost ve vztahu pro vážeý artmetcý průměr byla přrozeá čísla Četost mohou

Více

jsou varianty znaku) b) při intervalovém třídění (hodnoty x

jsou varianty znaku) b) při intervalovém třídění (hodnoty x Výběr z eřeštelých příkladů ze zkouškových testů Jde o výběr z tpů příkladů, jejchž úspěšost řešeí u zkoušek se blíží ule. Itervalové versus bodové tříděí V tabulce je uvedeo rozděleí četostí a) př bodovém

Více

jsou reálná a m, n jsou čísla přirozená.

jsou reálná a m, n jsou čísla přirozená. .7.5 Racioálí a polomické fukce Předpoklad: 704 Pedagogická pozámka: Při opisováí defiic racioálí a polomické fukce si ěkteří studeti stěžovali, že je to příliš těžké. Ve skutečosti je sstém, kterým jsou

Více

Poznámky k tématu Korelace a jednoduchá lineární regrese (Téma není ve skriptech)

Poznámky k tématu Korelace a jednoduchá lineární regrese (Téma není ve skriptech) Pozámk k tématu Koelace a jedoduchá leáí egee (Téma eí ve kptech) Mějme data, ),...,(, ), kteá jou áhodým výběem z ějaké populace. Data ted pokládáme za ezávlé ealzace dvojce áhodých velč ( X, Y ). Půmě

Více

1. Základy měření neelektrických veličin

1. Základy měření neelektrických veličin . Základ měřeí eelektrckých velč.. Měřcí řetězec Měřcí řetězec (měřcí soustava) je soubor měřcích čleů (jedotek) účelě uspořádaých tak, ab blo ožě splt požadovaý úkol měřeí, tj. získat formac o velkost

Více

8.2.1 Aritmetická posloupnost

8.2.1 Aritmetická posloupnost 8.. Aritmetická posloupost Předpoklady: 80, 80, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Př. : V továrě dokočí každou hodiu motáž

Více

Úvod do korelační a regresní analýzy

Úvod do korelační a regresní analýzy Úvod do korelačí a regresí aalýz Bude ás zajímat, jak těsě spolu souvsí dva sledovaé jev Příklad: vztah mez rchlostí auta a brzdou dráhou vztah mez věkem žáka a rchlostí v běhu a 60 m vztah mez spotřebou

Více

( + ) ( ) ( ) ( ) ( ) Derivace elementárních funkcí II. Předpoklady: Př. 1: Urči derivaci funkce y = x ; n N.

( + ) ( ) ( ) ( ) ( ) Derivace elementárních funkcí II. Předpoklady: Př. 1: Urči derivaci funkce y = x ; n N. .. Derivace elemetárích fukcí II Předpoklady: Př. : Urči derivaci fukce y ; N. Budeme postupovat stejě jako předtím dosazeím do vzorce: f ( + ) f ( ) f f ( + ) + + + +... + (biomická věta) + + +... + f

Více

a q provedeme toto nahrazení a dostane soustavu dvou rovnic o dvou neznámých: jsou nenulová čísla (jinak by na pravé straně rovnice byla 0)

a q provedeme toto nahrazení a dostane soustavu dvou rovnic o dvou neznámých: jsou nenulová čísla (jinak by na pravé straně rovnice byla 0) ..9 Úlohy geometickou poloupotí Předpokldy: 0, 0 Pedgogická pozámk: Při řešeí příkldů potupujeme tk, by Ti ejpomlejší počítli lepoň příkldy,,,. Souh vzoců pvidel po geometickou poloupot: + - pozávcí zmeí

Více

f x a x DSM2 Cv 9 Vytvořující funkce Vytvořující funkcí nekonečné posloupnosti a0, a1,, a n , reálných čísel míníme formální nekonečnou řadu ( )

f x a x DSM2 Cv 9 Vytvořující funkce Vytvořující funkcí nekonečné posloupnosti a0, a1,, a n , reálných čísel míníme formální nekonečnou řadu ( ) DSM Cv 9 Vytvořující fukce Vytvořující fukcí ekoečé poslouposti a0, a,, a, reálých čísel mííme formálí ekoečou řadu =. f a i= 0 i i Příklady: f = + = + + + + + ) Platí: (biomická věta). To zameá, že fukce

Více

5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC

5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC 5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC V této kaptole se dozvíte: jak je defováa fukce přrozeá odmoca v kompleím oboru a jaké má vlastost včetě odlšostí od odmocy v reálém

Více

9 NÁHODNÉ VÝBĚRY A JEJICH ZPRACOVÁNÍ. Čas ke studiu kapitoly: 30 minut. Cíl:

9 NÁHODNÉ VÝBĚRY A JEJICH ZPRACOVÁNÍ. Čas ke studiu kapitoly: 30 minut. Cíl: 9 ÁHODÉ VÝBĚR A JEJICH ZPRACOVÁÍ Čas ke studu katol: 30 mut Cíl: Po rostudováí tohoto odstavce budete rozumět ojmům Základí soubor, oulace, výběr, výběrové šetřeí, výběrová statstka a budete zát základí

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

Generování dvojrozměrných rozdělení pomocí copulí

Generování dvojrozměrných rozdělení pomocí copulí Pravděpodobost a matematcká statstka eerováí dvojrozměrých rozděleí pomocí copulí umbelova copule PRAHA 005 Vpracoval: JAN ZÁRUBA OBSAH: CÍL PRÁCE TEORIE Metoda verzí trasformace O copulích Sklarova věta

Více

8.2.1 Aritmetická posloupnost I

8.2.1 Aritmetická posloupnost I 8.2. Aritmetická posloupost I Předpoklady: 80, 802, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Čley posloupostí pak při kotrole vypíšu

Více

Korelační analýza. sdružené regresní přímky:

Korelační analýza. sdružené regresní přímky: Koelčí lýz - ooutá závlot dvou tttckých zků; - hodot jou zíká pozoováím, ez možot ovlvěí; - eí možo ozlšt závle ezávle poměou; - hlvím átojem je ze metod ejmeších čtveců; - kždou z oou možých závlotí vthuje

Více

nazveme číselným vektorem. Čísla a Definice. Vektor, jehož všechny složky se rovnají nule, se nazývá nulový vektor o r = (0, 0, 0,, 0).

nazveme číselným vektorem. Čísla a Definice. Vektor, jehož všechny složky se rovnají nule, se nazývá nulový vektor o r = (0, 0, 0,, 0). ČÍSELNÉ VEKTORY Defce Uspořádou -tc čísel = (,,, ) zveme číselým vektoem Čísl,,, jsou složky ebol souřdce vektou Přozeé číslo zýváme ozměem ebo tké dmezí vektou Defce Vekto, jehož všechy složky se ovjí

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA Matematka IV PRAVDĚPODOBNOT A TATITIKA Lbor Žák Matematka IV Lbor Žák Regresí aalýza Regresí aalýza zkoumá závslost mez ezávslým proměým X ( X,, X k a závsle proměou Y. Tato závslost se vjadřuje ve tvaru

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzta Karlova v Praze Pedagogcká fakulta SEMINÁRNÍ PRÁCE Z OBECNÉ ALGEBRY DĚLITELNOST CELÝCH ČÍSEL V SOUSTAVÁCH O RŮZNÝCH ZÁKLADECH / Cfrk C. Zadáí: Najděte pět krtérí pro děltelost v jých soustavách

Více

Vyšší mocniny. Předpoklady: Doplň místo obdélníčků správné číslo. a) ( 2) 3. = c) ( ) = 1600 = e) ( 25) 2 0,8 0, 64.

Vyšší mocniny. Předpoklady: Doplň místo obdélníčků správné číslo. a) ( 2) 3. = c) ( ) = 1600 = e) ( 25) 2 0,8 0, 64. 81 Vyšší mociy Předpoklady: 0081 Př 1: Doplň místo obdélíčků správé číslo a) ( ) = b) = 0, 0000 e) ( ) = 0, ( 0) = 100 = f) ( ) = 8 a) ( ) = 8 b) 0, 0 0, 0000 = ( ) 0,8 0, 0 = 100 = e) ( ) = f) ( ) = 8

Více

11. Časové řady. 11.1. Pojem a klasifikace časových řad

11. Časové řady. 11.1. Pojem a klasifikace časových řad . Časové řad.. Pojem a klasfkace časových řad Specfckým statstckým dat jsou časové řad pomocí chž můžeme zkoumat damku jevů v čase. Časovou řadou (damcká řada, vývojová řada) rozumíme v čase uspořádaé

Více

1.3. POLYNOMY. V této kapitole se dozvíte:

1.3. POLYNOMY. V této kapitole se dozvíte: 1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí

Více

Lineární regrese ( ) 2

Lineární regrese ( ) 2 Leárí regrese Častým úolem je staoveí vzájemé závslost dvou (č více) fzálích velč a její matematcé vjádřeí. K tomuto účelu se používají růzé regresí metod, pomocí chž hledáme vhodou fuc f (), apromující

Více

8.2.7 Vzorce pro geometrickou posloupnost

8.2.7 Vzorce pro geometrickou posloupnost 7 Vzoce po geometicou poloupot Předpoldy: 0, 0 Př : Po geometicou poloupot pltí ; q Uči čle, iž by učovl Mohli bychom pomocí vzoce po -tý čle učit čle p pomocí tejého vzoce učit i Teto potup je ložitější

Více

S1P Popisná statistika. Popisná statistika. Libor Žák

S1P Popisná statistika. Popisná statistika. Libor Žák SP Popsá statstka Popsá statstka Lbor Žák SP Popsá statstka Lbor Žák Základí zdroje : skrpta Mateatka IV - doc. RNDr. Z. Karpíšek, CSc. ateatka o le - http://athole.fe.vutbr.cz/ Základ ateatcké statstk

Více

Spolehlivost a diagnostika

Spolehlivost a diagnostika Spolehlvost a dagostka Složté systémy a jejch spolehlvost: Co je spolehlvost? Vlv spolehlvost kompoetů systému Návrh systému z hledska spolehlvost Aplkace - žvotě důležté systémy - vojeské aplkace Teore

Více

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR Ze serveru www.czso.cz jsme sledovali sklizeň obilovi v ČR. Sklizeň z ěkolika posledích let jsme vložili do tabulky 10.10. V kapitole 7. Idexy

Více

1 Měření závislosti statistických znaků. 1.1 Dvourozměrný statistický soubor

1 Měření závislosti statistických znaků. 1.1 Dvourozměrný statistický soubor 1 Měřeí závlot tattckých zaků 1.1 Dvourozměrý tattcký oubor Př aalýze ekoomckých kutečotí á čato ezajímají jedotlvé velč jako takové, ale vztah mez m. Ptáme e, jak záví poptávka a ceě produktu, plat zamětaců

Více

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota

Více

3. Hodnocení přesnosti měření a vytyčování. Odchylky a tolerance ve výstavbě.

3. Hodnocení přesnosti měření a vytyčování. Odchylky a tolerance ve výstavbě. 3. Hodoceí přesost měřeí a vytyčováí. Odchylky a tolerace ve výstavbě. 3.1 Úvod o měřeí obecě 3.2 Chyby měřeí a jejch děleí 3.2.1 Omyly a hrubé chyby 3.2.2 Systematcké chyby 3.2.3 Náhodé chyby 3.3 Výpočet

Více

[ jednotky ] Chyby měření

[ jednotky ] Chyby měření Chyby měřeí Provedeme-l určté měřeí za stejých podmíek vícekrát, jedotlvá měřeí se mohou odlšovat (z důvodu koečé rozlšovací schopost měř. přístrojů, áhodých vlvů apod.). Chyba měřeí: e = x x x...přesá

Více

Střední hodnoty. Aritmetický průměr prostý Aleš Drobník strana 1

Střední hodnoty. Aritmetický průměr prostý Aleš Drobník strana 1 Středí hodoty. Artmetcký průměr prostý Aleš Drobík straa 0. STŘEDNÍ HODNOTY Př statstckém zjšťováí často zpracováváme statstcké soubory s velkým možstvím statstckých jedotek. Např. soubor pracovíků orgazace,

Více

1.3. ORTOGONÁLNÍ A ORTONORMÁLNÍ BÁZE

1.3. ORTOGONÁLNÍ A ORTONORMÁLNÍ BÁZE ORTOGONÁLNÍ A ORTONORMÁLNÍ BÁZE V této kaptole se dozvíte: jak je oecě defováa kolmost (ortogoalta) vektorů; co rozumíme ortogoálí a ortoormálí ází; co jsou to tzv relace ortoormalty a Croeckerovo delta;

Více

Kapitola 5.: Analýza rozptylu jednoduchého třídění

Kapitola 5.: Analýza rozptylu jednoduchého třídění Kaptola 5.: alýza ozptylu jedoduchého tříděí Cíl kaptoly Po postudováí této kaptoly budete umět - hodott vlv aktou o 3 úovích a vaabltu hodot sledovaé áhodé velčy - sestojt tabulku aalýzy ozptylu - detkovat

Více

Doc. Ing. Dagmar Blatná, CSc.

Doc. Ing. Dagmar Blatná, CSc. PRAVDĚPODOBNOST A STATISTIKA Doc. Ig. Dagmar Blatá, CSc. Statsta statstcé údaje o hromadých jevech čost, terá vede zísáí statstcých údajů a jejch zpracováí teore statsty - věda o stavu, vztazích a vývoj

Více

10 částic. 1,0079 1, kg 1, kg. 1, kg. 6, , kg 0, kg 1,079g

10 částic. 1,0079 1, kg 1, kg. 1, kg. 6, , kg 0, kg 1,079g ..7 oláí veličiy I Předpoklady: 0 Opakováí z iulé hodiy: Ato uhlíku A C C je přibližě x těžší ež ato H. Potřebujee,0 0 atoů uhlíku C abycho dohoady získali g látky. Pokud áe,0 0 částic látky, říkáe, že

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

8.1.3 Rekurentní zadání posloupnosti I

8.1.3 Rekurentní zadání posloupnosti I 8.. Rekuretí zadáí poslouposti I Předpoklady: 80, 80 Pedagogická pozámka: Podle mých zkušeostí je pro studety pochopitelější zavádět rekuretí posloupost takto (sado kotrolovatelou ukázkou), ež dosazováím

Více

a my chceme data proložit nějakou hladkou funkcí, která by vystihovala hlavní vlastnosti dat, ale ignorovala malé fluktuace a nepřesnosti.

a my chceme data proložit nějakou hladkou funkcí, která by vystihovala hlavní vlastnosti dat, ale ignorovala malé fluktuace a nepřesnosti. Vyováváí dat Naše pozoováí jsou dáa tabulkou čísel, kde y y y i často bývají časové údaje, a my chceme data položit ějakou hladkou fukcí, kteá by vystihovala hlaví vlastosti dat, ale igoovala malé fluktuace

Více

1.1 Definice a základní pojmy

1.1 Definice a základní pojmy Kaptola. Teore děltelost C. F. Gauss: Matematka je královou všech věd a teore čísel je králova matematky. Základím číselým oborem se kterým budeme v této kaptole pracovat jsou celá čísla a pouze v ěkterých

Více

, jsou naměřené a vypočtené hodnoty závisle

, jsou naměřené a vypočtené hodnoty závisle Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,

Více

Petr Šedivý Šedivá matematika

Petr Šedivý  Šedivá matematika LIMITA POSLOUPNOSTI Úvod: Kapitola, kde poprvé arazíme a ekoečo. Argumety posloupostí rostou ade všechy meze a zkoumáme, jak vypadají hodoty poslouposti. V kapitole se sezámíte se základími typy it a početími

Více

8.1.2 Vzorec pro n-tý člen

8.1.2 Vzorec pro n-tý člen 8 Vzorec pro -tý čle Předpolady: 80 Pedagogicá pozáma: Přílady a hledáí dalších čleů posloupostí a a objevováí vzorců pro -tý čle do začé míry odpovídají typicým příladům z IQ testů, teré studeti zají

Více

14. Korelace Teoretické základy korelace Způsoby měření závislostí pro různé typy dat

14. Korelace Teoretické základy korelace Způsoby měření závislostí pro různé typy dat 4. Korelace 4. Teoretcké základy korelace 4. Způsoby měřeí závslostí pro růzé typy dat Př prác se statstckým údaj se velm často setkáváme s daty, která jsou tvořea dvojcem, trojcem hodot. Složky takovýchto

Více

8.2.7 Geometrická posloupnost

8.2.7 Geometrická posloupnost 87 Geometrická posloupost Předpokldy: 80, 80, 80, 807 Pedgogická pozámk: V hodiě rozdělím třídu dvě skupiy kždá z ich dělá jede z prvích dvou příkldů Větši studetů obou skupi potřebuje pomoc u tbule Ob

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

Úlohy krajského kola kategorie B

Úlohy krajského kola kategorie B 61. očník matematické olmpiád Úloh kajského kola kategoie B 1. Je dáno 01 kladných čísel menších než 1, jejichž součet je 7. Dokažte, že lze tato čísla ozdělit do čtř skupin tak, ab součet čísel v každé

Více

Závislost slovních znaků

Závislost slovních znaků Závislost slovích zaků Závislost slovích (kvalitativích) zaků Obměy slovího zaku Alterativí zaky Možé zaky Tříděí věcé sloví řady: seřazeí obmě je subjektiví záležitostí (podle abecedy), možé i objektiví

Více

Regrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n

Regrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n Regrese Aproxmace metodou ejmeších čtverců v v ( ) = f x v v x x x x Je dáo bodů [x, ], =,,, předpoládáme závslost a x a chceme ajít fuc, terá vsthuje teto tred - Sažíme se proložt fuc = f x ta, ab v =

Více

Úvod do zpracování měření

Úvod do zpracování měření Úvod do zpracováí měřeí Teore chb Opakujeme-l měřeí téže fzkálí velč za stejých podmíek ěkolkrát za sebou, dostáváme zpravdla růzé hodot. Měřeé velčě přísluší však jedá správá hodota. Každou odchlku aměřeé

Více

TĚŽIŠTĚ A STABILITA. Těžiště tělesa = bod, kterým stále prochází výslednice tíhových sil všech jeho hmotných bodů, ať těleso natáčíme jakkoli

TĚŽIŠTĚ A STABILITA. Těžiště tělesa = bod, kterým stále prochází výslednice tíhových sil všech jeho hmotných bodů, ať těleso natáčíme jakkoli SAIKA - těžště ĚŽIŠĚ A SABILIA ěžště tělesa bod, kterým stále prochází výsledce tíhových sl všech jeho hmotých bodů, ať těleso atáčíme jakkol bod, ke kterému astává rovováha mometů způsobeých tíhou jedotlvých

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost Dráha [m] 9. Měřeí závslostí ve statstce Měřeí závslostí ve statstce se zývá především zkoumáím vzájemé závslost statstckých zaků vícerozměrých souborů. Závslost přtom mohou být apříklad pevé, volé, jedostraé,

Více

8.1.2 Vzorec pro n-tý člen

8.1.2 Vzorec pro n-tý člen 8.. Vzorec pro -tý čle Předpolady: 80 Pedagogicá pozáma: Myslím, že jde o jedu z velmi pěých hodi. Přílady a hledáí dalších čleů posloupostí a a objevováí vzorců pro -tý čle do začé míry odpovídají typicým

Více

Beta faktor a ekvitní prémie z cizího trhu: přenositelnost a statistická spolehlivost

Beta faktor a ekvitní prémie z cizího trhu: přenositelnost a statistická spolehlivost Beta fakto a ekvtí péme z czího thu: přeostelost a statstcká spolehlvost Veze 15. 4. 014 chal Dvořák Abstakt Cílem textu je lustovat že český buzoví th eobsahuje dostatečý počet ttulů ke koektímu staoveí

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

Testování statistických hypotéz

Testování statistických hypotéz Testováí statstckých hypotéz - Testováí hypotéz je postup, sloužící k ověřeí předpokladů o ZS (hypotéz a základě výběrových dat (tj. hodot z výběrového souboru. - ypotéza = určtý předpoklad o základím

Více

1.1 Rozdělení pravděpodobnosti dvousložkového náhodného vektoru

1.1 Rozdělení pravděpodobnosti dvousložkového náhodného vektoru Lekce Normálí rozděleí v rově V této lekc se udeme věovat měřeí korelačí závslost dvojce áhodých velč (dvousložkového áhodého vektoru) Vcházet udeme z ormálího rozděleí pravděpodoost áhodého vektoru v

Více

1. K o m b i n a t o r i k a

1. K o m b i n a t o r i k a . K o m b i a t o r i k a V teorii pravděpodobosti a statistice budeme studovat míru výskytu -pravděpodobostvýsledků procesů, které mají áhodý charakter, t.j. při opakováí za stejých podmíek se objevují

Více

ď ž Č č č ě Ů š ž Ů Ů Ů ě Ů Ů ě ů Úč ě ě š Š ů Ů ú Ů ěž Ů ě ě Ů č ě Ů ÚČ Č ě č Úč č č š ě Ů ě ě úč č š č Č č Ů č č ÚČ ž š č ů č č Ž ň ž č ě ž ÚČ Č č č č š č ě Ú úč Ů ž ě š Ů ě Ů č š Ů č Í Ů č Ů ě č č ů

Více

Pro statistické šetření si zvolte si statistický soubor např. všichni žáci třídy (několika tříd, školy apod.).

Pro statistické šetření si zvolte si statistický soubor např. všichni žáci třídy (několika tříd, školy apod.). STATISTIKA Statistické šetřeí Proveďte a vyhodoťte statistické šetřeí:. Zvolte si statistický soubor. 2. Zvolte si určitý zak (zaky), které budete vyhodocovat. 3. Určete absolutí a relativí četosti zaků,

Více

VY_52_INOVACE_J 05 01

VY_52_INOVACE_J 05 01 Název a adresa školy: Středí škola průmyslová a umělecká, Opava, příspěvková orgazace, Praskova 399/8, Opava, 74601 Název operačího programu: OP Vzděláváí pro kokureceschopost, oblast podpory 1.5 Regstračí

Více

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR Středí hodoty Artmetcý průměr vážeý ze tříděí Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR Výzam a užtí vážeého artmetcého průměru uážeme a ásledujících příladech Přílad 0 Ve frmě Gama Blatá máme soubor

Více

3. Lineární diferenciální rovnice úvod do teorie

3. Lineární diferenciální rovnice úvod do teorie 3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

ZÁKLADY STAVEBNÍ MECHANIKY

ZÁKLADY STAVEBNÍ MECHANIKY VYSOKÉ UČENÍ TECHNICKÉ V BNĚ AKULTA STAVEBNÍ ING. JIŘÍ KYTÝ, CSc. ING. ZBYNĚK KEŠNE, CSc. ING. OSTISLAV ZÍDEK ING. ZBYNĚK VLK ZÁKLADY STAVEBNÍ ECHANIKY ODUL BD0-O SILOVÉ SOUSTAVY STUDIJNÍ OPOY PO STUDIJNÍ

Více

Chyby přímých měření. Úvod

Chyby přímých měření. Úvod Chyby přímých měřeí Úvod Př zjšťováí velkost sledovaé velčy dochází k růzým chybám, které ovlvňují celkový výsledek. V pra eestuje žádá metoda měřeí a měřcí zařízeí, které by bylo absolutě přesé, což zameá,

Více

Pravděpodobnostní modely

Pravděpodobnostní modely Pravděpodobostí modely Meu: QCEpert Pravděpodobostí modely Modul hledá metodou maimálí věrohodosti (MLE Maimum Likelihood Estimate) statistický model (rozděleí) který ejlépe popisuje data. Je přitom k

Více

7.2.4 Násobení vektoru číslem

7.2.4 Násobení vektoru číslem 7..4 Násobeí vektor číslem Předpoklady: 703 Tetokrát začeme hed defiicí. Násobek lového vektor číslem k je lový vektor. Násobek elového vektor = B Ačíslem k je vektor C A, přičemž C je bod, pro který platí:

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

Přednáška č. 10 Analýza rozptylu při jednoduchém třídění

Přednáška č. 10 Analýza rozptylu při jednoduchém třídění Předáška č. 0 Aalýza roztylu ř jedoduchém tříděí Aalýza roztylu je statstcká metoda, kterou se osuzuje romělvost oakovaých realzací áhodého okusu tj. romělvost áhodé velčy. Náhodá velča vzká za relatvě

Více

Funkce. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Funkce. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Fukce RNDr. Yvetta Bartáková Gymázium, SOŠ a VOŠ Ledeč ad Sázavou Limita poslouposti a fukce VY INOVACE_0 9_M Gymázium, SOŠ a VOŠ Ledeč ad Sázavou A) Limita poslouposti Říkáme, že posloupost a je kovergetí,

Více

Derivace součinu a podílu

Derivace součinu a podílu 5 Derivace součiu a podílu Předpoklad: Pedagogická pozámka: Následující odvozeí jsem převzal a amerického fzikálího kursu Mechaical Uiverse Možá eí dostatečě rigorózí, ale mě osobě se strašě líbí spojitost

Více

FLUORIMETRIE. Jan Fähnrich. Obecné základy

FLUORIMETRIE. Jan Fähnrich. Obecné základy FLUORIMETRIE Ja Fährch Obecé základ Fluormetre je aaltcká metoda vužívající schopost ěkterých látek vsílat (emtovat) po předchozím převedeí do vzbuzeého (exctovaého) stavu fluorescečí zářeí v ultrafalové

Více

Interpolace a aproximace. Interpolace algebraickým polynomem a aproximace metodou nejmenších čtverců

Interpolace a aproximace. Interpolace algebraickým polynomem a aproximace metodou nejmenších čtverců Iterpolce promce Iterpolce lgebrckým polomem p g ý p promce metodou ejmeších čtverců Iterpolce lgebrckým polomem Apromce metodou ejmeších čtverců Úloh. Dá tbulk hodot,, j pro j. Hodot jsou přesé. Hledáme

Více

Testy statistických hypotéz

Testy statistických hypotéz Úvod Testy statstckých hypotéz Václav Adamec vadamec@medelu.cz Testováí: kvalfkovaá procedura vedoucí v zamítutí ebo ezamítutí ulové hypotézy v podmíkách ejstoty Testy jsou vázáy a rozděleí áhodých velč

Více

1.7.4 Těžiště, rovnovážná poloha

1.7.4 Těžiště, rovnovážná poloha 74 ěžiště, rovovážá poloha Předpoklady: 00703 Př : Polož si sešit a jede prst tak, aby espadl Záleží a místě, pod kterým sešit podložíš? Proč? Musíme sešit podložit prstem přesě uprostřed, jiak spade Sešit

Více

U. Jestliže lineární zobrazení Df x n n

U. Jestliže lineární zobrazení Df x n n MATEMATICKÁ ANALÝZA III předášky M. Krupky Zmí semestr 999/ 3. Iverzí a mplctí zobrazeí V této kaptole uvádíme dvě důležté věty, které acházeí aplkace v moha oblastech matematky: Větu o verzím a větu o

Více

SEMESTRÁ LNÍ PRÁ CE. Licenč ní studium STATISTICKÉZPRACOVÁ NÍ DAT PŘ I KONTROLE A Ř ÍZENÍ JAKOSTI

SEMESTRÁ LNÍ PRÁ CE. Licenč ní studium STATISTICKÉZPRACOVÁ NÍ DAT PŘ I KONTROLE A Ř ÍZENÍ JAKOSTI SEMESTRÁ LNÍ PRÁ CE Lceč í tudum STTISTICKÉZPRCOVÁ NÍ DT PŘ I KONTROLE Ř ÍZENÍ JKOSTI Předmě t MTEMTICKÉPRINCIPY NLÝ ZY VÍCEROZMĚ RNÝ CH DT Ú ta epemetá lí bofamace, Hadec Ká loé Ig. Mata Růžčkoá PDF byl

Více

1.2. NORMA A SKALÁRNÍ SOUČIN

1.2. NORMA A SKALÁRNÍ SOUČIN 2 NORMA A SKALÁRNÍ SOUČIN V této kapitole se dozvíte: axiomatickou defiici ormy vektoru; co je to ormováí vektoru a jak vypadá Euklidovská orma; axiomatickou defiici skalárího (také vitřího) součiu vektorů;

Více

Struktura a architektura počítačů

Struktura a architektura počítačů Struktur rchtektur počítčů Číselé soustvy Převody me soustvm, kódy Artmetcké operce České vysoké učeí techcké Fkult elektrotechcká Ver J Zděek 3 Polydcké číselé soustvy (počí) Hodot čísl v soustvě se ákldem

Více

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n 8.3. Limity ěkterých posloupostí Předpoklady: 83 Opakováí z miulé hodiy: 8 Hodoty poslouposti + se pro blížící se k ekoeču blíží k a to tak že mezi = posloupostí a číslem eexistuje žádá mezera říkáme že

Více

4.5.9 Vznik střídavého proudu

4.5.9 Vznik střídavého proudu 4.5.9 Vzik střídavého proudu Předpoklady: 4508 Miulá hodia: Pokud se v uzavřeém závitu měí magetický idukčí tok, idukuje se v ěm elektrické apětí =. Př. 1: Vodorově orietovaá smyčka se pohybuje rovoměrě

Více

Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i

Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i : ometové míry polohy zahrují růzé druhy průměrů pomocí kterých můžeme charakterzovat cetrálí tedec dat ometové míry polohy jsou jedoduché číselé charakterstky které se vyčíslují ze všech prvků výběru

Více

UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesné výchovy

UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesné výchovy UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesé výchovy VYBRANÉ NEPARAMETRICKÉ STATISTICKÉ POSTUPY V ANTROPOMOTORICE Zdeěk Havel Davd Chlář 0 VYBRANÉ NEPARAMETRICKÉ

Více

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika)

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika) Kvatová a statistická fyzika (Termodyamika a statistická fyzika) Boltzmaovo - Gibbsovo rozděleí - ilustračí příklad Pro ilustraci odvozeí rozděleí eergií v kaoickém asámblu uvažujme ásledující příklad.

Více

Základy korelační analýzy

Základy korelační analýzy Základy koelačí aalýzy Doposud jsme se z hlediska biostatistiky zabývali hodoceím spojitých a diskétích áhodých veliči v jedé ebo více odlišitelých expeimetálích skupiách. Tato kapitola představuje úvod

Více

8. Zákony velkých čísel

8. Zákony velkých čísel 8 Zákoy velkých čísel V této část budeme studovat velm často užívaá tvrzeí o součtech posloupost áhodých velč Nedříve budeme vyšetřovat tvrzeí azývaá souhrě ako slabé zákoy velkých čísel Veškeré úvahy

Více

1. Úvod do základních pojmů teorie pravděpodobnosti

1. Úvod do základních pojmů teorie pravděpodobnosti . Úvod do základích pojmů teore pravděpodobost. Úvodí pojmy Větša exaktích věd zobrazuje své výsledky rgorózě tj. výsledky jsou získáváy a základě přesých formulí a jsou jejch terpretací. Příkladem je

Více

Iterační výpočty projekt č. 2

Iterační výpočty projekt č. 2 Dokumetace k projektu pro předměty IZP a IUS Iteračí výpočty projekt č. 5..007 Autor: Václav Uhlíř, xuhlir04@stud.fit.vutbr.cz Fakulta Iformačích Techologii Vysoké Učeí Techické v Brě Obsah. Úvodí defiice.....

Více

Vztahy mezi základním souborem a výběry. Základní pojmy a symboly. K čemu to je dobré? Výběrové metody zkoumání

Vztahy mezi základním souborem a výběry. Základní pojmy a symboly. K čemu to je dobré? Výběrové metody zkoumání K čemu to je dobé? Obvyklým případem při zpacováí homadých jevů je, že máme poměě malý počet pozoováí ějaké veličiy a chceme učiit závěy o tom, co bychom obdželi, kdybychom měli pozoováí mohokát více.

Více

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n 8.3. Limity ěkterých posloupostí Předpoklady: 83 Pedagogická pozámka: Tuto a tři ásledující hodiy je možé probrat za dvě vyučovací hodiy. V této hodiě je možé vyechat dokazováí limit v příkladu 3. Opakováí

Více

9.1.12 Permutace s opakováním

9.1.12 Permutace s opakováním 9.. Permutace s opakováím Předpoklady: 905, 9 Pedagogická pozámka: Pokud echáte studety počítat samostatě příklad 9 vyjde tato hodia a skoro 80 miut. Uvažuji o tom, že hodiu doplím a rozdělím a dvě. Př.

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více