Cvičení 8 (Teplotní vlivy v pružnosti a pevnosti)
|
|
- Anežka Havlíčková
- před 8 lety
- Počet zobrazení:
Transkript
1 VŠ echnická univerzi Osrv Fkul srjní Kedr pružnsi pevnsi 339 Pružns pevns v energeice Návdy d cvičení Cvičení 8 eplní vlivy v pružnsi pevnsi ur: Jrslv Rjíček Verze: Osrv 9
2 1 Řešené příkldy n prcvičení Cv_8_Př_1 h, knsnní epl án:,,, Δ, α. Ø Δ F Kde α je keficien eplní rzžnsi. Urči: Prdlužení válcvéh ěles. Obr. 1 Předpkldy řešení plns principu superpzice: Phybujeme se v blsi plnsi Hkv zákn lineární bls chvání meriálu. Změn eply je dsečně mlá způsbí puze znedbelné změny chvání meriálu při změně eply nedchází ke změně meriálvých vlsnsí. Při zěžvání vznikjí puze mlé defrmce. Z ěch předpkldů můžeme úlhu rzděli n dvě čási smsně řeši prdlužení d eplních vlivů prdlužení d sil mmenů pd. dle ypu úlhy. Řešení je velmi jednduché je ukázán v b. 1. b. 1 Vliv změny eply Δ Vliv síly F epl Síl F S F epl Síl S Řešené příkldy n prcvičení Cv_8_Př_ sicky neurčiá úlh plynulá změn eply. Δ Ø án:,,, Δ 1, Δ, α. Urči: Rekční síly. Δ 1 Obr. Psup řešení bude sejný jk u klsické sicky neurčié úlhy: Uvlnění. Rvnice rvnváhy. efrmční pdmínk. Vyřešení defrmční pdmínky. Vyřešení susvy rvnic. /Uvlnění, sesvení rvnic rvnváhy, supeň sické neurčisi: Psup je nznčen v následující b.. /7
3 b.. Uvlnění R S Δ R Rvnice rvnváhy F R R Získli jsme jednu rvnici rvnváhy dvě neznámé - rekce R, R. K řešení přebujeme ješě jednu rvnici defrmční pdmínku úlh je jednu sicky neurčiá. Hledáme jednu defrmční pdmínku. b/ efrmční pdmínky: K vyvření defrmční pdmínky můžeme čs využí vzeb mezi ělesy, přípdně ěles rzděli n něklik čásí pd. viz b. 3. b. 3. Vrin 1: V mísě, je veknuí, keré S Δ v m přípdě zchycuje prdlužení způsbené změnu eply. Rvnice ěch vzeb můžeme puží přím jk defrmční pdmínky. efrmční pdmínky: y, y. c/ Vyřešení psunů či nčení: V m krku lze s výhdu puží Csigliánvých vě. Psup u defrmčních pdmínek pdržených v předchzí bulce je nznčen v b. 4. b. 4. Vrin: Schém: Hledáme prdlužení: y?. S Δ R y. S R d/ Řešení susvy rvnic, snvení rekcí: Nlezené funkce dsdíme zpě d defrmčních pdmínek úprvu řešením susvy rvnic získáme hdny rekcí. Psup je nznčen v b. 5. b. 5. Vrin: Rekce: R R y S S R S R R S Z výsledku je prné, že veliks rekcí nezávisí n délce pruu. Jedná se zížení lkvu svu silu, pr bychm měli ješě zknrlv vrvu sbiliu. R 3/7
4 3 Řešené příkldy n prcvičení Cv_8_Př_3 sicky určiá yč neknsnní epl Δ Ø α P λ Δ 1 Obr. 3 1 Δ án:,,, Δ 1, Δ, α, α p, λ. Urči: Prdlužení / Pr. csh K b/ Pr, csh K P kde K, λ je epelná vdivs yče, α p je S sučiniel přesupu epl, S je plch průřezu yče. Máme yč, keru n jedné srně zhřejeme ve veknuí, řešíme usálený sv. Prvním krkem při řešení eplně-defrmční úlhy je určení eplníh ple. V nší úlze je eplní ple přím zdán dvěm rvnicemi, b. eplní ple je v přípdě / určen rvnicí přímky. V přípdě b/ rvnicí ppisující scinární vedení epl yčí knečné délky. Při řešení é úlhy vyjdeme z rvnice pr prdlužení v elemenu yče p inegrci é rvnice získáme celkvé prdlužení: d d d. / U první vriny je nuné nejprve urči knsny,. Přímk prchází bdy [,Δ 1 ], [,Δ ]. szením d rvnice úprvu získáme přebné knsny: Nyní p inegrci získáme prdlužení: 1 1 d 1. b/ U druhé vriny jsu knsny sučásí řešení eplní úlhy. Můžeme edy rvnu řeši inegrál s využiím subsiuce: csh K d csh K d csh K csh K sinh K sinh K gh K csh K K. K csh K K Slžiější inegrály můžeme řeši pmcí symblických řešičů, npř. v prgrmu MHC, neb pmcí memických bulek inegrálů. Jedná se určié inegrály můžeme edy pr řešení využí i numerických med. 4/7
5 4 Řešené příkldy n prcvičení Cv_8_Př_4 sicky určiá hyb neknsnní epl án:,, b,, Δ 1, Δ, α. Δ 1 Δ Urči: Npjs průhyb pr y y. Obr. 4 1 Máme bdélníkvu yč s rzměry b, keru zhřejeme n krších srnách b n rzdílné eply 1,. Řešíme usálený sv z předpkldu, že rzlžení epl v ělese bude lineární vyjádřen rvnicí y y, prmery, určíme pdbně jk v předchzím příkldu. M σ Δ z ds Vlivem rzdílnéh rzlžení epl v ělese vznikne hyb. Obecně npěí nebude knsnní, bude závise n plze v řezu suřdný sysém zy, viz Obr. 5. V řezu musí pli rvnice rvnváhy, v m přípdě budu nenulvé ři rvnice:f i, M iz, M iy. edy sesvíme silvu rvnici rvnváhy v se, mmenvu rvnici rvnváhy vzhledem k se z mmenvu rvnici rvnváhy vzhledem k se y. Nrmálvé npěí σ půsbí n plše ds, plh plchy ds je určen suřdnicemi y z. Silvá rvnice rvnváhy v se : F i ds P dszení úprvě z é rvnice plyne, že pčáek suřdnéh sysému yz je v ěžiši plchy. Mmenvá rvnice rvnváhy vzhledem k se y: M iy z ds. P dszení úprvě z é rvnice plyne, že deviční mmen musí bý nulvý. Mmenvá rvnice rvnváhy vzhledem k se z: M iy y ds M. sdíme Hkův zákn pr prsý h definici pměrnéh prdlužení při změně eply : Δ 1 Obr. 5 y ds M y ds M y y ds M. Rzdílné eply se edy prjeví pdbně jk mmen M hyb, kerý již umíme řeši. Psup řešení je nznčen v následující b. 6. y 5/7
6 b.6 Vrin: Hledáme mmen: M y y ds Schém: S Δ Δ 1 Výsledný mmen je knsnní: 3 y y 3 M y y ds M 3 1 Z prmeru vyplývá prdlužení nsníku, viz příkld 1. Úlhu můžeme nhrdi - hybem řeši jk hyb: M Npěí: y S J M Průhyb: y J M 5 Příkldy n prcvičení Cv_8_Př_5 enksěnná nádb Δ Ø Obr. 6 p án:,, p,,, Δ, α. Urči: Změnu průměru vlivem lku eply. Smsně změnu délky vlivem eply lku. Uvžuje puze vliv lku p změny eply Δ, sní vlivy znedbeje npř. vlsní íh nádby. Řešíme zjedndušenu úlhu: předpkládáme knsnní eplu p lušťce sěny, nádb je enksěnná ve sěně je membránvá npjs bez mmenů. Úlhu rzdělíme pmcí superpzice n smsné řešení enksěnné nádby viz cvičení 4 smsné řešení eply. Řešení enksěnné nádby zížené vniřním přelkem: K řešení npjsi využijeme m p plcevu rvnici cvičení 4 příkld 1:. m p Meridiánvé npěí ve směru sy válce: m pr změnu délky. 4 p ečné npěí: pr změnu průměru. U enksěnné nádby předpkládáme knsnní npěí p lušťce nádby, v nádbě vzniká hvá npjs. Obecně pr prdlužení musí pli, z Hkv zákn dsdíme z pměrné prdlužení. V přípdě, že chceme zjisi změnu průměru, 6/7
7 7/7 dsdíme mís bvd nádby. Nyní zjisíme změnu průměru prvnáním bvdu : Řešení enksěnné nádby se změnu eply: Pr prdlužení musí pli. V přípdě, že chceme zjisi změnu průměru, dsdíme mís bvd nádby. Nyní zjisíme změnu průměru prvnáním bvdu : Celkvá změn průměru způsbená lkem změnu eply je:. Smsně dsďe číselné hdny spčěe změnu délky nádby. 6 ierur [1] Szim, M. kl. Sdílení epl
1 ROVNOVÁHA BODU Sestavte rovnice rovnice rovnováhy bodu (neznámé A,B,C) Určete A pro konstrukci z příkladu
Sbírka bude dplňvána. Příští dplněk budu příklady na vnitřní síly v diskrétních průřeech. Připmínky, pravy, návrhy další příklay jsu vítány na rer@cml.fsv.cvut.c. mbicí sbírky je hlavně jedntně definvat
České vysoké učení technické v Praze, Fakulta strojní PRUŽNOST A PEVNOST II PŘEDNÁŠKY. (technická plasticita) Jan Řezníček
České vyské učení ecnické v Prze, Fkul srjní PRUŽNOST A PEVNOST II PŘENÁŠY (ecnická sici) Jn Řezníček Pr 0 Tex nepršel jzykvu ni redkční úprvu Jn Řezníček, Fkul srjní ČVUT v Prze 0 ČESÉ VYSOÉ UČENÍ TECHNICÉ
České vysoké učení technické v Praze, Fakulta strojní PRUŽNOST A PEVNOST II PŘEDNÁŠKY. DOPLNĚK (technická plasticita) Jan Řezníček
České vyské učení ecnické v Pze, Fkul sjní PRUŽNOST A PEVNOST II PŘENÁŠY OPLNĚ (ecnická plsici) Jn Řezníček P 05 Te nepšel jzykvu ni edkční úpvu Jn Řezníček, Fkul sjní ČVUT v Pze 0, 0, 0 05 ČESÉ VYSOÉ
České vysoké učení technické v Praze, Fakulta strojní. DPŽ + MSK Jurenka, příklad I. Dynamická pevnost a životnost. Jur, příklad I
1/10 Dynmická pevnst živtnst Jur, příkld I Miln Růžičk, Jsef Jurenk, Mrtin Nesládek jsef.jurenk@fs.cvut.cz /10 ktr intenzity npětí příkld 1 Jk velké mhu být síly půsbící n nsník n dvu pdprách s převislými
INTEGRÁLNÍ POČET. Primitivní funkce. Neurčitý integrál. Pravidla a vzorce pro integrování
INTEGRÁLNÍ POČET Primiivní unkce. Neurčiý inegrál Deinice. Jesliže pro unkce F einovné n oevřeném inervlu J plí F pro kžé J, říkáme, že F je primiivní unkcí k unkci n J. Vě. Je-li spojiá n J, pk k ní eisuje
Finanční management. Zabezpečená pozice. Cena opce, parita kupní a prodejní opce, Black- Scholesův vzorec, reálné opce
Finanční managemen Cena pce paria kupní a prdejní pce Black- chlesův vzrec reálné pce Máme-li dvě finanční akiva - akcie a pci na y akcie - můžeme dsáhnu bezrizikvé zabezpečené pzice. Změna ceny jednh
4. Střední radiační teplota; poměr osálání,
Sálavé a průmyslové vyápění (60). Sřední radiační eploa; poměr osálání, operaivní a výsledná eploa.. 08 a.. 08 Ing. Jindřich Boháč TEPLOTY Sřední radiační eploa - r Sálavé vyápění = PŘEVÁŽNĚ sálavé vyápění
Kinematika hmotného bodu
DOPLŇKOVÉ TEXTY BB1 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ Kinemik hmoného bodu Obsh Klsická mechnik... Vzžný sysém... Polohoý ekor... Trjekorie... Prmerické ronice rjekorie... 3 Příkld 1... 3
Obecnou rovnici musíme upravit na středovou. 2 2 2 2 2 2 2 2. leží na kružnici musí vyhovovat její rovnici dosadíme ho do ní.
75 Hledání kružnic I Předpklady: 750, kružnice z gemetrie Př : Kružnice je dána becnu rvnicí x y x y plměr Rzhdni, zda na kružnici leží bd A[ ; ] + + + 6 + = 0 Najdi její střed a Obecnu rvnici musíme upravit
Exentricita (výstřednost) normálové síly
16. Železbetnvé slupy Slupy patří mezi tlačené knstrukce. Knstrukční prvky z betnu prstéh a slabě vyztuženéh jsu namáhány kmbinací nrmálvé síly N d a hybvéh mmentu M d. Jde tedy mimstředný tlak výpčtvé
MATEMATIKA II V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADECH CVIČENÍ Č. Ing. Pera Schreiberová, Ph.D. Osrava 0 Ing. Pera Schreiberová, Ph.D. Vysoká škola báňská Technická
Kombinované namáhání prutů s aplikací mezních podmínek pro monotónní zatěžování.
Cvičení Kmbinvané namáhání prutů s aplikací mezních pdmínek pr mntónní zatěžvání. Prutvá napjatst V bdech prutu má napjatst zvláštní charakter značuje se jak prutvá a je určena jedním nrmálvým σ a jedním
Porovnání výsledků analytických metod
Metdický lit 1 EURCHEM-ČR 212 Editr: Zbyněk Plzák (plzk@iic.c.cz) Prvnání výledků nlytických metd Chrkterizce výknnti nlytické měřící metdy je jedním z důležitých znků nlytickéh měřicíh ytému, zejmén pr
2.2.2 Měrná tepelná kapacita
.. Měrná epelná kapacia Předpoklady: 0 Pedagogická poznámka: Pokud necháe sudeny počía příklady samosaně, nesihnee hodinu za 45 minu. Můžee využí oho, že následující hodina je aké objemnější a použí pro
Digitální učební materiál
Digiální učení meriál Číslo projeku CZ..7/../.8 Náev projeku Zkvlinění výuk prosřednicvím ICT Číslo náev šlon klíčové kivi III/ Inovce kvlinění výuk prosřednicvím ICT Příjemce podpor Gmnáium, Jevíčko,
SMART Notebook Math Tools 11
SMART Ntebk Math Tls 11 Operační systémy Windws Uživatelská příručka Upzrnění chranných známkách SMART Bard, SMART Ntebk, smarttech, l SMART a všechna značení SMART jsu chranné známky neb reistrvané chranné
Střední průmyslová škola strojní a elektrotechnická. Resslova 5, Ústí nad Labem. Fázory a komplexní čísla v elektrotechnice. - Im
Střední průmyslvá škla strjní a elektrtechnická Resslva 5, Ústí nad Labem Fázry a kmplexní čísla v elektrtechnice A Re + m 2 2 j 1 + m - m A A ϕ ϕ A A* Re ng. Jarmír Tyrbach Leden 1999 (2/06) Fázry a kmplexní
Rovnoměrně zrychlený pohyb v grafech
..9 Ronoměrně zrychlený pohyb grfech Předpokldy: 4 Př. : N obrázku jsou nkresleny grfy dráhy, rychlosi zrychlení ronoměrně zrychleného pohybu. Přiřď grfy eličinám. s,, ronoměrně zrychlený pohyb: zrychlení
Nakloněná rovina II
1215 Nkloněná rovin II Předokldy: 1214 Pomůcky: siloměr 2,5 N, sd n měření řecí síly Pedoická oznámk: V éo následující hodině se nerobírá žádná nová lák Přeso jde o oměrně důležié hodiny, roože žáci se
Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat.
4 Inegrace subsiucí 4 Inegrace subsiucí Průvodce sudiem Inegrály, keré nelze řeši pomocí základních vzorců, lze velmi časo řeši subsiuční meodou Vzorce pro derivace elemenárních funkcí a věy o derivaci
Dynamika hmotného bodu. Petr Šidlof
Per Šidlof Úvod opakování () saika DYNAMIKA kinemaika Dynamika hmoného bodu Dynamika uhého ělesa Dynamika elasických ěles Teorie kmiání Aranz/Bombardier (Norwegian BM73) Před Galileem, Newonem: k udržení
14. přednáška. Přímka
14 přednáška Přímka Začneme vyjádřením přímky v prostoru Přímku v prostoru můžeme vyjádřit jen parametricky protože obecná rovnice přímky v prostoru neexistuje Přímka v prostoru je určena bodem A= [ a1
ď ď ř ď ž ď ť č ž Č ř ď ď č ď ž ž ž ý ř ť ď ť ž ů Ú ý ř ý óř č ý ž ž žž č ř ď ý ý ý ý ý ř ž ř č ý ž ž ž ŘÍ Í č ý ř č ď ú č ý ž ú č č č ř č ř ý č ž ž ů č Í ž č Í ž ř ú ú ř ž ř ž ú ž č ť ť Ž ř ú ý ž ú ý
2. cvičení vzorové příklady
Příklad. cvičení vzrvé příklady Nakreslete zatěžvací brazce slžek ydrstatickýc sil, půsbícíc na autmatický segementvý jezvý uzávěr s ybným ramenem. Vypčtěte dntu suřadnice, udávající plu ladiny v tlačené
Součásti jsou v praxi často namáhány dvěma i více druhy namáhání (napětí)
Slžené namáhání Sučásti jsu v praxi čast namáhány dvěma i více druhy namáhání (napětí) Kmbinace surdých napětí (napřílad tah a hyb) (rut a smy) Napětí jdu v tmt případě slučvat a výsledné napětí je dán
( ) 1.7.8 Statika I. Předpoklady: 1707
.7.8 Sik I Přeokly: 707 Peoická oznámk: Hoinu rozěluji n vě čási. V rvní čási (5 minu) očíáme rvní čyři říkly, ve ruhé (0 minu) zývjící ři. Př. : N koncích yče o hmonosi 0 k élce m jsou zvěšen závží o
Odvození matematického modelu nákladového controllingu
Odvzení maemaickéh mdelu nákladvéh cnrllingu Pr dvzení maemaickéh mdelu i veškeré další úvahy a výklad pužijeme pdle nás nejslžiější případ - edy výrbní pdnik s charakerem hrmadné výrby. 1.1 Schéma maemaickéh
Řešení soustav lineárních rovnic
Řešeí sousv lieáríc rovic Sousv lieáríc rovic Sousvou m lieáríc rovic o ezámýc rozumíme sousvu : Kde ij i R M m m Čísl ij zýváme koeficiey sousvy čísl i soluí čley Uvedeou sousvu udeme zči Sm m M m Homogeí
Pružnost a plasticita II 3. ročník bakalářského studia. doc. Ing. Martin Krejsa, Ph.D. Katedra stavební mechaniky
Pružnst a plasticita II 3. rčník bakalářskéh studia dc. Ing. Martin Krejsa, Ph.D. Katedra stavební mechanik Základní infrmace cvičení Předmět: 8-0/0 - Pružnst a plasticita II Přednášející: dc. Ing. Martin
FINANČNÍ MATEMATIKA- ÚVĚRY
Projek ŠABLONY NA GVM Gymnázium Velké Meziříčí regisrační číslo projeku: CZ.1.07/1.5.00/4.0948 IV- Inovace a zkvalinění výuky směřující k rozvoji maemaické gramonosi žáků sředních škol FINANČNÍ MATEMATIKA-
ř řč č Í ř č ú Í ř č š č č ř č ď č š Ž č š ň č ř š ř ú ř ř ř Í š Ý š š ří ó š ď ř š ř š Ž Ž Á š Í ó š ř š ř č ň čš ř Ž č č š Ď ř Ž říč ď ó ď č ň Í š Š Á š ř ř ř ó č ř š ř Š Ť ř č č ř ň č ř ňš č É Ž Ř ÚŽ
2.2.11 Slovní úlohy vedoucí na lineární rovnice II
2.2.11 Slvní úlhy veucí na lineární rvnice II Přepklay: 2210 Př. 1: Otec s ceru šli na výlet. Otcův krk měří 80 cm, cera je ještě malá a jeen krk má luhý puze 50 cm. Jak luhý byl výlet, kyž cera ušla tři
8. cvičení z Matematiky 2
8. cvičení z Mtemtiky 2 11.-1. dubn 2016 8.1 Njděte tři pozitivní čísl jejichž součin je mximální, jejichž součet je roven 100. Zdání příkldu lze interpretovt tké tk, že hledáme mximální objem kvádru,
( t) ( t) ( t) Nerovnice pro polorovinu. Předpoklady: 7306
7.3.8 Nerovnice pro polorovinu Předpokldy: 736 Pedgogická poznámk: Příkld 1 není pro dlší průěh hodiny důležitý, má smysl pouze jko opkování zplnění čsu při zpisování do třídnice. Nemá smysl kvůli němu
řž ý ř é ý é ý Í ř é Ž ř Ž ř š é řž ť Č Č Č řž ť Č řž ř ť ř řž é é Ž Š Š ŽÍ ů é š é ý š Š Ž ř é ý řž říž řž řž Ž ř ý ř ů Ž Í Ž ř é š ů Š š é ý ý ř ř ž
Í ÚŘ š š ý úř ž ř Č Ž ř ů Á Ř Ě ž Í Č Á ý Ě ř ý Š é é ř ň é é ř é ý Č ý úř ž ř ř š ý úř Í ů é ř š ý úř Í ř ř é ř š ý úř ú ř é ž é ÁŘ É Ž Í Í Č é Ď ů é ú ř é Ě ú ú ř ý š é é ř ň é é ř é ý Ž ý ú Í Íú ú ř
Lineární stabilita a teorie II. řádu
Lineární stabilita a teorie II. řádu Sestavení podmínek rovnováhy na deformované konstrukci Konstrukce s a bez počáteční imperfekce Výpočet s malými vs. s velkými deformacemi ANKC-C 1 Zatěžovacídráhy [Šejnoha,
1.5.6 Osa úhlu. Předpoklady:
1.5.6 Osa úhlu Předpklady: 010505 Pedaggická pznámka: Následující příklad je pakvání, které pužívám jak cvičení dhadu. Nechám žáky dhadnut veliksti a při kntrle si pčítají bdy (chyba d 5-3 bdy, d 10-2
VI. Nevlastní integrály
VI. Nevlsní inegrály Obsh 1 Inegrál jko funke horní meze 2 2 Nevlsní inegrály 2 2.1 Nevlsníinegrályvlivemmeze... 3 2.2 Nevlsníinegrályvlivemfunke... 3 2.3 Výpočeneurčiýhinegrálů.... 4 2.3.1 Nevlsníinegrályvlivemmeze...
OPERAČNÍ ZESILOVAČ. Obr. 3. 26
OPEAČNÍ ZESILOVAČ Operační zesilač (dále OZ) je dnes základním saebním prkem bdů zpracáajících spjié analgé signály. Je blk (zesilač) elmi yském zesílení širkém pásm kmičů d Hz (j. sejnsměrných signálů)
Měření napjatosti na povrchu tělesa Tenkostěnná trubka zatížená krutem a vnitřním přetlakem
4. lekce Měření npjosi n povrcu ěles Tenkosěnná rubk zížená kruem vniřním přelkem Obs: 4.1 Úvod 4. Kru enkosěnné válcové rubk 4.3 Tenkosěnná lková válcová nádob 3 4.4 Dvouosá npjos Morov kružnice 4 4.5
ZOBRAZENÍ ELIPSY POMOCÍ AFINITY
echnická univerzia v Liberci Fakula řírdvědně-humaniní a edaggická Kaedra maemaiky a didakiky maemaiky ZORZENÍ ELIPY POMOÍ FINIY Pmcný učební ex Pera Pirklvá Liberec, září 03 Nejdříve si řekneme, c jsu
3.5.1 Shodná zobrazení
3.5.1 hdná zbrazení Předpklady: O zbrazení jsme mluvili, než jsme zavedli funkce. Jde takvu relaci z první mnžiny d druhé, při které každému prvku z první mnžiny přiřazujeme maximálně jeden prvek z mnžiny
1. Kristýna Hytychová
Průřezvé veličiny Výpčet těžiště. Druhy průřezvých veličin a jejich výpčet průřezvých veličin. Steinerva věta. Pužití průřezvých veličin ve výpčtech STK. Průřezvé veličiny ZÁKLADNÍ: plcha průřezu, mment
Mistrovství České republiky v logických úlohách
Mistrvství České republiky v lgických úlhách Blk - Kktejl :5-5: Řešitel Stezky První větší Sendvič Dminvé dlaždice 5 Rzlžené čtverce 6 Dlaždice 7 Klik plí prjdu vedle? 8 Milenci 9 Kulečník Dmin 7x8 Cruxkrs
Konoidy přímkové plochy
Knidy přímkvé plchy Knidy jsu speciální zbrcené přímkvé plchy. Opět jsu určeny třemi křivkami, v případě knidů jsu t: -křivka rvinná (kružnice, elipsa, parabla, ) či prstrvá (šrubvice, ) -vlastní přímka
TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČR ÚHEL
ÚHEL = část rviny hraničená dvěma plpřímkami (VA, VB) se splečným pčátkem (V) úhel AVB: V vrchl úhlu VA, VB ramena úhlu Pznámka: Dvě plpřímky se splečným pčátkem rzdělí rvinu na dva úhly úhel knvexní,
ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK
ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK Vzhledem ke skuečnosi, že způsob modelování elasomerových ložisek přímo ovlivňuje průběh vniřních sil v oblasi uložení, rozebereme v éo kapiole jednolivé možné
Přehled modelů viskoelastických těles a materiálů
Přehled modelů vskoelsckých ěles merálů Klscké reologcké modely Klscké reologcké modely vycházejí z předsvy, že chováí ěles lze hrd chováím sysému složeého z pruž písů, edy z ookeových ewoových ěles. ookeovo
Princip odolnosti. Zkoušky v rámci projektů FRACOF COSSFIRE FICEB. Výsledky zkoušek Teploty. Ověření jednoduché návrhové metody.
12.9.212 Obsah lekce Pžární dlnst celbetnvé strpní knstrukce Eva Dvřákvá, František Wald Princip pžární dlnsti celbetnvé strpní kce dlnsti - nminální nrmvá křivka - nminální nrmvá křivka prlamvané nsníky
Statika 2. Kombinace namáhání N + M y + M z. Miroslav Vokáč 19. října ČVUT v Praze, Fakulta architektury.
2. přednáška N + M + M Jádro průřeu Šikmý ohb M + N M + N M + M + N Jádro průřeu Ecenrický lak a vloučeného ahu Konrolní oák Miroslav Vokáč miroslav.vokac@cvu.c ČVUT v Prae, Fakula archiekur 19. října
MOJE OBLÍBENÉ PŘÍKLADY Z PP II
MOJE OLÍEÉ PŘÍKLDY Z PP II 1. Tenký křivý pru ve vru čvrkružnie je v bodě uožen koubově v bodě posuvně. Pru je zížen osměým momenem M v bodě. Dáno: M,, E J z = kons. Urči: 1. eke v uožení (,, ).. Momen
Teplota a její měření
1 Teplta 1.1 Celsiva teplta 1.2 Fahrenheitva teplta 1.3 Termdynamická teplta Kelvin 2 Tepltní stupnice 2.1 Mezinárdní tepltní stupnice z rku 1990 3 Tepltní rzdíl 4 Teplměr Blmetr Termgraf 5 Tepltní rztažnst
Pružnost a plasticita Program č.2. Fotografie reálné konstrukce
Jméno: Suijní skupin : úerý 14.15 soupu = 2.50 m D = 0.25 m = 100 kn Při výpoču vsupních hono pí priori násoení, rozměry uveené konsrukce jsou v [m] zížení v [kn] [kn/m]. Součinie nhoiého zížení je γ Q
ÚVOD DO DYNAMIKY HMOTNÉHO BODU
ÚVOD DO DYNAMIKY HMOTNÉHO BODU Obsah Co je o dnamika? 1 Základní veličin dnamik 1 Hmonos 1 Hbnos 1 Síla Newonov pohbové zákon První Newonův zákon - zákon servačnosi Druhý Newonův zákon - zákon síl Třeí
1141 HYA (Hydraulika)
ČVUT v Prze, fkul svební kedr hdrulik hdrologie (K4) Přednáškové slid ředměu 4 HYA (Hdrulik) verze: 09/008 K4 v ČVUT To webová sránk nbízí k nhlédnuí/sžení řdu df souborů složených z řednáškových slidů
4. cvičení z Matematiky 2
4. cvičení z Mtemtiky 2 14.-18. březn 2016 4.1 Njděte ity (i (ii (iii (iv 2 +(y 1 2 +1 1 2 +(y 1 2 z 2 y 2 z yz 1 2 y 2 (,y (0,0 2 +y 2 2 y 2 (,y (0,0 2 +y 3 (i Pro funkci f(, y = 2 +(y 1 2 +1 1 2 +(y
Obvykle se používá stejná transformační matice pro napětí a proud.
Trnsformce do složkových sousv náhrd fázorů fyzikálních veličin složkmi V rojfázové sousvě plí I I I c Ic b bc b bc V rnsformovné sousvě plí o I o I I n In m omn m omn Definičně určíme pro npěí 1 bc u
dn dt dt dt 7. Dynamické chování homogenních reaktorů
7. Dynamké hvání hmgenníh reakrů Zahájení čnns reakru ( najíždění, sar-up) Odsavení reakru Regulační zásahy př udržvání předepsanéh režmu N 0 dn d dt d j jrv VR Fj Fj = jrv VR Fj X j 0, n j n j, T T (
2.2.9 Grafické řešení rovnic a nerovnic
..9 Grfické řešení rovnic nerovnic Předpokldy: 0, 06 Př. : Řeš početně i grficky rovnici x + = x. Početně: Už umíme. x + = x x = x = K = { } Grficky: Kždá ze strn rovnice je výrzem pro lineární funkci
VÝPOČET PŘETVOŘENÍ STATICKY URIČTÝCH KONSTRUKCÍCH KOMPLEXNÍ PŘÍKLAD
Miloš Hüne SMR neilové účink vičení 05 Zání VÝPOČET PŘETVOŘENÍ STATICKY URIČTÝCH KONSTRUKCÍCH KOMPLEXNÍ PŘÍKLAD Příkl č. Uvžje konki z O., vpočíeje vooovný pon v oě (znčený eploní ozžnoi vžje α 0 6 K -.
5.2.8 Vzdálenost bodu od přímky
5..8 Vzdálenost bodu od přímky ředpokldy: 507 edgogická poznámk: Tříd počítá smosttně. tnáct minut před koncem se sejdeme n příkld 4 ), který pk řešíme společně. Vzdálenost bodů, je rovn délce úsečky,
14. Soustava lineárních rovnic s parametrem
@66 4. Sousava lineárních rovnic s aramerem Hned úvodem uozorňuji, že je velký rozdíl mezi sousavou rovnic řešenou aramerizováním, roože má nekonečně mnoho řešení zadaná sousava rovnic obsahuje jen číselné
METODICKÝ LIST MATEMATIKY. k souboru ukázkových úloh z. Další soubory ukázkových testových úloh pro školy
Krk z krke k nvé turitě Mturit nnečist 2004 MA2 METODICKÝ LIST k subru ukázkvých úlh z MATEMATIKY Dlší subry ukázkvých testvých úlh pr škly Pdbně jk v předchzích letech i lets Vá nbízíe subry ukázkvých
Laboratorní práce č. 1: Pozorování tepelné výměny
Přírodní vědy moderně a inerakivně FYZIKA 1. ročník šesileého sudia Laboraorní práce č. 1: Pozorování epelné výměny Přírodní vědy moderně a inerakivně FYZIKA 1. ročník šesileého sudia Tes k laboraorní
Řešení: uvolnění - volba reakcí, vnitřní síly řešené z levého tělesa: Ekvivalentní varianty prutu: Deformační podmínka: ΔL=0
Cvičení 4 k procvičení označeno vlevo červeno čaro P/4 až P4/4 osaní D/4 až D4/4, ožný doácí úkol P/4 Dána je soosá příá yč konsanních průřezů =00 s ěžiši T složená z ěděného úsek délky =00 a ocelového
12. MOCNINY A ODMOCNINY
. MOCIY A ODMOCIY.. Vypoči: ( 0 8 8 6 6 0 ( 8 9 7 7 d 8 6 0 ( 0 ( 6 00 ŘEŠEÍ: ( 0 8 ( 0 8+ 6 8 7 6 6 8 ( ( 8 8 6 6 8 96 08 0 8 8 8+ 96+ 08088 6 ( 6 ( ( 6 6 0 ( 0 ( ( ( 6 00 8+ 8+ 87 6 8+ 6+ 6 0 6 ( ( 9
Příklad 1 Osově namáhaný prut průběhy veličin
Příkld 1 Osově nmáhný prut průběhy veličin Zdání Oelový sloup složený ze dvou částí je neposuvně ukotven n obou koníh v tuhém rámu. Dolní část je vysoká, m je z průřezu 1 - HEB 16 (průřezová ploh A b =
Říkáme, že přímka je tečnou elipsy. p T Přímka se protíná s elipsou právě v jednom bodě.
7.5. Elips přímk Předpokldy: 7504, 7505, 7508 Př. : epiš všechny možné vzájemné polohy elipsy přímky. Ke kždému přípdu nkresli obrázek. Z obrázků je zřejmé, že existují tři přípdy vzájemné polohy kružnice
P Ř Í K L A D Č. 1 LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ DESKA - UKÁZKA ŘEŠENÍ METODOU SOUČTOVÝCH MOMENTŮ
P Ř Í K L A D Č. LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ DESKA - UKÁZKA ŘEŠENÍ ETODOU SOUČTOVÝCH OENTŮ Prjek : FRVŠ 0 - Analýza e výpču železbenvýh lkálně pepřenýh eek Řešielký klekiv : n. arin Tipka n. Jef Nvák
Návod k vyplňování formulářů - vyúčtování
Seznam frmulářů služeb Návd k vyplňvání frmulářů - vyúčtvání v P přihlášení d aplikace je třeba zvlit nabídku Finanční vypřádávání a VP a pté pdnabídku Seznam frmulářů. V hrní části kna se nabízí filtr,
ROVNICE, NEROVNICE A PRŮBĚH FUNKCÍ
MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA MATEMATICKÁ SEKCE ROVNICE, NEROVNICE A PRŮBĚH FUNKCÍ (EQUATIONS, UNEQUATIONS AND BEHAVIOUR OF FUNCTIONS) RIGORÓZNÍ PRÁCE OBOR UČITELSTVÍ MATEMATIKY PRO STŘEDNÍ
Zadání příkladu. Použité materiály. Dáno. Prvky nevyžadující návrh smykové výztuže. Příklad P4.2 Namáhání smykem - stropní trám T1
Příklad P4. Namáhání mykem - trpní trám T Zadání příkladu Navrhněte a puďte zadaný trpní trám T z přílhy C na mezní tav prušení puvající ilu dle EN 99--. Pužijete betn C5/0, prtředí uvažujte XC. Trám deku
Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Plocha.
Saika 1 Saika 1 2. přednáška ové veličin Saický momen Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Miroslav Vokáč miroslav.vokac@klok.cvu.cz Konrolní
IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA,
IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, STABILITA. Jednokový impuls (Diracův impuls, Diracova funkce, funkce dela) někdy éž disribuce dela z maemaického hlediska nejde o pravou funkci (přesný popis eorie
Řešený příklad - Návrh sloupu
Řešený říkl - ávrh slouu vrhněe slou s ožární oolnosí 90 minu hráněný obklem e sárovlákniýh esek loušťk 5 mm, huso 800 kg/m 3, eelné voivosi W K - m -, s měrným elem 700 J kg - K - Slou oeli S je v kžém
É Ý Ú Ó ď Ý Ý Í ň ř Í É Š Ý Í Ž š ř ď ť Ž ř č š š čš ž ř č ů ď š ů ů řš ž ž ř ž ž č ů č ú ž č ř š ž ů ř ž ž šš Ť ň š ů ť č š ř Í ů ž úč ů ř ř Ž š š č ť úč ů č ď š Š ř ř ř ď ď Í č ž š ůž ř úč ůž č ď ž ž
10 Transformace 3D. 10.1 Transformace a jejich realizace. Studijní cíl. Doba nutná k nastudování. Průvodce studiem
Trnsformce 3D Sudijní cíl Teno blok je věnován rnsformcím 3D grfik. V eu budou popsán ákldní rnsformce v prosoru posunuí oočení kosení měn měřík používné při prcování 3D modelu. Jednolivé rnsformce budou
Téma 5 Kroucení Základní principy a vztahy Smykové napětí a přetvoření Úlohy staticky určité a staticky neurčité
Pružnos a plasicia, 2.ročník bakalářského sudia Téma 5 Kroucení Základní principy a vzahy Smykové napěí a převoření Úlohy saicky určié a saicky neurčié Kaedra savební mechaniky Fakula savební, VŠB - Technická
úř úř ť ě ř č ť ť ť Č ď ť ž ě ě ť Ž ó óž ó ň ó š ě č Ž č ú ě úř úř č Ú č ť ř ě ě š ř ů č ř ě č ř ú ý Ú ř ť ř Ú ř ř š ý č ú ř ě ě š ř ů ě š č ě ě Ú ř ř ě ú ř č ě č ý ě č ú ě ě š ě č č ú ě č ť ě ť ě ř ýš
O s 0 =d s Obr. 2. 1
3 KINEMATIKA BODU Kinemik jko čás mechniky je nuk o pohybu ěles bez ohledu n síly, keré pohyb způsobily Těles nebudou mí nšich úhách hmonos budou popsán jen sými geomerickými lsnosmi Ty budou během pohybu
5. Využití elektroanalogie při analýze a modelování dynamických vlastností mechanických soustav
5. Využií elekroanalogie při analýze a modelování dynamických vlasnosí mechanických sousav Analogie mezi mechanickými, elekrickými či hydraulickými sysémy je známá a lze ji účelně využíva při analýze dynamických
FRONTA. Podobně jako u zásobníku lze prvek z fronty vyjmout pouze za takové podmínky, že je na řadě. Avšak jeho hodnotu můžeme přečíst kdykoliv.
FRONTA Frnta je datvá struktura pdbná zásbníku, avšak její vnitřní rganizace je dlišná. Prvky d frnty vkládáme na jedné straně (na knci) a ubíráme na straně druhé (na začátku). Ve frntě jsu tyt prvky ulženy
Poznámka. V některých literaturách se pro označení vektoru také používá symbolu u.
Vektory, operace s vektory Ž3 Orientovaná úsečka Mějme dvojici bodů, (na přímce, v rovině nebo prostoru), které spojíme a vznikne tak úsečka. Pokud budeme rozlišovat, zda je spojíme od k nebo od k, říkáme,
Š Ř Á Á Á Á Ě ď Šř Ů É Č Á Š Ú ů š é ř ý š ý é ý é ýř š š é ř š š šš ů ů ř ří ý ý š ý é Č Á ř Ž ř š ů š Ž é é ř Ž Ž Ů ř š ů ů Ž š š ř ř é ř ů š š ý ď ý é ř ř ý Í Ž ů ř š é š é Ž š ý š š Ž ř ý š Ž ř é ž
Elektrické přístroje. Výpočet tepelných účinků elektrického proudu
VŠB - echnická univerzita Ostrava Fakuta eektrtechniky a infrmatiky Katedra eektrických strjů a přístrjů Předmět: Eektrické přístrje Prtk č7 Výpčet tepených účinků eektrickéh prudu kupina: Datum: Vypracva:
25. KONFERENCE O GEOMETRII A POČÍTAČOVÉ GRAFICE
5. KNFERENCE GEMETRII A PČÍTAČVÉ GRAFICE ELIPSID HMTETICKÝ K REFERENČNÍMU ELIPSIDU Astrkt V isttické ltimtrii s z znlsti plhy dv stlitů S, S délky signál vyslnéh z jdnh n drhý stlit hldá d P drz signál
Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/
Stření průmyslvá šla a Vyšší brná šla technicá Brn, Slsá Šablna: Invace a zvalitnění výuy prstřenictvím ICT Název: Téma: Autr: Čísl: Antace: echania, pružnst pevnst Slžená namáhání, uvané namáhání Ing
Osové namáhání osová síla N v prutu
Osové nmáhání osová síl v prutu 3 typy úloh:. Pruty příhrdové konstrukce, táhl Dvě podmínky rovnováhy v kždém styčníku: F ix 0 F iz 0. Táhl podporující pevnou ztíženou desku R z M ib 0 P R R b P 6 6 P
- M matice hmotností - K matice tlumení - C matice tuhostí. Buzení harmonické. Buzení periodické
Maticvý zápis phybvých rvnic pr případ vynucenéh kmitání dynamickéh systému s více stupni vlnsti. Pr systém autnmní netlumený naznačte pstup výpčtu vlastních frekvencí a tvarů kmitání s využitím pznatků
Definice. Nechť k 0 celé, a < b R. Definujeme. x < 1. ϕ(x) 0 v R. Lemma [Slabá formulace diferenciální rovnice.] x 2 1
9. Vriční počet. Definice. Nechť k 0 celé, < b R. Definujeme C k ([, b]) = { ỹ [,b] : ỹ C k (R) } ; C 0 ([, b]) = { y C ([, b]) : y() = y(b) = 0 }. Důležitá konstrukce. Shlzovcí funkce (molifiér, bump
Vliv funkce příslušnosti na průběh fuzzy regulace
XXVI. ASR '2 Seminar, Insrumens and Conrol, Osrava, April 26-27, 2 Paper 2 Vliv funkce příslušnosi na průběh fuzzy regulace DAVIDOVÁ, Olga Ing., Vysoké učení Technické v Brně, Fakula srojního inženýrsví,
Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY
Kaedra obecné elekroechniky Fakula elekroechniky a inormaiky, VŠB - T Osrava. TOJFÁZOVÉ OBVODY.1 Úvod. Trojázová sousava. Spojení ází do hvězdy. Spojení ází do rojúhelníka.5 Výkon v rojázových souměrných
Použití : Tvoří součást pohybového ústrojí strojů a zařízení nebo mechanických převodů.
1 HŘÍDELE Strjní sučást válcvitéh tvaru, určené přensu táčivéh phybu a mechanicé práce (rutícíh mmentu) z hnací části (mtru) na část hnanu (strj). Pužití : Tvří sučást phybvéh ústrjí strjů a zařízení neb
Téma 9: Aplikace metody POPV
Tém 9: Aplikce meody POPV Přednášk z předměu: Prvděpodobnosní posuzování konsrukcí 4. ročník bklářského sudi Kedr svební mechniky Fkul svební Vysoká škol báňská Technická univerzi Osrv Osnov přednášky
( t) ( t) ( ( )) ( ) ( ) ( ) Vzdálenost bodu od přímky I. Předpoklady: 7308
731 Vzdálenost odu od římky I Předokldy: 7308 Pedgogiká oznámk: Pokud máte málo čsu, můžete odvodit vzore ez smosttné ráe studentů oužít některý z říkldů z dlší hodiny Tím jednu ze dvou hodin ro vzdálenost
v mechanice Využití mikrofonu k
Využití mikrfnu k měřením v mechanice Vladimír Vícha Antace Mikrfn pfipjený zvukvu kartu pčítače ve spjení s jednduchým sftware (pf. AUDACITY) může služit k pměrně pfesnému měření krátkých časů. Pčítač
5. Mechanika tuhého tlesa
5. Mechanika tuhéh tlesa Rzmry a tvar tlesa jsu ast pi ešení mechanických prblém rzhdující a pdstatn vlivují phybvé úinky sil, které na n psbí. akvá tlesa samzejm nelze nahradit hmtným bdem. Úinky sil
VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 3
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 3 Hana Charvává, Dagmar Janáčvá Zlín 2013 Ten sudijní maeriál vznikl za finanční dry Evrskéh