Říkáme, že přímka je tečnou elipsy. p T Přímka se protíná s elipsou právě v jednom bodě.
|
|
- Otakar Rohla
- před 6 lety
- Počet zobrazení:
Transkript
1 7.5. Elips přímk Předpokldy: 7504, 7505, 7508 Př. : epiš všechny možné vzájemné polohy elipsy přímky. Ke kždému přípdu nkresli obrázek. Z obrázků je zřejmé, že existují tři přípdy vzájemné polohy kružnice přímky: p P P Přímk se protíná s elipsou ve dvou různých bodech. Říkáme, že přímk je sečnou elipsy. p T Přímk se protíná s elipsou právě v jednom bodě. Říkáme, že přímk je tečnou elipsy. p Přímk se neprotíná s elipsou v žádném bodě. Říkáme, že přímk je vnější přímkou elipsy. tejné možnosti jko u kružnice (očekávtelné, když je kružnice speciálním přípdem elipsy), bohužel bez speciálních vlstností (kolmost poloměru n tečnu, Thletov kružnice ) příkldy musíme řešit pomocí prmetrů (těžká práce). tejně jko u kružnice i u elipsy existuje vzorec pro tečnu v jejím bodě. Je-li bod X [ x ; y ] bodem elipsy ( x m ) ( y n ) bodě rovnici: + = má tečn této elipsy v tomto b x0 m x m y0 n y n + =. b Podobná pomůck n zpmtování jko u tečny kružnice: tředová rovnice elipsy ( x m ) ( y n ) Rozložíme dvojčleny: + =. b x m x m y n y n + =. b
2 V kždém součinu změníme jedno x z x 0 ( jedno y z y 0 ): ( x m)( x m) ( y n)( y n) =. b Pedgogická poznámk: Rovnice tečny pro elipsy se středem v počátku soustvy souřdnic neuvádím schválně. Povžuji ji z zbytečnou, její ekvivlent pro kružnici tké nepoužíváme zbytečně zvětšuje chos ve studentských hlvách. Př. : Urči rovnici tečny: ) elipsy + = v jejím bodě X 0 ; 4 ; b) elipsy ( x ) ( y 4 ) 6 + = v jejím bodě 0; 5 6 Y 5. V obou přípdech dosdíme do vzorce. ( x0 0)( x 0) ( y0 0)( y 0) ) + = + =, dosdíme X 0 ; 4 4. y x + = 4 + = / 4 4 x + y = 4 x + y 4 = 0 b) ( x ) ( y 4 ) + = ( y 4 ) 0 x 5 + = ( x ) ( y 4) + 5 = 5 6 ( x ) ( y 4) + = / x + 5 y 4 = 5 x y 0 = 5 x + 5y 6 = 0 x 5y + 6 = 0 ( x )( x ) ( y 4)( y 4) + =, dosdíme Y 6 0; 5.
3 Př. : Urči průsečíky přímky x + y = 0 s elipsou poloh? + =. Jká je jejich vzájemná 4 Řešíme soustvu rovnic: x + 4y = y = x ( x) x + 4 = x + 4 x + x = x + 4 8x + 4x = 7x 8x 8 = 0 + = / 4. x + y = 0 (dosdíme do první rovnice) ( 8) ( 8) 4 7 ( 8) b ± b 4c ± 8 ± ± 6 x, = = = = x = y = x = = x = y = x = = Přímk x + y = 0 má s elipsou + = dv společné body P + ; P + ; je tedy její sečnou. 7 7
4 Př. 4: Urči jk závisí vzájemná poloh elipsy 4x + y 6 = 0 přímky x + y + c = 0 n hodnotě prmetru c. Ještě než zčneš příkld řešit početně, nkresli si náčrtek co nejpřesněji odhdni, jk bude početní řešení příkldu vypdt. hodnoty prmetru c se blíží k nekonečnu x+y+c =0 x+y+c =0 T x+y+c=0 T hodnoty prmetru c se blíží k mínus nekonečnu Z obrázku vidíme, že stejně jko odpovídjícího příkldu s kružnicí nstnou celkem tři přípdy (postupně od nejmenších hodnot prmetru c: c ; c c c ; : přímk se s elipsou neprotíná, je její vnější přímkou. ( ) nebo c = c nebo c = c : přímk je tečnou elipsy. c c ; c : přímk protíná elipsu ve dvou bodech, je její sečnou. Nyní řešíme příkld početně. Hledáme průsečíky přímky s kružnicí body, které vyhovují oběm rovnicím řešíme 4x + y 6 = 0 soustvu rovnic stejný postup jko v příkldě s kružnicí. x + y + c = 0 Trochu si usndníme výpočet: x + y 6 = 0 x = y c Teď dosdíme z druhé rovnice do první rovnice rovnou z x : ( y c) y + 6 = 0 (mínus se při umocňování ztrtí) y + c + y 6 = = 9y 6yc c y = kvdrtická rovnice s prmetrem. y 6yc c 6 0 4
5 y, b ± b 4c 6c ± 6c 4 c 6 = = 6c ± 6c 48 c c ± 48 6 c y, = = 4 4 O existenci kořenů rozhoduje znménko výrzu pod odmocninou řešíme nerovnici 48 6 c 0 / :. ( c ) ( c )( c ) 64 = obrácená prbol, průsečíky pro c = 8 c = Z obrázku je vidět, že mohou nstt tři možnosti: c 8;8 diskriminnt rovnice D = 64 c > 0. Rovnice pro nlezení průsečíků elipsy s přímkou má dv kořeny elips se protíná s přímkou ve dvou bodech, přímk je její sečnou.. c = 8 nebo c = 8 diskriminnt rovnice D = 64 c = 0 Rovnice pro nlezení průsečíků elipsy s přímkou má jeden kořen elips se protíná s přímkou v jednom bodě, přímk je její tečnou. Tečné body můžeme spočítt: 6 8 ± 0 c = 8 y, = = x = y c = ( ) 8 = x = 4 T [ ; ] c = 8 y, 6 ( 8) ± 0 = = T [ ; ]. c ( ; 8) ( 8; ) diskriminnt rovnice 4 x = y c = 8 = x = D = < 64 c 0 Rovnice pro nlezení průsečíků elipsy s přímkou nemá žádný kořen elips se s přímkou neprotíná, přímk je její vnější přímkou. Př. 5: Njdi tečny elipsy + = procházející bodem [ 0; ] 5x 9y 45 0 A. Npíšeme si všechny přímky procházející bodem A[ 0; ] : ( y y ) = k ( x x ) ( y + ) = kx, přímku elipsy 5x + 9y 45 = 0. Z rovnice přímky ( y ) ( kx ) 5x = 0 5x + 9 k x 6kx = 0 x = nemusíme sledovt, je určitě sečnou + = kx vyjádříme y = kx dosdíme do rovnice elipsy: 5
6 5x + 9k x 54kx = k x 54kx + 6 = 0 Hledáme tečny zjímáme se o nulový diskriminnt, řešit zbytek kvdrtické rovnice je zbytečné: D = b 4c = 54k k 6 = 96k 96k 70 = 0 60k 70 = k = = = = k = t : y = x t : x y 9 = 0 k = t : y = x t : x + y + 9 = 0 Př. 6: Petáková: strn 0/cvičení 90 d) strn 0/cvičení 9 ) strn 0/cvičení 94 b) strn /cvičení 95 b) strn 0/cvičení 96 d) hrnutí: Vzorec pro rovnici tečny elipsy je nlogický vzorci pro tečnu kružnice. Osttní příkldy řešíme stejně jko u kružnice bez využívání speciálních vlstností. 6
Hyperbola a přímka
7.5.8 Hperol přímk Předpokld: 75, 75, 755, 756 N orázku je nkreslen hperol = se středem v počátku soustv souřdnic. Jká je vzájemná poloh této hperol přímk, která prochází počátkem soustv souřdnic? E B
2.2.9 Grafické řešení rovnic a nerovnic
..9 Grfické řešení rovnic nerovnic Předpokldy: 0, 06 Př. : Řeš početně i grficky rovnici x + = x. Početně: Už umíme. x + = x x = x = K = { } Grficky: Kždá ze strn rovnice je výrzem pro lineární funkci
( t) ( t) ( t) Nerovnice pro polorovinu. Předpoklady: 7306
7.3.8 Nerovnice pro polorovinu Předpokldy: 736 Pedgogická poznámk: Příkld 1 není pro dlší průěh hodiny důležitý, má smysl pouze jko opkování zplnění čsu při zpisování do třídnice. Nemá smysl kvůli němu
56. ročník Matematické olympiády. b 1,2 = 27 ± c 2 25
56. ročník Mtemtické olympiády Úlohy domácí části I. kol ktegorie 1. Njděte všechny dvojice (, ) celých čísel, jež vyhovují rovnici + 7 + 6 + 5 + 4 + = 0. Řešení. Rovnici řešíme jko kvdrtickou s neznámou
MENDELOVA UNIVERZITA V BRNĚ MATEMATIKA K PŘIJÍMACÍM ZKOUŠKÁM NA PEF
MENDELOVA UNIVERZITA V BRNĚ MATEMATIKA K PŘIJÍMACÍM ZKOUŠKÁM NA PEF RNDr. Petr Rádl RNDr. Bohumil Černá RNDr. Ludmil Strá 0 Petr Rádl, 0 ISBN 97-0-77-9- OBSAH Předmluv... Poždvky k přijímcí zkoušce z mtemtiky..
Hledání hyperbol
759 Hledání hyperol Předpokldy: 756, 757, 758 Pedgogická poznámk: Některé příkldy jsou zdlouhvější, pokud mám dosttek čsu proírám tuto následující hodinu ěhem tří vyučovcích hodin Př : Npiš rovnici hyperoly,
Pedagogická poznámka: Celý obsah se za hodinu stihnout nedá. z ] leží na kulové ploše, právě když platí = r. Dosadíme vzorec pro vzdálenost:
753 Kulová plocha Předpoklady: 750 Pedagogická poznámka: Celý obsah se za hodinu stihnout nedá Kulová plocha = kružnice v prostoru Př : Vyslov definici kulové plochy Kulová plocha je množina všech bodů
( 5 ) 6 ( ) 6 ( ) Přijímací řízení ak. r. 2010/11 Kompletní znění testových otázek - matematický přehled
řijímcí řízení k. r. / Kompletní znění testových otázek - mtemtický přehled Koš Znění otázky Odpověď ) Odpověď b) Odpověď c) Odpověď d) Správná odpověď. Které číslo doplníte místo otzníku? 8?. Které číslo
Větu o spojitosti a jejich užití
0..7 Větu o spojitosti jejich užití Předpokldy: 706, 78, 006 Pedgogická poznámk: Při proírání této hodiny je tře mít n pměti, že všechny věty, které studentům sdělujete z jejich pohledu neuvěřitelně složitě
Středová rovnice hyperboly
757 Středová rovnice hperol Předpokld: 7508, 75, 756 Př : Nkresli orázek, vpočti souřdnice vrcholů, ecentricitu urči rovnice smptot hperol se středem v počátku soustv souřdnic, pokud je její hlvní os totožná
2.1 - ( ) ( ) (020201) [ ] [ ]
- FUNKCE A ROVNICE Následující zákldní znlosti je nezbytně nutné umět od okmžiku probrání ž do konce studi mtemtiky n gymnáziu. Vyždováno bude porozumění schopnost plikovt ne pouze mechnicky zopkovt. Některé
5.2.4 Kolmost přímek a rovin II
5..4 Kolmost přímek rovin II Předpokldy: 503 Př. 1: Zformuluj stereometrické věty nlogické k plnimetrické větě: ným bodem lze v rovině k dné přímce vést jedinou kolmici. Vět: ným bodem lze v prostoru k
2.9.11 Logaritmus. Předpoklady: 2909
.9. Logritmus Předpokld: 909 Pedgogická poznámk: Následující příkld vždují tk jeden půl vučovcí hodin. V přípdě potřeb všk stčí dojít k příkldu 6 zbtek jen ukázt, což se dá z jednu hodinu stihnout (nedoporučuji).
Zkoušku snadno provedeme tak, že do soustavy (1), která je ekvivalentní dané soustavě rovnic, dosadíme příslušné hodnoty s a p.
1. V oboru reálných čísel řešte soustvu rovnic x 2 xy + y 2 = 7, x 2 y + xy 2 = 2. (J. Földes) Řešení. Protože druhou rovnici můžeme uprvit n tvr xy(x + y) = 2, uprvme podobně i první rovnici: (x + y)
( a, { } Intervaly. Předpoklady: , , , Problém zapíšeme snadno i výčtem: { 2;3; 4;5}?
1.3.8 Intervly Předpokldy: 010210, 010301, 010302, 010303 Problém Množinu A = { x Z;2 x 5} zpíšeme sndno i výčtem: { 2;3; 4;5} Jk zpst množinu B = { x R;2 x 5}? A =. Jde o nekonečně mnoho čísel (2, 5 všechno
( ) ( ) ( ) Tečny kružnic I. Předpoklady: 4501, 4504
7.5.5 Tečny kružnic I Předpoklady: 451, 454 Pedagogická poznámka: Následující dvě hodiny jsou na gymnázium asi početně nejnáročnější. Ačkoliv jsou příklady optimalizované na co nejmenší početní obtížnost,
Lineární nerovnice a jejich soustavy
teorie řešené úlohy cvičení tipy k mturitě výsledky Lineární nerovnice jejich soustvy Víš, že pojem nerovnice není opkem pojmu rovnice? lineární rovnice má většinou jediné řešení, kdežto lineární nerovnice
Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu
Geometrické plikce určitého integrálu Osh rovinné olsti Je-li ploch ohrničen křivkou f () osou Při výpočtu oshu tkto omezených rovinných olstí mohou nstt následující zákldní přípd : Nechť funkce f () je
LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU
LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y
Spojitost funkce v bodě, spojitost funkce v intervalu
10.1.6 Spojitost funkce v bodě, spojitost funkce v intervlu Předpokldy: 10104, 10105 Př. 1: Nkresli, jk funkce f ( x ) dná grfem zobrzí vyznčené okolí bodu n ose x n osu y. Poté nkresli n osu x vzor okolí
3.1.3 Vzájemná poloha přímek
3.1.3 Vzájemná poloh přímek Předpokldy: 3102 Dvě různé přímky v rovině mximálně jeden společný od Jeden společný od průsečík různoěžné přímky (různoěžky) P Píšeme: P neo = { P} Žádný společný od rovnoěžné
Neurčité výrazy
.. Neurčité výrzy Předpokldy: Př. : Vypočti ity: ) d) ) d) neeistuje,, Zjímvé. Získli jsme čtyři nprosto rozdílné výsledky, přestože přímým doszením do všech výrzů získáme to smé: výrz může při výpočtu
7.1.3 Vzdálenost bodů
7.. Vzdálenost bodů Předpoklady: 70 Př. : Urči vzdálenost bodů A [ ;] a B [ 5;] obecný vzorec pro vzdálenost bodů A[ a ; a ] a [ ; ]. Na základě řešení příkladu se pokus sestavit B b b. y A[;] B[5;] Z
Hyperbola, jejíž střed S je totožný s počátkem soustavy souřadnic a jejíž hlavní osa je totožná
Hyperol Hyperol je množin odů, které mjí tu vlstnost, že solutní hodnot rozdílu jejich vzdáleností od dvou dných různých odů E, F je rovn kldné konstntě. Zkráceně: Hyperol = {X ; EX FX = }; kde symolem
Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.
7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1
3.2.11 Obvody a obsahy obrazců I
..11 Obvody obshy obrzců I Předpokldy: S pomocí vzorců v uvedených v tbulkách řeš následující příkldy Př. 1: Urči výšku lichoběžníku o obshu 54cm zákldnách 7cm 5cm. + c Obsh lichoběžníku: S v Výšk lichoběžníku
3. Kvadratické rovnice
CZ..07/..08/0.0009. Kvdrtické rovnice se v tetice oznčuje lgebrická rovnice druhého stupně, tzn. rovnice o jedné neznáé, ve které neznáá vystupuje ve druhé ocnině (²). V zákldní tvru vypdá následovně:
17 Kuželosečky a přímky
17 Kuželosečky a přímky 17.1 Poznámka: Polára bodu M ke kuželosečce Nechť X = [x 0,y 0 ] je bod. Zavedeme následující úpravy: x x 0 x y y 0 y xy (x 0 y + xy 0 )/ x (x 0 + x)/ y (y 0 + y)/ (x m) (x 0 m)(x
Vzdálenost roviny a přímky
511 Vzdálenost roviny přímky Předpokldy: 510 Př 1: Rozhodni, kdy má smysl uvžovt o vzdálenosti přímky od roviny, nvrhni definici této vzdálenosti Uvžovt o vzdálenosti přímky roviny můžeme pouze v přípdě,
5.2.7 Odchylka přímky a roviny
57 Odchylk přímky roiny Předpokldy: 50, 506 Jk odchylk přímky roiny? o by měl definice splňot: podobně jko u osttních ěcí ji musíme přeést n něco co už umíme (si odchylku dou přímek), měl by být jednoznčná,
Výpočet obsahu rovinného obrazce
Výpočet oshu rovinného orzce Pro výpočet oshu čtverce, odélník, trojúhelník, kružnice, dlších útvrů, se kterými se můžeme setkt v elementární geometrii, máme k dispozici vzorce Kdchom chtěli vpočítt osh
Logaritmické rovnice I
.9.9 Logritmické rovnice I Předpokldy: 95 Pedgogická poznámk: Stejně jko u eponenciálních rovnic rozkldů n součin bereme ritmické rovnice jko nácvik výběru metody. Sestvujeme si rzenál metod n konci máme
( t) ( t) ( ( )) ( ) ( ) ( ) Vzdálenost bodu od přímky I. Předpoklady: 7308
731 Vzdálenost odu od římky I Předokldy: 7308 Pedgogiká oznámk: Pokud máte málo čsu, můžete odvodit vzore ez smosttné ráe studentů oužít některý z říkldů z dlší hodiny Tím jednu ze dvou hodin ro vzdálenost
Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A
Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty
8. cvičení z Matematiky 2
8. cvičení z Mtemtiky 2 11.-1. dubn 2016 8.1 Njděte tři pozitivní čísl jejichž součin je mximální, jejichž součet je roven 100. Zdání příkldu lze interpretovt tké tk, že hledáme mximální objem kvádru,
Vzdálenosti přímek
5..11 Vzdálenosti přímek Předpokldy: 510 Př. 1: Rozhodni, kdy má smysl uvžovt o vzdálenosti dvou přímek nvrhni definici této vzdálenosti. Vzdálenost přímek má smysl, když přímky nemjí společné body tedy
Integrální počet - IV. část (aplikace na určitý vlastní integrál, nevlastní integrál)
Integrální počet - IV. část (plikce n určitý vlstní integrál, nevlstní integrál) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 9. přednášk z AMA Michl Fusek (fusekmi@feec.vutbr.cz) / 4 Obsh
3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru
Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém
Vzdálenosti přímek
5..1 Vzdálenosti přímek Předpokldy: 511 Př. 1: Rozhodni, kdy má smysl uvžovt o vzdálenosti dvou přímek nvrhni definici této vzdálenosti. Vzdálenost přímek má smysl, když přímky nemjí společné body tedy
Konstrukce na základě výpočtu I
..11 Konstrukce n zákldě výpočtu I Předpokldy: Pedgogická poznámk: Původně yl látk rozepsnou do dvou hodin, v první ylo kromě dělení úseček zřzen i čtvrtá geometrická úměrná. Právě její prorání se nestíhlo,
SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1
SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1 (Souřdnicové výpočty) 1 ročník bklářského studi studijní progrm G studijní obor G doc Ing Jromír Procházk CSc listopd 2015 1 Geodézie 1 přednášk č7 VÝPOČET SOUŘADNIC JEDNOHO
2.5.9 Vztahy mezi kořeny a koeficienty kvadratické rovnice
59 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 57, 58 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin Příkld 8 9 zůstávjí n vičení nebo polovinu hodin při píseme + b + - zákldní
3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90
ROVNICE A NEROVNICE 8 Lineární rovnice 8 Kvdrtické rovnice 8 Rovnice s bsolutní hodnotou 88 Ircionální rovnice 90 Eponenciální rovnice 9 Logritmické rovnice 9 7 Goniometrické rovnice 98 8 Nerovnice 0 Úlohy
14 Kuželosečky v základní poloze
4 Kuželosečk v zákldní poloze Následující tet 4 7 se týkjí geometrie v rovině. Až dosud jsme studovli útvr lineární (v nltickém vjádření l vžd proměnné,, z v první mocnině). Nní se udeme zývt některými
2.5.9 Vztahy mezi kořeny a koeficienty kvadratické rovnice
59 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 57, 58 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin Příkld 8 9 zůstávjí n vičení nebo polovinu hodin při píseme + b + - zákldní
{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507
58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní
Logaritmická funkce, logaritmus, logaritmická rovnice
Logritmická funkce. 4 Logritmická funkce, ritmus, ritmická rovnice - získá se jko funkce inverzní k funkci eponenciální, má tvr f: = Pltí: > 0!! * * = = musí být > 0, > 0 Rozlišujeme dv zákldní tp: ) >
5.1.5 Základní vztahy mezi body, přímkami a rovinami
5.1.5 Zákldní vzthy mezi body, přímkmi rovinmi Předpokldy: 510 Prostor má tři rozměry, skládá se z bodů přímk - jednorozměrná podmnožin prostoru (množin bodů), rovin - dvojrozměrná podmnožin prostoru (množin
II. 5. Aplikace integrálního počtu
494 II Integrální počet funkcí jedné proměnné II 5 Aplikce integrálního počtu Geometrické plikce Určitý integrál S b fx) dx lze geometricky interpretovt jko obsh plochy vymezené grfem funkce f v intervlu
7.5.8 Středová rovnice elipsy
758 Středová rovnice elips Předpokld: 750, 7507 Př : Vrchol elips leží v odech A[ ;], B [ 3;], [ ;5], [ ; 3] elips souřdnice jejích ohnisek Urči prmetr Zdné souřdnice už n první pohled vpdjí podezřele,
7.5.8 Středová rovnice elipsy
758 Středová rovnice elips Předpokld: 7501, 7507 Př 1: Vrchol elips leží v odech A[ 1;1], [ 3;1], [ 1;5], [ 1; 3] elips souřdnice jejích ohnisek Urči prmetr Zdné souřdnice už n první pohled vpdjí podezřele,
x + F F x F (x, f(x)).
I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných
5.2.8 Vzdálenost bodu od přímky
5..8 Vzdálenost bodu od přímky ředpokldy: 507 edgogická poznámk: Tříd počítá smosttně. tnáct minut před koncem se sejdeme n příkld 4 ), který pk řešíme společně. Vzdálenost bodů, je rovn délce úsečky,
2.8.5 Lineární nerovnice s parametrem
2.8.5 Lineární nerovnice s prmetrem Předpokldy: 2208, 2802 Pedgogická poznámk: Pokud v tom necháte studenty vykoupt (což je, zdá se, jediné rozumné řešení) zere tto látk tk jednu půl vyučovcí hodiny (první
7.5.3 Hledání kružnic II
753 Hledání kružnic II Předpoklady: 750 Pedagogická poznámka: Tato hodina patří mezi vůbec nejtěžší Není reálné předpokládat, že by většina studentů dokázala samostatně přijít na řešení, po čase na rozmyšlenou
4.2.7 Zavedení funkcí sinus a cosinus pro orientovaný úhel I
4..7 Zvedení funkcí sinus cosinus pro orientovný úhel I Předpokldy: 40, 40, 404, 406 Prolém s definicí funkcí sin ( ) cos( ) : Definice pomocí prvoúhlého trojúhelníku je π možné použít pouze pro ( 0 ;90
( a) Okolí bodu
0..5 Okolí bodu Předpokldy: 40 Pedgogická poznámk: Hodin zjevně překrčuje možnosti většiny studentů v 45 minutách. Myslím, že nemá cenu přethovt do dlší hodiny, příkldy s redukovnými okolími nejsou nutné,
3.2.1 Shodnost trojúhelníků I
3.2.1 hodnost trojúhelníků I Předpokldy: 3108 v útvry jsou shodné, pokud je možné je přemístěním ztotožnit. v prxi těžko proveditelné hledáme jinou možnost ověření shodnosti v útvry jsou shodné, pokud
Jsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce.
Logritmické rovnice Jsou to rovnice, které oshují neznámou neo výrz s neznámou jko rgument ritmické funkce. Zákldní rovnice, 0 řešíme pomocí vzthu. Složitější uprvit n f g potom f g (protože ritmická funkce
2.7.7 Obsah rovnoběžníku
77 Osh rovnoěžníku Předpokldy: 00707 Osh (znčk S): kolik míst útvr zujímá, počet čtverečků 1 x 1, které se do něj vejdou, kolik koerce udeme muset koupit, ychom pokryli podlhu, Př 1: Urči osh čtverce o
+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c
) INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem neurčitého integrálu Je dán funkce Pltí všk tké F tk, y pltilo F ( ) f ( ) Zřejmě F ( ), protože pltí, 5,, oecně c, kde c je liovolná kon- stnt f ( ) nším
DERIVACE A INTEGRÁLY VE FYZICE
DOPLŇKOVÉ TEXTY BB0 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ DERIVACE A INTEGRÁLY VE FYZICE Obsh Derivce... Definice derivce... Prciální derivce... Derivce vektorů... Výpočt derivcí... 3 Algebrická
Parabola a přímka
755 Parabola a přímka Předpoklad: 755, 756, 75, 75, 753 Pedagogická poznámka: Na probrání celého obsahu je třeba tak jeden a půl vučovací hodin Pokud tolik času nemáte, je potřeba buď rchle proběhnout
Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra
Definice: Soubor A ( i j ) Mtice 11 12 1n 21 22 2n m 1 m2 prvků z těles T (tímto tělesem T bude v nší prxi nejčstěji těleso reálných čísel R resp těleso rcionálních čísel Q či těleso komplexních čísel
Přijímací test studijních předpokladů
Univerzit obrny Přijímcí test stdijních předpokldů Test ze dne 10. 4. 018 (03) Fklt vojenských technologií V kždém příkldě je právě jedn z nbízených vrint řešení správná. Z správně zkrožkovno vrint jso
Obsahy - opakování
.7.0 Obshy - opkoání Předpokldy: 00709 Př. : Vypiš edle sebe zorce pro obsh ronoběžníku, trojúhelníku lichoběžníku. Kždý e šech rintách. Ke kždému zorci nkresli obrázek s yznčenými rozměry, které e zorci
JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH KUŽELOSEČKY. Pavel Pech
JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH KUŽELOSEČKY Pvel Pech České Budějovice 004 JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH KUŽELOSEČKY Pvel Pech České Budějovice 004 Recenzenti: doc Ing Ld Vňtová,
Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y].
Konzultace č. 6: Rovnice kružnice, poloha přímky a kružnice Literatura: Matematika pro gymnázia: Analytická geometrie, kap. 5.1 a 5. Sbírka úloh z matematiky pro SOŠ a studijní obory SOU. část, kap. 6.1
14. cvičení z Matematické analýzy 2
4. cvičení z temtické nlýzy 2 22. - 26. květn 27 4. Greenov vět) Použijte Greenovu větu k nlezení práce síly F x, y) 2xy, 4x 2 y 2 ) vykonné n částici podél křivky, která je hrnicí oblsti ohrničené křivkmi
4. Determinanty. Výpočet: a11. a22. a21. a12. = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 a 13 a 22 a 31. a 11 a 23 a 32 a 12 a 21 a 33
. Determinnty Determinnt, znčíme deta, je číslo přiřzené čtvercové mtici A. Je zveden tk, by pro invertibilní mtici byl nenulový pro neinvertibilní mtici byl roven nule. Výpočet: = + = + + - - - + + +
8.2.7 Geometrická posloupnost
87 Geometrická posloupost Předpokldy: 80, 80, 80, 807 Pedgogická pozámk: V hodiě rozdělím třídu dvě skupiy kždá z ich dělá jede z prvích dvou příkldů Větši studetů obou skupi potřebuje pomoc u tbule Ob
2.4.7 Shodnosti trojúhelníků II
2.4.7 Shodnosti trojúhelníků II Předpokldy: 020406 Př. 1: oplň tbulku. Zdání sss α < 180 c Zdání Náčrtek Podmínky sss sus usu b + b > c b + c > c + c > b b α < 180 c α + β < 180 c Pedgogická poznámk: Původní
Digitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
4. cvičení z Matematiky 2
4. cvičení z Mtemtiky 2 14.-18. březn 2016 4.1 Njděte ity (i (ii (iii (iv 2 +(y 1 2 +1 1 2 +(y 1 2 z 2 y 2 z yz 1 2 y 2 (,y (0,0 2 +y 2 2 y 2 (,y (0,0 2 +y 3 (i Pro funkci f(, y = 2 +(y 1 2 +1 1 2 +(y
Logaritmická funkce teorie
Výukový mteriál pro předmět: MATEMATIKA reg. č. projektu CZ..07/..0/0.0007 Logritmická funkce teorie Eponenciální funkce je funkce prostá, proto k ní eistuje inverzní funkce. Tto inverzní funkce se nzývá
Digitální učební materiál
Digitální učení mteriál Číslo projektu CZ.1.07/1.5.00/34.080 Název projektu Zkvlitnění výuky prostřednictvím ICT Číslo název šlony klíčové ktivity III/ Inovce zkvlitnění výuky prostřednictvím ICT Příjemce
Matematika II: Pracovní listy Integrální počet funkce jedné reálné proměnné
Mtemtik II: Prcovní listy Integrální počet funkce jedné reálné proměnné Petr Schreiberová, Petr Volný Ktedr mtemtiky deskriptivní geometrie VŠB - Technická univerzit Ostrv Ostrv 8 Obsh Neurčitý integrál.
2.cvičení. 1. Polopřímka: bod O dělí přímku na dvě navzájem opačné polopřímky.
2.cvičení 1. Polopřímk: od O dělí přímku n dvě nvzájem opčné polopřímky. Úsečk: průnik dvou polopřímek,. Polorovin: přímk dělí rovinu n dvě nvzájem opčné poloroviny. Úhel: průnik polorovin (pozor n speciální
KVADRATICKÁ FUNKCE (vlastnosti, grafy)
KVADRATICKÁ FUNKCE (vlstnosti, gr) Teorie Kvdrtikou unkí se nzývá kždá unke dná předpisem ; R,, R; D( ) je proměnná z příslušného deiničního ooru unke (nejčstěji množin R),, jsou koeiient kvdrtiké unke,
Maturitní témata z Matematiky
Mturitní témt z Mtemtik. Výrz jejich úprv. Lineární rovnice nerovnice, lineární rovnice s prmetrem. vdrtická rovnice nerovnice, kvdrtická rovnice s prmetrem. Rovnice nerovnice v součinovém podílovém tvru.
2.3.20 Grafické řešení soustav lineárních rovnic a nerovnic
.3.0 Grafické řešení soustav lineárních rovnic a nerovnic Předpoklad: 307, 311 Př. 1: Vřeš soustavu rovnic + =. Pokud se také o grafické řešení. = 5 Tak jednoduchou soustavu už jsme dlouho neměli: + =
9 Axonometrie ÚM FSI VUT v Brně Studijní text. 9 Axonometrie
9 Axonometrie Mongeov projekce má řdu předností: jednoduchost, sndná měřitelnost délek úhlů. Je všk poměrně nenázorná. Podsttnou část technických výkresů proto tvoří kromě půdorysu, nárysu event. bokorysu
( ) ( ) Sinová věta II. β je úhel z intervalu ( 0;π ). Jak je vidět z jednotkové kružnice, úhly, pro které platí. Předpoklady:
4.4. Sinová vět II Předpokldy 44 Kde se stl hy? Námi nlezené řešení je správné, le nenšli jsme druhé hy ve hvíli, kdy jsme z hodnoty sin β určovli úhel β. β je úhel z intervlu ( ;π ). Jk je vidět z jednotkové
Úlohy školní klauzurní části I. kola kategorie C
52. ročník mtemtické olympiády Úlohy školní kluzurní části I. kol ktegorie 1. Odtrhneme-li od libovolného lespoň dvojmístného přirozeného čísl číslici n místě jednotek, dostneme číslo o jednu číslici krtší.
Diferenciální počet. Spojitost funkce
Dierenciální počet Spojitost unkce Co to znmená, že unkce je spojitá? Jký je mtemtický význm tvrzení, že gr unkce je spojitý? Jké jsou vlstnosti unkce v bodě? Jké jsou vlstnosti unkce v intervlu I? Vlstnosti
6. a 7. března Úloha 1.1. Vypočtěte obsah obrazce ohraničeného parabolou y = 1 x 2 a osou x.
KMA/MAT Přednášk cvičení č. 4, Určitý integrál 6. 7. březn 17 1 Aplikce určitého integrálu 1.1 Počáteční úvhy o výpočtu obshu geometrických útvrů v rovině Úloh 1.1. Vypočtěte obsh obrzce ohrničeného prbolou
( ) 1.5.2 Mechanická práce II. Předpoklady: 1501
1.5. Mechnická práce II Předpokldy: 1501 Př. 1: Těleso o hmotnosti 10 kg bylo vytženo pomocí provzu do výšky m ; poprvé rovnoměrným přímočrým pohybem, podruhé pohybem rovnoměrně zrychleným se zrychlením
(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a
Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:
ANALYTICKÁ GEOMETRIE V PROSTORU
ANALYTICKÁ GEOMETRIE V PROSTORU 3. přednášk Vektorová lger Prvoúhlé souřdnice odu v prostoru Poloh odu v prostoru je vzhledem ke třem osám k soě kolmým určen třemi souřdnicemi, které tvoří uspořádnou trojici
17 Křivky v rovině a prostoru
17 Křivky v rovině prostoru Definice 17.1 (rovinné křivky souvisejících pojmů). 1. Nechť F (t) [ϕ(t), ψ(t)] je 2-funkce spojitá n, b. Rovinnou křivkou nzveme množinu : {F (t) : t, b } R 2. 2-funkce F [ϕ,
ŘEŠENÍ JEDNODUCHÝCH LOGARITMICKÝCH ROVNIC. Řešme na množině reálných čísel rovnice: log 5. 3 log x. log
Řešme n množině reálných čísel rovnice: ) 6 b) 8 d) e) c) f) ŘEŠENÍ JEDNODUCHÝCH LOGARITMICKÝCH ROVNIC Co budeme potřebovt? Chápt definici ritmu. Znát průběh ritmické funkce. Znát jednoduché vět o počítání
P. Rozhodni, zda bod P leží uvnitř, vně nebo na kružnici k. Pokud existují, najdi tečny kružnice procházející bodem P.
756 Tečny ružnic II Předpolady: 45, 454 Pedagogicá poznáma: Tato hodina patří na gymnázium mezi početně nejnáročnější Ačoliv jsou přílady optimalizované na co nejmenší početní obtížnost, všichni studenti
Správné řešení písemné zkoušky z matematiky- varianta A Přijímací řízení do NMgr. studia učitelských oborů 2010
právné řešení písemné koušky mtemtiky- vrint A Přijímcí říení do NMgr. studi učitelských oborů Příkld. Vyšetřete průběh funkce v jejím mimálním definičním oboru nčrtněte její grf y Určete pritu (sudá/lichá),
Laboratorní práce č.8 Úloha č. 7. Měření parametrů zobrazovacích soustav:
Truhlář Michl 7.. 005 Lbortorní práce č.8 Úloh č. 7 Měření prmetrů zobrzovcích soustv: T = ϕ = p = 3, C 7% 99,5kP Úkol: - Změřte ohniskovou vzdálenost tenké spojky přímou Besselovou metodou. - Změřte ohniskovou
3.2.7 Příklady řešené pomocí vět pro trojúhelníky
..7 Příkldy řešené pomocí ět pro trojúhelníky Předpokldy:, 6 Pedgogická poznámk: U následujících příkldů ( u mnoh dlších příkldů z geometrie) pltí, že nedílnou součástí řešení je nápd (který se tké nemusí
14. přednáška. Přímka
14 přednáška Přímka Začneme vyjádřením přímky v prostoru Přímku v prostoru můžeme vyjádřit jen parametricky protože obecná rovnice přímky v prostoru neexistuje Přímka v prostoru je určena bodem A= [ a1
Matematika II: Testy
Mtemtik II: Testy Petr Schreiberová Ktedr mtemtiky deskriptivní geometrie VŠB - Technická univerzit Ostrv Mtemtik II - testy 69. Řy 9 - Test Ktedr mtemtiky deskriptivní geometrie, VŠB - Technická univerzit
skripta MZB1.doc 8.9.2011 1/81
skript MZB.doc 8.9. /8 skript MZB.doc 8.9. /8 Osh Osh... Zlomk... Dělitelnost v množině přirozených čísel... Trojčlenk... 9 Výrz s mocninmi s celočíselným eponentem ()... Výrz s mocninmi s rcionálním eponentem...
Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ Mgr. Tomáš MAŇÁK 11. červenec 2012 Název zpracovaného celku: LINEÁRNÍ ROVNICE S PARAMETREM
Předmět: Ročník: Vytvořil: Dtum: MATEMATIA DRUHÝ Mgr. Tomáš MAŇÁ 11. červenec 01 Název zrcovného celku: LINEÁRNÍ ROVNICE S PARAMETREM LINEÁRNÍ ROVNICE S PARAMETREM Rovnice s rmetrem obshuje kromě neznámých
CVIČNÝ TEST 43. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 43 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 bod 1 Pro a, b R + určete hodnotu výrazu ( a b) 2 ( a + b) 2, víte-li,