Mirko Navara, Petr Olšák. Základy fuzzy množin. Praha, 2001, 2002

Rozměr: px
Začít zobrazení ze stránky:

Download "Mirko Navara, Petr Olšák. Základy fuzzy množin. Praha, 2001, 2002"

Transkript

1 Mrko Navara, Petr Olšák Základy fuzzy množn Praha, 2001, 2002 E

2 Text je šířen volně podle lcence ftp://math.feld.cvut.cz/pub/olsak/fuzzy/lcence.txt. Text ve formátech TEX (csplan), Postcrpt, dv, PDF najdete na adrese ftp://math.feld.cvut.cz/pub/olsak/fuzzy/. Verze textu: Copyrght c Doc. Ing. Mrko Navara, Drc., RNDr. Petr Olšák, 2001, 2002

3 Obsah 1. Základní pojmy Základní pojmy z teore množn Charakterstcká funkce Základní pojmy teore fuzzy množn Pops fuzzy množn pomocí řezů Fuzzy nkluze Operace s fuzzy množnam Ostré množny Analoge pro operace s fuzzy množnam Fuzzy negace Fuzzy konjunkce (trojúhelníkové normy) Fuzzy dsjunkce (trojúhelníkové konormy) Fuzzy výrokové algebry Fuzzy mplkace Fuzzy bmplkace (ekvvalence) Agregační operátory Fuzzy relace Bnární relace v klascké teor množn Fuzzfkace bnárních relací Konzstence fuzzy relací Projekce a cylndrcké rozšíření Prncp rozšíření Rozšíření bnárních relací na ostré množny Prncp rozšíření bnárních relací na fuzzy množny Konvexní fuzzy množny Fuzzy čísla a fuzzy ntervaly Zavedení pojmů a základní vlastnost Bnární operace s fuzzy čísly Lteratura Základní Doplňková Rejstřík

4 1. Základní pojmy 1.1. Základní pojmy z teore množn V této kaptole zopakujeme základní skutečnost z teore množn, které budeme pozděj zobecňovat. Není zde místo na podrobnou výstavbu základů teore množn, která bývá často nahrazována ntutvním chápáním pojmu množna. Z předchozích kursů byste měl vědět, že např. ke každé množně A exstuje množna všech jejích podmnožn, budeme j značt P(A). Zato však neexstuje množna všech množn, neboť takový pojem vede ke sporu. Těmto problémům se snadno vyhneme tak, že se omezíme na studum podmnožn jedné (lbovolné, ale pevně dané) tzv. unverzální množny (unverza), kterou budeme značt X. Přpomeňme některé pojmy: Kardnaltou (též mohutností) konečné množny rozumíme její počet prvků. Zobecnění na nekonečné množny je obtížnějsí, ale pro tento kurs není podstatné. Kartézský součn dvou množn A, B, značíme A B, je množna všech uspořádaných dvojc, v nchž první prvek je z první množny, druhý z druhé, tedy A B = { (a, b) : a A, b B }. Množnové operace průnk a sjednocení můžeme snadno zavést pomocí výrokových operací konjunkce ( ) a dsjunkce ( ). Průnk: A B = {x : (x A) (x B)}. jednocení: A B = {x : (x A) (x B)}. Doplňkem množny A, značíme A, má být množna všech prvků, které do ní nepatří. Aby taková defnce byla korektní, musíme se omezt na prvky unverzální množny, tedy A = {x : x X, x A}. Inkluz (tj. vlastnost být podmnožnou ), A B, lze zavést několka ekvvalentním způsoby, např. (1) x A : x B, (2) x X : (x A x B), (3) A B = A, (4) A B = B. Poslední dva vztahy charakterzují nkluz pomocí množnových operací. Povšmněme s ještě, že naopak lze všechny množnové operace zavést pomocí nkluze (a z ní přrozeně odvozených operací maxma a mnma souboru množn): A B = max{c X : C A, C B}, A B = mn{c X : A C, B C}, A = max{c X : C A = } = mn{c X : C A = X}. Doplněk je také jednoznačně charakterzován vztahy A A =, A A = X. Doplněk nedostačuje k určení nkluze, splňuje však následující ekvvalenc: A B B A. 2

5 Základní pojmy 1.2. Charakterstcká funkce 1.2. Charakterstcká funkce Alternatvně lze množnu A popsat její charakterstckou funkcí µ A : X {0, 1}, µ A (x) = { 1 pro x A, 0 pro x A. (Zde je opět důležtá unverzální množna X jako defnční obor charakterstcké funkce.) Takto běžně reprezentujeme množny na počítač, např. v Pascalu. Množna A je svou charakterstckou funkcí µ A jednoznačně určena: A = {x X : µ A (x) = 1} = {x X : µ A (x) > 0}. I když charakterstcká funkce nebývá prostá, budeme pro n (podobně jako pro jná zobrazení) používat značení pro nverz µ 1 A, která množně obrazů M {0, 1} přřadí množnu všech odpovídajících vzorů, tj. µ 1 A (M) = {x X : µ A(x) M}. tímto značením lze psát A = µ 1 A ( ) ( ) {1} = µ 1 A (0, 1. Je-l argumentem µ 1 A jednoprvková množna, často píšeme pouze tento prvek, tedy µ 1 A (1) znamená µ 1 ( ) A {1}. Inkluz a množnové operace lze pomocí charakterstckých funkcí vyjádřt následovně: kde značí logckou negac. A B µ A µ B, µ A B (x) = µ A (x) µ B (x) = µ A (x) µ B (x) = mn ( µ A (x), µ B (x) ), µ A B (x) = µ A (x) µ B (x) = max ( µ A (x), µ B (x) ), µ A (x) = 1 µ A (x) = µ A (x), 1.3. Základní pojmy teore fuzzy množn Zatímco zobecnění pojmu množny v původním tvaru je těžko představtelné, charakterstckou funkc lze snadno zobecnt na funkc nabývající více (pravdvostních) hodnot. Zde se až na výjmky omezíme na případ, kdy množnou pravdvostních hodnot bude nterval reálných čísel 0, 1 nebo jeho podmnožna. Opět budeme předpokládat pevně zvolenou unverzální množnu X. Fuzzy podmnožnou A unverza X (stručně fuzzy množnou) budeme rozumět objekt popsaný (zobecněnou) charakterstckou funkcí µ A : X 0, 1 (nazývanou též funkce příslušnost). Pro každý prvek x X hodnota µ A (x) 0, 1 říká, do jaké míry je x prvkem fuzzy množny A. Každá funkce z X do 0, 1 určuje jednoznačně nějakou fuzzy množnu. V některých učebncích se ztotožňují fuzzy množny a jejch funkce příslušnost, pak místo µ A (x) píšeme stručněj A(x). Zde budeme tyto pojmy důsledně rozlšovat, mj. proto, že fuzzy množna pro nás bude objektem, který je možno popsat více způsoby, z nchž jedním je funkce příslušnost. Podobně např. náhodná velčna je objektem, který lze popsat dstrbuční funkcí, ale jnak, např. hustotou (pokud exstuje), charakterstckou funkcí apod. Záps x A nebudeme pro fuzzy množny používat, protože ztrácí původní význam. Vyhradíme jej pouze pro klascké množny (které nejsou fuzzy); těm budeme pro odlšení říkat ostré množny (angl. crsp). Záps µ A (x) budeme používat jak pro fuzzy množny, tak pro ostré množny jako specální případ. Je-l tedy A ostrá množna a x X, pak µ A (x) {0, 1} je pravdvostní hodnota výroku x A. Všechny fuzzy podmnožny unverza X tvoří množnu, kterou budeme značt F(X). Nejdříve zavedeme několk základních pojmů pro lbovolnou fuzzy množnu A na unverzu X. Obor hodnot: Range(A) = { α 0, 1 : ( x X : µ A (x) = α) } Výška: h(a) = sup Range(A) Je-l fuzzy množna výšky 1, nazývá se normální; v opačném případě jí říkáme subnormální. 3

6 Základní pojmy 1.4. Pops fuzzy množn pomocí řezů Nosč (angl. support) je ostrá množna upp(a) = { x X : µ A (x) > 0 }, nebol upp(a) = µ 1 A (Aby se nosč nepletl se supremem, píšeme zde velké a dvě p.) Jádro (angl. core) je ostrá množna core(a) = { x X : µ A (x) = 1 }, tj. core(a) = µ 1 A (1). ( (0, 1 ). Fuzzy množna se nazývá konečná, má-l konečný nosč. V tom případě defnujeme tzv. skalární kardnaltu předpsem card(a) = x X µ A (x). Je zřejmé, že stačí sčítat přes x upp(a) a že pro konečné ostré množny tento pojem splývá s klasckou kardnaltou. Lbovolnou fuzzy množnu můžeme popsat její funkcí příslušnost. Například na unverzu X = R můžeme defnovat fuzzy množny A, B předpsem 0 pro x < 0, x pro x 0, 1, µ A (x) = 2 x pro x (1, 2, 0 pro x > 2, µ B (x) = 0 jnak. 1 2 pro x = 3, 1 pro x = 4, 1 4 pro x = 5, Pro konečné fuzzy množny je tento záps zbytečně nepřehledný, zavádí se proto pro něj stručnější vyjádření. Zde budeme psát např. µ B = {(3, 1 2 ), (4, 1), (5, 1 4 )}. Využíváme toho, že reálná funkce na X je podmnožna kartézského součnu X R, tady množna uspořádaných dvojc; jedná odchylka od standardního značení spočívá tedy v tom, že neuvádíme prvky s nulovým stupněm příslušnost. (Pak ale musíme zvlášť říc, co je unverzem, tedy defnčním oborem funkce příslušnost.) Poznámka 1.1. V lteratuře se setkáme s mnoha jným zápsy, např. µ B = { 1 2 /3, 1/4, 1 4 /5}. Zde jsme voll záps co nejpodobnější zvykům z jných oblastí matematky Pops fuzzy množn pomocí řezů Nyní ukážeme jný způsob určení fuzzy množny než pomocí její funkce příslušnost. Ten bude mnohde výhodný, proto bude účelné naučt se oba popsy navzájem převádět. Defnce 1.2. Nechť A F(X), α 0, 1. Pak α-hladna (angl. α-level) fuzzy množny A je ostrá množna µ 1 A (α) = { x X : µ A (x) = α }. ystém řezů fuzzy množny A je zobrazení R A : 0, 1 P(X), které každému α 0, 1 přřazuje tzv. α-řez (angl. α-cut) R A (α) = µ 1 ( ) { A α, 1 = x X : µa (x) α }. (1.1) Použjeme-l v předchozím vztahu ostrou nerovnost, dostaneme systém ostrých řezů A : 0, 1 P(X), kde ostrý α-řez je A (α) = µ 1 ( ) { A (α, 1 = x X : µa (x) > α}. 4

7 Základní pojmy 1.4. Pops fuzzy množn pomocí řezů Poznámka 1.3. V lteratuře se setkáváme s mnoha jným způsoby značení α-řezu fuzzy množny A, např. [A] α, α A, α A atd. Řezy a hladny fuzzy množn mají následující vztah k dříve zavedeným pojmům: Range(A) = { α 0, 1 : µ 1 A (α) }, h(a) = sup { α 0, 1 : R A (α) }, upp(a) = A (0), core(a) = R A (1). Trválně platí pro všechna A F(X): R A (0) = X, A (1) =. Věta 1.4 (o systému řezů). A. Nechť M : 0, 1 P(X) je systém řezů fuzzy množny A F(X), tj. M = R A. Pak M splňuje podmínky M(0) = X, (R1) 0 α < β 1 M(α) M(β), (R2) 0 < β 1 M(β) = M(α). (R3) (Průnk v (R3) je přes všechna α 0, β).) B. Naopak, každé zobrazení M : 0, 1 P(X) splňující podmínky (R1), (R2), (R3) je systémem řezů nějaké fuzzy množny A F(X), tj. M = R A. Důkaz. A. (R1) : M(0) = R A (0) = X (0-řez). (R2) : Je-l x M(β) = R A (β), znamená to, že (R3) : µ A (x) β > α, tedy x R A (α) = M(α). α<β Pro rovnost dvou množn je potřeba dokázat dvě nkluze. Podle (R2) pro všechna α 0, β) platí proto M(β) M(α). α<β Pro důkaz obrácené nkluze předpokládejme, že M(β) M(α), x M(α). α<β To znamená, že pro všechna α 0, β) platí µ A (x) α, tedy µ A (x) β, nebol x R A (β) = M(β). B. Funkc příslušnost hledané fuzzy množny A lze defnovat v každém bodě takto: µ A (x) = sup { α 0, 1 : x M(α) }. (1.5) (upremum exstuje, protože podle (R1) je příslušná množna neprázdná.) Dokážeme, že systém řezů R A je roven M. Důkaz opět rozložíme na dvě nkluze. Pokud x M(β), pak přímo z defnce µ A vyplývá µ A (x) β, tj. x R A (β). Nechť x R A (β), tj. µ A (x) = sup { α 0, 1 : x M(α) } β. Vzhledem k (R2) to znamená, že pro všechna α 0, β) platí x M(α), a tedy s využtím (R3) x M(α) = M(β). α<β 5

8 Základní pojmy 1.4. Pops fuzzy množn pomocí řezů Poznámka 1.5. Kromě vztahu (R3) platí trválně také R A (β) = R A (α), ale neplatí α β R A (β) = R A (α), α β R A (β) = R A (α). Za protpříklad stačí vzít X = {x, y}, µ A = {(x, 1), (y, 0)}. Pro β = 0 dostáváme R A (0) = X, {x}. α>β α>0 R A = Věta o reprezentac pomocí řezů nám zajšťuje, že každá fuzzy množna je jednoznačně určena svým systémem řezů. Popsu fuzzy množny pomocí systému řezů říkáme horzontální reprezentace, na rozdíl od vertkální reprezentace pomocí funkce příslušnost. Vzájemný převod obou reprezentací zajšťují vztahy (1.1) a (1.5). Ty budeme potřebovat, neboť pro některé účely je jedna z reprezentací vhodnější než druhá. Převod z horzontální reprezentace na vertkální uvedeme ještě v jném tvaru s využtím násobku funkce příslušnost skalárem. Věta 1.6. Nechť A F(X). Pak µ A (x) = sup { α 0, 1 : x R A (α) }, µ A = sup α µ RA (α) = sup α µ RA (α), α 0,1 α Range(A) kde supremum v posledním vztahu počítáme po bodech, tj. µ A (x) = sup α µ RA (α)(x). α 0,1 ( tímto supremem se pozděj setkáme jako se standardním fuzzy sjednocením.) Důkaz. První vztah se vyskytl jž v důkazu věty o reprezentac řezů (1.5). Další jsou jen jeho ekvvalentní formulace. Jako příklad využtí horzontální reprezentace uvažujme, jak reprezentovat v počítač fuzzy množnu reálných čísel. Vertkální reprezentace vyžaduje zadat reálnou funkc. Její hodnoty mohou být určeny s velkou přesností, ale ta nemusí být užtečná. Jelkož už samy pravdvostní hodnoty vyjadřují vágnost, vystačíme často s poměrně malým počtem stupňů příslušnost. V horzontální reprezentac pak stačí ke každému z nch určt příslušný řez. Často bývá řezem nterval, k jehož určení stačí dvojce čísel. Pozděj uvdíme, že tato reprezentace je vhodná pro některé operace. Příklad 1.7. Na unverzu X = {a, b, c, d} je dána fuzzy množna µ A = { (a, 0.3), (b, 1), (c, 0.5) }. Najděte její horzontální reprezentac. Řešení. X pro α = 0, {a, b, c} pro α (0, 0.3, R A (α) = {b, c} pro α (0.3, 0.5, {b} pro α (0.5, 1. Příklad 1.8. Fuzzy množna A má horzontální reprezentac {a, b, c, d} pro α 0, 1/3, {a, d} pro α (1/3, 1/2, R A (α) = {d} pro α (1/2, 2/3, pro α (2/3, 1. Najděte její vertkální reprezentac. Řešení. µ A (a) = sup { α 0, 1 : a R A (α) } = sup 0, 1/2 = 1/2, podobně µ A (b) = 1/3, µ A (c) = 1/3, µ A (d) = 2/3, tedy µ A = { (a, 1/2), (b, 1/3), (c, 1/3), (d, 2/3) }. 6

9 Základní pojmy 1.4. Pops fuzzy množn pomocí řezů Příklad 1.9. Fuzzy množna A má horzontální reprezentac Najděte její vertkální reprezentac. {a, b, c} pro α = 0, R A (α) = {a} pro α (0, 1/2, {a, b} jnak. Řešení. Zadání není horzontální reprezentací žádné fuzzy množny, protože není splněna podmínka (R2). Například R A (1/2) R A (1). Dostáváme µ A (b) = sup { α 0, 1 : b R A (α) } = sup ( {0} (1/2, 1 ) = 1, ale b R A (1/2). Příklad Fuzzy množna A má horzontální reprezentac Najděte její vertkální reprezentac. {a, b} pro α = 0, R A (α) = {a} pro α (0, 1/2), jnak. Řešení. Zadání není horzontální reprezentací žádné fuzzy množny, protože není splněna podmínka (R3). Dostáváme µ A (a) = sup { α 0, 1 : a R A (α) } = sup 0, 1/2) = 1/2, ale a R A (1/2). Příklad Na unverzu X = R je dána fuzzy množna A: Najděte její horzontální reprezentac. x pro x 0, 1, µ A (x) = 2 x pro x (1, 1.5, 0 jnak. Řešení. R pro α = 0, R A (α) = α, 1.5 pro α (0, 0.5, α, 2 α pro α (0.5, 1. Příklad Je dána horzontální reprezentace fuzzy množny A: Najděte její vertkální reprezentac. R A (α) = { R pro α = 0, α 2, 1) jnak. Řešení. { x pro x (0, 1), µ A (x) = 0 jnak. Příklad Je dána horzontální reprezentace fuzzy množny A: Najděte její vertkální reprezentac. R A (α) = { R pro α = 0, (α 2, 1) jnak. Řešení. Zadání není horzontální reprezentací žádné fuzzy množny, protože není splněna podmínka (R3). Dostáváme například µ A (1/4) = sup { α 0, 1 : 1/4 R A (α) } = sup 0, 1/2) = 1/2, ale 1/4 R A (1/2). 7

10 Základní pojmy 1.5. Fuzzy nkluze 1.5. Fuzzy nkluze Defnce Nechť A, B F(X). Říkáme, že A je podmnožnou B a píšeme A B, jestlže platí x X : µ A (x) µ B (x). Protože takto je defnována nerovnost reálných funkcí, kterým funkce příslušnost fuzzy množn jsou, můžeme ekvvalentně psát též µ A µ B. Poznámka Nemůžeme použít záps x A : defnován význam kvantfkátoru x A. Věta Nechť A, B F(X). Pak A B právě tehdy, když x B, neboť pro fuzzy množnu A nemáme dosud α 0, 1 : R A (α) R B (α). (1.6) Důkaz. 1. Předpokládejme, že A B, x R A (α). Pak α µ A (x) µ B (x), tedy x R B (α) a R A (α) R B (α). 2. Předpokládejme, že platí (1.6). Nechť x X. Podle věty 1.6 je µ A (x) = sup { α 0, 1 : x R A (α) }. Protože { α 0, 1 : x R A (α) } { α 0, 1 : x R B (α) }, platí nerovnost µ A (x) sup { α 0, 1 : x R B (α) } = µ B (x). Díky této větě máme dvě ekvvalentní formulace fuzzy nkluze; jednu pro vertkální a jednu pro horzontální reprezentac. 8

11 2. Operace s fuzzy množnam 2.1. Ostré množny Začneme přehledem stuace pro ostré množny a zaměříme se na vztah mez množnovým a výrokovým operacem. Výrokovým operacem v tomto specálním případě míníme operace Booleovy algebry, dané známým tabulkam hodnot. množnové operace výrokové operace vztah doplněk : P(X) P(X) negace : {0, 1} {0, 1} A = { x X : (x A) } průnk : P(X) 2 P(X) konjunkce : {0, 1} 2 {0, 1} A B = { x X : (x A) (x B) } sjednocení : P(X) 2 P(X) dsjunkce : {0, 1} 2 {0, 1} A B = { x X : (x A) (x B) } Pro charakterstcké funkce lze předchozí vzorce psát: µ A (x) = µ A (x), µ A B (x) = µ A (x) µ B (x), µ A B (x) = µ A (x) µ B (x). Důležtost uvedených vzorců tkví mj. v tom, že zatímco defnční obor množnových operací může být různý v závslost na volbě unverzální množny, výrokové operace zůstávají stejné. tačí tedy znát výrokové operace, aby bylo možné zavést množnové operace na lbovolném unverzu. Dalším důsledkem je, že množnové operace splňují stejné vlastnost jako odpovídající výrokové operace (např. komutatvtu, asocatvtu, dstrbutvtu), jmenovtě zákony Booleovy algebry. Ty lze vyjádřt např. následovně (není to nejúspornější soustava axomů, některé lze odvodt z ostatních): nvoluce: α = α, komutatvta: α β = β α, α β = β α, asocatvta: (α β) γ = α (β γ), (α β) γ = α (β γ), dstrbutvta: α (β γ) = (α β) (α γ), α (β γ) = (α β) (α γ), dempotence: α α = α, α α = α, absorpce: α (α β) = α, α (α β) = α, absorpce s unverzem a 0: α 1 = 1, α 0 = 0, neutrální prvky: α 0 = α, α 1 = α, zákon kontradkce: α α = 0, zákon vyloučeného třetího: α α = 1, de Morganovy zákony: α β = α β, α β = α β Analoge pro operace s fuzzy množnam Rovněž pro operace s fuzzy množnam budou základem operace fuzzy výrokového počtu, tedy operace s pravdvostním hodnotam, tentokrát z ntervalu 0, 1. Poznámka 2.1. Vycházíme z předpokladu, že stupeň příslušnost bodu x X k výsledku operace závsí jen na jeho stupních příslušnost k operandům a je jm jednoznačně určen (tomu říkáme, že fuzzy logka je funkconální). V případě ostrých množn nebyl tento předpoklad vůbec překvapvý. V případě fuzzy množn je nutno tento prncp zdůraznt, neboť mnohdy nebývá správně pochopen. Jeho první část říká, že výsledek je nezávslý na hodnotách příslušnost v ostatních bodech. Druhá část říká, že stupně příslušnost bodu k operandům poskytují dostatečnou nformac pro určení stupně příslušnost k výsledku. Např. že stupeň pravdvost fuzzy konjunkce je chladno a prší je plně určen tím, nakolk je chladno a nakolk prší. To je úplně jná stuace než u pravděpodobnostní neurčtost. Kdybychom defnoval ostrá krtéra pro jevy je chladno a prší, mohl bychom stanovt (ostrou) pravdvostní hodnotu výroku dnes je chadno a prší. Mohl bychom také hovořt o pravděpodobnost jevů zítra bude chladno a bude pršet. Ta není jednoznačně určena pravděpodobností výroků zítra bude chladno a zítra bude pršet ; záleží zde navíc na závslost zkoumaných jevů. 9

12 Operace s fuzzy množnam 2.3. Fuzzy negace Je tedy třeba přpomenout, že fuzzy neurčtost se lší od pravděpodobnostní mj. v tom, že je funkconální. Jelkož fuzzy množnové výrokové operace vesměs zobecňují odpovídající klascké operace, budeme pro ně používat totéž značení:,,,...,,,,... a tutéž termnolog, pouze s přívlastkem fuzzy. Jak ovšem uvdíme, toto zobecnění lze zavést více způsoby, které budeme rozlšovat ndexy, např.,,, L... Index nahradíme tečkou, chceme-l hovořt o nějaké (blíže nespecfkované) fuzzy operac příslušného typu, např.. bude znamenat lbovolný fuzzy průnk. Operandy bez ndexů vyhradíme jen pro dva účely: operace klascké logky a teore množn, pro spojky použté v logce pro vytváření formulí, plnící tedy rol čstě syntaktckou. pojky, vyhrazujeme pouze pro klasckou mplkac a ekvvalenc ostrých výroků Fuzzy negace Defnce 2.2. Fuzzy negace je unární operace. : 0, 1 0, 1, splňující následující axomy: α β. β. α, Podle (N1) je fuzzy negace nerostoucí, podle (N2) je nvolutvní. (N1).. α = α. (N2) Příklad 2.3. tandardní fuzzy negace je defnována vztahem α = 1 α. Z axomů (N1), (N2) vyplývají mnohem přísnější podmínky: Věta 2.4. Každá fuzzy negace. je spojtá, klesající, bjektvní a splňuje okrajové podmínky. 1 = 0,. 0 = 1. (N0) Její graf je symetrcký podle osy 1. a 3. kvadrantu, tj.. 1 =. (nebol. je sama k sobě nverzní). Důsledek 2.5. Pro každou fuzzy negac. exstuje právě jedna hodnota e (0, 1), pro kterou. e = e. Nazýváme j rovnovážnou hodnotou (angl. equlbrum). Důkaz. Funkce f(β) =. β β splňuje f(0) = 1, f(1) = 1. Protože je spojtá, má podle věty o střední hodnotě v ntervalu (0, 1) nulové místo, které je rovnovážnou hodnotou. Jednoznačnost plyne z toho, že f je klesající. Věta 2.6 (o reprezentac fuzzy negací). A. Nechť : 0, 1 0, 1 je rostoucí bjekce. Pak funkce = 1, tj. α = 1( (α) ) je fuzzy negace. B. Naopak, každá fuzzy negace. je uvedeného tvaru pro nějakou rostoucí bjekc ; ta se nazývá generátor fuzzy negace.. Důkaz. (Dle [7].) A. (N1): Nechť α, β 0, 1, α β. Jelkož, 1 uspořádání zachovávají a obrací, dostáváme postupně tedy α β. (α) (β), (α) (β), 1( (α) ) 1( (β) ), (N2): = 1 1 = 1 = 1 = d, kde d je dentta na 0, 1. B. Defnujeme zobrazení předpsem α +. α (α) = 2 a dokážeme, že je generátorem fuzzy negace.. Je zřejmé, že je rostoucí, spojtá a splňuje (0) = 0, (1) = 1. Je to tedy bjekce na 0, 1. Dále platí α +. α 1 α + 1. α α +. α α +. α.. α +. α (α) = 1 = = = = = ( α). Tím jsme dokázal, že =., nebol 1 =.. 10

13 Operace s fuzzy množnam 2.4. Fuzzy konjunkce (trojúhelníkové normy) Poznámka 2.7. Pro rozlšení od jných reprezentací se někdy tomuto typu generátoru fuzzy negace říká rostoucí generátor. Poznámka 2.8. Rostoucí generátor fuzzy negace není jednoznačně určen. V předchozím důkazu jsme zkonstruoval jeden z možných rostoucích generátorů. Zcela jnou konstrukc lze najít v [6], její důkaz je však mnohem komplkovanější. Věta o reprezentac fuzzy negací má několk důsledků. Rostoucí bjekc lze nterpretovat jako změnu měřítka na ntervalu 0, 1 ; mění se označení pravdvostních hodnot, ale zůstává zachováno jejch uspořádání. Podle reprezentační věty lze lbovolnou fuzzy negac dostat ze standardní. To ovšem neznamená, že by standardní negace měla nějaké výsadní postavení; naopak na jejím místě bylo možno použít lbovolnou jnou fuzzy negac, věta platí pro n. Různé fuzzy negace se mohou jevt odlšně z hledska užvatele, který jm chce popsat vágnost nformací, ale z matematckého hledska mez nm není (zatím) žádný podstatný rozdíl. Další text tedy neztratí přílš na obecnost, když se v něm omezíme na jednou standardní fuzzy negac. Poznámka 2.9. Někdy se uvažuje (a jako fuzzy negace označuje) zobecněná fuzzy negace, což je operace. : 0, 1 0, 1 splňující pouze (N0) a (N1). Ta nemusí být nvolutvní an spojtá. V tom případě se fuzzy negac v našem smyslu (splňující (N1),(N2)) říká slná fuzzy negace. Příklad Gödelova zobecněná fuzzy negace: G α = { 1 pro α = 0, 0 jnak. Defnce Fuzzy doplněk je operace na fuzzy množnách defnovaná pomocí fuzzy negace: µ A.(X) =. µ A (x). Přtom A. znamená obecný fuzzy doplněk k fuzzy množně A. Jednotlvé typy budeme rozlšovat stejným ndexy, jako u fuzzy negací. Například A je standardní fuzzy doplněk fuzzy množny A (odpovídající standardní fuzzy negac ) Fuzzy konjunkce (trojúhelníkové normy) Defnce Fuzzy konjunkce, (trojúhelníková norma, t-norma, angl. trangular norm) je bnární operace. : 0, 1 2 0, 1, splňující následující axomy pro všechna α, β, γ 0, 1 : α. β = β. α (komutatvta) (T1) α. (β. γ) = (α. β). γ (asocatvta) (T2) β γ α. β α. γ (monotone) (T3) α. 1 = α (okrajová podmínka) (T4) Poznámka Pojem trojúhelníková norma se jeví poněkud nepřměřený, ale je všeobecně používaný. Pochází z prací chwezera a klara [16], které se nezabývaly fuzzy množnam, nýbrž metrkam na prostorech pravděpodobností, ncméně podaly první soustavné studum těchto operací. V současné době je as nejúplnějším dílem o trojúhelníkových normách monografe [13]. Defnční vlastnost fuzzy konjunkcí reprezentují přrozené mnmální požadavky, které na takovou operac můžeme mít. Jelkož konjunkc běžně užíváme pro více argumentů bez ohledu na jejch pořadí, potřebujeme komutatvtu a asocatvtu. Monotone je rovněž přrozená pokud zvýšíme stupeň pravdvost jednoho z argumentů, bylo by velm nepřrozené, kdyby se tím snížl stupeň pravdvost jejch konjunkce. Okrajová podmínka říká, že exstuje hodnota ( úplná pravda, 1), která, přdána k argumentům konjunkce, její výsledek nesníží (an nezvýší), je tedy neutrálním prvkem vzhledem k této operac. 11

14 Operace s fuzzy množnam 2.4. Fuzzy konjunkce (trojúhelníkové normy) Příklad tandardní fuzzy konjunkce (mn, Gödelova, Zadehova... ): α β = mn(α, β). Lukasewczova fuzzy konjunkce (Glesova, angl. též bold... ): { α + β 1 pro α + β 1 > 0, α L β = 0 jnak. oučnová fuzzy konjunkce (produktová, pravděpodobnostní, angl. algebrac product... ): α P β = α β. Drastcká fuzzy konjunkce (slabá, angl. weak... ): α D β = { α pro β = 1, β pro α = 1, 0 jnak. Věta Pro každou fuzzy konjunkc. a α 0, 1 platí α. 0 = 0. Důkaz. Podle (T3) a (T4) platí: α. 0 (T3) 1. 0 (T4) = 0. Mez fuzzy konjunkcem můžeme uvažovat stejné uspořádání, jaké známe u funkcí, tj. 1 2, jestlže α, β 0, 1 : α 1 β α 2 β. Věta Mez všem fuzzy konjunkcem je standardní největší a drastcká nejmenší, tj. pro lbovolnou fuzzy konjunkc. platí α, β 0, 1 : α D β α. β α β. Důkaz. Je-l α = 1 nebo β = 1, pak podmínka (T4) dává stejný výsledek pro všechny fuzzy konjunkce. Předpokládejme (bez újmy na obecnost) α β < 1. Pak α D β = 0 α. β α. 1 = α = α β. Věta tandardní fuzzy konjunkce je jedná, která splňuje α α = α pro všechna α 0, 1. (Této vlastnost bnárních operací říkáme dempotence.) Důkaz. Nechť. je dempotentní fuzzy konjunkce. Dokážeme, že je standardní. Předpokládejme α, β 0, 1, α β. Pak α = α. α (T3) α. β (T3) α. 1 (T4) = α, tedy α. β = α = α β. Pro α > β zaměníme α, β a stejným postupem dostaneme α. β = β = α β. Dále se zaměříme především na spojté fuzzy konjunkce. Z fuzzy konjunkcí z příkladu 2.14 pouze drastcká je nespojtá. Defnce Nechť. je spojtá fuzzy konjunkce. Řekneme, že. je archmedovská (angl. archmedean), jestlže strktní, (angl. strct), jestlže α (0, 1) : α. α < α (TA) α (0, 1 β, γ 0, 1 : β < γ α. β < α. γ (T3+) nlpotentní (angl. nlpotent), jestlže je archmedovská a není strktní. 12

15 Operace s fuzzy množnam 2.4. Fuzzy konjunkce (trojúhelníkové normy) Poznámka V některých pramenech jsou jako archmedovské označovány všechny nespojté fuzzy konjunkce, které splňují (TA). Je nutno se vždy přesvědčt, v jakém významu autor tento termín používá. Příklad oučnová fuzzy konjunkce je strktní, Lukasewczova je nlpotentní, standardní a drastcká nejsou archmedovské (standardní nesplňuje (TA), drastcká není spojtá). V dalším uvdíme, že tyto příklady jsou typcké a v jstém smyslu unverzální. Poznámka Podmínka (T3+) je slnější než (TA); stačí v ní dosadt β := α, γ := 1. Tedy každá strktní fuzzy konjunkce je archmedovská; archmedovské fuzzy konjunkce se dělí na dvě dsjunktní podtřídy, strktní a nlpotentní. Defnce Chceme-l aplkovat fuzzy konjunkc. na n argumentů α 1,..., α n, použjeme záps n. k=1 α k = α 1.. α n. Věta Nechť. je archmedovská fuzzy konjunkce. Pak pro každé α (0, 1) a ε > 0 exstuje n N takové, že n. k=1 α < ε Pro strktní fuzzy konjunkce nelze předchozí větu zesílt, pro nlpotentní ano: Věta Nechť. je nlpotentní fuzzy konjunkce. Pak pro každé α (0, 1) exstuje n N takové, že n. k=1 α = 0 Věta 2.25 (o reprezentac strktních fuzzy konjunkcí). A. Nechť : 0, 1 0, 1 je rostoucí bjekce. Pak operace : 0, 1 2 0, 1, defnovaná vztahem α β = 1( (α) (β) ), je strktní fuzzy konjunkce. B. Naopak, každá strktní fuzzy konjunkce. je uvedeného tvaru pro nějakou rostoucí bjekc, kterou nazýváme multplkatvní generátor. Poznámka Nechť je multplkatvní generátor fuzzy konjunkce. Defnujeme funkc h : 0, 1 0, předpsem h(α) = ln (α) (klademe ln 0 = ). Pak nverzní funkce je h 1 (t) = 1 (e t ) a pro všechna α, β 0, 1 platí α β = h 1( h(α) + h(β) ), neboť h 1( h(α) + h(β) ) = 1 (e ( ln (α) ln (β))) = 1 ( e ln (α)+(β)) = 1( (α) (β) ) = α β. Funkc h nazýváme adtvní generátor fuzzy konjunkce, neboť nám dovoluje vyjádřt tuto operac pomocí součtu reálných čísel. Na rozdíl od multplkatvního generátoru, adtvní generátor je klesající funkce a jeho obor hodnot je nekonečný nterval 0,. Proto zde budeme přednostně pracovat s multplkatvním generátorem, na rozdíl od např. [16]. Věta 2.27 (o reprezentac nlpotentních fuzzy konjunkcí). A. Nechť : 0, 1 0, 1 je rostoucí bjekce. Pak operace : 0, 1 2 0, 1, defnovaná vztahem α β = 1( (α) L (β) ), je nlpotentní fuzzy konjunkce. B. Naopak, každá nlpotentní fuzzy konjunkce. je uvedeného tvaru pro nějakou rostoucí bjekc, kterou nazýváme Lukasewczův generátor. Poznamenejme ještě jednu důležtou vlastnost archmedovských konjunkcí: 13

16 Operace s fuzzy množnam 2.5. Fuzzy dsjunkce (trojúhelníkové konormy) Věta Je-l. archmedovská konjunkce a α < 1, kde I a I je nespočetná množna, pak. I α = 0. Důkaz. Pomocí adtvního generátoru odpovídá uvedené konjunkc nespočetná suma nenulových členů. Z matematcké analýzy je známo, že taková suma nemůže být konečná. Pro některé spočetné množny argumentů analoge předchozí věty platt nemusí, stejně jako součet nekonečné (spočetné) řady může, ale nemusí být nekonečný. Důsledkem této věty je, že použtí archmedovských fuzzy konjunkcí na nekonečné, zejména pak na nespočetné množny argumentů nám zřídka dá užtečný výsledek. Naprot tomu u standardní fuzzy konjunkce (která je dempotentní) na takový problém nenarážíme. To se projeví př použtí v některých vzorcích; pak bude vhodné omezt se na standardní fuzzy konjunkc a zamítnout zobecnění, které by j nahrazovalo obecnější fuzzy konjunkcí, zejména archmedovskou. Defnce Fuzzy průnk je operace na fuzzy množnách defnovaná pomocí fuzzy konjunkce: µ A. B (x) = µ A (x). µ B (x). Přtom. znamená obecný fuzzy průnk. Jednotlvé typy budeme rozlšovat stejným ndexy jako u příslušných fuzzy konjunkcí Fuzzy dsjunkce (trojúhelníkové konormy) Defnce Fuzzy dsjunkce, (trojúhelníková konorma, t-konorma, angl. trangular conorm) je bnární operace. : 0, 1 2 0, 1, splňující následující axomy pro všechna α, β, γ 0, 1 : α. β = β. α (komutatvta) (1) α. (β. γ) = (α. β). γ (asocatvta) (2) β γ α. β α. γ (monotone) (3) α. 0 = α (okrajová podmínka) (4) Příklad tandardní fuzzy dsjunkce (max, Gödelova, Zadehova... ): α β = max(α, β). Lukasewczova fuzzy dsjunkce (Glesova, angl. též bold, bounded sum... ): { α L α + β pro α + β < 1, β = 1 jnak. oučnová fuzzy dsjunkce (produktová, pravděpodobnostní... ): α P β = α + β α β. Drastcká fuzzy dsjunkce (slabá, angl. weak... ): α D β = { α pro β = 0, β pro α = 0, 1 jnak. Věta Pro každou fuzzy dsjunkc. a α 0, 1 platí α. 1 = 1. Důkaz. Podle (3) a (4) platí: α. 1 (3) 0. 1 (4) = 1. Mez fuzzy dsjunkcem uvažujeme stejné uspořádání jako u funkcí. 14

17 Operace s fuzzy množnam 2.5. Fuzzy dsjunkce (trojúhelníkové konormy) Věta Mez všem fuzzy dsjunkcem je standardní nejmenší a drastcká největší, tj. pro lbovolnou fuzzy dsjunkc. platí α, β 0, 1 : α β α. β α D β. Důkaz. Je-l α = 0 nebo β = 0, pak podmínka (4) dává stejný výsledek pro všechny fuzzy dsjunkce. Předpokládejme (bez újmy na obecnost) 0 < α β. Pak α β = β = 0. β α. β 1 = α D β. Věta tandardní fuzzy dsjunkce je jedná, která je dempotentní, tj. α α = α pro všechna α 0, 1. Důkaz. Nechť. je dempotentní fuzzy dsjunkce. Dokážeme, že je standardní. Předpokládejme α, β 0, 1, α β. Pak α = α. α (3) α. β (3) α. 1 (4) = α, tedy α. β = α = α β. Pro α > β zaměníme α, β a stejným postupem dostaneme α. β = β = α β. Věta Nechť. je fuzzy negace. A. Je-l. fuzzy konjunkce, pak de Morganova formule α. β =. (. α.. β) defnuje fuzzy dsjunkc. duální k. vzhledem k.. B. Je-l. fuzzy dsjunkce, pak de Morganova formule α. β =. (. α.. β) defnuje fuzzy konjunkc. duální k. vzhledem k.. Poznámka Pokud u dualty neuvedeme, vzhledem k jaké negac je chápána, pak automatcky předpokládáme standardní fuzzy negac. Příklad Lukasewczovy operace L, L jsou duální vzhledem ke standardní negac. oučnové operace P, P jsou duální vzhledem ke standardní negac. tandardní operace, jsou duální vzhledem k jakékol fuzzy negac. Drastcké operace D, D jsou duální vzhledem k jakékol fuzzy negac. Dále se zaměříme především na spojté fuzzy dsjunkce. Z fuzzy dsjunkcí z příkladu 2.31 pouze drastcká je nespojtá. Defnce Nechť. je spojtá fuzzy dsjunkce. Řekneme, že. je archmedovská (angl. archmedean), jestlže strktní, (angl. strct), jestlže α (0, 1) : α. α > α (A) α 0, 1) β, γ 0, 1 : β < γ α. β < α. γ (3+) nlpotentní (angl. nlpotent), jestlže je archmedovská a není strktní. Poznámka V některých pramenech jsou jako archmedovské označovány všechny nespojté fuzzy dsjunkce, které splňují (A). Příklad oučnová fuzzy dsjunkce je strktní, Lukasewczova je nlpotentní, standardní a drastcká nejsou archmedovské (standardní nesplňuje (A), drastcká není spojtá). Poznámka Podmínka (3+) je slnější než (A); stačí v ní dosadt γ := α, β := 0. 15

18 Operace s fuzzy množnam 2.6. Fuzzy výrokové algebry Defnce Chceme-l aplkovat fuzzy dsjunkc. na n argumentů α 1,..., α n, použjeme záps. n k=1 α k = α 1.. αn. Věta Nechť. je archmedovská fuzzy dsjunkce. Pak pro každé α (0, 1) a ε > 0 exstuje n N takové, že. n k=1 α > 1 ε Pro strktní fuzzy dsjunkce nelze předchozí větu zesílt, pro nlpotentní ano: Věta Nechť. je nlpotentní fuzzy dsjunkce. Pak pro každé α (0, 1) exstuje n N takové, že. n k=1 α = 1 Věta 2.45 (o reprezentac strktních fuzzy dsjunkcí). A. Nechť : 0, 1 0, 1 je rostoucí bjekce. Pak operace : 0, 1 2 0, 1, defnovaná vztahem α β = 1( (α) P (β) ), je strktní fuzzy dsjunkce. B. Naopak, každá strktní fuzzy dsjunkce. je uvedeného tvaru pro nějakou rostoucí bjekc. Věta 2.46 (o reprezentac nlpotentních fuzzy dsjunkcí). A. Nechť : 0, 1 0, 1 je rostoucí bjekce. Pak operace : 0, 1 2 0, 1, defnovaná vztahem α β = 1( (α) L (β) ), je nlpotentní fuzzy dsjunkce. B. Naopak, každá nlpotentní fuzzy dsjunkce. je uvedeného tvaru pro nějakou rostoucí bjekc, kterou nazýváme adtvní generátor. Poznamenejme ještě důležtou vlastnost archmedovských dsjunkcí: Věta Je-l. archmedovská dsjunkce a α > 0, kde I a I je nespočetná množna, pak. I α = 1. Důkaz význam této věty je obdobný jako u věty??. Defnce Fuzzy sjednocení je operace na fuzzy množnách defnovaná pomocí fuzzy dsjunkce: µ A. B (x) = µ A (x). µ B (x). Přtom. znamená obecné fuzzy sjednocení. Jednotlvé typy budeme rozlšovat stejným ndexy jako u fuzzy dsjunkcí Fuzzy výrokové algebry Dosud jsme zavedl 3 základní logcké spojky negac, konjunkc a dsjunkc. Pomocí nch lze vytvářet další logcké formule. V této kaptole porovnáme, jaké zákony tyto operace splňují. Východskem bude tabulka zákonů Booleových algeber, přepsaných pro fuzzy logcké operace. 16

19 Operace s fuzzy množnam 2.6. Fuzzy výrokové algebry Tabulka Analoge zákonů Booleových algeber pro fuzzy logcké operace (platné pouze pro některé volby fuzzy operací). nvoluce:. (. α) = α, komutatvta: α. β = β. α, α. β = β. α, asocatvta: (α. β). γ = α. (β. γ), (α. β). γ = α. (β. γ), dstrbutvta: α. (β. γ) = (α. β). (α. γ), α. (β. γ) = (α. β). (α. γ), dempotence: α. α = α, α. α = α, absorpce: α. (α. β) = α, α. (α. β) = α, absorpce s jednčkou a nulou: α. 1 = 1, α. 0 = 0, neutrální prvky: α. 0 = α, α. 1 = α, zákon kontradkce: α.. α = 0, zákon vyloučeného třetího: α.. α = 1, de Morganovy zákony:. (α. β) =. α.. β,. (α. β) =. α.. β. Věta Pro lbovolnou fuzzy negac, fuzzy konjunkc a fuzzy dsjunkc platí následující zákony z tabulky 2.49: nvoluce, komutatvta, asocatvta, absorpce s jednčkou a nulou, neutrální prvky. Věta tandardní fuzzy operace,, splňují všechny zákony z tabulky 2.49 kromě zákona kontradkce a zákona vyloučeného třetího. Příklad Pro α = 1/3 dostáváme Vždy však platí α α 1 2, α α 1 2. α α = 2 3 α α = = 1/3 0, 1 3 = 2/3 1. Poznámka pecálně upozorňujeme, že standardní operace splňují oba dstrbutvní zákony. Věta Lukasewczovy operace, L, L splňují všechny vztahy z tabulky 2.49 kromě dstrbutvty, dempotence a zákonů absorpce. Poznámka Zdůrazněme, že Lukasewczovy operace splňují zákon kontradkce a zákon vyloučeného třetího. Věta oučnové operace, P, P splňují pouze vztahy z věty 2.50 a de Morganovy zákony. Mohlo by se zdát, že vhodnou volbou fuzzy operací by mohlo být splněno ještě více zákonů klascké logky, případně všechny. To však není možné, protože tyto zákony defnují Booleovy algebry a nemohou tudíž všechny platt pro netrvální zobecnění, jakým fuzzy operace jsou. Uvedeme ještě konkrétní příklad rozporu, jemuž se nelze vyhnout př zobecnění výrokových operací na 0, 1. Věta plňují-l fuzzy operace.,.,. na 0, 1 de Morganovy zákony, zákon kontradkce a zákon vyloučeného třetího, pak nesplňují dstrbutvtu. Důkaz. Nechť e (0, 1) je rovnovážná hodnota fuzzy negace., tj.. e = e. Pak Z dstrbutvty by plynulo například e. e =. e. e = 1, e. e =. e. e = 0. e. (e. e) = (e. e). (e. e). Podle předchozího se však levá strana rovná e. 1 = e, zatímco pravá je 0. 0 = 0, což je spor. Není tedy možné, aby byly všechny uvedené vlastnost splněny současně. 17

20 Operace s fuzzy množnam 2.7. Fuzzy mplkace Poznámka Z reprezentačních vět pro fuzzy negace a pro strktní a nlpotentní fuzzy konjunkce (resp. dsjunkce) by se mohlo zdát, že stačí změnt měřítko pomocí vhodné rostoucí bjekce : 0, 1 0, 1, abychom mohl místo obecných operací pracovat se standardní fuzzy negací a součnovou nebo Lukasewczovou fuzzy konjunkcí. Takové zjednodušení není obecně možné. Problém je v tom, že rostoucí generátor příslušné fuzzy negace nemusí být multplkatvní č Lukasewczův generátor uvažované fuzzy konjunkce. Změnou měřítka lze proto splnt jen jeden cíl buď mít pěknou (rozuměj standardní) fuzzy negac a obecnou fuzzy konjunkc, nebo mít pěknou (rozuměj součnovou nebo Lukasewczovu) fuzzy konjunkc a obecnou fuzzy negac. Obojí najednou splnt obvykle nelze. Zde se kloníme k prvnímu případu, neboť každá fuzzy negace je až na změnu měřítka zomorfní se standardní fuzzy negací, kdežto reprezentační věty pro fuzzy konjunkce nejsou tak unverzální. tejná úvaha platí pro fuzzy dsjunkce místo konjunkcí Fuzzy mplkace Na rozdíl od předchozích operací, pro mplkace. není ustálená axomatcká defnce. Proto budeme za fuzzy mplkac považovat jakoukol operac. : 0, 1 2 0, 1, která se na {0, 1} 2 shoduje s klasckou mplkací. Místo podrobnější axomatky uvedeme přímo způsoby, kterým jsou nejdůležtější fuzzy mplkace konstruovány z jných fuzzy operací. Zaměříme se na 3 nejčastěj používané typy mplkací: α. β = α. β α Q. β = α. (α. β) α R. β = sup{γ : α. γ β} (I) (QI) (RI) V Boolově algebře všechny tř vzorce defnují tutéž klasckou mplkac. Ve fuzzy logce se obecně lší a vedou na 3 třídy fuzzy mplkací. Další členění závsí na volbě fuzzy operací na pravých stranách vzorců. Defnce Vzorec (RI) defnuje rezduovanou fuzzy mplkac (rezduum, R-mplkac) příslušnou fuzzy konjunkc.. Dolní ndex použjeme stejný jako u odpovídající fuzzy konjunkce. Příklad Od standardní fuzzy konjunkce je odvozena Gödelova fuzzy mplkace { α R 1 pro α β, β = β jnak. Tato fuzzy mplkace je po částech lneární a spojtá s výjmkou bodů (α, α), α < 1. Příklad Od Lukasewczovy fuzzy konjunkce L je odvozena Lukasewczova fuzzy mplkace { α R 1 pro α β, L β = 1 α + β jnak. Tato fuzzy mplkace je po částech lneární a všude spojtá. Příklad Od součnové fuzzy konjunkce P je odvozena Goguenova (též Ganesova) fuzzy mplkace { 1 pro α β, α R P β = jnak. Tato fuzzy mplkace má jedný bod nespojtost (0, 0). Věta Každá rezduovaná mplkace R. β α splňuje následující podmínky: α R. β = 1, právě když α β, (I1) 1 R. β = β, (I2) R. je nerostoucí v 1. argumentu a neklesající v 2. argumentu. (I3) 18

21 Operace s fuzzy množnam 2.7. Fuzzy mplkace Věta Nechť je strktní fuzzy konjunkce s multplkatvním generátorem (dle věty 2.25). Pak R pro příslušnou rezduovanou mplkac platí { 1 α R ( ) pro α β, β = 1 (β) (α) jnak. Věta Nechť je nlpotentní fuzzy konjunkce s Lukasewczovým generátorem (dle věty 2.27). R Pak pro příslušnou rezduovanou mplkac platí { 1 pro α β, α R β = 1( 1 (α) + (β) ) jnak. Důsledek Rezduovaná fuzzy mplkace příslušná archmedovské fuzzy konjunkc. je spojtá, právě když. je nlpotentní.. Defnce Vzorec (I) defnuje -mplkac odpovídající fuzzy dsjunkc a fuzzy negac. Př konstrukc -mplkace zde uvažujeme vždy pouze standardní fuzzy negac a dolní ndex -mplkace bude označovat použtou fuzzy dsjunkc. Příklad Ze standardní fuzzy dsjunkce dostáváme Kleeneovu-Denesovu fuzzy mplkac α β = max(1 α, β). Příklad Z Lukasewczovy fuzzy dsjunkce dostáváme Lukasewczovu fuzzy mplkac shoduje s Lukasewczovou rezduovanou fuzzy mplkací Příklad Ze součnové fuzzy dsjunkce dostáváme Rechenbachovu fuzzy mplkac α P R L. β = 1 α + αβ. L, která se Defnce Nechť. je fuzzy konjunkce a. fuzzy dsjunkce duální k. (vzhledem k ). Pak vzorec (QI) defnuje Q-mplkac odpovídající fuzzy konjunkc. a fuzzy negac. Př konstrukc Q-mplkace zde uvažujeme vždy pouze standardní fuzzy negac a dolní ndex Q-mplkace označuje použtou fuzzy konjunkc. Poznámka Písmeno Q v termínu Q-mplkace znamená kvantová (angl. quantum), neboť obdobně zavedené operace hrají důležtou rol v kvantových logkách. Příklad Ze standardní fuzzy konjunkce dostáváme původní Zadehovu fuzzy mplkac (angl. early Zadeh fuzzy mplcaton) α Q β = α (α β). Z Lukasewczovy fuzzy konjunkce dostáváme jž známou Kleeneovu-Denesovu fuzzy mplkac α Q L β = α L (α L β) = α β = max(1 α, β) = α β. Na fuzzy mplkace je možno klást další požadavky. Kromě jž uvedených (I1), (I2), (I3) se často požaduje: α.. β =. β... α, α.. (β.. γ) = β.. (α.. γ), spojtost. Všechny požadavky (I1) (I6) splňují ze zde probíraných fuzzy mplkací pouze ty rezduované, které odpovídají nlpotentním fuzzy konjunkcím dle věty Příkladem je Lukasewczova fuzzy mplkace. Vzorec pro -mplkac používá fuzzy negac, která musí být předem dána. Naopak rezduovanou mplkac lze použít pro defnc zobecněné fuzzy negace. předpsem. α = α R. 0. (I4) (I5) (I6) Použjeme-l na pravé straně například Gödelovu nebo Goguenovu fuzzy mplkac ( R nebo R P ), dostaneme Gödelovu zobecněnou fuzzy negac G. Lukasewczova fuzzy mplkace R L standardní fuzzy negac. dává tímto způsobem 19

22 Operace s fuzzy množnam 2.8. Fuzzy bmplkace (ekvvalence) Poznámka Pojem fuzzy mplkace není dosud ustálený. Někteří autoř [10, 11] uvažují pouze rezduované fuzzy mplkace. Naopak v některých pramenech jsou jako fuzzy mplkace označovány operace, které se an na {0, 1} 2 neshodují s klasckou mplkací. Například standardní konjunkce je někdy nevhodně označována jako Mamdanho mplkace Fuzzy bmplkace (ekvvalence) Pokud.. Od mplkace.. se odvozuje komutatvní operace.., obvykle defnovaná vztahem α.. β = (α.. β). (β.. α). splňuje (I1) (například pro rezduovanou mplkac), je vždy aspoň jedna ze závorek na pravé straně rovna jedné, takže nezáleží na volbě fuzzy konjunkce.. Výsledná operace.. bývá označována jako fuzzy ekvvalence. Protože však pojem ekvvalence označuje specální relac (vz dále), dáváme zde přednost (rovněž častému) pojmu fuzzy bmplkace. Indexujeme j stejně jako fuzzy mplkac, z níž vznkla. Příklad Lukasewczova fuzzy bmplkace: α R L β = 1 α β. Göedelova fuzzy bmplkace: { 1 pro α = β, α R β = α β jnak. oučnová fuzzy bmplkace: 1 pro α = β = 0, α R α β P β = jnak. α β Věta Pro rezduovanou fuzzy mplkac R. a jí příslušnou fuzzy bmplkac platí α R. β = (α β) R. (α β) Agregační operátory Dosud uvedené fuzzy logcké operace se snažly o zobecnění operací klascké logky. Pro zpracování vágních nformací však bývají užtečné operace, které žádnou analog v Booleových algebrách nemají. Jako příklad uvažujme sdružení nformací, které nám o téže otázce poskytne skupna expertů. Z jejch údajů chceme vypočítat jeden kolektvní názor, jakýs druh průměru. K tomu účelu se nabízejí agregační operátory a jejch podtřída, fuzzy průměry. (Zde prezentovaný přístup je převzat z [6].) V této kaptole se budeme zabývat operátory, jejchž počet argumentů (arta) není pevně daný, ale může jím být lbovolné celé číslo n 2. Agregační operátor (angl. aggregaton operator) je zobrazení h, které každé n-tc hodnot z 0, 1 (n 2) přřadí číslo z 0, 1 v souladu s následujícím podmínkam: h(0,..., 0) = 0, h(1,..., 1) = 1, (A1) ( = 1,..., n : α β ) h(α 1,..., α n ) h(β 1,..., β n ), h je spojté. Agregační operátor se nazývá fuzzy průměr (angl. averagng operator), splňuje-l navíc podmínky (A2) (A3) pro každou permutac p čísel 1,..., n je h(α p(1),..., α p(n) ) = h(α 1,..., α n ), (A4) α 0, 1 : h(α,..., α) = α. (A5) (Podmínka (A5) je zesílením podmínky (A1).) 20

23 Operace s fuzzy množnam 2.9. Agregační operátory Příklad Všechny fuzzy konjunkce a dsjunkce splňují podmínky (A1) (A4), takže to jsou agregační operátory. tandardní fuzzy konjunkce a dsjunkce splňují dempotenc (A5), jsou to tedy fuzzy průměry. Věta Pokud h splňuje podmínky (A2), (A5), pak mn h max (ve smyslu uspořádání funkcí). Poznámka Někdy budeme přpouštět agregační operátory, které nejsou defnovány na celém oboru 0, 1 n. Příklad Zobecněný průměr (angl. generalzed means) h λ je pro λ R, λ 0, defnován vzorcem h λ (α 1,..., α n ) = ( 1 n (Pro λ < 0 je defnován jen pro α kladná.) Je to fuzzy průměr. pecálně dostáváme: pro λ = 1 artmetcký průměr, pro λ = 2 kvadratcký průměr, pro λ = 1 harmoncký průměr, pro λ 0 geometrcký průměr, pro λ + maxmum, pro λ mnmum. Příklad Vážený průměr h w je pro n N určen vektorem vah w = (w 1,..., w n ) 0, 1 n splňujícím n =1 w n = 1: n h w (α 1,..., α n ) = w α. n =1 =1 α λ ) 1 λ. plňuje (A1) (A3) a (A5), je to tedy agregační operátor, který je adtvní; tj. splňuje (Adtvta je slabší forma lnearty.) h(α 1 + β 1,..., α n + β n ) = h(α 1,..., α n ) + h(β 1,..., β n ). Příklad Uspořádaný vážený průměr (ang. ordered weghted averagng operator, OWA-operator) h w je určen vektorem vah w = (w 1,..., w n ) 0, 1 n splňujícím n =1 w n = 1: kde p je permutace ndexů taková, že h w (α 1,..., α n ) = n w α p(), =1 α p(1) α p(2) α p(n). Od váženého průměru se lší tím, že nejprve argumenty seřadíme podle velkost, a teprve pak jm přřadíme váhy (podle jejch pořadí v uspořádané posloupnost). Díky tomu je splněna podmínka (A4) a dostáváme fuzzy průměr. pecálně dostáváme pro w = (1, 0,..., 0) mnmum, pro w = (0,..., 0, 1) maxmum, pro w = (1/n, 1/n,..., 1/n) artmetcký průměr. pro w = (0, 1/(n 2), 1/(n 2),..., 1/(n 2), 0) operátor, používaný např. v hodnocení krasobruslařů napřed se vyškrtne největší a nejmenší prvek, pak se ze zbývajících vypočte artmetcký průměr. Mnoho dalších příkladů lze zkonstruovat pomocí následující věty. Věta Nechť h, h 1,..., h k jsou agregační operátory (resp. fuzzy průměry). Pak zobrazení H(α 1,... α n ) = h ( h 1 (α 1,... α n ),..., h k (α 1,... α n ) ) je agregační operátor (resp. fuzzy průměr). 21

24 3. Fuzzy relace V této kaptole se budeme zabývat fuzzfkací bnárních relací. Nejprve přpomene potřebné pojmy pro ostré množny Bnární relace v klascké teor množn Defnce 3.1. Nechť X, Y jsou množny. Bnární relace R z X do Y je (jakákol) podmnožna kartézského součnu X Y. Ve vztahu k relac R X Y označujeme X jako množnu vzorů a Y jako množnu obrazů. Inverzní relace k R je relace R 1 z Y do X R 1 = { (y, x) Y X : (x, y) R }. Defnce 3.2. Nechť X, Y, Z jsou množny. ložená relace z relací R X Y, Y Z je relace R z X do Z { R = (x, z) X Z : ( y Y : (x, y) R, (y, z) )}. Pokud je stejná množna X množnou vzorů množnou obrazů, pak mez podmnožnam kartézského součnu X X rozlšujeme následující specální relace: Defnce 3.3. Nechť X je množna. Rovnost na X je relace Pro R X X defnujeme E = { (x, x) : x X }. reflexvtu: x X : (x, x) R, tj. E R, symetr: (x, y) R (y, x) R, tj. R = R 1, antsymetr: ( (x, y) R ) ( (y, x) R ) x = y, tj. R R 1 E, tranztvtu: ( (x, y) R ) ( (y, z) R ) (x, z) R, tj. R R R, částečné uspořádání: relace antsymetrcká, reflexvní a tranztvní, ekvvalenc: relace symetrcká, reflexvní a tranztvní. Poznámka 3.4. Zde používaný termín ekvvalence pro bnární relac nemá nc společného s bmplkací (rovněž nazývanou ekvvalence) z odstavce 2.8. Bmplkace je bnární operace, tedy ternární relace. Vyjádříme předchozí pojmy pomocí funkcí příslušnost. Ostré relac R X Y odpovídá funkce příslušnost µ R : X Y {0, 1}. Inverzní relace R 1 Y X má funkc příslušnost µ R 1(y, x) = µ R (x, y). (Zde se hodí, že rozlšujeme fuzzy množny a jejch funkce příslušnost; díky tomu se odlší funkce příslušnost nverzní relace, µ R 1, od nverze k funkc příslušnost původní relace, µ 1 R.) ložená relace z relací R X Y a Y Z je R X Z určená funkcí příslušnost { µ R (x, z) = sup µr (x, y) µ (y, z) }, y Y kde je klascká konjunkce. Relac rovnost, E X X odpovídá funkce příslušnost µ E (x, y) = δ(x, y) = { 1 pro x = y, 0 pro x y, tedy jedná se o bnární operac známou jako Kroneckerovo delta, nadále j budeme značt δ. Ostatní specální relace jž byly charakterzovány ve tvarech, jaké potřebujeme pro další zobecnění. 22

25 Fuzzy relace 3.2. Fuzzfkace bnárních relací 3.2. Fuzzfkace bnárních relací Defnce 3.5. Nechť X, Y jsou ostré množny. Fuzzy relace R z X do Y je (jakákol) fuzzy podmnožna kartézského součnu X Y, tedy R F(X Y ). Odpovídá jí funkce příslušnost µ R : X Y 0, 1. Inverzní relace k R je R 1 F(Y X) taková, že x X y Y : µ R 1(y, x) = µ R (x, y). Defnce 3.6. Nechť X, Y, Z jsou ostré množny, R F(X Y ), F(Y Z) a. je fuzzy konjunkce. Pak -složená relace R. F(X Z) je určena funkcí příslušnost µ R. (x, z) = µ R(x, y) y Y. µ (y, z), Dostáváme různé typy skládání, které označujeme stejným ndexem jako příslušnou fuzzy konjunkc a hovoříme o -skládání (standardním skládání) apod. Poznámka 3.7. Rol exstenčního kvantfkátoru z defnce skládání ostrých relací zde přebírá standardní fuzzy dsjunkce přes všechny hodnoty y Y. I zde bychom s mohl představt jnou fuzzy dsjunkc. Protože však množna Y může být nekonečná, ba nespočetná, podle věty?? by výsledek byl velm často jednotkový a nenesl by užtečnou nformac o argumentech. Poznámka 3.8. Pro konečné množny X, Y, Z lze fuzzy relace reprezentovat matcem a složenou relac počítat obdobně jako součn matc, kde místo součnu prvků aplkujeme fuzzy konjunkc. a místo součtu standardní fuzzy dsjunkc, tedy maxmum. pecální fuzzy relace lze zavést zcela analogcky jako pro ostré relace: Defnce 3.9. Nechť X je ostrá množna. Pro R F(X X) defnujeme reflexvtu: δ R, symetr: R = R 1, -antsymetr: R. R 1 δ, -tranztvtu: R. R R, -částečné uspořádání: fuzzy relace -antsymetrcká, reflexvní a -tranztvní, -ekvvalenc: fuzzy relace symetrcká, reflexvní a -tranztvní. Je třeba mít na pamět, že poslední čtyř pojmy závsí na volbě fuzzy konjunkce., vyskytující se v příslušných vztazích. Pro ostré množny všechny tyto pojmy mají svůj obvyklý význam z klascké teore množn. Věta 3.10 (vlastnost skládání fuzzy relací). Nechť R, a T jsou fuzzy relace s takovým defnčním obory, aby následující rovnost (postupně, ne všechny současně) měly smysl. Platí: R. (. T ) = (R. ). T (asocatvta) (R ). T = (R. T ) (. T ) (dstrbutvta zprava) R. ( T ) = (R. ) (R. T ) (dstrbutvta zleva) kde. značí -skládání vzhledem k lbovolné pevně zvolené fuzzy konjunkc.. U dstrbutvty můžeme také nahradt sjednocení průnkem Konzstence fuzzy relací V této část podáme některé vlastnost fuzzy množn, zejména fuzzy relací, které nemají adekvátní obdobu v ostrých množnách. Nejprve vezmeme na vědomí následující skutečnost. Věta Vytvoření α-řezu fuzzy množny (kde α 0, 1 ) lze nterpretovat jako specfcký způsob defuzzfkace: Uvažujme skokovou funkc r α : 0, 1 {0, 1}: { 1 pro β α, r α (β) = 0 pro β < α. Pro A F(X), x X platí µ RA (α)(x) = r α (µ A (x)) = (r α µ A )(x), tj. µ RA (α) = r α µ A, kde je (obyčejné) skládání zobrazení. 23

Mirko Navara, Petr Olšák. Základy fuzzy množin. Praha, 2001

Mirko Navara, Petr Olšák. Základy fuzzy množin. Praha, 2001 Mrko Navara, Petr Olšák Základy fuzzy množn Praha, 2001 E Text je šířen volně podle lcence ftp://math.feld.cvut.cz/pub/olsak/fuzzy/lcence.txt. Text ve formátech TEX (csplan), Postcrpt, dv, PDF najdete

Více

Matematika 6F fuzzy množiny

Matematika 6F fuzzy množiny Pojem fuzzy množiny Matematika 6F fuzzy množiny Mirko Navara http://cmp.felk.cvut.cz/ navara/m6f/fset print.pdf. dubna 007. Minimum o klasických množinách Abychom se vyhnuli problémům, omezíme se na podmnožiny

Více

2. Definice pravděpodobnosti

2. Definice pravděpodobnosti 2. Defnce pravděpodobnost 2.1. Úvod: V přírodě se setkáváme a v přírodních vědách studujeme pomocí matematckých struktur a algortmů procesy dvojího druhu. Jednodušší jsou determnstcké procesy, které se

Více

Princip rozšíření a operace s fuzzy čísly

Princip rozšíření a operace s fuzzy čísly Center for Machine Perception presents Princip rozšíření a operace s fuzzy čísly Mirko Navara Center for Machine Perception Faculty of Electrical Engineering Czech Technical University Praha, Czech Republic

Více

KOMPLEXNÍ ČÍSLA. Algebraický tvar komplexního čísla

KOMPLEXNÍ ČÍSLA. Algebraický tvar komplexního čísla KOMPLEXNÍ ČÍSLA Příklad Řešte na množně reálných čísel rovnc: x + = 0. x = Rovnce nemá v R řešení. Taková jednoduchá rovnce a nemá na množně reálných čísel žádné řešení! Co s tím? Zavedeme tzv. magnární

Více

MATEMATICKÁ TEORIE ROZHODOVÁNÍ

MATEMATICKÁ TEORIE ROZHODOVÁNÍ MTMTICKÁ TORI ROZODOVÁNÍ odklady k soustředění č. 3 ráce s neurčtostí Většna našch znalostí o reálném světě je zatížena ve větší č menší míře neurčtostí. Na druhou stranu, schopnost rozhodovat se v stuacích,

Více

Matematická analýza 1

Matematická analýza 1 Matematická analýza 1 ZS 2019-20 Miroslav Zelený 1. Logika, množiny a základní číselné obory 2. Limita posloupnosti 3. Limita a spojitost funkce 4. Elementární funkce 5. Derivace 6. Taylorův polynom Návod

Více

2.5. MATICOVÉ ŘEŠENÍ SOUSTAV LINEÁRNÍCH ROVNIC

2.5. MATICOVÉ ŘEŠENÍ SOUSTAV LINEÁRNÍCH ROVNIC 25 MATICOVÉ ŘEŠENÍ SOUSTAV LINEÁRNÍCH ROVNIC V této kaptole se dozvíte: jak lze obecnou soustavu lneárních rovnc zapsat pomocí matcového počtu; přesnou formulac podmínek řeštelnost soustavy lneárních rovnc

Více

Numerická matematika 1. t = D u. x 2 (1) tato rovnice určuje chování funkce u(t, x), která závisí na dvou proměnných. První

Numerická matematika 1. t = D u. x 2 (1) tato rovnice určuje chování funkce u(t, x), která závisí na dvou proměnných. První Numercká matematka 1 Parabolcké rovnce Budeme se zabývat rovncí t = D u x (1) tato rovnce určuje chování funkce u(t, x), která závsí na dvou proměnných. První proměnná t mívá význam času, druhá x bývá

Více

Energie elektrického pole

Energie elektrického pole Energe elektrckého pole Jž v úvodní kaptole jsme poznal, že nehybný (centrální elektrcký náboj vytváří v celém nekonečném prostoru slové elektrcké pole, které je konzervatvní, to znamená, že jakýkolv jný

Více

Množiny, relace, zobrazení

Množiny, relace, zobrazení Množiny, relace, zobrazení Množiny Množinou rozumíme každý soubor určitých objektů shrnutých v jeden celek. Zmíněné objekty pak nazýváme prvky dané množiny. Pojem množina je tedy synonymem pojmů typu soubor,

Více

Neparametrické metody

Neparametrické metody Neparametrcké metody Přestože parametrcké metody zaujímají klíčovou úlohu ve statstcké analýze dat, je možné některé problémy řešt př neparametrckém přístupu. V této přednášce uvedeme neparametrcké odhady

Více

Ivana Linkeová SPECIÁLNÍ PŘÍPADY NURBS REPREZENTACE. 2 NURBS reprezentace křivek

Ivana Linkeová SPECIÁLNÍ PŘÍPADY NURBS REPREZENTACE. 2 NURBS reprezentace křivek 25. KONFERENCE O GEOMETRII A POČÍTAČOVÉ GRAFICE Ivana Lnkeová SPECIÁLNÍ PŘÍPADY NURBS REPREZENTACE Abstrakt Příspěvek prezentuje B-splne křvku a Coonsovu, Bézerovu a Fergusonovu kubku jako specální případy

Více

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R... Kapitola 1 Úvod 1.1 Značení N... přirozená čísla (1, 2, 3,...). Z... celá čísla ( 3, 2, 1, 0, 1, 2,...). Q... racionální čísla ( p, kde p Z a q N) q R... reálná čísla C... komplexní čísla 1.2 Výroky -

Více

KOMPLEXNÍ ČÍSLA. Algebraický tvar komplexního čísla

KOMPLEXNÍ ČÍSLA. Algebraický tvar komplexního čísla KOMPLEXNÍ ČÍSLA Příklad 1 Řešte na množně reálných čísel rovnc: x + = 0. x = Rovnce nemá v R řešení. Taková jednoduchá rovnce a nemá na množně reálných čísel žádné řešení! Co s tím? Zavedeme tzv. magnární

Více

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti Kapitola 5 Vektorové prostory V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti operací sčítání a násobení

Více

ASYMPTOTICKÉ VLASTNOSTI ODHADŮ S MINIMÁLNÍ KOLMOGOROVSKOU VZDÁLENOSTÍ

ASYMPTOTICKÉ VLASTNOSTI ODHADŮ S MINIMÁLNÍ KOLMOGOROVSKOU VZDÁLENOSTÍ ASYMPTOTICKÉ VLASTNOSTI ODHADŮ S MINIMÁLNÍ KOLMOGOROVSKOU VZDÁLENOSTÍ Bc. Jtka Hanousková 1 Abstrakt: Příspěvek se zabývá postačujícím podmínkam pro konzstenc odhadů s mnmální Kolmogorovskou vzdáleností

Více

Matematika I A ukázkový test 1 pro 2018/2019

Matematika I A ukázkový test 1 pro 2018/2019 Matematka I A ukázkový test 1 pro 2018/2019 1. Je dána soustava rovnc s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napšte Frobenovu větu (předpoklady + tvrzení). b) Vyšetřete

Více

Lineární algebra : Lineární prostor

Lineární algebra : Lineární prostor Lineární algebra : Lineární prostor (3. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. dubna 2014, 14:43 1 2 3.1 Aximotické zavedení lineárního prostoru Číselné těleso Celou lineární

Více

1 Kardinální čísla. množin. Tvrzení: Necht X Cn. Pak: 1. X Cn a je to nejmenší prvek třídy X v uspořádání (Cn, ),

1 Kardinální čísla. množin. Tvrzení: Necht X Cn. Pak: 1. X Cn a je to nejmenší prvek třídy X v uspořádání (Cn, ), Pracovní text k přednášce Logika a teorie množin 4.1.2007 1 1 Kardinální čísla 2 Ukázali jsme, že ordinální čísla reprezentují typy dobrých uspořádání Základy teorie množin Z minula: 1. Věta o ordinálních

Více

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: 3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...

Více

p 2 q , tj. 2q 2 = p 2. Tedy p 2 je sudé číslo, což ale znamená, že

p 2 q , tj. 2q 2 = p 2. Tedy p 2 je sudé číslo, což ale znamená, že KAPITOLA 1: Reálná čísla [MA1-18:P1.1] 1.1. Číselné množiny Přirozená čísla... N = {1,, 3,...} nula... 0, N 0 = {0, 1,, 3,...} = N {0} Celá čísla... Z = {0, 1, 1,,, 3,...} Racionální čísla... { p } Q =

Více

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové.

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové. Příprava na cvčení č.1 Čísla a artmetka Číselné soustavy Obraz čísla A v soustavě o základu z: m A ( Z ) a z (1) n kde: a je symbol (číslce) z je základ m je počet řádových míst, na kterých má základ kladný

Více

Dále budeme předpokládat, že daný Markovův řetězec je homogenní. p i1 i 2

Dále budeme předpokládat, že daný Markovův řetězec je homogenní. p i1 i 2 4 Markovovy řetězce se nazývá Markovův řetě- Defnce 7 Posloupnost celočíselných náhodných velčn {X n } zec (markovský řetězec), jestlže P(X n+ = j X n = n,, X 0 = 0 ) = P(X n+ = j X n = n ) (7) pro každé

Více

PŘEDNÁŠKA 2 POSLOUPNOSTI

PŘEDNÁŠKA 2 POSLOUPNOSTI PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému

Více

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN V dokumentu 7a_korelacn_a_regresn_analyza jsme řešl rozdíl mez korelační a regresní analýzou. Budeme se teď věnovat pouze lneárnímu vztahu dvou velčn, protože je nejjednodušší

Více

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d Korelační energe Referenční stavy Energ molekul a atomů lze vyjádřt vzhledem k různým referenčním stavům. V kvantové mechance za referenční stav s nulovou energí bereme stav odpovídající nenteragujícím

Více

Lineární algebra : Báze a dimenze

Lineární algebra : Báze a dimenze Lineární algebra : Báze a dimenze (5. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 9. dubna 2014, 13:33 1 2 5.1 Báze lineárního prostoru Definice 1. O množině vektorů M z LP V řekneme,

Více

1 Báze a dimenze vektorového prostoru 1

1 Báze a dimenze vektorového prostoru 1 1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější

Více

Báze a dimenze vektorových prostorů

Báze a dimenze vektorových prostorů Báze a dimenze vektorových prostorů Buď (V, +, ) vektorový prostor nad tělesem (T, +, ). Nechť u 1, u 2,..., u n je konečná posloupnost vektorů z V. Existují-li prvky s 1, s 2,..., s n T, z nichž alespoň

Více

permutace, popisující nějaké symetrie, je i π permutace, popisující nějakou symetrii.

permutace, popisující nějaké symetrie, je i π permutace, popisující nějakou symetrii. DSM Cv Pólyova věta Budeme se zabývat objekty (na množně X - to jsou vrcholy těchto objektů) s různým prvky symetre (například to mohou být různé brože, tsky, ale také strukturní vzorce různých chemckých

Více

Iterační výpočty. Dokumentace k projektu pro předměty IZP a IUS. 22. listopadu projekt č. 2

Iterační výpočty. Dokumentace k projektu pro předměty IZP a IUS. 22. listopadu projekt č. 2 Dokumentace k projektu pro předměty IZP a IUS Iterační výpočty projekt č.. lstopadu 1 Autor: Mlan Setler, setl1@stud.ft.vutbr.cz Fakulta Informačních Technologí Vysoké Učení Techncké v Brně Obsah 1 Úvod...

Více

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:

Více

6 Lineární geometrie. 6.1 Lineární variety

6 Lineární geometrie. 6.1 Lineární variety 6 Lineární geometrie Motivace. Pojem lineární varieta, který budeme v této kapitole studovat z nejrůznějších úhlů pohledu, není žádnou umělou konstrukcí. Příkladem lineární variety je totiž množina řešení

Více

PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy

PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy PAVEL RŮŽIČKA Abstrakt. Ukážeme, že každý prvek distributivního svazu odpovídá termu v konjuktivně-disjunktivním (resp. disjunktivně-konjunktivním)

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

1 Množiny, výroky a číselné obory

1 Množiny, výroky a číselné obory 1 Množiny, výroky a číselné obory 1.1 Množiny a množinové operace Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Definice. Dvě množiny jsou

Více

Čísla přiřazená elementárním jevům tvoří obor hodnot M proměnné, kterou nazýváme náhodná veličina (označujeme X, Y, Z,...)

Čísla přiřazená elementárním jevům tvoří obor hodnot M proměnné, kterou nazýváme náhodná veličina (označujeme X, Y, Z,...) . NÁHODNÁ VELIČINA Průvodce studem V předchozích kaptolách jste se seznáml s kombnatorkou a pravděpodobností jevů. Tyto znalost použjeme v této kaptole, zavedeme pojem náhodná velčna, funkce, které náhodnou

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

I. D i s k r é t n í r o z d ě l e n í

I. D i s k r é t n í r o z d ě l e n í 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

Kapitola Základní množinové pojmy Princip rovnosti. Dvě množiny S a T jsou si rovny (píšeme S = T ) prvek T je také prvkem S.

Kapitola Základní množinové pojmy Princip rovnosti. Dvě množiny S a T jsou si rovny (píšeme S = T ) prvek T je také prvkem S. 1 Kapitola 1 Množiny 11 Základní množinové pojmy Pojem množiny nedefinujeme, pouze připomínáme, že množina je souhrn, nebo soubor navzájem rozlišitelných objektů, kterým říkáme prvky 111 Princip rovnosti

Více

Doporučené příklady k Teorii množin, LS 2018/2019

Doporučené příklady k Teorii množin, LS 2018/2019 Doporučené příklady k Teorii množin, LS 2018/2019 1. přednáška, 21. 2. 2019 1. Napište množina x je prázdná (přesněji množina x nemá žádné prvky ) formulí základního jazyka teorie množin. 2. Dokažte ((x

Více

Fuzzy množiny, Fuzzy inference system. Libor Žák

Fuzzy množiny, Fuzzy inference system. Libor Žák Fuzzy množiny, Fuzzy inference system Proč právě fuzzy množiny V řadě případů jsou parametry, které vstupují a ovlivňují vlastnosti procesu, popsané pomocí přibližných nebo zjednodušených pojmů. Tedy

Více

p(x) = P (X = x), x R,

p(x) = P (X = x), x R, 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

Pro každé formule α, β, γ, δ platí: Pro každé formule α, β, γ platí: Poznámka: Platí právě tehdy, když je tautologie.

Pro každé formule α, β, γ, δ platí: Pro každé formule α, β, γ platí: Poznámka: Platí právě tehdy, když je tautologie. Zpracoval: hypspave@fel.cvut.cz 5. Výroková logika, formule výrokové logiky a jejich pravdivostní ohodnocení, splnitelné formule, tautologie, kontradikce, sémantický důsledek, tautologicky ekvivalentní

Více

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU Obsah 1. Pojmy... 2 1.1. Formule výrokového počtu... 2 1.2. Množina... 3 1.2.1. Operace s množinami... 3 1.2.2. Relace... 3 2. Číselné obory... 5 2.1. Uzavřenost množiny na operaci... 5 2.2. Rozšíření

Více

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU Obsah 1. Pojmy... 2 1.1. Formule výrokového počtu... 2 1.2. Množina... 3 1.2.1. Operace s množinami... 3 1.2.2. Relace... 3 2. Číselné obory... 5 2.1. Uzavřenost množiny na operaci... 5 2.2. Rozšíření

Více

1 Vektorové prostory.

1 Vektorové prostory. 1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které

Více

Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe.

Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. 4 Afinita Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. Poznámka. Vzájemně jednoznačným zobrazením rozumíme zobrazení,

Více

Monte Carlo metody Josef Pelikán CGG MFF UK Praha.

Monte Carlo metody Josef Pelikán CGG MFF UK Praha. Monte Carlo metody 996-7 Josef Pelkán CGG MFF UK Praha pepca@cgg.mff.cun.cz http://cgg.mff.cun.cz/~pepca/ Monte Carlo 7 Josef Pelkán, http://cgg.ms.mff.cun.cz/~pepca / 44 Monte Carlo ntegrace Odhadovaný

Více

BAYESŮV PRINCIP ZDENĚK PŮLPÁN

BAYESŮV PRINCIP ZDENĚK PŮLPÁN ROBUST 000, 7 4 c JČMF 00 BAYESŮV PRINCIP ZDENĚK PŮLPÁN Abstrakt. Poukážeme na možnost rozhodování pomocí Bayesova prncpu. Ten vychází z odhadu podmíněné pravděpodobnosta z předpokladu dsjunktního rozkladu

Více

Formální systém výrokové logiky

Formální systém výrokové logiky Formální systém výrokové logiky 1.Jazyk výrokové logiky Nechť P = {p,q,r, } je neprázdná množina symbolů, které nazýváme prvotní formule. Symboly jazyka L P výrokové logiky jsou : a) prvky množiny P, b)

Více

Maticová exponenciála a jiné maticové funkce

Maticová exponenciála a jiné maticové funkce Matcová exponencála a jné matcové funkce Motvace: Jž víte, že řešením rovnce y = ay, jsou funkce y(t = c e at, tj exponencály Pro tuto funkc platí, že y(0 = c, tj konstanta c je počáteční podmínka v bodě

Více

6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2

6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2 6 Skalární součin Skalární součin 1 je operace, která dvěma vektorům (je to tedy binární operace) přiřazuje skalár (v našem případě jde o reálné číslo, obecně se jedná o prvek nějakého tělesa T ). Dovoluje

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání

Více

Přednáška 6, 7. listopadu 2014

Přednáška 6, 7. listopadu 2014 Přednáška 6, 7. listopadu 204 Část 3: nekonečné řady Základní definice. Nekonečná řada, krátce řada, je posloupnost reálných čísel (a n ) R uvedená v zápisu a n = a + a 2 + a 3 +..., spolu s metodou přiřazující

Více

Konstrukce zásobníkového automatu LALR(1)

Konstrukce zásobníkového automatu LALR(1) Konstrukce zásobníkového automatu LALR(1) Vlém Vychodl 5. lstopadu 2001 Tento text se zabývá technckým aspekty konstrukce významné třídy zásobníkových automatů určených pro determnstckou syntaktckou analýzu

Více

Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť.

Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť. Přednáška 3, 19. října 2015 Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť X i = M i I je jeho pokrytí otevřenými

Více

3 VYBRANÉ MODELY NÁHODNÝCH VELIČIN. 3.1 Náhodná veličina

3 VYBRANÉ MODELY NÁHODNÝCH VELIČIN. 3.1 Náhodná veličina 3 VBRANÉ MODEL NÁHODNÝCH VELIČIN 3. Náhodná velčna Tato kaptola uvádí stručný pops vybraných pravděpodobnostních modelů spojtých náhodných velčn s důrazem na jejch uplatnění př rozboru spolehlvost stavebních

Více

(Cramerovo pravidlo, determinanty, inverzní matice)

(Cramerovo pravidlo, determinanty, inverzní matice) KMA/MAT1 Přednáška a cvičení, Lineární algebra 2 Řešení soustav lineárních rovnic se čtvercovou maticí soustavy (Cramerovo pravidlo, determinanty, inverzní matice) 16 a 21 října 2014 V dnešní přednášce

Více

Limita a spojitost funkce a zobrazení jedné reálné proměnné

Limita a spojitost funkce a zobrazení jedné reálné proměnné Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde

Více

Matematická logika cvičení

Matematická logika cvičení Matematcká logka cvčení Vlém Vychodl Abstrakt Následující dokument obsahuje řešené příklady a cvčení k předmětu Matematcká logka. Pro zvládnutí cvčení je nutné mít zažté základní pojmy, které můžete nalézt

Více

Úvod do lineární algebry

Úvod do lineární algebry Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky

Více

[1] x (y z) = (x y) z... (asociativní zákon), x y = y x... (komutativní zákon).

[1] x (y z) = (x y) z... (asociativní zákon), x y = y x... (komutativní zákon). Grupy, tělesa grupa: množina s jednou rozumnou operací příklady grup, vlastnosti těleso: množina se dvěma rozumnými operacemi příklady těles, vlastnosti, charakteristika tělesa lineární prostor nad tělesem

Více

Lineární algebra : Polynomy

Lineární algebra : Polynomy Lineární algebra : Polynomy (2. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 15. dubna 2014, 11:21 1 2 2.1 Značení a těleso komplexních čísel Značení N := {1, 2, 3... }... množina

Více

ANOVA. Analýza rozptylu při jednoduchém třídění. Jana Vránová, 3.lékařská fakulta UK, Praha

ANOVA. Analýza rozptylu při jednoduchém třídění. Jana Vránová, 3.lékařská fakulta UK, Praha ANOVA Analýza rozptylu př jednoduchém třídění Jana Vránová, 3.léařsá faulta UK, Praha Teore Máme nezávslých výběrů, > Mají rozsahy n, teré obecně nemusí být stejné V aždém z nch známe průměr a rozptyl

Více

Úvod do informatiky. Miroslav Kolařík. Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008.

Úvod do informatiky. Miroslav Kolařík. Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Úvod do informatiky přednáška čtvrtá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Pojem relace 2 Vztahy a operace s (binárními) relacemi

Více

Funkce, elementární funkce.

Funkce, elementární funkce. Kapitola 2 Funkce, elementární funkce. V této kapitole si se budeme věnovat studiu základních vlastností funkcí jako je definiční obor, obor hodnot. Připomeneme si pojmy sudá, lichá, rostoucí, klesající.

Více

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ.

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ. CHYBY MĚŘENÍ Úvod Představte s, že máte změřt délku válečku. Použjete posuvné měřítko a získáte určtou hodnotu. Pamětlv přísloví provedete ještě jedno měření. Ale ouha! Výsledek je jný. Co dělat? Měřt

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

7. Funkce jedné reálné proměnné, základní pojmy

7. Funkce jedné reálné proměnné, základní pojmy , základní pojmy POJEM FUNKCE JEDNÉ PROMĚNNÉ Reálná funkce f jedné reálné proměnné je funkce (zobrazení) f: X Y, kde X, Y R. Jde o zvláštní případ obecného pojmu funkce definovaného v přednášce. Poznámka:

Více

Aplikovaná matematika I, NMAF071

Aplikovaná matematika I, NMAF071 M. Rokyta, MFF UK: Aplikovaná matematika I kap. 1: Úvod, čísla, zobrazení, posloupnosti 1 Aplikovaná matematika I, NMAF071 M. Rokyta, KMA MFF UK ZS 2013/14 Sylabus = obsah (plán) přednášky [a orientační

Více

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu 6. Demonstrační smulační projekt generátory vstupních proudů smulačního modelu Studjní cíl Na příkladu smulačního projektu představeného v mnulém bloku je dále lustrována metodka pro stanovování typů a

Více

POROVNÁNÍ MEZI SKUPINAMI

POROVNÁNÍ MEZI SKUPINAMI POROVNÁNÍ MEZI SKUPINAMI Potřeba porovnání počtů mez určtým skupnam jednců např. porovnání počtů onemocnění mez kraj nebo okresy v prax se obvykle pracuje s porovnáním na 100.000 osob. Stuace ale nebývá

Více

10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo

10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo 0. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo (PEF PaA) Petr Gurka aktualizováno 9. prosince 202 Obsah Základní pojmy. Motivace.................................2 Aritmetický vektorový

Více

Booleovská algebra. Booleovské binární a unární funkce. Základní zákony.

Booleovská algebra. Booleovské binární a unární funkce. Základní zákony. Booleovská algebra. Booleovské binární a unární funkce. Základní zákony. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz

Více

27 Systémy s více vstupy a výstupy

27 Systémy s více vstupy a výstupy 7 Systémy s více vstupy a výstupy Mchael Šebek Automatcké řízení 017 4-5-17 Stavový model MIMO systému Automatcké řízení - Kybernetka a robotka Má obecně m vstupů p výstupů x () t = Ax() t + Bu() t y()

Více

ANALÝZA A KLASIFIKACE DAT

ANALÝZA A KLASIFIKACE DAT ANALÝZA A KLASIFIKACE DAT prof. Ing. Jří Holčík, CSc. INVESTICE Insttut DO bostatstky ROZVOJE VZDĚLÁVÁNÍ a analýz IV - pokračování KLASIFIKACE PODLE MINIMÁLNÍ VZDÁLENOSTI METRIKY PRO URČENÍ VZDÁLENOSTI

Více

Organizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část

Organizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část Matematika I 1/15 2/15 Organizace Zápočet: test 6. + 11. týden semestru (pátek) 80 bodů 50 79 bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část www.vscht.cz/mat Výuka www.vscht.cz/mat/jana.nemcova

Více

Skalární součin dovoluje zavedení metriky v afinním bodovém prostoru, tj. umožňuje nám určovat vzdálenosti, odchylky, obsahy a objemy.

Skalární součin dovoluje zavedení metriky v afinním bodovém prostoru, tj. umožňuje nám určovat vzdálenosti, odchylky, obsahy a objemy. 6 Skalární součin Skalární součin dovoluje zavedení metriky v afinním bodovém prostoru, tj. umožňuje nám určovat vzdálenosti, odchylky, obsahy a objemy. Příklad: Určete odchylku přímek p, q : p : x =1+3t,

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika 1 Náhodné pokusy a náhodné jevy Činnostem, jejichž výsledek není jednoznačně určen podmínkami, za kterých probíhají, a které jsou (alespoň teoreticky) neomezeně opakovatelné,

Více

Matematika 2 Úvod ZS09. KMA, PřF UP Olomouc. Jiří Fišer (KMA, PřF UP Olomouc) KMA MA2AA ZS09 1 / 25

Matematika 2 Úvod ZS09. KMA, PřF UP Olomouc. Jiří Fišer (KMA, PřF UP Olomouc) KMA MA2AA ZS09 1 / 25 Matematika 2 Úvod Jiří Fišer KMA, PřF UP Olomouc ZS09 Jiří Fišer (KMA, PřF UP Olomouc) KMA MA2AA ZS09 1 / 25 Studijní materiály web předmětu: aix-slx.upol.cz/ fiser St. Trávníček: Matematická analýza kag.upol.cz/travnicek/1-matan.

Více

A u. jsou po řadě počáteční a koncové body úsečky; t je parametr:

A u. jsou po řadě počáteční a koncové body úsečky; t je parametr: 1 Úvod Trangulace oblast má dnes využtí například v počítačové grafce nebo numercké matematce, kde základní algortmy pro výpočet parcálních dferencálních rovnc vyžadují rozdělení zadané souvslé oblast

Více

Matice. Je dána matice A R m,n, pak máme zobrazení A : R n R m.

Matice. Je dána matice A R m,n, pak máme zobrazení A : R n R m. Matice lineárních zobrazení [1] Připomenutí Zobrazení A : L 1 L 2 je lineární, když A( x + y ) = A( x ) + A( y ), A(α x ) = α A( x ). Což je ekvivalentní s principem superpozice: A(α 1 x 1 + + α n x n

Více

Operace s maticemi. 19. února 2018

Operace s maticemi. 19. února 2018 Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice

Více

Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky LOGICKÉ OBVODY pro kombinované a distanční studium

Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky LOGICKÉ OBVODY pro kombinované a distanční studium Vysoká škola báňská - Techncká unverzta Ostrava Fakulta elektrotechnky a nformatky LOGICKÉ OBVODY pro kombnované a dstanční studum Zdeněk Dvš Zdeňka Chmelíková Iva Petříková Ostrava ZDENĚK DIVIŠ, ZDEŇKA

Více

1 Soustavy lineárních rovnic

1 Soustavy lineárních rovnic 1 Soustavy lineárních rovnic 1.1 Základní pojmy Budeme uvažovat soustavu m lineárních rovnic o n neznámých s koeficienty z tělesa T (potom hovoříme o soustavě m lineárních rovnic o n neznámých nad tělesem

Více

teorie logických spojek chápaných jako pravdivostní funkce

teorie logických spojek chápaných jako pravdivostní funkce Výroková logika teorie logických spojek chápaných jako pravdivostní funkce zabývá se způsoby tvoření výroků pomocí spojek a vztahy mezi pravdivostí různých výroků používá specifický jazyk složený z výrokových

Více

7 Ortogonální a ortonormální vektory

7 Ortogonální a ortonormální vektory 7 Ortogonální a ortonormální vektory Ze vztahu (5) pro výpočet odchylky dvou vektorů vyplývá, že nenulové vektory u, v jsou na sebe kolmé právě tehdy, když u v =0. Tato skutečnost nám poslouží k zavedení

Více

Náhodným (stochastickým) procesem nazveme zobrazení, které každé hodnotě náhodnou veličinu X ( t)

Náhodným (stochastickým) procesem nazveme zobrazení, které každé hodnotě náhodnou veličinu X ( t) MARKOVOVY PROCESY JAKO APARÁT PRO ŘEŠENÍ SPOLEHLIVOSTI VÍCESTAVOVÝCH SYSTÉMŮ Náhodné rocesy Náhodným (stochastckým) rocesem nazveme zobrazení, které každé hodnotě náhodnou velčnu X ( t). Proměnná t má

Více

Zimní semestr akademického roku 2014/ prosince 2014

Zimní semestr akademického roku 2014/ prosince 2014 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 2. prosince 2014 Předmluva

Více

LOGICKÉ OBVODY J I Ř Í K A L O U S E K

LOGICKÉ OBVODY J I Ř Í K A L O U S E K LOGICKÉ OBVODY J I Ř Í K A L O U S E K Ostrava 2006 Obsah předmětu 1. ČÍSELNÉ SOUSTAVY... 2 1.1. Číselné soustavy - úvod... 2 1.2. Rozdělení číselných soustav... 2 1.3. Polyadcké číselné soustavy... 2

Více

u (x i ) U i 1 2U i +U i+1 h 2. Na hranicích oblasti jsou uzlové hodnoty dány okrajovými podmínkami bud přímo

u (x i ) U i 1 2U i +U i+1 h 2. Na hranicích oblasti jsou uzlové hodnoty dány okrajovými podmínkami bud přímo Metoda sítí základní schémata h... krok sítě ve směru x, tj. h = x x q... krok sítě ve směru y, tj. q = y j y j τ... krok ve směru t, tj. τ = j... hodnota přblžného řešení v uzlu (x,y j ) (Possonova rovnce)

Více

Lokace odbavovacího centra nákladní pokladny pro víkendový provoz

Lokace odbavovacího centra nákladní pokladny pro víkendový provoz Markéta Brázdová 1 Lokace odbavovacího centra nákladní pokladny pro víkendový provoz Klíčová slova: odbavování záslek, centrum grafu, vážená excentrcta vrcholů sítě, časová náročnost odbavení záslky, vážená

Více

i=1 Přímka a úsečka. Body, které leží na přímce procházející body a a b můžeme zapsat pomocí parametrické rovnice

i=1 Přímka a úsečka. Body, které leží na přímce procházející body a a b můžeme zapsat pomocí parametrické rovnice I. Funkce dvou a více reálných proměnných 1. Úvod Značení: V textu budeme používat označení: N pro množinu všech přirozených čísel; R pro množinu všech reálných čísel; R n pro množinu všech uspořádaných

Více

10 Funkce více proměnných

10 Funkce více proměnných M. Rokyta, MFF UK: Aplikovaná matematika II kap. 10: Funkce více proměnných 16 10 Funkce více proměnných 10.1 Základní pojmy Definice. Eukleidovskou vzdáleností bodů x = (x 1,...,x n ), y = (y 1,...,y

Více

Přednáška 6, 6. listopadu 2013

Přednáška 6, 6. listopadu 2013 Přednáška 6, 6. listopadu 2013 Kapitola 2. Posloupnosti a řady funkcí. V dalším jsou f, f n : M R, n = 1, 2,..., reálné funkce jedné reálné proměnné definované na (neprázdné) množině M R. Co to znamená,

Více

Výroková a predikátová logika - II

Výroková a predikátová logika - II Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2015/2016 1 / 18 Základní syntax Jazyk Výroková logika je logikou

Více