2. URČITÝ INTEGRÁL 2. Určitý itegrál Průvodce studiem V předcházející kapitole jsme se sezámili s pojmem eurčitý itegrál, který daé fukci přiřazoval opět fukci (přesěji možiu fukcí). V této kapitole se budeme věovat určitému itegrálu, který daé fukci přiřazuje číslo. Určitý itegrál má využití ve velkém možství aplikací. Pomocí určitého itegrálu můžeme počítat obsahy ploch, délky křivek, objemy a pláště rotačích těles, statické momety roviých obrazců, křivek a rotačích těles, souřadice těžiště. Velké možství aplikací alezete ve fyzice (výpočet rychlosti, dráhy, práce,...). Další aplikace alezete v ekoomice, fiacích, pravděpodobosti a statistice a v moha dalších oborech. Existuje ěkolik přístupů, jak vybudovat pojem určitý itegrál a tomu odpovídá ěkolik druhů určitých itegrálů (Newtoův, Riemaův, Lebesgueův). Podle způsobu zavedeí se měí třída itegrovatelých fukcí. Des bývá obvyklé používat defiici, jak ji zavedl výzamý ěmecký matematik B. Riema (1826 1866). Potřeba vybudováí tohoto pojmu vychází z potřeb řešeí geometrických problémů a problémů klasické mechaiky. Možia fukcí, které jsou itegrovatelé v Riemaově smyslu je dostatečě široká pro ižeýrskou praxi. Způsob zavedeí je východiskem pro umerické výpočty určitých itegrálů. 2.1. Pojem Riemaova určitého itegrálu Cíle Sezámíte se s pojmem Riemaova itegrálu fukce jedé proměé a geometrickým výzamem tohoto itegrálu. Předpokládaé zalosti Předpokládáme, že záte pojem primitiví fukce, eurčitý itegrál a jejich výpočet. Výklad Historickou motivací pro vzik určitého itegrálu byl výpočet obsahů ploch. Teto problém řešili již staří Egypťaé v souvislosti s určováím velikostí pozemků, jejichž velikost se měila v důsledku záplav Nilu. Problém řešili tak, že daou plochu rozdělili a trojúhelíky, spočítali jejich obsahy a ty pak sečetli. Tyto metody později rozviuli staří Řekové. V 16. a 17. století byla velká pozorost věováa studiu křivek, byla rozvíjea - 82 -
2.1. Pojem Riemaova určitého itegrálu klasická mechaika. Vziká otázka, jakým způsobem je vhodé defiovat obsah obecých útvarů, které se edají rozložit a koečý počet trojúhelíků. Motivace Zabývejme se ásledující úlohou: Mějme fukci ohraičeý shora grafem fukce f( x ), která je spojitá a ezáporá a itervalu < ab, >. Geometrický útvar f( x), přímkami x= a, x= b a osou x (obr. 2.1.1) azveme křivočarý lichoběžík. Naším úkolem je vypočítat obsah tohoto útvaru. Obr. 2.1.1. Křivočarý lichoběžík Ze středí školy záte vztahy pro výpočet obsahu trojúhelíka, obdélíka, kruhu a možá ěkolika dalších jedoduchých obrazců. Pro obecou fukci y = f( x) však zatím obsah obrazce a obr. 2.1.1 vypočítat edovedeme. Navrhěme, jak vypočítat obsah tohoto útvaru alespoň přibližě: 1. Rozdělíme obrazec rovoběžkami s osou y a proužky (a ilustračím obrázku 2.1.2 jsou čtyři). Je zřejmé, že obsah obrazce dostaeme jako součet obsahů jedotlivých proužků. V uvedeém případě P= P1+ P2 + P3+ P 4. Obr. 2.1.2. Rozděleí a proužky" 2. Vypočteme obsah jedotlivých proužků. Jelikož shora jsou ohraičey fukcí f( x), provedeme výpočet přibližě. Fukci v daém pásku ahradíme fukčí hodotou f ( ξ ) v ějakém bodě ξ, který jsme zvolili v základě tohoto proužku. Daý proužek tedy - 83 -
2.1. Pojem Riemaova určitého itegrálu aproximujeme obdélíčkem. Tím se dopouštíme určité chyby, eboť ěkde obdélíček přesahuje fukci f( x) a ěkde je zase ižší. Obr. 2.1.3. Aproximace obrazce obdélíčky Obsah obrazce a obr. 2.1.2 bude přibližě rove součtu obsahů jedotlivých obdélíčků: P= ( x x ) f( ξ ) + ( x x ) f( ξ ) + ( x x ) f( ξ ) + ( x x ) f ( ξ ) = 1 0 1 2 1 2 3 2 3 4 3 4 4 = ( xi xi 1) f( ξi) i= 1 3. Dá se předpokládat, že pro rozumé fukce bude chyba tím meší, čím větší bude počet proužků, a které byl obrazec rozděle (obr. 2.1.4). Obr. 2.1.4. Zvětšeí počtu obdélíčků Budeme-li počet proužků eomezeě zvětšovat a současě je zužovat, měla by se přibližá hodota daá součtem obdélíčků stále více přibližovat obsahu P daého obrazce. Tedy obsah P dostaeme jako limitu pro ekoečý počet obdélíčků. K podobému problému dospějeme při řešeí jedoduché úlohy z klasické mechaiky. Chceme vypočítat práci, která se vykoá při přímočarém pohybu, má-li síla směr dráhy. Nechť a hmotý bod pohybující se po dráze < ab, > působí síla f( x). Je-li tato síla kostatí, je vykoaá práce rova součiu síly a dráhy. Pokud se velikost síly měí (dáa fukcí f( x ) a itervalu < ab, > ) můžeme postupovat tak, že dráhu rozdělíme a dílčí - 84 -
2.1. Pojem Riemaova určitého itegrálu itervaly a v každém použijeme hodotu síly f ( ξ i ) v ějakém bodě dílčího itervalu. Tedy stejě jako v předcházející úloze je celková vykoaá práce aproximováa součtem práce a dílčích itervalech. Limitím přechodem, kdy zvyšujeme počet dělících bodů, přičemž se šířka dílčích itervalů blíží k ule, dostaeme celkovou práci. Aalogický postup použijeme při zavedeí určitého itegrálu. Defiice určitého itegrálu Defiice určitého itegrálu je poměrě složitá. K pojmu určitý itegrál dospějeme ásledujícím způsobem. Uvažujme fukci y = f( x), která je defiováa a uzavřeém itervalu < ab, > a je a tomto itervalu spojitá a ohraičeá. Musejí tedy existovat kostaty m a M takové, že pro všecha x < ab, > platí m f ( x) M. Obr. 2.1.5. Ohraičeá fukce a uzavřeém itervalu < ab, > Výklad omezíme a fukce po částech spojité a itervalu < ab, >, tj. a fukce, které mají a tomto itervalu koečý počet bodů espojitosti (body espojitosti 1. druhu). S takto defiovaým určitým itegrálem vystačíme při běžých aplikacích itegrálího počtu v přírodích a techických vědách. Pozámka 1. Předpoklad ohraičeé fukce a uzavřeém itervalu je podstatý. Někdy lze pojem Riemaova itegrálu rozšířit i a případy, kdy fukce eí ohraičeá ebo iterval eí uzavřeý. Pak mluvíme o evlastích itegrálech (kap. 2.5). Defiice 2.1.1. Říkáme, že fukce f( x ) je a itervalu < ab, > itegrovatelá (schopá itegrace), je-li a ěm ohraičeá a aspoň po částech spojitá. - 85 -
Postup při zavedeí pojmu určitý itegrál: 2.1. Pojem Riemaova určitého itegrálu 1. Iterval < ab, > rozdělíme a dílčích itervalů. Možiu dělících bodů {,,..., } D x x x = 0 1, kde a = x0 < x1<... x 1< x = b, azveme děleím itervalu < ab, > a itervalů < xi 1, xi >, i = 1, 2,...,. Číslo ν ( D) = max ( xi x i 1) budeme azývat ormou děleí. Toto číslo ám i= 1,..., říká, jaká je délka ejvětšího itervalu v daém děleí. Samozřejmě itervalů s touto maximálí délkou může být více, případě mohou být itervaly stejě dlouhé (ekvidistatí body). Norma děleí charakterizuje, jak je děleí jemé. 2. V každém dílčím itervalu děleí D vybereme jede bod ξ < x, x >, i= 1,2,...,. Možiu těchto bodů R = { ξ1, ξ2,..., ξ} i i 1 i azývat výběrem reprezetatů příslušých k děleí D. 3. Pro daé děleí D itervalu < ab, > a výběr reprezetatů R vytvoříme součet D budeme σ( f, D, R ) = f( ξ )( x x 1). Tato suma se azývá itegrálím součtem fukce f i i i i= 1 ebo také Riemaův součet (Georg Friedrich Berhard Riema, 1826 1866). Geometrický výzam tohoto součtu je zázorě a obr. 2.1.6. Jedá se vlastě o součet obsahů obdélíků se základami zřejmé, že pro ( i i 1 x x ) a výškami f ( ξ ), kde i = 1, 2,...,. Je f ( ξ i ) < 0 bude hodota pro daý obdélík záporá. Ozačeí σ ( f, D, R ) zameá, že itegrálí součet závisí a fukci f, a kokrétím děleí a a výběru reprezetatů R. 4. Budeme vytvářet itegrálí součty pro stále jemější děleí D itervalu < ab, > při libovolých výběrech reprezetatů i D R. Pokud bude existovat limita itegrálích součtů σ ( f, D, R ) pro a ormu děleí ν ( ) 0 ezávisle a výběrech reprezetatů, azveme ji určitý itegrál fukce D f( x ) a itervalu < ab, >. - 86 -
2.1. Pojem Riemaova určitého itegrálu Obr. 2.1.6. Itegrálí součet fukce f Defiice 2.1.2. Nechť je fukce f( x ) itegrovatelá a itervalu < ab, >, D je děleí itervalu < ab, > a R výběr reprezetatů. Řekeme, že fukce f je Riemaovsky itegrovatelá a itervalu < ab, >, jestliže existuje číslo I R s vlastostí lim σ ( f, D, R) = I pro libovolou posloupost děleí D, pro kterou platí lim ν ( D ) = 0 při libovolé volbě reprezetatů R. Číslo I azýváme určitý (Riemaův) itegrál fukce f a itervalu b < ab, > a píšeme I = f( x) dx. a Číslo a azýváme dolí mez, číslo b horí mez, iterval < ab, > itegračí obor a fukci f itegrad. Geometrický výzam určitého itegrálu b Je-li f ( x) 0 a itervalu < ab, >, pak f ( xdx ) představuje obsah křivočarého a lichoběžíka ohraičeého shora grafem fukce f( x), přímkami x= a, x= b a osou x (obr. 2.1.1). Pozámky b 1. Zápis eurčitého itegrálu f ( xdx ) a určitého itegrálu f ( xdx ) je formálě velmi a - 87 -
2.1. Pojem Riemaova určitého itegrálu podobý. U určitého itegrálu jsou pouze avíc itegračí meze. To má za ásledek, že je studeti považují prakticky za stejé. Určitý a eurčitý itegrál se však zásadě liší! Výsledkem eurčitého itegrálu je fukce (možia fukcí), výsledkem určitého itegrálu je číslo. Přestože se jedá o zcela odlišé pojmy, existuje mezi imi důležitá souvislost, jak uvidíme dále (věta 2.2.1). 2. Z kostrukce určitého itegrálu je zřejmé, že výsledek ezávisí a tom, jak ozačíme b b b. itegračí proměou. Tedy f ( xdx ) = f( tdt ) = f( udu ) a a a 3. Symbol itegrálu vzikl protažeím písmee S, které ozačovalo sumu. Z defiice určitého itegrálu vidíme, o jakou sumu (itegrálí součet) se jedá. 4. Postup uvedeý v předcházející části jsme mohli realizovat ejlépe s použitím počítače. Daý iterval < ab, > bychom rozdělili ekvidistatími body a dostatečý počet dílčích itervalů (třeba milio), jako reprezetaty bychom zvolili levé ebo pravé hraice těchto dílčích itervalů. Sado aprogramujeme výpočet itegrálího součtu. Pokud určitý itegrál existuje, bude teto itegrálí součet jistou aproximací určitého itegrálu. Uvedeý postup je základem obdélíkové metody umerického výpočtu určitých itegrálů. Těmito postupy a odhadem chyby se zabývá umerická matematika. - 88 -