4.6 Složené soustavy



Podobné dokumenty
Složené soustavy. Úloha: Sestavení statického schématu, tj. modelu pro statický výpočet (např.výpočet reakcí)

Petr Kabele

4.6.3 Příhradové konstrukce

Příhradové konstrukce

Složené soustavy v rovině, stupně volnosti

trojkloubový nosník bez táhla a s

Statika 1. Reakce na rovinných staticky určitých konstrukcích. Miroslav Vokáč ČVUT v Praze, Fakulta architektury.

STATIKA. Vyšetřování reakcí soustav. Úloha jednoduchá. Ústav mechaniky a materiálů K618

Zjednodušená deformační metoda (2):

ZDM PŘÍMÉ NOSNÍKY. Příklad č. 1. Miloš Hüttner SMR2 ZDM přímé nosníky cvičení 09. Zadání

Stavební mechanika 3 132SM3 Přednášky. Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků.

Jsou to konstrukce vytvořené z jednotlivých prutů, které jsou na koncích vzájemně spojeny a označujeme je jako příhradové konstrukce nosníky.

4. Statika hmotných objekt 4.1 Stupn volnosti

Téma 3 Úvod ke staticky neurčitým prutovým konstrukcím

Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Příhradové konstrukce a názvosloví

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil

Předpoklady: konstrukce je idealizována jako soustava bodů a tuhých těles (v prostoru) nebo bodů a tuhých desek (v rovině) konstrukce je v rovnováze

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty

Kinematická metoda výpočtu reakcí staticky určitých soustav

FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:

2.13 Rovinný obloukový nosník zatížený v rovině = staticky určitě podepřený rovinný obloukový prut

Tutoriál programu ADINA

Statika soustavy těles.

Stavební mechanika 2 (K132SM02)

Princip virtuálních prací (PVP)

Téma 8 Příčně zatížený rám a rošt

Podmínky k získání zápočtu

Kapitola 4. Tato kapitole se zabývá analýzou vnitřních sil na rovinných nosnících. Nejprve je provedena. Každý prut v rovině má 3 volnosti (kap.1).

Materiály ke 12. přednášce z předmětu KME/MECHB

3. kapitola. Průběhy vnitřních sil na lomeném nosníku. Janek Faltýnek SI J (43) Teoretická část: Příkladová část: Stavební mechanika 2

Přednáška 1 Obecná deformační metoda, podstata DM

Betonové konstrukce (S) Přednáška 3

p + m = 2 s = = 12 Konstrukce je staticky určitá a protože u staticky určitých konstrukcí nedochází ke změně polohy je i tvarově určitá.

Předpjatý beton Přednáška 4

Projevy dotvarování na konstrukcích (na úrovni průřezových modelů)

Vnitřní síly v prutových konstrukcích

Stavební mechanika přednáška, 10. dubna 2017

Stupně volnosti a vazby hmotných objektů

A x A y. α = 30. B y. A x =... kn A y =... kn B y =... kn. Vykreslení N, V, M. q = 2kN/m M = 5kNm. F = 10 kn A c a b d ,5 2,5 L = 10

Nelineární analýza materiálů a konstrukcí (V-132YNAK) Přednáška 2 Princip metody konečných prvků

Střední škola automobilní Ústí nad Orlicí

1. výpočet reakcí R x, R az a R bz - dle kapitoly 3, q = q cosα (5.1) kolmých (P ). iz = P iz sinα (5.2) iz = P iz cosα (5.3) ix = P ix cosα (5.

Pohybové možnosti volných hmotných objektů v rovině

PŘÍHRADOVÉ KONSTRUKCE PŘÍHRADOVÉ KONSTRUKCE PRUTOVÉ SOUSTAVY

Statika tuhého tělesa Statika soustav těles. Petr Šidlof

5. Prutové soustavy /příhradové nosníky/

b) Po etní ešení Všechny síly soustavy tedy p eložíme do po átku a p ipojíme p íslušné dvojice sil Všechny síly soustavy nahradíme složkami ve sm

2.8 Zobecnění vztahů mezi zatížením a vnitřními silami prutu (rovinný prut zatížený v rovině) df x =f x.ds df z =f z.ds. M+dM x. ds=r.dϕ.

α = 210 A x =... kn A y =... kn A M =... knm

Desky. Petr Kabele. Pružnost a pevnost 132PRPE Přednášky. Deska/stěna/skořepina, desky základní předpoklady, proměnné a rovnice

Jednoosá tahová zkouška betonářské oceli

Statika tuhého tělesa Statika soustav těles

Stavební mechanika 2 (K132SM02) Přednáší: doc. Ing. Matěj Lepš, Ph.D. Katedra mechaniky K132 místnost D

Pružnost a plasticita II CD03

Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí

VŠB Technická univerzita Ostrava Fakulta stavební, Ludvíka Podéště 1875, Ostrava. Lenka Lausová, Vladimíra Michalcová STAVEBNÍ STATIKA

5 Úvod do zatížení stavebních konstrukcí. terminologie stavebních konstrukcí terminologie a typy zatížení výpočet zatížení od vlastní tíhy konstrukce

Těleso na podporách. asi 1,5 hodiny. Základy mechaniky, 4. přednáška

STATIKA STAVEBNÍCH KONSTRUKCÍ I

Průmyslová střední škola Letohrad. Ing. Soňa Chládková. Sbírka příkladů. ze stavební mechaniky

P řed m lu va 11. P o u žitá sym b o lik a 13. I. Z á k la d y s ta v e b n í m e c h a n ik y - s ta tik y

Pohybové možnosti volných hmotných objektů v rovině

OHYB (Napjatost) M A M + qc a + b + c ) M A = 2M qc a + b + c )

s01. Základy statiky nutné pro PP

Zakřivený nosník. Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly. Stavební statika, 1.ročník bakalářského studia

Platnost Bernoulli Navierovy hypotézy

BO04 KOVOVÉ KONSTRUKCE I

graficky - užití Cremonova obrazce Zpracovala: Ing. Miroslava Tringelová

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6

Postup při výpočtu prutové konstrukce obecnou deformační metodou

6.3 Momenty setrvačnosti a deviační momenty rovinných obrazců. yda. 1) I y, I z > 0. 2) I y, I z závisí na vzdálenosti plochy od osy II I I I I

BO004 KOVOVÉ KONSTRUKCE I

Princip virtuálních posunutí (obecný princip rovnováhy)

4. Statika základní pojmy a základy rovnováhy sil

Princip virtuálních posunutí (obecný princip rovnováhy)

Kontrolní otázky pro průběžné studium a pro přípravu ke zkoušce ze statiky. Základní pojmy

studentská kopie 3. Vaznice - tenkostěnná 3.1 Vnitřní (mezilehlá) vaznice

Dynamika soustav hmotných bodů

MECHANIKA PODZEMNÍCH KONSTRUKCÍ Statické řešení výztuže podzemních děl

6. Statika rovnováha vázaného tělesa

5. Statika poloha střediska sil

Podklady k 1. cvičení z předmětu KME / MECH2

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Konstrukční systémy vícepodlažních budov Přednáška 5 Stěnové systémy Doc. Ing. Hana Gattermayerová,CSc Obsah

Témata profilové části ústní maturitní zkoušky z odborných předmětů

Martin NESLÁDEK. 14. listopadu 2017

Téma 7 Rovinný kloubový příhradový nosník

Pružnost a pevnost. zimní semestr 2013/14

Rovinné nosníkové soustavy Gerberův nosník

Stavební mechanika 1 (K132SM01)

Témata profilové části ústní maturitní zkoušky z odborných předmětů

ZÁKLADY STAVEBNÍ MECHANIKY

ZDM RÁMOVÉ KONSTRUKCE

4. cvičení výpočet zatížení a vnitřních sil

Zadání semestrální práce z předmětu Mechanika 2

Redukční věta princip

ANALÝZA KONSTRUKCÍ. 5. přednáška

STAVEBNÍ STATIKA. Ing. Petr Konečný, Ph.D. LPH 407/3. tel

Stavební statika. Úvod do studia předmětu na Stavební fakultě VŠB-TU Ostrava. Stavební statika, 1.ročník kombinovaného studia

Autor: Vladimír Švehla

Transkript:

4.6 Složené soustavy vznikají spojením jednotlivých konstrukčních prvků (tuhých těles, tuhých desek a/nebo bodů) deska deska G G 1

vazby: vnitřní - spojují jednotlivé prvky vnější - připojují soustavu k podkladu (základům, další konstrukci a.p.) vnitřní vazby G G vnější vazby 2

rovinná soustava - zatížení: rovinná soustava sil a - rovinné uspořádání vazeb G G 3

prostorová soustava - zatížení: prostorová soustava sil a/nebo - prostorové uspořádání vazeb 4

stupně volnosti soustavy m = součet počtů stupňů volnosti jednotlivých prvků bez vlivu vazeb r = součet počtů stupňů volnosti odebraných všemi vazbami s n = r - m stupeň statické neurčitosti soustavy posouzení vnějšího podepření rovinná složená soustava má minimálně 3 stupně volnosti (min. 1 deska... m = 3) prostorová složená soustava má minimálně 6 stupňů volnosti (min. 1 těleso... m = 6) aby vnější vazby zamezily přemístění konstrukce, musí odebírat nejméně: 3 stupně volnosti rovinné soustavě (r ext 3) 6 stupňů volnosti prostorové soustavě (r ext 6) 5

statická/kinematická určitost soustavy Stupně volnosti *) rovina [prostor] Podepření staticky Podepření kinematicky Pozn. s n = 0 (m = r) a rext 3[6] *) a není výjimkový případ s n > 0 (m < r) a rext 3[6] *) a není výjimkový případ s n < 0 (m > r) a/nebo rext < 3[6] *) a/nebo výjimkový případ určité neurčité přeurčité určité přeurčité neurčité kce. vč. všech jejích částí pevně podepřena kce. vč. všech jejích částí pevně podepřena kce. nebo její část může samovolně změnit polohu výjimkový případ podepření: přestože počet vazeb je dostatečný k odebrání všech stupňů volnosti konstrukce (r m, r ext 3 nebo r ext 6), jejich nevhodné uspořádání nezabraňuje skutečným či nekonečně malým posunům/pootočením konstrukce nebo její části 6

Příklady: r c = 2 I. m c II. I = 3 m II = 3 a d b r r a = 2 d = 1 r b = 1 r c = 2 I. m c II. I = 3 m II = 3 a b r a = 2 r b = 2 m = 2 3 = 6 r = (2+1)+(2+1) = 6 vnější vnitřní s n = r m = 0 staticky i kinematicky určitá kce. vnější podepření: r ext = (2+1) = 3 3 m = 2 3 = 6 r = (2+2) + 2 = 6 vnější vnitřní s n = r m = 0 staticky i kinematicky určitá kce. vnější podepření: r ext = (2+2) = 4 3 r c = 2 I. m c II. I = 3 m II = 3 a d b r r a = 2 d = 1 r b = 2 m = 2 3 = 6 r = (2+2)+(2+1) = 7 vnější vnitřní s n = r m = 1 1x staticky neurčitá / 1x kinematicky přeurčitá kce. vnější podepření: r ext = (2+2) = 4 3 7

I. m I = 3 r c = 2 c d r d = 1 II. m II = 3 a e r e = 1 b r a = 2 r b = 1 m = 2 3 = 6 r = (2+1)+(2+1+1) = 7 vnější vnitřní s n = r m = 1 1x staticky neurčitá / 1x kinematicky přeurčitá kce. vnější podepření: r ext = (2+1) = 3 3 Všimněme si: tuhý celek - deska I. c II. d a e b r a = 2 r b = 1 Vnější vazby odebírají tuhé desce 3 stupně volnosti... konstrukce je vně staticky určitá. 8

m = 2 3 = 6 r c = 2 I. m c II. vnější vnitřní I = 3 m II = 3 a b r a = 2 r b = 1 r = (2+1) + (2) = 5 s n = r m = 1 1x staticky přeurčitá / 1x kinematicky neurčitá kce. (přestože vnější podepření: r ext = (2+1) = 3 3) I. m I = 3 r c = 2 c d r d = 1 II. m II = 3 a e r e = 1 r a = 2 m = 2 3 = 6 r = (2) + (2+1+1) = 6 vnější vnitřní s n = r m = 0 ALE vnější podepření: r ext = 2 3... kce. vně staticky přeurčitá, není zamezeno pootočení 9

r c = 1 c m I = 3 m II = 3 I. r d = 1 d II. a b r a = 2 r b = 2 m = 2 3 = 6 r = (2+2) + (1+1) = 6 vnější vnitřní s n = r m = 0 vnější podepření: r ext = (2+2) = 4 3 ALE nevhodné uspořádání vazeb nezamezuje přemístění kce.... výjimkový případ podepření 10

* další příklady výjimkových případů podepření rovinných složených soustav 11

Př. 1: Načrtněte statické schéma zobrazené konstrukce a určete její stupeň statické neurčitosti. a) 2D b) 3D (Letiště Marca Pola, Benátky) 12

metoda výpočtu reakcí: 1) konstrukci rozdělíme na jednotlivé prvky 2) účinky vazeb nahradíme neznámými reakcemi vnější vazby a b A h B h A v B v Povšimněme si: každá vnější reakce se vyskytuje právě 1x. 13

vnitřní vazby: každá vnitřní vazba musí být v rovnováze, např. c C Ih C Iv C IIh C IIv CIIh C Iv C Ih C IIv -C Ih + C IIh =0 -C Iv + C IIv =0 C h C h C v C v Povšimněme si: každá vnitřní reakce se vyskytuje právě 2x, a to vždy s opačnou orientací. 14

3) vypočítáme reakce tak, aby každá část konstrukce byla v rovnováze soustava je v rovnováze jako celek podmínky rovnováhy pro každý prvek zahrneme pouze zatížení a reakce působící na prvek podmínky rovnováhy pro soustavu jako celek (vnější podmínky rovnováhy) zahrneme všechna zatížení kce. a vnější reakce nadbytečné podmínky (můžeme použít pro výpočet nebo pro kontrolu) 15

4.6.1 Rovinné složené soustavy vícenásobný kloub 16

vícenásobný kloub pro výpočet reakcí působících na připojené pruty někdy zjednodušujeme Pozor: nepřípustné pro detailní výpočet vazby (spoj. plechu, čepu ap.). 17

* odebrané st. volnosti: r = 2 (n-1) (n připojených desek) III II r II = 2 I r I = 2 r = r I + r II = 4 18

* reakce II A IIh nebo III A IIv A Ih A Iv A IIh A Iv A IIv II A Ih A Iv I A IIh A Ih III A IIh A IIv A Iv I A IIv A Ih Výsledné celkové reakce působící na připojené desky vyjdou v obou případech stejně. Avšak pro detailní výpočet sil působících na vazby (spoj. plech, čep ap.) je nutno zavést reakce podle skutečného působení vazby! 19

* pozor, rozdíl dvojnásobný kloub II A IIv A Iv A Ih A IIh A IIh II A IIv A Iv III I III A Ih I jednoduchý kloub II II A v A v I A h A h I 20

dvě či více vazeb v jednom místě, např.: 21

dvě či více vazeb v jednom místě, např.: II b a I = II b a I nebo II b I a II B v A v B h A h B v B h I nebo Výsledné celkové reakce působící na připojené desky i ve vnější vazbě vyjdou v obou případech stejně. Avšak pro detailní výpočet sil působících na vazby (spoj. plech, čep ap.) je nutno zavést reakce podle skutečného působení vazby! II B v B h B v B h A v I A h 22

zatížená vazba, např.: II F I vnější sílu F můžeme přiřadit desce I nebo II II A v A h F A h A v I nebo II F A v A h A h A v I pozn.: podobně pro moment Výsledné celkové síly působící na připojené desky vyjdou v obou případech stejně. Avšak pro detailní výpočet sil působících na vazby (spoj. plech, čep ap.) je nutno zavést reakce podle skutečného působení vazby! 23

Př. 2: Vypočtěte vnitřní a vnější reakce rovinné konstrukce M 1 = 7 knm F 1 = 10 kn F 2 = 5 kn 2 F 3 = 3 kn 3 4 4 (m) 24

Posouzení statické určitosti m = 3 r = 4 m = 3 m = 3 r = 1 r = 2 r = 1 r = 1 nebo m = 3 r = 4 m = 3 m = 3 r = 2 r = 2 r = 2 r = 1 m = 3 r = 1 m = 3 3 = 9 r = 3 1+2+4 = 9 m = r m = 4 3 = 12 r = 2 1+3 2+4 = 12 m = r 25

Rozdělení na prvky a zavedení reakcí M 1 = 7 knm F 1 = 10 kn E Ih E Iv E IIh E IIv II. F 2 = 5 kn I. E Iv E Ih E IIh F 3 = 3 kn E IIv A v A h III. D D C B I. e III. II. a b d c 26

Podmínky rovnováhy M 1 = 7 knm F 1 = 10 kn E Ih E Iv E IIh E IIv II. F 2 = 5 kn I. A h E Iv E Ih F 3 = 3 kn D I: A C v II: x : Ah + EIh = 0 (1) B x : F2 EIIh D = 0 (4) z : F1 + Av + EIv = 0 (2) z : C E IIv = 0 (5) e : M1 + 4Av + 5Ah = 0 (3) e : 5D 4C = 0 (6) III: x : E + E + D + F = 0 (7) Ih IIh E IIv III. 3 E IIh z : EIv + EIIv + B = 0 (8) e : 2F3 + 5D = 0 (9) D 27

Podmínky rovnováhy I: x : A + E = 0 (1) h Ih z : Av + EIv = 10 (2) z : C E IIv = 0 (5) e : 4Av + 5Ah = 7 (3) e : 5D 4C = 0 (6) III: x : E + E + D = 3 (7) Ih IIh z : EIv + EIIv + B = 0 (8) e : 5D = 2 3 (9) II: x : E D = 5 (4) IIh 28

Řešení soustavy pomocí programu wxmaxima (wxmaxima.sourceforge.net, maxima.sourceforge.net)

Podmínky rovnováhy M 1 = 7 knm F 1 = 10 kn F 2 = 5 kn 2 F 3 = 3 kn 3 A h 4 4 A v B C Vnější: x : A + F + F = 0 (10) h 2 3 z : Av + B + C + F1 = 0 (11) a : M 4F 5F 3F 4B 8C = 0 (12) 1 1 2 3 30

Vnější podmínky rovnováhy můžeme použít pro kontrolu výsledku:

Výsledek: M 1 = 7 knm F 1 = 10 kn 8 18.25 6.2 1.5 II. F 2 = 5 kn I. 18.25 8 F 3 = 3 kn 1.5 6.2 8 8.25 1.2 1.2 1.5 19.75 (kn) 32

Praktická doporučení pro řešení složených soustav Výpočet reakcí staticky určité složené soustavy vede nařešení soustavy lineárních rovnic, jejichž počet odpovídá počtu stupňů volnosti konstrukce. Soustavu rovnic můžeme výrazně zjednodušit při dodržení následujících doporučení: V konstrukci se snažíme identifikovat nesené a nosné části. Při sestavování a výpočtu podmínek rovnováhy postupujeme od nesené části k nosné. Při sestavování podmínek rovnováhy pro jednotlivé desky použijeme takové nezávislé podmínky (silové a/nebo momentové), ve kterých se vyskytne co nejméně neznámých reakcí. Toho je možno docílit zejména vhodnou volbou bodů pro podmínky momentové. V některých případech může být výhodné využít pro řešení některých reakcí vnější podmínky rovnováhy, nebo podmínky rovnováhy pro část soustavy sestávající z dvou nebo více desek. Viz příklady. 33

34

35

(kn) 36

Nesená část 37

Nosná část (trojkloubový rám) 38

(kn) 39

Poděkování - Acknowledgment: Všechny použité fotografie pocházejí z Godden Structural Engineering Slide Library, National Information Service for Earthquake Engineering, University of California, Berkeley. All photographs belong to Godden Structural Engineering Slide Library and appear courtesy of National Information Service for Earthquake Engineering, University of California, Berkeley. 40

Tento dokument je určen výhradně jako doplněk k přednáškám z předmětu Stavební mechanika 1 pro studenty Stavební fakulty ČVUT v Praze. Dokument je průběžně doplňován, opravován a aktualizován a i přes veškerou snahu autora může obsahovat nepřesnosti a chyby. Datum poslední revize: 3.12.13 20:50 41