Vzdálenosti Copyright c 2006 Helena Říhová
Obsah 1 Vzdálenosti 3 1.1 Vzdálenostivrovině... 3 1.1.1 Vzdálenostdvoubodů..... 3 1.1.2 Vzdálenostboduodpřímky..... 4 1.1.3 Vzdálenostdvourovnoběžek.... 5 1.2 Vzdálenostivprostoru... 6 1.2.1 Vzdálenostdvoubodů..... 7 1.2.2 Vzdálenostboduodpřímky..... 8 1.2.3 Vzdálenostboduodroviny..... 11 1.2.4 Vzdálenostmimoběžek..... 13 2
1 Vzdálenosti Podívámesenato,jakjetosrůznýmivzdálenostmi.Ktomusenámbudehoditznátvšechny tři typy součinů vektorů, takže si je pro jistotu zopakujeme. U všech součinů budeme předpokládat,žemámetřísložkovévektorytvaru u=(u 1,u 2,u 3 ). Nejjednodušší na výpočet je skalární součin: u v= u 1 v 1 + u 2 v 2 + u 3 v 3 = u v cos ϕ, (1) kde ϕ je úhel mezi vektory u, v. Výsledkem skalárního součinu, jak název napovídá, je jedno jediné číslo. Jsou-li vektory u, v vzájemně kolmé, jejich skalární součin je roven nule. Jinakjetomuuvektorovéhosoučinudvouvektorů u, v.výsledekjevektor w,kterýje kolmý k oběma vektorům u, v(vektory u, v, w tvoří pravotočivý systém) a jeho souřadnice jsou dány vztahem: w= u v=(u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ), (2) přičemžvelikost w = u v sin ϕ.ksnazšímuzapamatovánívzorce(2)sloužíjakomnemotechnická pomůcka následující schema, příslušné součiny jsou naznačeny šipkami. u 1 u 2 u 3 u 1 u 2 v 1 v 2 v 3 v 1 v 2 Kombinací obou výše zmíněných součinů je smíšený součin( u v) w. Značí se[ u, v, w] asplňuje:[ u, v, w]=[ v, w, u]=[ w, u, v]= [ v, u, w].svyužitímvztahů(1),(2)dostaneme pro smíšený součin: [ u, v, w]=u 1 v 2 w 3 + u 2 v 3 w 1 + u 3 v 1 w 2 (u 3 v 2 w 1 + u 1 v 3 w 2 + u 2 v 1 w 3 ) (3) K zapamatování máme opět schema, v němž šipky naznačují, jak tvořit správné součiny. u 1 u 2 u 3 u 1 u 2 v 1 v 2 v 3 v 1 v 2 v 1 v 2 v 3 v 1 v 2 u 1 u 2 u 3 u 1 u 2 w 1 w 2 w 3 w 1 w 2 w 1 w 2 w 3 w 1 w 2 1.1 Vzdálenosti v rovině Naučíme se určovat vzdálenost dvou bodů, vzdálenost bodu od přímky a vzdálenost dvou rovnoběžek. 1.1.1 Vzdálenost dvou bodů Vzdálenost dvou bodů, B značíme B a pro její určení si vystačíme s Pythagorovou větou. Z obrázku 1 je vidět, že vzdálenost bodů, B je délka přepony pravoúhlého trojúhelníka, jehožodvěsnymajívelikosti b 1 a 1, b 2 a 2,atedy: B = (b 1 a 1 ) 2 +(b 2 a 2 ) 2 (4) 3
y b 2 B a 2 b 1 a 1 b 2 a 2 a 1 b 1 x obr.1 1.1.2 Vzdálenost bodu od přímky Úlohazní:vypočítejtevzdálenostbodu [x 0,y 0 ]odpřímky p,zadanéobecnourovnicí: ax+by+ c=0.přivýpočtubudemesledovatstejnýpostup,jakokdybychomúlohuřešili konstruktivně. To jest: nejprve vedeme bodem přímku q kolmou k přímce p. Nalezneme průsečík oboupřímeka změříme délkuúsečky. p obr.2 Výpočet bude o něco jednodušší, převedeme-li obecnou rovnici přímky p na parametrické rovnice. K tomu potřebujeme znát nějaký bod přímky p a její směrový vektor. Bod přímky jenapř. P[0, c/b],(x=0jsmesizvoliliay= c/bjsmedopočítalizrovnicepřímky). Směrovývektor pmusíbýtkolmýknormálovémuvektoru n=(a,b).tosplňujenapř.vektor p =( b, a). Potom parametrické rovnice přímky p jsou: q x= bt, y= c + at, t R. (5) b Podobněpřímka qprocházíbodem [x 0,y 0 ]amásměrovývektor q= n=(a,b),takžejejí parametrické rovnice jsou: x=x 0 + as, y= y 0 + bs, s R. (6) 4
Souřadnice průsečíku nalezneme vyřešením soustavy rovnic(5),(6). Vyloučením x a y dostanemedvěrovniceproneznámé t, s.prvnírovnicivynásobíme a,druhou baoběrovnice sečteme: bt=x 0 + as c b + at=y 0+ bs / a / b Po sečtení dostáváme jedinou rovnici pro parametr s: c=ax 0 + by 0 +(a 2 + b 2 )s Souřadnice bodu tedy jsou: aztoho s= ax 0+ by 0 + c a 2 + b 2. [ x 0 a ax 0+ by 0 + c a 2 + b 2, y 0 b ax 0+ by 0 + c a 2 + b 2 Nynímámevšepotřebnéprourčenívzdálenosti d(,p)bodu odpřímky p: ( ( d(,p)= = x 0 x 0 a ax 0+ by 0 + c a 2 + b 2 )) 2 ( ( + y 0 ]. y 0 b ax 0+ by 0 + c a 2 + b 2 )) 2. Poslednívztahještěmaličkoupravímedojednoduššípodoby; x 0 a y 0 sevyruší,zbytekumocníme na druhou, zlomek vytkneme, součet kvadrátů pokrátíme, odmocníme a máme vcelku hezký a pro někoho i zapamatovatelný výsledek: d(,p)= ax 0+ by 0 + c a 2 + b 2, (7) kterýdáváhledanouvzdálenostbodu [x 0,y 0 ]odpřímky p: ax+by+ c=0. Příklad 1 Určetevzdálenostbodu [ 1,5]odpřímky pzadanéparametricky: x= 2+4t, y=1 3t. Řešení Z parametrických rovnic přímky p vyloučíme parametr t, abychom dostali obecnou rovnici přímky p.rovnicevynásobíme3a4 x= 2+4t / 3 y=1 3t / 4 asečteme: 3x+4y= 2, tj. 3x+4y+2=0. Dosazením do vzorce(7) dostáváme pro vzdálenost bodu [ 1, 5] od přímky p d(,p)= 3 ( 1)+4 5+2 3 2 +4 2 = 19 5. 1.1.3 Vzdálenost dvou rovnoběžek Výpočet vzdálenosti dvou rovnoběžek převedeme na předchozí případ, tj. na výpočet vzdálenosti bodu od přímky. Stačí určit jeden bod na jedné z rovnoběžek a vypočítat vzdálenost tohoto bodu od druhé rovnoběžky. Tím zároveň spočítáme vzdálenost rovnoběžek. Vše si ukážeme na konkrétním příkladu. 5
Příklad 2 Určete vzdálenost rovnoběžek p, q, jestliže přímky p, q jsou zadány následovně: a) p: x=1+3t, y=4 t, q: x+3y+6=0, b) p: x= 5+2t, y=5t, q: x=2 2t, y=1 5t, c) p: 2x+3y 1=0, q: 2x+3y+4=0. Řešení ad a) Tento způsob zadání přímek je pro výpočet jejich vzdálenosti nejpohodlnější. Jako bod dobřeposloužíbod[1,4]arolipřímky ppřevezmepřímka q,tj.hledámevzdálenostbodu [1,4]odpřímky q. 1 1+3 4+6 d(p,q)=d(,q)= = 19. 1 2 +3 2 10 ad b) V tomto případě musíme pro jednu z přímek zjistit její obecnou rovnici. Vyloučením parametru t v parametrických rovnicích přímky p získáme její obecnou rovnici ve tvaru: 5x 2y+25=0azabod můžemevzítbod[2,1]ležícínapřímce q. d(p,q)=d(,p)= 5 2+( 2) 1+25 5 2 +( 2) 2 = 33 29. adc)zdejetřebaurčitnějakýbodnajednézpřímek.zvolímesibod [ 2,0]napřímce q a opět použijeme vzorec(7): d(p,q)=d(,p)= 2 2+3 0 1 2 2 +3 2 = 5 13. 1.2 Vzdálenosti v prostoru Budeme používat kartézskou soustavu souřadnic. Je tvořena třemi vzájemně kolmými souřadnicovými osami x, y, z, které se všechny protínají v jednom společném bodě počátku O. Dvojicemi os jsou dány souřadnicové roviny. Bod v prostoru je zadán třemisouřadnicemi[x, y, z ],kde x jevzdálenostbodu odsouřadnicovéroviny y z(na obrázku3jetodélkaúsečky 1 ),podobně y jevzdálenostbodu odsouřadnicovéroviny xza z jevzdálenostbodu odsouřadnicovéroviny xy. z z 1 2 O y y x 3 x obr.3 6
1.2.1 Vzdálenost dvou bodů Začnemeobrázkem.Úkolemjeurčitvzdálenostbodů [x, y, z ], B[x B, y B, z B ](místo značení a 1, a 2,... jenynípoužitooznačení x, y,...).izdesivystačímespythagorovou z B z B z P y y B y x x B B x obr. 4 větou,jenjimusímepoužítdvakrát.body, B jsoupravoúhléprůmětybodů, Bdo roviny xy. Jejich vzdálenost už umíme spočítat. Podle vzorce(4) je B = (x B x ) 2 +(y B y ) 2. (8) Útvar B Pjeobdélník,tedy P = B,trojúhelník PBjepravoúhlýaBjejeho přepona. Takže B 2 = P 2 + PB 2. Podosazeníza P = B zrovnice(8)aza PB = z B z anáslednémodmocnění získáme konečný vztah: B = (x B x ) 2 +(y B y ) 2 +(z B z ) 2. (9) Příklad 1 Určetevzdálenostbodů [5, 7,2], B[2,4, 6]. Řešení Dosadíme do rovnice(9): B = (2 5) 2 +(4+7) 2 +( 6 2) 2 = 9+121+64= 194. 7
1.2.2 Vzdálenost bodu od přímky Přímka v prostoru bývá zadána buď obecně jako průsečnice dvou rovin, nebo parametricky. Při výpočtu vzdálenosti bodu od přímky budeme používat parametrické zadání přímky, proto si nejprve ukážeme, jak se obecné rovnice přímky převádějí na parametrické. Obecné rovnice přímky(coby průsečnice dvou rovin) jsou: p: a 1 x+b 1 y+ c 1 z+ d 1 =0 a 2 x+b 2 y+ c 2 z+ d 2 =0 (10) Pro parametrické rovnice potřebujeme směrový vektor a libovolný bod přímky. Směrový vektor ppřímkyjerovenvektorovémusoučinunormálovýchvektorů n 1 =(a 1,b 1,c 1 ), n 2 =(a 2,b 2,c 2 )příslušnýchrovin, p= n 1 n 2.Bod X 0 [x 0, y 0, z 0 ]přímkyzískámetak,že jednu jeho souřadnici zvolíme a zbylé vypočítáme z rovnic(10). můžeme psát parametrické rovnice přímky: X= X 0 + p t, t R, což rozepsáno dává x=x 0 + p x t y= y 0 + p y t z= z 0 + p z t t R. (11) Příklad 2 Nalezněte parametrické rovnice přímky p, jestliže její obecné rovnice jsou: 2x 3y+ z=0 4x+2y 3z=10 (12) Řešení Vypočítáme směrový vektor p: p=(2, 3,1) (4,2, 3)=(7,10,16) Prourčeníbodu X 0 přímkyzvolímenapř. y 0 =0ax 0, z 0 spočtemezrovnic(12).vyjde x 0 =1, z 0 = 2.Takžeparametrickérovnicedanépřímkyjsou: x=1+7t, y=10t, z= 2+16t, t R. Vzdálenost bodu od přímky v prostoru můžeme počítat různými způsoby. V následujícím příkladu si ukážeme čtyři z nich. První sleduje stejný postup, jako kdybychom úlohu řešili konstruktivně. Tj. bodem vedeme rovinu α kolmou k přímce p, nalezneme průsečík roviny s přímkou a vypočítáme délku úsečky. Druhý způsob využívá toho, že skalární součin dvou vzájemně kolmých vektorů je roven nule. Třetí způsob bere na pomoc derivace a čtvrtý způsob je aplikací vektorového součinu. 8
Příklad 3 Určetevzdálenostbodu [3, 2,1]odpřímky p:x=1 2t, y=4+t, z=2+2t. Řešení 1. způsob Rovina αprocházejícíbodem akolmákpřímce pmánormálovývektor nrovnýsměrovému vektorupřímky p; n= p=( 2,1,2).Obecnárovnice roviny je tedy: 2(x 3)+y+2+2(z 1)=0,poúpravě: 2x+y+2z+6=0. Pro nalezení průsečíku roviny α s přímkou p dosadíme z parametrických rovnic přímky do obecné rovnice roviny: 2(1 2t)+(4+t)+2(2+2t)+6=0 a vypočítáme hodnotu parametru t: 9t+12=0, z toho: t= 4 3. α p obr.5 Zpětným dosazením t do parametrických rovnic přímky p získáme souřadnice bodu : ( x =1 2 4 ) = 11 3 3, y =4 4 ( 3 =8 3, z =2+2 4 ) = 2 3 3.Hledanávzdálenost d(,p)jerovnadélceúsečky : 2. způsob d(,p)= = (11 3 3 ) 2 + ( 8 3 +2 ) 2 + ( 2 3 1 ) 2 =5. Nynívyjdemezeskutečnosti,ženapřímce pjejedinýbod(označímesijejopět ),který splňuje P,kde P, P p.matematickévyjádřenítétoskutečnostije,žeskalární součin P=0. Bod jedán [3, 2,1],bod jevyjádřenparametrickýmirovnicemipřímky p, [1 2t,4+t,2+2t] azabod Pmůžemevzítjakýkolibodpřímky p,např. bod [1,4,2] (odpovídá hodnotě parametru t = 0). p Pak =(2+2t, 6 t, 1 2t), P=(2t, t, 2t), P=2t(2+2t) t( 6 t) 2t( 1 2t)= P obr.6 = t(4+4t+6+t+2+4t)=t(12+9t). P=0 t(12+9t)=0. 9
Poslednírovnicemádvěřešení: t 1 =0,toodpovídá =P,cožjsmevyloučili,druhé řešení t 2 = 4 dávátutéžhodnotuparametru tjakovpředchozímpřípadě.dálbybyl 3 výpočet stejný a dostali bychom opět d(,p)= =5. 3. způsob Využijeme výpočtu minima funkce pomocí derivace. Vzdálenost bodu od přímky p je rovnadélcenejkratšízúseček X,kde Xjebodpřímky p.délkaúsečky Xje X = Nadefinujeme funkci (3 (1 2t)) 2 +( 2 (4+t)) 2 +(1 (2+2t)) 2 = = (2+2t) 2 +( 6 t) 2 +( 1 2t) 2 f(t)= X 2 =(2+2t) 2 +( 6 t) 2 +( 1 2t) 2. Funkce má lokální minimum pro hodnotu parametru t, kteráodpovídábodu přímky p,jenžjenejblížbodu. Je zřejmé, že funkce má pouze jediné lokální minimum, stačítedyzjistitstacionárníbodzpodmínky: f (t)=0. f (t)=2(2+2t)2+2( 6 t)( 1)+2( 1 2t)( 2)=24+18t X p obr.7 f (t)=0 24+18t=0, tj. t= 4 3 ajsmetam,kdejsmebylijižpodvakráte.tedyitentokrátvychází d(,p)= =5. 4. způsob Z parametrických rovnic přímky p určíme libovolné dvabody M, Nležícínapřímce.Např.probod Mvolíme t=0,tj. M=[1,4,2],pro N t=1,takže N=[ 1,5,4]. Vzdálenostbodu odpřímky pjepotomrovnavýšce rovnoběžníku M N O(obsah rovnoběžníku je roven velikostivektorovéhosoučinu MN M ). d(,p)= = MN M MN Dosadímehodnoty MN=( 2,1,2), a dostaneme pro vzdálenost: M=(2, 6, 1) M O p N obr.8 d(,p)= (11,2,10) 4+1+4 = 15 3 =5. 10
1.2.3 Vzdálenost bodu od roviny Odvodímevztahprovzdálenostbodu [x 0,y 0,z 0 ]odroviny αdanéobecnourovnicí: ax+by+cz+d=0.hledanávzdálenostjerovnadélceúsečky,kde jeprůsečíkkolmice qkrovině αvedenébodem. α q obr.9 Přímka q má parametrické rovnice(směrový vektor přímky q je normálový vektor roviny α): q: x=x 0 + at, y= y 0 + bt, z= z 0 + ct, t R. (13) Dosazením parametrických rovnic přímky q do obecné rovnice roviny α dostaneme hodnotu parametru t pro bod : ztoho Délka úsečky je: = a(x 0 + at)+b(y 0 + bt)+c(z 0 + ct)+d=0, t= ax 0+ by 0 + cz 0 + d a 2 + b 2 + c 2 (14) (x 0 + at x 0 ) 2 +(y 0 + bt y 0 ) 2 +(z 0 + ct z 0 ) 2 = (at) 2 +(bt) 2 +(ct) 2 = = t a 2 + b 2 + c 2, za tdosadímezrovnice(14)azískámehledanývztahprovzdálenostbodu [x 0,y 0,z 0 ]od roviny α: ax+by+ cz+ d=0 d(,α)= ax 0+ by 0 + cz 0 + d a 2 + b 2 + c 2 (15) Při výpočtu vzdálenosti bodu od roviny můžeme rovněž využít smíšeného součinu vektorů; ukážeme si to v dalším příkladu. Příklad 4 Určetevzdálenostbodu [5,1, 2]odroviny α: X=[2,0,1]+t(1, 1,1)+s(4, 1,0), t,s R. 11
Řešení 1. způsob Použijeme vzorec(15). K tomu potřebujeme převést parametrické rovnice roviny α na obecnou rovnici. Můžeme buď z parametrických rovnic vhodnými úpravami vyloučit parametry t, s, nebo ze zadaných vektorů u, v roviny(obr.10) vypočítat vektorovým součinem normálový vektor. w v v α K u α K u obr. 10 Vypočítáme normálový vektor: n=(1, 1,1) (4, 1,0)=(1,4,3). Z parametrických rovnic vyplývá, že rovina α obsahuje bod K[2, 0, 1], takže její obecná rovnice je: x 2+4(y 0)+3(z 1)=0 apoúpravě Teď již stačí dosadit do vztahu(15): x+4y+3z 5=0 d(,α)= 1 5+4 1+3 ( 2) 5 1+16+9 = 2 26 2. způsob Víme, nebo bychom mohli vědět, že smíšený součin vektorů u, v, w, které nejsou komplanární (nelze je umístit do jedné roviny), je číselně roven objemu rovnoběžnostěnu, jehož hrany jsou umístěním těchto vektorů(obr. 10). Objem každého rovnoběžnostěnu je roven součinu velikosti podstavy a velikosti výšky. Velikost podstavy v našem případě je rovna velikosti vektorovéhosoučinu u vavýškaudáváhledanouvzdálenostbodu odroviny α.tj. d(,α)= [ u, v, w] u v Zavektorydosazujeme: u=(1, 1,1), v=(4, 1,0), w= K=(3,1, 3). [ u, v, w]= 1 1 1 4 1 0 3 1 3 =3+0+4 ( 3+0+12)= 2. 12
Vektorovýsoučin u vmámeužspočítaný: u v= n=(1,4,3).potom d(,α)= 2 1+16+9 = 2 26. Poznámka: Bystrý čtenář si mohl všimnout, že ač použité postupy vypadají různě, prováděné početní operace jsou v obou případech v podstatě stejné, zvláště když smíšený součin bereme vetvaru[ u, v, w]=( u v) w. 1.2.4 Vzdálenost mimoběžek Vzdálenost mimoběžek je rovna délce jejich nejkratší příčky, tj. té příčky, která je k oběma mimoběžkám kolmá(obr. 11). Výpočet opět ukážeme na příkladu. Příklad 5 Určetevzdálenostmimoběžek a, b,kdepřímka ajedánabodem [2,1, 1]asměrovým vektorem a=(1,1,1),přímka bjedánabodem B[1,0,2]asměrovýmvektorem b=(0, 2,1). Řešení 1. způsob Budemehledatkrajníbody P a, bnejkratšípříčkymimoběžek a, b.zparametrických rovnicpřímky a: X=[2,1, 1]+ t(1,1,1)apřímky b: X=[1,0,2]+ s(0, 2,1)vyjádříme body P =[2,1, 1]+t p (1,1,1), =[1,0,2]+s q (0, 2,1)a vektor P P=(1,1, 3)+ t p (1,1,1) s q (0, 2,1),tj. P=(1+t p,1+t p +2s q, 3+t p s q ). Vektor Pmusíbýtkolmýkoběmamimoběžkám,takže skalární součiny a obr. 11 a P= b P=0. a P=1+tp +1+t p +2s q 3+t p s q =3t p + s q 1=0 b P= 2 2tp 4s q 3+t p s q = t p 5s q 5=0 Dostávámesoustavudvourovnicprodvěneznámé t p, s q : 3t p + s q 1=0 t p 5s q 5=0 t p= 5 7, s q= 8 7. Ze získaných hodnot parametrů vypočítáme souřadnice bodů P= [ [ 19 7,12 7 7], 2, = 1, 16 ] 7,6. 7 b 13
Hledaná vzdálenost je ( ) d(a,b)= P = 12 7, 4 7, 8 =4 7 2 7. 2. způsob Opětvyužijemesmíšenéhosoučinu.Zvektorů a, b, Butvořímerovnoběžnostěn(obr.12). Vzdálenost přímek a, b je pak rovna vzdálenosti horní a dolní podstavy, tj. výšce rovnoběžnostěnu. Výška = objem obsahpodstavy.tedy d(a,b)= [ a, b, B] ( a b) = ( a b) B ( a. b) a a B obr. 12 Vnašempřípaděje: B=(1,1, 3), a=(1,1,1), b=(0, 2,1).Pak d(a,b)= ( a b) B (3, 1, 2) (1,1, 3) ( a = b) (3, 1, 2) b = b 3 1+6 = 8 2 =4 9+1+4 14 7. 14