Funkce Definiční obor a obor hodnot
Opakování definice funkce Funkce je předpis, který každému číslu z definičního oboru, který je podmnožinou množiny všech reálných čísel R, přiřazuje právě jedno reálné číslo. Funkci značíme obvykle písmenkem f, ale nic nebrání tomu, abychom použili i jiná písmenka, např. g, h Obvykle ji zapisujeme ve tvaru: y = f(x), např. y = x 2 nebo ve tvaru: f: y = x 2 kde proměnná x je argument funkce.
Funkce definice Funkce je předpis, který každému číslu z definičního oboru, který je podmnožinou množiny všech reálných čísel R, přiřazuje právě jedno reálné číslo. f: y = x 2 kde proměnná x je argument funkce neboli nezávisle proměnná. Nezávislost je dána tím, že její hodnotu můžeme libovolně měnit, ovšem jen v rámci definované množiny, definičního oboru.
Opakování definiční obor funkce U každé funkce také musíme určit definiční obor. Je to množina všech přípustných hodnot argumentu x, tedy všechny hodnoty, kterých může proměnná x pro danou funkci nabývat. Značí se: D(f) Za chvíli si typy definičních oborů a možnosti jejich zápisů rozebereme podrobněji. Definiční obor může být dle typu funkce zadán jako množina všech reálných čísel: D(f) = R nebo jinak zapsáno x R, nebo jako část této množiny, tedy její podmnožina: např. D(f) = R + nebo x > 0 nebo x (0; ).
Opakování obor hodnot funkce Ke všem přípustným hodnotám argumentu x přísluší právě jedna funkční hodnota. Ty všechny dohromady tvoří obor hodnot (obor funkčních hodnot). Funkční hodnota neboli závisle I obor hodnot, proměnná podobně jako je číslo, definiční obor, může být které funkce přiřadí konkrétnímu argumentu x. množinou všech reálných čísel Jinak řečeno výstupní či hodnota jen její podmnožinou funkce. a platí pro něj stejné možnosti zápisu Obvykle ji značíme y nebo f(x). jako pro obor definiční. Tak se na ně nyní společně podívejme. Obor hodnot je množina všech reálných proměnné je čísel, pro danou které funkci jednoznačně dostaneme jako výstupní hodnoty funkce určena hodnotou f, jestliže za x dosadíme všechny přípustné argumentu hodnoty x z - proto D(f). Značí se: H(f) Hodnota závisle závisle proměnná.
Opakování Nejdříve si ale ještě připomeňme, jaké známe číselné obory a co znamenají. Množiny čísel, na kterých definujeme početní operace Množina se dá chápat jako soubor prvků (v našem případě čísel). Každá množina tedy obsahuje určitý počet prvků, který může být konečný i nekonečný. Nemusí také obsahovat žádný prvek, pak mluvíme o prázdné množině. 1 2 3 5 4 N -57-3 0-1 2/9 Z Q R -2-2,357 1000000,008-1/3 0,01 13 Přirozená čísla: 1; 2; 3; 4; 5 Celá čísla: -3; -2; -1; 0; 1; 2; 3 Racionální čísla: -8; 0; 34; 1000000; 2/9; 0,01; 2,3 Reálná čísla: -8; 0; 34; 1000000; 2/9; 0,01; 2,3; ; 13
Funkce zápis definičního oboru Definiční obor udává množinu prvků (čísel), pro které máme funkci řešit (učit funkční hodnoty, obor hodnot, sestrojit graf). Určení definičního oboru bývá obvykle již součástí zadání příkladu. Pokud tomu tak není, předpokládá se, že máme pro všechna funkci zkoumat v množině všech reálných čísel. reálná čísla, V takovém případě si však musíme dát pozor na to, abychom z této množiny vyčlenili prvky (čísla), pro které funkce definována není! f ( x) 1 x Např. tato funkce: je definována nebo není? Např. funkce není definována pro x = 0, protože, vycházíme-li z našich dlouholetých znalostí, nulou nelze dělit.
Funkce zápis definičního oboru Definičním oborem je množina všech reálných čísel: D(f) = R nebo x R nebo x ( ; ) Zápis pomocí intervalu Definičním oborem je množina všech kladných reálných čísel: D(f) = R + nebo x > 0 nebo x (0; ) Interval zleva otevřený, což znamená, že funkce není pro nulu definována a první platnou číslicí definičního oboru je číslo 0,0000000 a až někde v nekonečnu 1.
Funkce zápis definičního oboru Definičním oborem je množina všech nezáporných reálných čísel: D(f) = R 0 + nebo x 0 nebo x 0; ) Čísla kladná plus nula Interval zleva uzavřený, což znamená, že funkce je definována i pro nulu.
Funkce zápis definičního oboru Definičním oborem je množina všech záporných reálných čísel: D(f) = R - nebo x < 0 nebo x ( ;0) Interval zprava otevřený, což znamená, že funkce není pro nulu definována a poslední platnou číslicí definičního oboru je číslo -0,0000000 a až někde v nekonečnu 1.
Funkce zápis definičního oboru Definičním oborem je množina všech nekladných reálných čísel: D(f) = R 0 - nebo x 0 nebo x ( ;0 Čísla záporná plus nula Interval zprava uzavřený, což znamená, že funkce je definována i pro nulu.
Funkce zápis definičního oboru Prozatím jsme zkoumali jen obory tvořené podmnožinou reálných čísel omezenou jen z jedné strany. Nyní se tedy zaměříme na zápis podmnožin omezených z obou stran. Čísla, která odpovídají oběma podmínkám současně a jsou prvky Zápis můžeme zadaného rozdělit definičního na dva oboru, tvoří samostatné průnik obou zápisy podmnožin platící a tvoří zároveň. interval 4 < x < 2 x > 4 x < 2 x ( ;2) x ( 4; ) x ( 4;2) Čteme: x je větší než 4 a zároveň x je menší než 2. Otevřený interval: čísla -4 a 2 jsou jeho krajními body, ale do definičního oboru nepatří.
Funkce zápis definičního oboru I tentokrát můžeme zápis rozdělit na dva samostatné Čísla, která zápisy odpovídají platící oběma podmínkám zároveň. současně a jsou prvky zadaného definičního oboru, tvoří průnik obou podmnožin a tvoří interval 4 x 2 x 4 x 2 Poznali jste, čím se toto zadání liší od předchozího? x ( ;2 x 4;2 Čteme: x je větší nebo rovno 4 a zároveň x je menší nebo rovno 2. x 4; ) Uzavřený interval: čísla -4 a 2 jsou opět jeho krajními body, v tomto případě však patří i do definičního oboru.
Funkce zápis definičního oboru Opět můžeme zápis rozdělit na dva samostatné zápisy Čísla, která odpovídají platící zároveň. oběma podmínkám současně a jsou prvky zadaného definičního oboru, tvoří průnik obou podmnožin a tvoří interval x ( ;2) 4 x < 2 x 4 x < 2 Čteme: x je větší nebo rovno 4 a zároveň x je menší než 2. A do třetice... Poznali jste i tentokrát, čím se toto zadání liší od předchozích? x 4; ) x 4;2) Polouzavřený interval: čísla -4 a 2 jsou opět jeho krajními body, ale do definičního oboru patří jen číslo -4.
Funkce zápis definičního oboru Objevit se může i situace, kdy máme funkci vyšetřovat pro definiční obor určený jen výčtem několika konkrétních prvků, čísel. Např. pro čísla 2; 1; 0; 1; 2 a 3. V takovém případě se používá množinový zápis pomocí složených závorek: x { 2; 1;0;1;2;3}
Funkce zápis definičního oboru Objevit se samozřejmě může i situace, kdy definičnímu oboru nevyhovuje žádný prvek, žádné číslo: Např. 3 < a 7 a > 3 x ( ; 7 a 7 x (3; ) Množiny nemají společný průnik, neexistuje společná množina. x Prázdná množina. Definiční obor neobsahuje žádné číslo, žádný prvek.
Funkce příklady Zapiš definiční obor pomocí intervalu: 5 x 4
Funkce příklady Zapiš definiční obor pomocí intervalu: Opět můžeme zápis rozdělit na dva Čísla, samostatné která odpovídají zápisy oběma platící podmínkám zároveň. současně a jsou prvky zadaného definičního oboru, tvoří průnik obou podmnožin a tvoří interval 5 x 4 x 5 x 4 x ( ;4 x 5;4 Čteme: x je větší nebo rovno 5 a zároveň x je menší nebo rovno 4. x 5; ) Uzavřený interval: čísla -5 a 4 jsou jeho krajními body a patří do definičního oboru.
Funkce příklady Zapiš definiční obor pomocí intervalu: Opět můžeme zápis rozdělit na dva samostatné zápisy Čísla, platící která zároveň. odpovídají oběma podmínkám současně a jsou prvky zadaného definičního oboru, tvoří opět průnik obou podmnožin a tvoří interval 5 x 4 x 5 x 4 x 5; ) x 4; ) x 4; )
Funkce příklady Zapiš definiční obory pomocí intervalu: x 2 0 < x x > 12 x 0
Funkce příklady Zapiš definiční obory pomocí intervalu: x 2 x ( ; 2 0 < x x (0; ) x > 12 x 0 x (12; ) x 0; )
Funkce příklady Zapiš definiční obory pomocí intervalu: 1 x < 8 7 < x < 0 2 x 15 1 x 1
Funkce příklady Zapiš definiční obory pomocí intervalu: 1 x < 8 7 < x < 0 x 1;8) x ( 7;0) 2 x 15 1 x 1 x 2;15 x