8. Analýza rozptylu.

Podobné dokumenty
7. Analýza rozptylu.

Testujeme hypotézu: proti alternativě. Jednoduché třídění:

14. B o d o v é o d h a d y p a r a m e t r ů

12. N á h o d n ý v ý b ě r

4. B o d o v é o d h a d y p a r a m e t r ů

Při sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu

Pravděpodobnost a aplikovaná statistika

Intervalové odhady parametrů některých rozdělení.

Odhady parametrů 1. Odhady parametrů

Pravděpodobnost a aplikovaná statistika

n-rozměrné normální rozdělení pravděpodobnosti

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu

ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU)

procesy II Zuzana 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky

PRAVDĚPODOBNOST A STATISTIKA

Náhodný výběr 1. Náhodný výběr

NEPARAMETRICKÉ METODY

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých

V. Normální rozdělení

} kvantitativní znaky. korelace, regrese. Prof. RNDr. Jana Zvárov. Obecné principy

3. Lineární diferenciální rovnice úvod do teorie

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

Intervalové odhady parametrů

EKONOMETRIE 9. přednáška Zobecněný lineární regresní model

PRAVDĚPODOBNOST A STATISTIKA

Pravděpodobnost a aplikovaná statistika

Matematika I, část II

Iterační metody řešení soustav lineárních rovnic

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

MATICOVÉ HRY MATICOVÝCH HER

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

Deskriptivní statistika 1

11. přednáška 16. prosince Úvod do komplexní analýzy.

Kapitola 5 - Matice (nad tělesem)

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13).

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.

Pravděpodobnostní model doby setrvání ministra školství ve funkci

PRAVDĚPODOBNOST A STATISTIKA

Číselné charakteristiky náhodných veličin

8. Odhady parametrů rozdělení pravděpodobnosti

Kvantily. Problems on statistics.nb 1

Komplexní čísla. Definice komplexních čísel

Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby.

14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

Popisná statistika. Zdeněk Janák 9. prosince 2007

Úloha II.S... odhadnutelná

Závislost slovních znaků

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)

Pro statistické šetření si zvolte si statistický soubor např. všichni žáci třídy (několika tříd, školy apod.).

Kapitola 4 Euklidovské prostory

Testování statistických hypotéz

Metody zkoumání závislosti numerických proměnných

17. Statistické hypotézy parametrické testy

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n

REGRESNÍ DIAGNOSTIKA. Regresní diagnostika

3. Charakteristiky a parametry náhodných veličin

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ

Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor

Odhady parametrů základního. Ing. Michal Dorda, Ph.D.

Katedra pravděpodobnosti a matematické statistiky. χ 2 test nezávislosti

Přednáška VIII. Testování hypotéz o kvantitativních proměnných

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor

1.1. Definice Reálným vektorovým prostorem nazýváme množinu V, pro jejíž prvky jsou definovány operace sčítání + :V V V a násobení skalárem : R V V

STATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson

Úloha III.S... limitní

množina všech reálných čísel

Odhad parametrů normálního rozdělení a testy hypotéz o těchto parametrech * Věty o výběru z normálního rozdělení

10.3 GEOMERTICKÝ PRŮMĚR

2.4. INVERZNÍ MATICE

FITOVÁNÍ ROZDĚLENÍ PRAVDĚPODOBNOSTI PRO APLIKACE

PRAVDĚPODOBNOST A STATISTIKA. Náhodná proměnná vybraná rozdělení

Elementární zpracování statistického souboru

Testy homoskedasticity v lineárním modelu

Přednáška II. Lukáš Frýd

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

Teorie odhadů 2 Teorie odhadů... 3 Odhad parametrů... 4

Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem

9. Měření závislostí ve statistice Pevná a volná závislost

IAJCE Přednáška č. 12

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

P2: Statistické zpracování dat

Spojitost a limita funkcí jedné reálné proměnné

8.2.1 Aritmetická posloupnost

DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROM

S polynomy jste se seznámili již v Matematice 1. Připomeňme definici polynomické

z možností, jak tuto veličinu charakterizovat, je určit součet

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR

1. JEV JISTÝ a. je jev, který nikdy nenastane b. je jev, jehož pravděpodobnost = ½ c. je jev, jehož pravděpodobnost = 0 d.

Seriál XXX.II Zpracování dat fyzikálních měření

6. FUNKCE A POSLOUPNOSTI

DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ. 1) Pojem funkce, graf funkce

13 Popisná statistika

Transkript:

8. Aalýza rozptylu. Lieárí model je popis závislosti, který je využívá v řadě disciplí matematické statistiky. Uvedeme jeho popis a tvrzeí, která budeme využívat. Setkáme se s ím jedak v aalýze rozptylu, kde uvedeme její základí variatu, tzv. jedoduché tříděí a poté v lieárí regresi. Popis modelu. Náhodý vektor Y (Y, Y,..., ) T je sloupcový vektor typu (, ), X je číselá matice typu (, k), β (β, β,..., β k ) T je sloupcový vektor ezámých parametrů typu (k, ) a e (e, e,..., e k ) je sloupcový áhodý vektor typu (k, ). Říkáme, že se áhodý vektor Y řídí lieárím modelem, jestliže Y X β + e Y i k j x ij β j + e i, i O áhodém vektoru e předpokládáme, že jeho souřadice mají ormálí rozděleí, jsou avzájem ezávislé, pro středí hodoty platí E(e) o, tedy E(e i ) 0, i a pro rozptyly D(e i ) σ, i. Pro ostatí prvky kovariačí matice je cov(e i, e j ) 0, i j, a tedy matice var(e) σi, kde I je jedotková matice řádu. Náhodý vektor e zahruje v sobě jedak áhodé odchylky od lieárí závislosti a jedak epřesosti měřeí. Předpoklady o středí hodotě a rozptylu zajišťují, že uvažujeme ezávislá měřeí, která jsou zatížea stejou chybou. O číselé matici předpokládáme, že je > k a že má hodost h(x) k. Prví erovost zaručuje, že máme víc měřeí, ež je volých parametrů modelu. Druhá podmíka zaručí, že je h(x T X) h(x) k. Matice X T X je čtvercová a regulárí řádu k, eboť při ásobeí matic je (k, ) (, k) (k, k). Nezáme parametry modelu odhadujeme pomocí metody ejmeších čtverců. Jejich odhadem je áhodý vektor b (b, b,..., b k ). pro který má miimum fukce S(β) (Y Xβ) T (Y Xβ) (Y i k x ij β j ) Pro výběr metody ejmeších čtverců ás přivádí tato úvaha, kterou budeme ilustrovat a příkladu se dvěma parametry. Předpokládáme, že pro áhodé veličiy platí: Y i β 0 + β x i + e i, i. 37 j

Náhodé veličiy (e, e,..., e ) jsou ezávislé a mají ormálí rozděleí N(0; σ. Náhodé veličiy (Y, Y,..., ) jsou ezávislé a mají ormálí rozděleí N(β 0 + β x i ; σ ). Sdružeá hustota áhodého vektoru (Y, Y,..., ) je rova f(y, β 0, β, σ) (π) /σ e σ (y i β 0 β x i ) (π) / σ e S σ. Jestliže budeme hledat odhady (b 0, b ) parametrů (β 0, β ) metodou maximálí věrohodosti, pak dostaeme, že pro ě má být argumet S/σ expoeciálí fukce miimálí. Výpočtem zjistíme, že fukce f jako fukce proměé σ abývá maxima pro ˆσ S/. Jedá se o extrém fukce g(σ) σ e S σ v itervalu(0, ). Fukce je kladá a pro limity v krajích bodech platí, že lim σ 0+ g(σ) lim σ g(σ) 0 a pro stacioárí bod dostaeme podmíku g (σ) σ e S σ Odtud po zkráceí rovice dostaeme + σ e S σ S σ 3 0 σ S σ 3 0 σ S ˆσ S jediý stacioárí bod, ve kterém musí mít fukce maximum. Použití metody ejmeších čtverců je podmíěo předpokladem o ormalitě chyb. Pokud mají jié rozděleí, je třeba ajít odhady parametrů jiou metodou, která obvykle vyžaduje umerické řešeí. Příklad. Regresí aalýza. Předpokládáme, že je áhodý vektor Y (Y, Y,..., ) T lieárí kombiací s áhodou odchylkou e (e, e,..., e ), kde áhodé veličiy e i mají ormálí rozděleí N(0; σ ) a jsou avzájem ezávislé. Model s jedím parametrem, přímka procházející počátkem. Je Y i β x i + e i, i, tedy Y β x x 38 + e e

Matice X je sloupcový vektor typu (, ) a matice X T X je typu (, ) (číslo) a X T X ( ).( ) T Je vidět, že je matice regulárí, součet čtverců je kladý. Model se dvěma parametry, přímka eprocházející počátkem. Je Y i β 0 + β x i + e i, i, tedy Y, x, x β 0 β + Matice X je typu (, ) a matice X T X je typu (, ) a X T X,,...,, x, x e e, x i, x i. x i x i Také v tomto případě je matice regulárí, její determiat je kladý. Obecý model, polyomiálí aproximace. Je Y i β 0 + β x i + β x i +... + β k x k + e i, i, tedy i Y, x,..., x k, x,..., x k β 0 β k + Matice X je typu (, k) a matice X T X je čtvercová typu (k, ) a X T X,,..., x k, x k,..., x k, x i,..., e e, x,..., x k, x,..., x k, x,..., x k xk i xk i x i, x i,..., xk i, xk i,..., 39 xk i

Také v tomto případě je matice regulárí, její determiat je kladý. Příklad. Aalýza rozptylu. S lieárím modelem se setkáváme v tzv. jedoduchém tříděí v aalýze rozptylu, které je zobecěím dvouvýběrového t testu a případ testováí shody rozděleí tří a více souborů. Předpokládáme, že máme k, k 3, výběrů Y i, Y i,..., Y ii, i k, z ormálího rozděleí N(µ i ; σ i ). Za předpokladů, že jsou rozptyly shodé, tedy σ σ σ... σ k testujeme shodu rozděleí, tudíž ulovou hypotézu H 0 : µ µ... µ k. Náhodou veličiu z výběrů můžeme vyjádřit ve tvaru ( ) Y ij µ i + e ij, j i, i k, kde e ij jsou ezávislé áhodé veličiy s ormálím rozděleím N(0; σi ). Položme + +... + k a β (µ, µ,..., µ k ) T je sloupcový vektor parametrů. Jestliže ozačíme Y T (Y,..., Y, Y,..., Y kk ) T sloupcový vektor ze všech áhodých veliči z výběrů, pak můžeme vztah ( ) zapsat pomocí matic ve tvaru Y X β + e, kde X je číselá matice X, 0,..., 0, 0,..., 0 0,,..., 0 0,,..., 0 0, 0,..., 0, 0,..., 40

Ta je složea z k matic Z i, i k typů ( i, k), které mají vždy v i tém sloupci a jide 0. Matic X T X je čtvercová řádu k a je X T X,, 0, 0, 0 0, 0,,, 0 0,, 0,..., 0, 0,..., 0 0,,..., 0 0,,..., 0 0, 0,..., 0, 0,...,, 0, 0 0,, 0 0, 0, k Matice je regulárí a k í iverzí matice má vyjádřeí (X T X) /, 0, 0 0, /, 0 0, 0, / k V dalším textu budeme používat ještě matice kde a X T Y b (X T X) X T Y,, 0, 0, 0 0, 0,,, 0 0, Y i. i j Y ij, i k Y Y Y kk /, 0, 0 0, /, 0 0, 0, / k 4 Y. Y. Y k. Y. Y. Y k. y. y. y k.

kde y i. i i j Y ij, i k. Vlastosti lieárího modelu. Uvažujeme áhodý vektor Y (Y, Y,..., ) a číselou matici X typu (, k). Předpokládáme, že se Y řídí lieárím modelem, tedy Y X β + e, kde β (β, β,..., β k ) T je vektor ezámých parametrů a e je vektor áhodých veliči, které jsou ezávislé a mají ormálí rozděleí s parametry E(e) o, var(e) σ I. Předpoklad E(e) o zameá, že pozorováí vektoru eí zatížeo systematickou chybou. Vztah var(e) σ I zase zameá, že jsou měřeí souřadic vektoru Y prováděa se stejou přesostí a že chyby měřeí ejsou korelovaé. Dále budeme předpokládat, že je > k a že hodost matice X je rova k. Z uvedeých předpokladů vyplývá, že je E(Y ) X β a var(y ) σ I. Odhad vektoru β hledáme metodou ejmeších čtverců, tedy z podmíky, že výraz S(β) (Y X β) T (Y X β) je miimálí. Hodotu, pro kterou má fukce S miimum ozačíme b. Věta. Fukce S(β) abývá svého miima pro b (X T X) X T Y Důkaz: Nejprve ověříme, že vektor b splňuje podmíku X T (Y Xβ) 0. Je totiž Y Xb Y X(X T X) X T Y Potom je X T Y X T Y X T X(X T X) X T Y X T Y X T Y 0. S(β) (Y Xβ) T (Y Xβ) 4

[(Y Xb) + (Xb Xβ)] T [(Y Xb) + (Xb Xβ)] (Y Xb) T (Y Xb)+(b β) T X T X(b β)+(y Xb) T X(b β)+ +(b β) T X T (Y Xb) S(b) + (b β) T X T X(b β). Matice X T X je pozitivě defiití a je tudíž (b β) T X T X(b β) 0 pro každý vektor (b β). Fukce S(β) má tudíž miimum pro β b. Pozámka: Hodota Ŷ Xb je ejlepší lieárí aproximací vektoru Y a chyba této aproximace je rova R S e, S e (Y Xb) T (Y Xb) Y T Y Y T Xb (Xb) T Y + (Xb) T Xb Y T Y b T X T Y (Y Xb) T Xb Y T Y b T X T Y. Je to hodota rova S e Y T Y Ŷ T Y (Y Ŷ )T Y (Y i Ŷi)Y i. R k se Hodota S e R se azývá reziduálí součet čtverců a hodota s azývá reziduálí rozptyl. Pro ěj je E(s ) σ a je estraým odhadem parametru σ. Náhodé veličiy R a b jsou ezávislé. Věta. Pro odhad b platí: E(b) β, var(b) σ (X T X). Důkaz. Protože je b (X T X) X T Y, je Dále je E(b) (X T X) X T E(Y ) (X T X) X T Xβ β. var(b) (X T X) X T var(y )X(X T X) (X T X) X T σ IX(X T X) σ (X T X). Věta 3. Náhodá veličia b má ormálí rozděleí N(β; σ (X T X) ). Náhodá veličia S e σ má rozděleí χ k. Náhodé veličiy b a S e jsou ezávislé. Věta 4. Jestliže je v ij prvek matice (X T X), pak pro každé i, i k, má áhodá veličia T i b i β i s v ii 43

rozděleí t( k). Aalýza rozptylu, jedoduché tříděí. Předpokládáme, že máme áhodé výběry Y i, Y i,..., y ii, i k, které jsou ezávislé a mají rozděleí N(µ i ; σi ), i k. Testujeme hypotézu: H 0 : µ µ... µ k proti alterativě H : hypotéza H 0 eplatí. Použijeme lieárího modelu, kde miimalizujeme výraz S k i j (Y ij µ i e ij ). Předpokládáme, že µ i µ + α i, i k a áhodé veličiy (e ij ) jsou ezávislé a mají ormálí rozděleí N(0; σ ). Testovaá hypotéza má tvar H 0 : α α... α k 0. Popis algoritmu:. + +... + k, k je počet výběrů.. Utvoříme tabulku dat a pomocých výsledků data četost součet průměr součet čtverců Y,..., Y Y. y. j j............... Y i,..., Y ii i Y i. y i. i Y ij j............... Y k,..., Y kk k Y k. y k. k celkem Y y m Je tedy: + +... + k počet dat. Y i. i Y ij řádkový součet; j Y k Y i. celkový součet; y i. i Y i. odhad středí hodoty µ i ; 44 Y kj j i Y ij j

y Y odhad středí hodoty µ. Potom pro miimum kvadratické odchylky, reziduálí součet čtverců, dostaeme: S e S T S A, kde S T m i Y j ij Y, a S A k Y i. Y i. Hodota S A se azývá řádkový součet čtverců a hodota S T celkový součet čtverců. 3. Vypočteme hodotu testovací statistiky F k k která má rozděleí F k, k. 4. Kritický obor testu je S A k S e k S A S T S A, W α {F ; F F k, k (α)}, kde kritickou hodotu ajdeme v tabulkách. Je obvykle α 0, 05. Chyba. druhu v případě přijetí hypotézy je meší ež α. Zamítutí. V případě odmítutí ás zajímá, pro které dvojice je µ i µ j. To lze určit dvěma způsoby: A. Scheffé Použijeme odhadu rozptylu σ s S e k a hledáme dvojice, pro které je y i. y j. > i + j (k )s F k, k (α). Připomeeme, že y i. µ i. B. Tukey Používáme v případě vyvážeého tříděí, kdy... k r. Hledáme dvojice, kde y i. y j. > sq k, k (α) r, kde q(α) je kritická hodota tzv. studetizovaého rozpětí. Studetizovaé rozpětí je áhodá veličia Q R s, kde R maxx i mix i je rozpětí áhodého výběru z rozděleí N(µ; σ ) a s je odhad rozptylu σ. Je pak P (Q q k, k ) α 45

a kritickou hodotu q k, k (α) alezeme v tabulkách. Při prováděí testu předpokládáme, že je σ σ... σ m. Pokud emáme tuto skutečost zaručeu, musíme ejdříve otestovat hypotézu o rovosti rozptylů: H 0 σ σ... σ k.. Barlettův test. Vypočteme: s i i s k i Y j k C + B C ij i yi., odhad rozptylu σi ; ( i )s i, celkový odhad rozptylu; 3(k ) k i k ( k) l s k ( i ) l s i Náhodá veličia B má pro i > 6 přibližě rozděleí χ (k ). Kritický obor testu je W α {B; B χ m (α)}. Pro vyvážeé tříděí, kde... k r můžeme použít i tyto testy.. Hartleyův test. Testovací statistika Kritický obor testu je F max maxs i mis. i W α {F max ; F max h k,ν (α)}, kde ν r a kritické hodoty jsou uvedey v tabulkách. 3. Cochraův test Testovací statistika ;. G max maxs i s +... + s. k 46

Kritický obor testu je W α {G max ; G max C k,ν }, ν i r a kritické hodoty alezeme v tabulkách. Regresí aalýza Hledáme závislosti mezi dvěma ebo více statistickými zaky, veličiami. Regresí aalýza se zabývá zkoumáím závislostí hodot závislé veličiy a ezávislé veličiě. Koreláčí aalýza hledá vzájemý vztah mezi veličiami. Pomocí uvedeého modelu se dá řešit případ lieárí závislosti. Uvedeme ěkolik případů modelu. A. Přímka procházející počátkem. Situaci odpovídá model, kdy Y i βx i + e i, i, kde áhodé veličiy e, e,..., e jsou ezávislé áhodé veličiy z rozděleím N(0; σ ). Matice X ( ) T je typu a β je číslo (matice typu ). Z věty a příkladu dostaeme, že odhadem parametru β je b (X T X) X T Y Y ix i. x i Pro odhad rozptylu dostaeme hodotu s S e, kde S e (Y i Ŷi)Y i Y i b x i Y i, eboť Ŷi bx i, i. Dále je X T X x i. Z věty 4 dostaeme tvrzeí o rozděleí áhodé veličiy T b β s. Ta má hodotu v T b β s x i t. Testujeme vhodost modelu, kterou můžeme popsat jako ulovou hypotézu H 0 : β 0 proti alterativí hypotéze H : β 0. V případě ezamítutí hypotézy H 0 je lieárí model evhodý, hypotéza H představuje lieárí závislost hodoty a hodotě x. 47

B. Obecá přímka Situaci odpovídá model, kdy Y i β 0 + β x i + e i, i, kde áhodé veličiy e, e,..., e jsou ezávislé áhodé veličiy z rozděleím N(0; σ ), tedy Y, x, x β 0 β + Matice X je typu (, ) a matice X T X je typu (, ) a Matice X T X X T Y,,...,,,...,, x, x Y e e, x i, Y i Y ix i x i x i je typu a β je matice typu. Z věty a příkladu dostaeme, že odhadem parametrů β 0, β je b (X T X) X T Y b 0 b Odtud dostaeme vyjádřeí pro koeficiety přímky ve tvaru: Y Y i, x x i, b pro odhad rozptylu dostaeme hodotu s S e Y ix i xy x i (x), b 0 Y b x. Y i b 0 Y i b Y i x i Vhodost lieárího modelu ověříme testem hypotézy o koeficietu β. Testujeme ulovou hypotézu H 0 : β 0 proti alterativí hypotéze. 48

H : β. Pokud ulovou hypotézu H 0 odmíteme, je lieárí model vhodý pro popis závislosti. K tomu použijeme statistiku T b β s b v s x i (x), která má rozděleí t. V případě přijetí alterativí hypotézy H můžeme určit itervaly spolehlivosti pro hodoty β 0 + β x k. Ty mají tvar b 0 + b x k ± t (α) s + (x x) x i (x). Pokud chceme určit iterval spolehlivosti pro celou přímku Y β 0 + β x, pak musíme ahradit kritickou hodotu t (α) hodotou F, (α). Dostaeme pás spolehlivosti pro regresí přímku ve tvaru b 0 + b x k ± F, (α) s + (x x) x i (x). Pás je ohraiče dvoljicí hyperbol, který překrývá přímku y β 0 + β x se spolehlivostí ( α). C. Kvadratická regrese Situaci odpovídá model, kdy Y i β 0 + β x i + β x i + e i, i, kde áhodé veličiy e, e,..., e jsou ezávislé áhodé veličiy z rozděleím N(0; σ ), tedy Y, x, x, x, x β 0 β β + e e Matice X je typu (, 3) a matice X T X je typu (3, 3) a X T X,,..., x, x,..., x, x, x, x, x, x i, x i, x i, x i, x3 i, x i x3 i x4 i 49

Matice X T Y,,..., x, x,..., x Y, Y i Y ix i Y ix i je typu 3 a β je matice typu 3. Z věty a příkladu dostaeme, že odhadem parametrů β 0, β, β je vektor b (X T X) X T Y b 0 b b, který dostaeme jeko řešeí soustavy lieárích rovic Odhad rozptylu σ je s 3 S e 3 X T X X T b. Y i b 0 Y i b Y i x i b Y i x i Pro ověřeí vhodosti kvadratické závislosti testujeme hypotézu H 0 : β 0 proti alterativě H : β 0. V případě přijetí ulové hypotézy stačí uvažovat, že závislost Y i a x i je pouze lieárí. K tomu použijeme skutečosti, že áhodá veličia T 3 b β s v 33 t 3, kde (X T X) (v ij ). Hypotézu H 0 zámítáme, tedy uvažujeme kvadratickou závislost v případě, že T 3 t 3 (α). Někdy je třeba testovat složeou hypotézu H 0 : β β 0. Alterativí hypotézou je, že závislost Y i a x i je lieárí ebo kvadratická. Za pltosti hypotézy H 0 dostáváme podmodel Y i β 0 + e i. Pro reziduálí součet je R ( 3)s a reziduálí roztyl je Testovací statistika je R Y i (Y ). F (R R)( 3) R 50 F, 3

Hypotézu H 0 zamítáme, jestliže je F F, 3 (α). D. Lieárí regrese z dvěma ezávislými proměými Situaci odpovídá model, kdy Y i β 0 + β x i + β z i + e i, i, kde áhodé veličiy e, e,..., e jsou ezávislé áhodé veličiy z rozděleím N(0; σ ), tedy Y, x, z, x, z β 0 β β + Matice X je typu (, 3) a matice X T X je typu (3, 3) a X T X Matice,,..., z, z,..., z X T Y, x, z, x, z,,..., z, z,..., z Y Y, x i, z i, e e x i, x i, x iz i, Y i Y ix i Y iz i z i x iz i z i je typu 3 a β je matice typu 3. Z věty a příkladu dostaeme, že odhadem parametrů β 0, β, β je vektor b (X T X) X T Y b 0 b b, který dostaeme jeko řešeí soustavy lieárích rovic X T X X T b. Odhad rozptylu σ je s 3 S e 3 Y i b 0 Y i b Y i x i b Y i z i 5

Pro ověřeí vhodosti závislosti a dvou proměých testujeme hypotézu H 0 : β 0 proti alterativě H : β 0. V případě přijetí ulové hypotézy stačí uvažovat závislost Y i pouze a x i. K tomu použijeme skutečosti, že áhodá veličia T 3 b β s v 33 t 3, kde (X T X) (v ij ). Hypotézu H 0 zámítáme, tedy uvažujeme závislost a proměé z i v případě, že T 3 t 3 (α). Obdobě můžeme testovat závislost a proměé z i. Testujeme hypotézu H 0 : β 0 proti alterativě H : β 0. Testovací statistikou je T b β s v t 3. Závislost Y i a x i je prokázáa, jestliže je T t 3 (α). Někdy je třeba testovat složeou hypotézu H 0 : β β 0. Alterativí hypotézou je, že závislost Y i je a x i a z i. Za platosti hypotézy H 0 dostáváme podmodel Y i β 0 + e i. Pro reziduálí součet je R ( 3)s a reziduálí roztyl je R Yi (Y ). Testovací statistika je F (R R)( 3) R F, 3 Hypotézu H 0 zamítáme, jestliže je F F, 3 (α). E. Obecá polyomiálí regrese Situaci odpovídá model, kdy Y i β 0 + β x i + β x i +... + β k x k + e i, i, tedy Y, x,..., x k, x,..., x k i β 0 β k + Matice X je typu (, k) a matice X T X je čtvercová řádu k a X T X,,..., x k, x k,..., x k 5 e e, x,..., x k, x,..., x k, x,..., x k

Matice X T Y, x i,..., xk i xk i x i, x i,..., xk i, xk i,...,,,..., x k, x k,..., x k T xk i Y Y Y i Y ix i Y ix k i je typu k a β je matice typu k ). Z věty a příkladu dostaeme, že odhadem parametrů β 0,..., β k je vektor b (X T X) X T Y b 0 b k, který dostaeme jeko řešeí soustavy lieárích rovic X T X X T b. Závislost Y i a ěkteré z moci x i ověříme testem hypotézy H 0 : β j 0 proti alterativě H : β j 0. Použijeme testovací statistiku T j b j β j s v jj t k, kde (X T X) (v ij ). Závislost považujeme za prokázaou, pokud je T j b j s v jj t k (α). 53