Zvyšování kvality výuky technických oborů Klíčová aktivita IV.2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.2.2 Kvadratické funkce, rovnice a nerovnice Kapitola Ryze kvadratické rovnice II PaedDr. Iveta Unzeitigová 3. 9. 22
Obsah ÚVOD - ANOTACE... KVADRATICKÉ ROVNICE RYZE KVADRATICKÉ ROVNICE II... 2. PRACOVNÍ LIST - RYZE KVADRATICKÉ ROVNICE II... 3 2 DOPORUČENÁ LITERATURA... 5 3 POUŽITÁ LITERATURA A ZDROJE... 6
Úvod anotace Výukový materiál Ryze kvadratické rovnice II se zabývá výkladem a řešením ryze kvadratických rovnic v různých číselných intervalech. Pro úspěšné zvládnutí této kapitoly je nezbytné úspěšně zvládnout vzdělávací materiály: Ryze kvadratické rovnice I(Kapitola ) Ke každé kapitole je vypracován pracovní list sloužící k procvičení a upevnění učiva dle daného tématu. Každý pracovní list je kompletován i s výsledky. Výukový materiál Kvadratické funkce, rovnice a nerovnice je určen žákům prvních ročníků všech oborů ukončených maturitní zkouškou, včetně žáků nástavbového studia. Je vhodný ksamostudiu i jako podpora pedagogických pracovníků při jejich přípravě na vyučovací hodinu. Rozsah učiva je v souladu s ŠVP předmětu Matematika s ohledem na Katalog požadavků společné části maturitní zkoušky zmatematiky, platný od školního roku 24 i od roku 25/26.
Kvadratické rovnice ryze kvadratické rovnice II Nyní budeme řešit ryze kvadratické rovnice v různých číselných intervalech. Postup je úplně stejný, jen v závěru se provede diskuze vzhledem k číselným oborům. Příklad a) Řešte rovnici pro y N : 4y 2 = 64 Řešení: Rovnici 4y 2 = 64 anulujeme 4y 2-64 = /:4 a krátíme y 2 6 =. Zapíšeme v součinovém tvaru (y + 4)(y 4) =. Výsledek: Kořeny dané rovnice v oboru reálných čísel R jsou čísla y,2 = ± 4. V oboru přirozených čísel N je řešením pouze číslo 4. Obor kořenů (definiční obor): K = 4 Poznámka: Kvadratické rovnice vždy vyřešte v oboru reálných čísel a pak proveďte diskuzi vzhledem k zadání. Teprve pak zapište obor kořenů. 2
. Pracovní list - Ryze kvadratické rovnice II. Řešte v množině a) x 2-324 = b) 6x 2 = c) 2 3x 2 = - d) 4x 2 = 324 e) 4 + 4x 2 = Z rovnice: 2. Řešte v množině R rovnice: a),3x 2 = 3 b) x 2 =, c) 7x 2 7 d) 9x 2 9 e) 5x 2 2 3. Rovnici 6x 2 5 = řešte v množině a) R; b) Q; c) Z; d) Z ; e) N. 4. Rovnici x 2,4 = řešte v množině a) R; b) Q; c) Z; d) Z ; e) N. 5. Rovnici 3x 2 7 = řešte v množině a) R; b) Q; c) Z; d) Z ; e) N. 3
Výsledky:. v R: a) ±8 b) c) ±2 d) ±9 e) Ø v Z : a) -8 b) c) -2 d) -9 e) Ø 2. a) ± b) ±, c) d) Ø e) 7 3. a) ±5 b) ±5 c) ±5 d) -5 e) 5 4. a) ±,2 b) ±,2 c) Ø d) Ø e) Ø 5. a) 7 b) Ø c) Ø d) Ø e) Ø 3 4
2 Doporučená literatura ČERMÁK, Pavel a Petra ČERVINKOVÁ. Odmaturuj! z matematiky.. vyd. Brno: Didaktis, 22, 28 s. ISBN 8-862-8538-3. HALOUZKA, Alois. Přehled učiva k maturitní zkoušce z matematiky.. vyd. Praha: Fortuna, 22, 24 s. ISBN 8-76-888-8. KUBÁT, Josef, Dag HRUBÝ a Josef PILGR. Sbírka úloh z matematiky pro střední školy: maturitní minimum.. vyd. Praha: Prometheus, 996, 95 s. Učebnice pro střední školy (Prometheus). ISBN 8-79-63-6. JANEČEK, František. Sbírka úloh z matematiky pro střední školy: výrazy, rovnice, nerovnice a jejich soustavy. 5. vyd. Praha: Prometheus,spol. s r. o., 29, 94 s. Učebnice pro střední školy (Prometheus). ISBN 978-8-796-36-8. HUDCOVÁ, Milada a Libuše KUBIČÍKOVÁ. Sbírka úloh z matematiky pro SOŠ, SOU a nástavbové studium. Praha: Prometheus, 2, 45 s. ISBN 978-87-963-89. 5
3 Použitá literatura a zdroje FENDT, Walter. Java aplety z Matematiky. [online]. 5. 7. 28 [cit. 22-2-27]. Dostupné z: http://www.walter-fendt.de/m4cz/ ČERMÁK, Pavel a Petra ČERVINKOVÁ. Odmaturuj! z matematiky.. vyd. Brno: Didaktis, 22, 28 s. ISBN 8-862-8538-3. CHARVÁT, Jura, Jaroslav ZHOUF, Leo BOČEK. Matematika pro gymnázia: rovnice a nerovnice. 3. vyd. Praha: Prometheus, 25, 223 s. Učebnice pro střední školy (Prometheus). ISBN 8-79-654-X. ODVÁRKO, Oldřich. Matematika pro gymnázia: funkce. 3. upr. vyd. Praha: Prometheus, 25, 68 s. Učebnice pro střední školy (Prometheus). ISBN 8-79-664-7. HEJKRLÍK, Pavel. Matematika: sbírka řešených příkladů: rovnice a nerovnice.. vyd. Opava: Nakladatelství SSŠP, 26, 556 s. ISBN 978-8-9386--5. HEJKRLÍK, Pavel. Matematika: sbírka řešených příkladů: rovnice a nerovnice s absolutní hodnotou, soustavy rovnic.. vyd. Opava: Nakladatelství SSŠP, 26, 556 s. ISBN 978-8-9386--2. HALOUZKA, Alois. Přehled učiva k maturitní zkoušce z matematiky.. vyd. Praha: Fortuna, 22, 24 s. ISBN 8-76-888-8. PETÁKOVÁ, Jindra. Matematika: příprava k maturitě a k přijímacím zkouškám na vysoké školy.. vyd. Praha: Prometheus, 998, 33 s. Učebnice pro střední školy (Prometheus). ISBN 8-79-699-3. CZUDEK, Pavel. Slovní úlohy řešené rovnicemi: pro žáky a učitele ZŠ, studenty a profesory SŠ: 555 úloh. 3. vyd. Praha: HAV, 25, 53 s. ISBN 8-93-625-8. KUBÁT, Josef, Dag HRUBÝ a Josef PILGR. Sbírka úloh z matematiky pro střední školy: maturitní minimum.. vyd. Praha: Prometheus, 996, 95 s. Učebnice pro střední školy (Prometheus). ISBN 8-79-63-6. JANEČEK, František. Sbírka úloh z matematiky pro střední školy: výrazy, rovnice, nerovnice a jejich soustavy. 5. vyd. Praha: Prometheus,spol. s r. o., 29, 94 s. Učebnice pro střední školy (Prometheus). ISBN 978-8-796-36-8. 6