KATEDRA VOZIDEL A MOTORŮ. Skutečné oběhy PSM #6/14. Karel Páv

Rozměr: px
Začít zobrazení ze stránky:

Download "KATEDRA VOZIDEL A MOTORŮ. Skutečné oběhy PSM #6/14. Karel Páv"

Transkript

1 KATEDRA VOZIDEL A MOTORŮ Skutečné oběhy PSM #6/ Karel Pá

2 Stlaitelná kaalina / krit [-] Ideální lyn: = rt (s hybou < %) Důody rozdílů mezi idealizoaným a reálným oběhem Odhylky od idealizae oliňují jak ysokotlakou část, tak i část nízkotlakou (ýměnu nálně ále): Proměnliost termodynamikýh lastností neideálního lynu Doufázoé složení nálně ále, odařoání Změny e složení nálně ále (hoření) Složitý časoý růběh říodu tela hořením Změny e hmotnosti nálně ále (římý střik alia) Netěsnost saloaího rostoru (do %) Sdílení tela do saloaího rostoru Neratnost dějů liem míšení a disiae kinetiké 8 energie Reálné časoání rozodoého mehanismu (ztráty rouděním) 7 Obsah zbylýh salin z ředhozího yklu Tlakoé ulsae saím a ýfukoém otrubí 6 / Látka krit [] T krit [K] N,9 6, O,,6 H O,6 67, CO 7,8, CO,98,9 H,97, Plyn krit. krit T K P.. T krit.. T / T krit [-]

3 Combustion Effiieny [-] [MPa] Vztah mezi idealizoaným a reálným oběhem / 7 6 Q ř m al H u hoř Střední indikoaný tlak oběhu: istř dv istř- VT istř-nt Vz Součinitel lnosti diagramu: istř-vt -skutečný istř-vt -ideální,6,8 Celkoá účinnost hoření hoř : Chemiká účinnost hoření Neúlné sálení směsi..9.8 Chemiká účinnost hoření.7 P e..... V [dm ] m al H u hoř t m.6.. Mehaniká účinnost: Measurement Aroximation Relatie Air/Fuel Ratio l [-] m Pe P i estř istř m,9 i Indikoaná účinnost: i m al Pi H u i,,

4 [MPa] T [K] [MPa] T [K] Vztah mezi idealizoaným a reálným oběhem / 7 6 Indikátoroý diagram ro neřelňoaný zážehoý motor Q Q ř ř m m al al H H u u hoř hoř ds dq dq T T nerat dq du dw rat -dw nerat dqnerat dw nerat ds ds du dw T T du T rat d T V [dm ] s [J/kgK] 6 Rozdíly komresi: - odod tela - různé j [ KH] j [ KH]

5 Proměnliost termodynamikýh lastností / 6 6 CO C [kjkmol - K - ] O CO H O NO h T konst. O H N OH N H d T dt -T T - T T T T d C a - T a a Pro ideální lyn: r t [ C] T a r T R M a C T C R a T R 8,7Jkmol - - K

6 Změna složení nálně ále, roměnliost = / 6 /..8.7 Izohoriký říod tela..6 Vzduh.. CNG - saliny l= Benzín - saliny l= t [-]... [-] CNG - saliny l=,.. CNG - směs l=, e [-]. CNG - směs l= Komrese: řeážně -atomoé lyny. Benzín - směs l= Exanze: až % -atomoýh lynů (CO, H O) t [ C] Unitř salin dohází ři ysokýh telotáh neustále ke změnám složení liem měníího se ronoážného stau daného f(t, ). Reake kolem a 6 7 K zamrzají a složení se dále už nemění.

7 Q [-] Rozdíl mezi idealizoaným a reálným hořením (uolňoáním tela z alia) 7 / Zážehoý motor Viditelné ost-oxidační reake sojené s disoiaí ři saloání. (k zamrzání reakí dohází kolem 6-7 K)..... Idealizoaný růběh Q /Q =, dq du dv - i h i dm i j [ KH]

8 T [K] T [K] Isoentroiká změna stau Sdílení tela ami saloaího rostoru 8 / 9 8 T [K] s [J/kgK] dq dt -S T -T Odod tela z nálně do je komenzoán uolňoáním tela z alia n ds dq dq hoř dq ds dq dq hoř dq 7 6 ds dq Odod tela z nálně do n ds 6 7 K Zamrznutí reakí dq T dq ds dq Ohře nálně ále n n s [J/kgK] s [J/kgK] Odod tela z nálně do (bez hoření) n Polytroiká změna stau: V n konst.

9 Sdílení tela ami saloaího rostoru 9 / dq dt Nu C Re m Pr n w D Re Pr l -S 7,8 - T -T D l VzT w Cs C - k V Zn - - [ms, m, min s ] 6 V k V s T m =,78 n =, Pr =,7 Woshni (znětoé i zážehoé motory):,6d -,.8 T -, w,8 [Wm [Wm Eihelberg (znětoé motory): - K - - K -, ms - Předeším koneke (zesílena turbulení) Radiae ouze u znětoýh motorů (sítiý lamen) konst D, Pa, K] ( T, ) w. l( T ) ( T ) D harakteristiký rozměr saloaího rostoru T rerezentatiní telota lynu w harakteristiká ryhlost lynu, m, kpa, K, ms w C 6,8, 7 w C,8, 8 w C,8, 8 w C,8, 8 swirl s swirl s swirl s swirl s - ] C C C, C 6, w swirl s - - ro oblast ýměny nálně ále ro oblast komrese ro oblast hoření a exanze (římý střik) ro oblast hoření a exanze (komůrkoý střik)

10 q [kw] Q [J] [] T [K] Sdílení tela ami saloaího rostoru / 6 [] Střední telota nálně ále t [ C] Tlak j [ KH] Kumulatiní telo odedené ami - qw [kw] Teelný tok do - - Qw [J] j [ KH] j [ KH]

11 [MPa] [MPa] Vli časoání na reálný oběh / min - istř =, MPa.9 h [mm] j [ KH] VO.... SO SZ SO VZ. VZ..... V [dm ] VO..... V [dm ] SZ

12 Tyiké růběhy indikoaného tlaku / Často býá ýhodné logaritmiké zobrazení indikátoroého diagramu. Logaritmiký -V diagram rm rm

13 Neřelňoaný zážehoý motor / Plné zatížení Částečné zatížení rm., rm.,,,, , 6 Plné zatížení, nízké otáčky EIVC (Millerů) oběh rm 9.6. rm.,., , 6

14 Přelňoaný zážehoý motor / Plné zatížení, nízké otáčky Částečné zatížení rm 9 9., rm.8,,,, 6 8, Plné zatížení, ysoké otáčky -dobý zážehoý motor rm 7.9, rm ,.,

15 Přelňoaný znětoý motor / Plné zatížení, římý íenásobný střik 8 Částečné zatížení, římý íenásobný střik rm.6, rm.6,,, 6, , Plné zatížení, římý střik Plné zatížení, komůrkoý střik (nekalitní záznam tlaku) rm.8, rm 99.,,, 6, , 6 8

KATEDRA VOZIDEL A MOTOR. Skute né ob hy PSM #6/14. Karel Páv

KATEDRA VOZIDEL A MOTOR. Skute né ob hy PSM #6/14. Karel Páv KAEDRA VOZIDEL A MOOR Skutené obhy PSM #6/ Karel Pá ody rozdíl mezi idealizoaným a reálným obhem Odhylky od idealizae oliují jak ysokotlakou ást, tak i ást nízkotlakou (ýmnu náln ále): Promnliost termodynamikýh

Více

VY_32_INOVACE_G 21 11

VY_32_INOVACE_G 21 11 Náze a adresa školy: Střední škola růmysloá a uměleká, Oaa, řísěkoá organizae, Praskoa 99/8, Oaa, 7460 Náze oeračního rogramu: OP Vzděláání ro konkureneshonost, oblast odory.5 Registrační číslo rojektu:

Více

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály Plynoé turbíny Plynoá turbína je teeý stroj řeměňujíí teeou energie obsaženou raoní láte q roházejíí motorem na energii mehanikou a t (obr.). Praoní látkou je zduh, resektie saliny, které se ytářejí teeém

Více

TERMODYNAMIKA 1. AXIOMATICKÁ VÝSTAVBA KLASICKÉ TD Základní pojmy

TERMODYNAMIKA 1. AXIOMATICKÁ VÝSTAVBA KLASICKÉ TD Základní pojmy ERMODYNAMIKA. AXIOMAICKÁ ÝSABA KLASICKÉ D.. Základní ojmy Soustava (systém) je část rostoru od okolí oddělený stěnou uzavřená - stěna brání výměně hmoty mezi soustavou a okolím vers. otevřená (uzavřená

Více

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Projekt realizoaný na SPŠ Noé Město nad Metují s finanční odorou Oeračním rogramu Vzděláání ro konkurenceschonost Králoéhradeckého kraje ermodynamika Ing. Jan Jemelík Ideální lyn: - ideálně stlačitelná

Více

TERMODYNAMIKA 1. AXIOMATICKÁ VÝSTAVBA KLASICKÉ TD Základní pojmy

TERMODYNAMIKA 1. AXIOMATICKÁ VÝSTAVBA KLASICKÉ TD Základní pojmy ERMODYNAMIKA. AXIOMAICKÁ ÝSABA KLASICKÉ D.. Základní ojmy Soustava (systém) je část rostoru od okolí oddělený stěnou uzavřená - stěna brání výměně hmoty mezi soustavou a okolím vers. otevřená (uzavřená

Více

TERMOMECHANIKA 4. První zákon termodynamiky

TERMOMECHANIKA 4. První zákon termodynamiky FSI VUT Brně, Energetický ústa Odbor termomechaniky a techniky rostředí rof. Ing. Milan Paelek, CSc. TERMOMECHANIKA 4. Prní zákon termodynamiky OSNOVA 4. KAPITOLY. forma I. zákona termodynamiky Objemoá

Více

Termodynamika pro +EE1 a PEE

Termodynamika pro +EE1 a PEE ermodynamika ro +EE a PEE Literatura: htt://home.zcu.cz/~nohac/vyuka.htm#ee [0] Zakladni omocny text rednasek Doc. Schejbala [] Pomocne texty ke cviceni [] Prednaska cislo 7 - Zaklady termodynamiky [3]

Více

Základy teorie vozidel a vozidlových motorů

Základy teorie vozidel a vozidlových motorů Základy teorie vozidel a vozidlových motorů Předmět Základy teorie vozidel a vozidlových motorů (ZM) obsahuje dvě hlavní kaitoly: vozidlové motory a vozidla. Kaitoly o vozidlových motorech ukazují ředevším

Více

Mechanická účinnost PSM

Mechanická účinnost PSM KATEDRA OZIDEL A MOTORŮ Mecanická účinnost PSM #/4 Karel Páv Koeficient tření f Tribologie, součinitel tření / Stribeckova křivka Třecí síla: F t sign w f F n Hydrodynamické tření Smíšené olosucé tření

Více

Listopad Ing.Karel Páv,Ph.D.

Listopad Ing.Karel Páv,Ph.D. Základy -D modelování PSM Lstoad Ing.Karel Páv,Ph.D. Důvody ro modelování oběhu PSM / 7 [bar] 5 5 5 smulae měření Možnost redke oběhu ještě nevyrobeného motoru. Možnost sledování vlvu různýh arametrů,

Více

Fyzikální chemie. 1.2 Termodynamika

Fyzikální chemie. 1.2 Termodynamika Fyzikální chemie. ermodynamika Mgr. Sylvie Pavloková Letní semestr 07/08 děj izotermický izobarický izochorický konstantní V ermodynamika rvní termodynamický zákon (zákon zachování energie): U Q + W izotermický

Více

Cvičení z termomechaniky Cvičení 5.

Cvičení z termomechaniky Cvičení 5. Příklad V komresoru je kontinuálně stlačován objemový tok vzduchu *m 3.s- + o telotě 0 * C+ a tlaku 0, *MPa+ na tlak 0,7 *MPa+. Vyočtěte objemový tok vzduchu vystuujícího z komresoru, jeho telotu a říkon

Více

VUT, FAST, Brno ústav Technických zařízení budov

VUT, FAST, Brno ústav Technických zařízení budov Termo realizaci inooaných technicko-ekonomických VUT, FAST, Brno ústa Technických zařízen zení budo GG . Úod Cykly lze cháat jako oběhy dějůd ři i kterých sledoaný objekt měním sůj j sta cestami, jež mají

Více

PZP (2011/2012) 3/1 Stanislav Beroun

PZP (2011/2012) 3/1 Stanislav Beroun PZP (0/0) 3/ tanislav Beroun Výměna tela mezi nální válce a stěnami, telotní zatížení vybraných dílů PM elo, které se odvádí z nálně válce, se ředává stěnám ve válci řevážně řestuem, u vznětových motorů

Více

Mechanická ú innost PSM

Mechanická ú innost PSM KATEDA OZIDEL A MOTO Mecanická úinnost PSM #/4 Karel Páv Tribologie, souinitel tení / Stribeckova kivka ecí síla: F t sign w f F n Koeficient tení f Hydrodynamické tení Smíšené olosucé tení Sucé mení tení

Více

Termodynamika pro +EE1

Termodynamika pro +EE1 ermodynamka ro +EE Možné zůsoby výroby elektrcké energe v současnost: termodynamcká řeměna energe jaderného alva a salování foslních alv v mechanckou energ a následně elektrckou - jaderné a klascké teelné

Více

Hydrostatika F S. p konst F S. Tlak. ideální kapalina je nestlačitelná l = konst. Tlak v kapalině uzavřené v nádobě se šíří ve všech směrech stejně

Hydrostatika F S. p konst F S. Tlak. ideální kapalina je nestlačitelná l = konst. Tlak v kapalině uzavřené v nádobě se šíří ve všech směrech stejně Hdrostatika Tlak S N S Pa m S ideální kaalina je nestlačitelná l = konst Tlak kaalině uzařené nádobě se šíří e šech směrech stejně Pascalů zákon Každá změna tlaku kaalině uzařené nádobě se šíří nezměněná

Více

w i1 i2 qv e kin Provozní režim motoru: D = 130 P e = 194,121 kw Z = 150 i = 6 n M = /min p e = 1,3 MPa V z = 11,95 dm 3

w i1 i2 qv e kin Provozní režim motoru: D = 130 P e = 194,121 kw Z = 150 i = 6 n M = /min p e = 1,3 MPa V z = 11,95 dm 3 Sestate základní energetickou bilanci plnícího agregátu znětoého motoru LIAZ M638 (D/Z=30/50 mm, 4dobý, 6 álec) přeplňoaného turbodmychadlem K 36 377 V - 5. pulzačním praconím režimu. Proozní režim motoru:

Více

Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

STRUKTURA A VLASTNOSTI PLYNŮ

STRUKTURA A VLASTNOSTI PLYNŮ I N E S I C E D O R O Z O J E Z D Ě L Á Á N Í SRUKURA A LASNOSI PLYNŮ. Ideální lyn ředstavuje model ideálního lynu, který často oužíváme k oisu různých dějů. Naříklad ozději ředokládáme, že všechny molekuly

Více

Termodynamika ideálního plynu

Termodynamika ideálního plynu Přednáška 5 Termodynamika ideálního lynu 5.1 Základní vztahy ro ideální lyn 5.1.1 nitřní energie ideálního lynu Alikujme nyní oznatky získané v ředchozím textu na nejjednodužší termodynamickou soustavu

Více

Vnitřní energie Zhotoveno ve školním roce: 2011/2012 Jméno zhotovitele: Ing. Iva Procházková

Vnitřní energie Zhotoveno ve školním roce: 2011/2012 Jméno zhotovitele: Ing. Iva Procházková Náze a adesa školy: Střední škola ůysloá a uěleká, Oaa, řísěkoá oganizae, Paskoa 399/8, Oaa, 7460 Náze oeačního ogau: OP zděláání o konkueneshonost, oblast odoy.5 Registační číslo ojektu: CZ..07/.5.00/34.09

Více

Způsob určení množství elektřiny z kombinované výroby vázané na výrobu tepelné energie

Způsob určení množství elektřiny z kombinované výroby vázané na výrobu tepelné energie Příloha č. 2 k vyhlášce č. 439/2005 Sb. Zůsob určení množství elektřiny z kombinované výroby vázané na výrobu teelné energie Maximální množství elektřiny z kombinované výroby se stanoví zůsobem odle následujícího

Více

Obr. č. IV-1 Práce tepelného stroje

Obr. č. IV-1 Práce tepelného stroje IV. ERMOMECHANIKA EPELNÝCH SROJŮ V teelných strojích dochází k řeměně tela mechanickou ráci rostřednictím raconí látky (lynu, áry), která je nositelem teelné energie. Praconí látce je telo řiáděno buď

Více

Zjednodušený návrh plnícího systému přeplňovaného vznětového motoru III

Zjednodušený návrh plnícího systému přeplňovaného vznětového motoru III Zjednodušený návrh lnícího systéu řelňovaného vznětového otoru III Zadání: e = 300 kw (ři n = 000 1/in) D = 115 Z = 135 Výočet: lnicí systé s dvoustuňový stlačování oocí BD a chladiči lnicího vzduchu:

Více

Teplovzdušné motory motory budoucnosti

Teplovzdušné motory motory budoucnosti Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní Katedra energetiky Telovzdušné motory motory budoucnosti Text byl vyracován s odorou rojektu CZ.1.07/1.1.00/08.0010 Inovace odborného vzdělávání

Více

VUT, FAST, Brno ústav Technických zařízení budov

VUT, FAST, Brno ústav Technických zařízení budov Termo realizaci inovovaných technicko-ekonomických VUT, FAST, Brno ústav Technických zařízen zení budov Vodní ára - VP Vaříme a dodáváme vodní áru VP: mokrou, suchou, sytou, řehřátou nízkotlakou, středotlakou

Více

Příloha-výpočet motoru

Příloha-výpočet motoru Příloha-výpočet motoru 1.Zadané parametry motoru: vrtání d : 77mm zdvih z: 87mm kompresní poměr ε : 10.6 atmosférický tlak p 1 : 98000Pa teplota nasávaného vzduchu T 1 : 353.15K adiabatický exponent κ

Více

. 7 ÍPRAVA TEPLÉ UŽITKOVÉ VODY (TV) 1 TV

. 7 ÍPRAVA TEPLÉ UŽITKOVÉ VODY (TV) 1 TV ŘÍRAA RAA TELÉ ODY (T) ŘEDNÁŠKA Č.. 7 ŘÍRAA RAA TELÉ UŽITKOÉ ODY (T) 1 T určená k mytí, koupání, praní, umývání, k úklidu OHŘÍÁNÍ: - ze studené nejčastěji pitné vody s teplotou 8-12 C - v ohřívači na teplotu

Více

TERMOMECHANIKA 1. Základní pojmy

TERMOMECHANIKA 1. Základní pojmy 1 FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 1. Základní pojmy OSNOVA 1. KAPITOLY Termodynamická soustava Energie, teplo,

Více

III. Základy termodynamiky

III. Základy termodynamiky III. Základy termodynamiky 3. ermodynamika FS ČU v Praze 3. Základy termodynamiky 3. Úvod 3. Základní ojmy 3.3 Základní ostuláty 3.4 Další termodynamické funkce volná energie a volná entalie 3.5 Kritérium

Více

KRUHOVÝ DĚJ S IDEÁLNÍM PLYNEM. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Přemysl Šedivý. 1 Základní pojmy 2

KRUHOVÝ DĚJ S IDEÁLNÍM PLYNEM. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Přemysl Šedivý. 1 Základní pojmy 2 Obsah KRUHOÝ DĚJ S IDEÁLNÍM PLYNEM Studijní text ro řešitele FO a ostatní zájemce o fyziku Přemysl Šedivý Základní ojmy ztahy užívané ři oisu kruhových dějů s ideálním lynem Přehled základních dějů v ideálním

Více

IV. Fázové rovnováhy dokončení

IV. Fázové rovnováhy dokončení IV. Fázové rovnováhy dokončení 4. Fázové rovnováhy Ústav rocesní a zracovatelské techniky 1 4.3.2 Soustava tuhá složka kaalná složka Dvousložková soustava s 2 Křivka rozustnosti T nenasycený roztok nasycený

Více

V následující tabulce jsou uvedeny jednotky pro objemový a hmotnostní průtok.

V následující tabulce jsou uvedeny jednotky pro objemový a hmotnostní průtok. 8. Měření růtoků V následující tabulce jsou uvedeny jednotky ro objemový a hmotnostní růtok. Základní vztahy ro stacionární růtok Q M V t S w M V QV ρ ρ S w ρ t t kde V [ m 3 ] - objem t ( s ] - čas, S

Více

Základní parametry PSM

Základní parametry PSM KAEDRA VOZIDEL A MOOR Základní arametry PSM #/14 Karel Páv Konstrukní Základní arametry PSM / 14 Prr válce D mm Zdvi Z mm Polomr zalomení kliky r Z / mm Vyosení ístnío eu e mm Vyosení kliky e k mm Délka

Více

Vým na nápln válce PSM

Vým na nápln válce PSM KATEDRA VOZIDEL A MOTOR Výna nápln válce PM #7/4 Karel Páv Výna nápln válce u 4-dobých otor / HÚ VZ 8 O h [] 6 4 Z DÚ VO 9 8 DÚ 7 HÚ 36 45 DÚ 54 63 7 [ KH] Oblast výny nápln válce. Zptný tok pi kopresi

Více

Fyzikální chemie 1: Termodynamika Sylabus přednášky

Fyzikální chemie 1: Termodynamika Sylabus přednášky Fyzkální heme : ermodynamka Sylabus řednášky ohuslav aš Dooručená lteratura: P.W. tkns: Physal Chemstry, Oford Unversty Press W.J. Moore: Fyzkální heme, SNL, Praha Dvořák, rdčka: Základy fyzkální heme,

Více

NÁHRADNÍ HORKOVOVDNÍ PLYNOVÁ KOTELNA. Jiří Kropš

NÁHRADNÍ HORKOVOVDNÍ PLYNOVÁ KOTELNA. Jiří Kropš OUTĚŽNÍ PŘEHLÍDKA TUDENTKÝCH A DOKTORANTKÝCH PRACÍ FT 007 NÁHRADNÍ HORKOODNÍ PLYNOÁ KOTELNA Jiří Kroš ABTRAKT Nárh kotelny jako náhradní zdroj o dobu rekonstrukce elektrárny. Předokládaná doba yužíání

Více

ných ehřátých kapalin zásobníky zkapalněných plynů havarijní scénáře a jejich rozbor

ných ehřátých kapalin zásobníky zkapalněných plynů havarijní scénáře a jejich rozbor Procesy s účastí stlačených a zkaalněných ných lynů a řeh ehřátých kaalin zásobníky zkaalněných lynů havarijní scénáře a jejich rozbor Havarijní scénář Nebezečný otenciál zádrž nebezečných látek uvolnitelná

Více

- pro oblast podtlaku

- pro oblast podtlaku I. ERMOMECHANIKA PLYNŮ Při teelnýh dějíh nastáají změny stau raoníh látek (lynů, ar, eent. kaalin). eelný sta každé stejnorodé látky je yjádřen třemi základními určujíími eličinami tz. staoými eličinami.

Více

PŘEPLŇOVÁNÍ PÍSTOVÝCH SPALOVACÍCH MOTORŮ

PŘEPLŇOVÁNÍ PÍSTOVÝCH SPALOVACÍCH MOTORŮ PŘEŇOVÁNÍ PÍSOVÝCH SPALOVACÍCH MOORŮ Účinnou cestou ke zvyšování výkonů PSM je zvyšování středního efektivního tlaku oběhu e oocí řelňování. Současně se tí zravidla zvyšuje i celková účinnost otoru. Zvyšování

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 6

VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 6 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 6 Entalická bilance výměníků tela Hana Charvátová, Dagmar Janáčová Zlín 013 Tento studijní

Více

Základní parametry PSM

Základní parametry PSM KAEDRA VOZIDEL A MOORŮ Záladní aramtry PSM #/4 Karl Páv Konstruční Záladní aramtry PSM Průměr válc D mm Zdvih Z mm Poloměr zalomní liy r Z / mm Vyosní ístního ču mm Vyosní liového mchanismu mm Déla ojnic

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 12

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 12 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 2 Termodynamika reálných plynů část 2 Hana Charvátová, Dagmar Janáčová Zlín 203 Tento studijní

Více

MECHANIKA KAPALIN A PLYNŮ

MECHANIKA KAPALIN A PLYNŮ MECHANIKA KAPALIN A PLYNŮ Věda, která oisuje kaaliny v klidu se nazývá Věda, která oisuje kaaliny v ohybu se nazývá Věda, která oisuje lyny v klidu se nazývá Věda, která oisuje lyny v ohybu se nazývá VLATNOTI

Více

vše, co je vně systému systém při něm mění svůj stav základní termodynamická veličina

vše, co je vně systému systém při něm mění svůj stav základní termodynamická veličina . ZÁKLADNÍ POJMY ERMOMECHANIKY SYSÉM OKOLÍ SYSÉMU ERMODYNAMICKÝ DĚJ EPLOA (soustaa, těleso)- určité množstí látky, jejíž termofyzikální lastnosti yšetřujeme še, co je ně systému systém ři něm mění sůj

Více

Pozn.1: Vojnov p edpokládá st ední hodnotu adiabatického exponentu c p. Teplota spalin po spálení první vrstvy potom tedy bude TSP

Pozn.1: Vojnov p edpokládá st ední hodnotu adiabatického exponentu c p. Teplota spalin po spálení první vrstvy potom tedy bude TSP Tehniká univerzita v iberi, fakulta strojní, katedra vozidel a motor rof. Ing. Stanislav Beroun, S, Ing. Karel áv, h.d.: okální teloty i ostuném hoení smsi v uzaveném objemu. Studijní texty k edmtu rostedky

Více

CVIČENÍ 1 - část 3: PROVOZNÍ STAVY VZDUCHOTECHNICKÉ JEDNOTKY

CVIČENÍ 1 - část 3: PROVOZNÍ STAVY VZDUCHOTECHNICKÉ JEDNOTKY CVIČENÍ 1 - část 3: PROVOZNÍ STAVY VZDUCHOTECHNICKÉ JEDNOTKY Na úvod řehled Jak vyočítat množství řiváděného vzduchu - ouze řiomenutí a ár dolňkových informací Množství řiváděného vzduchu V : Standardně:

Více

7. Fázové přeměny Separace

7. Fázové přeměny Separace 7. Fázové řeměny Searace Fáze Fázové rovnováhy Searace látek Evroský sociální fond Praha & EU: Investujeme do vaší budoucnosti 7. Fázové řeměny Searace fáze - odlišitelný stav látky v systému; v určité

Více

HYDROPNEUMATICKÝ VAKOVÝ AKUMULÁTOR

HYDROPNEUMATICKÝ VAKOVÝ AKUMULÁTOR HYDROPNEUMATICKÝ AKOÝ AKUMULÁTOR OSP 050 ŠEOBECNÉ INFORMACE ýočet hydroneumatického akumulátoru ZÁKLADNÍ INFORMACE Při výočtu hydroneumatického akumulátoru se vychází ze stavové změny lynu v akumulátoru.

Více

1/5. 9. Kompresory a pneumatické motory. Příklad: 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 9.10, 9.11, 9.12, 9.13, 9.14, 9.15, 9.16, 9.

1/5. 9. Kompresory a pneumatické motory. Příklad: 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 9.10, 9.11, 9.12, 9.13, 9.14, 9.15, 9.16, 9. 1/5 9. Kompresory a pneumatické motory Příklad: 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 9.10, 9.11, 9.12, 9.13, 9.14, 9.15, 9.16, 9.17 Příklad 9.1 Dvojčinný vzduchový kompresor bez škodného prostoru,

Více

Domácí práce č.1. Jak dlouho vydrží palivo motocyklu Jawa 50 Pionýr, pojme-li jeho nádrž 3,5 litru paliva o hustote 750kg m 3 a

Domácí práce č.1. Jak dlouho vydrží palivo motocyklu Jawa 50 Pionýr, pojme-li jeho nádrž 3,5 litru paliva o hustote 750kg m 3 a Domácí práce č.1 Jak dlouho vydrží palivo motocyklu Jawa 50 Pionýr, pojme-li jeho nádrž 3,5 litru paliva o hustote 750kg m 3 a motor beží pri 5000ot min 1 s výkonem 1.5kW. Motor má vrtání 38 mm a zdvih

Více

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,

Více

Obrázek1:Nevratnáexpanzeplynupřesporéznípřepážkudooblastisnižšímtlakem p 2 < p 1

Obrázek1:Nevratnáexpanzeplynupřesporéznípřepážkudooblastisnižšímtlakem p 2 < p 1 Joule-Thomsonův jev Fyzikální raktikum z molekulové fyziky a termodynamiky Teoretický rozbor Entalie lynu Při Joule-Thomsonově jevu dochází k nevratné exanzi lynů do rostředí s nižším tlakem. Pro ilustraci

Více

Obr. V1.1: Schéma přenosu výkonu hnacího vozidla.

Obr. V1.1: Schéma přenosu výkonu hnacího vozidla. říklad 1 ro dvounáravové hnací kolejové vozidlo motorové trakce s mechanickým řenosem výkonu určené následujícími arametry určete moment hnacích nárav, tažnou sílu na obvodu kol F O. a rychlost ři maximálním

Více

PROCESNÍ INŽENÝRSTVÍ cvičení 10

PROCESNÍ INŽENÝRSTVÍ cvičení 10 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESNÍ INŽENÝRSTVÍ cvičení 10 Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního

Více

ρ = 1000 kg.m -3 p? Potrubí považujte za tuhé, V =? m 3 δ =? MPa -1 a =? m.s ZADÁNÍ Č.1

ρ = 1000 kg.m -3 p? Potrubí považujte za tuhé, V =? m 3 δ =? MPa -1 a =? m.s ZADÁNÍ Č.1 ZADÁNÍ Č. Potrubí růměru a élky l je nalněno voou ři atmosférickém tlaku. Jak velký objem V je nutno vtlačit o otrubí ři tlakové zkoušce, aby se tlak zvýšil o? Potrubí ovažujte za tué, měrná motnost voy

Více

POHONNÉ JEDNOTKY. Energie SPALOVACÍ MOTOR. Chemická ELEKTROMOTOR. Elektrická. Mechanická energie HYDROMOTOR. Tlaková. Ztráty

POHONNÉ JEDNOTKY. Energie SPALOVACÍ MOTOR. Chemická ELEKTROMOTOR. Elektrická. Mechanická energie HYDROMOTOR. Tlaková. Ztráty Energie Chemická Elektrická Tlaková POHONNÉ JEDNOTKY SPALOVACÍ MOTOR ELEKTROMOTOR HYDROMOTOR Mechanická energie Ztráty POHONNÉ JEDNOTKY - TRANSFORMÁTOR ENERGIE 20013/2014 Pohonné jednotky I. SCHOLZ 1 SPALOVACÍ

Více

12. Termomechanika par, Clausius-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par

12. Termomechanika par, Clausius-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par 1/2 1. Určovací veličiny pracovní látky 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 3. Směsi plynů, měrné tepelné kapacity plynů 4. První termodynamický zákon 5. Základní vratné

Více

Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

Kruhový děj s plynem

Kruhový děj s plynem .. Kruhový děj s lynem Předoklady: 0 Chceme využít skutečnost, že lyn koná ři rozínání ráci, na konstrukci motoru. Nejjednodušší možnost: Pustíme nafouknutý balónek. Balónek se vyfukuje, vytlačuje vzduch

Více

Hydrostatika a hydrodynamika

Hydrostatika a hydrodynamika Hydrostatika a hydrodynamika Zabýáme se kaalinami, ne tuhými tělesy HS Ideální tekutina Hydrostatický tlak Pascalů zákon Archimédů zákon A.z. - ážení HD Ronice kontinuity Bernoullioa ronice Pitotoa trubice

Více

Jednotlivým bodům (n,2,a,e,k) z blokového schématu odpovídají body na T-s a h-s diagramu:

Jednotlivým bodům (n,2,a,e,k) z blokového schématu odpovídají body na T-s a h-s diagramu: Elektroenergetika 1 (A1B15EN1) 3. cvičení Příklad 1: Rankin-Clausiův cyklus Vypočtěte tepelnou účinnost teoretického Clausius-Rankinova parního oběhu, jsou-li admisní parametry páry tlak p a = 80.10 5

Více

1/1 PŘEHLED TEORIE A VÝPOČTOVÝCH VZTAHŮ. Základní stavové veličiny látky. Vztahy mezi stavovými veličinami ideálních plynů

1/1 PŘEHLED TEORIE A VÝPOČTOVÝCH VZTAHŮ. Základní stavové veličiny látky. Vztahy mezi stavovými veličinami ideálních plynů 1/1 PŘEHLED TEORIE A VÝPOČTOVÝCH VZTAHŮ Základní stavové veličiny látky Vztahy mezi stavovými veličinami ideálních plynů Stavová rovnice ideálního plynu f(p, v, T)=0 Měrné tepelné kapacity, c = f (p,t)

Více

ř é Ů é ř ž ř é é ř ž ř Ů ř ř ř Ú é Í ř ř ř é Ž é Í ř é Ý ř ř é é é é ř ř ř é é ř é é ř é Ž ř Ý é ří ř Ř é ř ř Ž Ů ř ř ř Š Í ří ř ř řň é ř Ú řň é ř řň é ř Š ř ž é ř Ž ř Ž ř ř ř Ž Á Ž Ž Š ř ř ř ř ř é é

Více

TERMOMECHANIKA 12. Cykly tepelných motorů

TERMOMECHANIKA 12. Cykly tepelných motorů FSI U v Brně, Energetický útav Odbor termomechaniky a techniky rotředí rof. Ing. Milan Pavelek, Sc. ERMOMEHANIKA. ykly teelných motorů OSNOA. KAPIOLY Přehled cyklů teelných motorů ykly alovacích motorů

Více

Termodynamické základy ocelářských pochodů

Termodynamické základy ocelářských pochodů 29 3. Termodynamické základy ocelářských ochodů Termodynamika ůvodně vznikla jako vědní discilína zabývající se účinností teelných (arních) strojů. Později byly termodynamické zákony oužity ři studiu chemických

Více

Třetí Dušan Hložanka 16. 12. 2013. Název zpracovaného celku: Řetězové převody. Řetězové převody

Třetí Dušan Hložanka 16. 12. 2013. Název zpracovaného celku: Řetězové převody. Řetězové převody Předmět: Ročník: Vytvořil: Datum: Stavba a rovoz strojů Třetí Dušan Hložanka 6.. 03 Název zracovaného celku: Řetězové řevody Řetězové řevody A. Pois řevodů Převody jsou mechanismy s tuhými členy, které

Více

i=1..k p x 2 p 2 s = y 2 p x 1 p 1 s = y 1 p 2

i=1..k p x 2 p 2 s = y 2 p x 1 p 1 s = y 1 p 2 i I i II... i F i..k Binární mě, ideální kaalina, ideální lyn x y y 2 Křivka bodů varu: Křivka roných bodů: Pákové ravidlo: x y y 2 n I n x I z II II z x Henryho zákon: 28-2 U měi hexan() + hetan(2) ři

Více

Vnitřní odpínače H 27. trojpólové provedení jmenovité napětí 12 a 25 kv jmenovitý proud 630 A

Vnitřní odpínače H 27. trojpólové provedení jmenovité napětí 12 a 25 kv jmenovitý proud 630 A Vnitřní odínače H 27 trojólové rovedení jmenovité naětí 12 a 25 kv jmenovitý roud 630 A Vnitřní odínače H 27 Odínače jsou určeny ke sínání vn zařízení ve vnitřním rostředí ři normálníh raovníh odmínkáh

Více

Výpočty za použití zákonů pro ideální plyn

Výpočty za použití zákonů pro ideální plyn ýočty za oužití zákonů ro ideální lyn Látka v lynné stavu je tvořena volnýi atoy(onoatoickýi olekulai), ionty nebo olekulai. Ideální lyn- olekuly na sebe neůsobí žádnýi silai, jejich obje je ve srovnání

Více

TERMOMECHANIKA 11. Termodynamika proudění

TERMOMECHANIKA 11. Termodynamika proudění FSI VUT Brně, Energetický ústa Odbor termomechaniky a techniky rostředí rof. Ing. Milan Paelek, CSc. TERMOMECHANIKA. Termodynamika roudění OSNOVA. KAPITOLY -rozměrné adiabatické roudění Ronice kontinuity

Více

ž ě č Č š ě ě ž Ě š š ě Š ě ě ě ž ů ě Ě ě Š č ě č č ž č č Č Ě š Ě š ě ě š ě ě ě ž Ů ě č ě Š Š č ž Ý Óž Ó č ÝŠ č š ú ě š č č č šť Š šť šť Ú ú ů Š Ú ů ú Š ž ě ě ě ů ě ě ě ů ě ě ž ů ě ů ž ž ě č ě č ě č ů

Více

P O N D Ě L Í. Te Kr Kn. Ok I. II. Aj - Bl. Vv - Da. Bi - Ja. Hv - Rg Aj - Cs Fy - Mu Jv M - Pk Bi - Ma D - Sh Li - Pa MD - Er Sk Aj - Qu.

P O N D Ě L Í. Te Kr Kn. Ok I. II. Aj - Bl. Vv - Da. Bi - Ja. Hv - Rg Aj - Cs Fy - Mu Jv M - Pk Bi - Ma D - Sh Li - Pa MD - Er Sk Aj - Qu. I 0 1 2 3 P O N D Ě L Í Bi - Ma Kek - Ši Čjk - Pa MD - Er Fy - Mu Bi - Ma D - Sh Li - Pa MD - Er Nj-Be MD - Er Nj-Sa U1 Čjk - Rg Ch - Mu If - Ži Ch - Mu Bi - Ma Ov - Sh Aj - Je FjN-Vo Kh La - Lu Re - Pa

Více

2.3.6 Práce plynu. Předpoklady: 2305

2.3.6 Práce plynu. Předpoklady: 2305 .3.6 Práce lynu Předoklady: 305 Děje v lynech nejčastěji zobrazujeme omocí diagramů grafů závislosti tlaku na objemu. Na x-ovou osu vynášíme objem a na y-ovou osu tlak. Př. : Na obrázku je nakreslen diagram

Více

ť Ě É ť ř ý ř Í Ů Éř ť ř Ý ř ř ř ž ý ř ř ř ý ý ú ř ý ť ý ý ř ů ř ř ž ý ů ý ř ř ř ř ř É ú ý ř Č Š Ř Ň Í ř ú ř Č ř ř Ť ř ř ý ý ř ř ř ý ý ř ů ř ý ř Ú ř Ž ů ů ř ú ř ř Ú ř ý ř ů ú ž ý ý ú ž ž ž ž ů ž Á ř Š

Více

VY_32_INOVACE_G 21 17

VY_32_INOVACE_G 21 17 Název a adresa škly: Střední škla růmyslvá a umělecká, Oava, řísěvkvá rganizace, Praskva 399/8, Oava, 7460 Název eračníh rgramu: OP Vzdělávání r knkurenceschnst, blast dry.5 Registrační čísl rjektu: CZ..07/.5.00/34.09

Více

Základy elektrických pohonů, oteplování,ochlazování motorů

Základy elektrických pohonů, oteplování,ochlazování motorů Základy elektrických ohonů, otelování,ochlazování motorů Určeno ro studenty kombinované formy FS, ředmětu Elektrotechnika II an Dudek únor 2007 Elektrický ohon Definice (dle ČSN 34 5170): Elektrický ohon

Více

É Á ř ř ř ř Ú ř ň ř ř ř Á Á Á Á Ú Ú ří ř ří ř ří ř ř ť ř ř ř ř ř ř ř Í Ú ř ř ř ř ř ř ř ř ř ř Ř ř ť ř ř ř ř ř ť ň ř Ř ř ť ř Ý ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř Ý ř ř ť Í Á Á Á Á ř ř ř ř ř ř ř Í ř

Více

Á ů Á Á ů Ř Ý ú ř ř ů Ě Á ú ř Ř Ž Ý Ř Ž Á ť ř ů Á Š ú ř ť É Í ř ú ú Á Ě Ý ř ó Ř ú ř ú Ý Í ú Ř ů ú Š ú ř ť ř ř Á ŘÍ ř Ů ú ř ú ú ř Ž ú ú ů ú ř ř ó ř ů ů ř ř ř ř ů ů ř ř ř ů ů Í Ý Ů ů ř ů ř Ř ř ř ú Ý ř ř

Více

ů ž Ř Š Í Ú ů š ů š ů Í Í ů ů ů ů ů Š ú ů ů š ů Š ů ů ů ž ů š ů ů Š Č ů ů š š Í Š Š š ů š ů š ú ž š ů ů ů ů š ů ů ů ú š š ž š š ž ů š ů Š ú Š ů Š š ů š š ú ů ů ů ů ú ů ů š š ú ú Š ů Š ů ů Š ů ů ů š Š ň

Více

ČTYŘDOBÝ VÍCEVÁLCOVÝ SPALOVACÍ MOTOR S VYUŽITÍM TLAKOVÝCH PULZŮ VÝFUKOVÝCH PLYNŮ KE ZVÝŠENÍ NAPLNĚNÍ VÁLCŮ

ČTYŘDOBÝ VÍCEVÁLCOVÝ SPALOVACÍ MOTOR S VYUŽITÍM TLAKOVÝCH PULZŮ VÝFUKOVÝCH PLYNŮ KE ZVÝŠENÍ NAPLNĚNÍ VÁLCŮ ČTYŘDOBÝ VÍCEVÁLCOVÝ SPALOVACÍ MOTOR S VYUŽITÍM TLAKOVÝCH PULZŮ VÝFUKOVÝCH PLYNŮ KE ZVÝŠENÍ NAPLNĚNÍ VÁLCŮ Některé z možných uspořádání motoru se společnými ventily pro sání i výfuk v hlavě válce: 1 ČTYŘDOBÝ

Více

Tepelná vodivost. střední rychlost. T 1 > T 2 z. teplo přenesené za čas dt: T 1 T 2. tepelný tok střední volná dráha. součinitel tepelné vodivosti

Tepelná vodivost. střední rychlost. T 1 > T 2 z. teplo přenesené za čas dt: T 1 T 2. tepelný tok střední volná dráha. součinitel tepelné vodivosti Tepelná vodivost teplo přenesené za čas dt: T 1 > T z T 1 S tepelný tok střední volná dráha T součinitel tepelné vodivosti střední rychlost Tepelná vodivost součinitel tepelné vodivosti při T = 300 K součinitel

Více

M a l t é z s k é n á m. 1, 1 1 8 1 6 P r a h a 1

M a l t é z s k é n á m. 1, 1 1 8 1 6 P r a h a 1 0. j. : N F A 0 0 2 9 7 / 2 0 1 5 N F A V ý r o1 n í z p r á v a N á r o d n í h o f i l m o v é h o a r c h i v u z a r o k 2 0 1 4 N F A 2 0 1 5 V ý r o1 n í z p r á v a N á r o d n í h o f i l m o v

Více

Zkraty v ES Zkrat: příčná porucha, prudká havarijní změna v ES nejrozšířenější porucha v ES při zkratu vznikají přechodné jevy Vznik zkratu:

Zkraty v ES Zkrat: příčná porucha, prudká havarijní změna v ES nejrozšířenější porucha v ES při zkratu vznikají přechodné jevy Vznik zkratu: Zkraty ES Zkrat: příčná porucha, prudká haarijní změna ES nejrozšířenější porucha ES při zkratu znikají přechodné jey Vznik zkratu: poruchoé spojení fází nazájem nebo fáze (fází) se zemí soustaě s uzemněným

Více

Wankel v, Stirling v motor

Wankel v, Stirling v motor KAEDA OZIDEL A MOO Wanelv, Stirlingv motor #/4 Karel Páv Wanelv motor / 954 Felix Wanel Motor s rotaním triangulárním ístem Charateristia motoru: Excentricý hídel oná otáy na obh (na otáu ístu) Pohyb excentricy

Více

Ě ť ž Š ú ť Š ť ú ž ž ú ž Ý ž ž ž ú ť Č ň Ú ň ť ť ť ú ť ž ž ť ú ú ť ú ž ž ť ť ť ú ž ž ť ť ž ž ť ž ž ž ú ž Ý ú ú ť ú ú ž ť ž ž ž ž ž ž ú Č ž ú ň ú ú ť ú ú Ý ú ť ú ž Ř ť ú ú ť Š Č Č ň Ú Č Š ú ť Č ť ď ž ň

Více

Elektrárny A1M15ENY. přednáška č. 8. Jan Špetlík. Katedra elektroenergetiky, Fakulta elektrotechniky ČVUT, Technická 2, 166 27 Praha 6

Elektrárny A1M15ENY. přednáška č. 8. Jan Špetlík. Katedra elektroenergetiky, Fakulta elektrotechniky ČVUT, Technická 2, 166 27 Praha 6 Elektrárny A1M15ENY řednáška č. 8 Jan Šetlík setlij@fel.cvut.cz -v ředmětu emailu ENY Katedra elektroenergetiky, Fakulta elektrotechniky ČVUT, Technická, 166 7 Praha 6 První říad bez řihřívání: T = 1 MPa

Více

( ) ( ) Tepelný oběh s plynovou turbínou. Zjednodušující předpoklady: ideální (vratné) termodynamické změny. Tepelná účinnost oběhu: ( ) T T.

( ) ( ) Tepelný oběh s plynovou turbínou. Zjednodušující předpoklady: ideální (vratné) termodynamické změny. Tepelná účinnost oběhu: ( ) T T. Parolynové oběy eelný obě s lynovou turbínou Zjednodušující ředoklady: v s td K td g m ideální (vratné) termodynamické změny ( ) ( ) ( ) ( ) ( ) ( ) 3 4 3 3 4 3 c c c Q Q Q v v v o t eelná účinnost oběu:

Více

2.6.7 Fázový diagram. Předpoklady: Popiš děje zakreslené v diagramu křivky syté páry. Za jakých podmínek mohou proběhnout?

2.6.7 Fázový diagram. Předpoklady: Popiš děje zakreslené v diagramu křivky syté páry. Za jakých podmínek mohou proběhnout? 2.6.7 Fázový diagram Předoklady: 2606 Př. 1: Poiš děje zakreslené v diagramu křivky syté áry. Za jakých odmínek mohou roběhnout? 4 2 1 3 1) Sytá ára je za stálého tlaku zahřívána. Zvětšuje svůj objem a

Více

VLHKÝ VZDUCH STAVOVÉ VELIČINY

VLHKÝ VZDUCH STAVOVÉ VELIČINY VLHKÝ VZDUCH STAVOVÉ VELIČINY Vlhký vzduch - vlhký vzduch je směsí suchého vzduchu a vodní áry okuující solečný objem - homogenní směs nastává okud je voda ve směsi v lynném stavu - heterogenní směs ve

Více

Stabilita prutu, desky a válce vzpěr (osová síla)

Stabilita prutu, desky a válce vzpěr (osová síla) Stabilita rutu, deky a válce vzěr (oová íla) Průběh ro ideálně římý rut (teoretický tav) F δ F KRIT Průběh ro reálně římý rut (reálný tav) 1 - menší očáteční zakřivení - větší očáteční zakřivení F Obr.1

Více

Cvičení z termomechaniky Cvičení 5.

Cvičení z termomechaniky Cvičení 5. Příklad V kompresoru je kotiuálě stlačová objemový tok vzduchu [m 3.s- ] o teplotě 20 [ C] a tlaku 0, [MPa] a tlak 0,7 [MPa]. Vypočtěte objemový tok vzduchu vystupujícího z kompresoru, jeho teplotu a příko

Více

Výkon motoru je přímo úměrný hmotnostnímu toku paliva do motoru.

Výkon motoru je přímo úměrný hmotnostnímu toku paliva do motoru. Řízní výkonu automobilového PSM Výkon motoru lz měnit (řídit) buď změnou točivého momntu, nbo otáčkami, příp. současnou změnou točivého momntu i otáčk. P M t 2 n 60 10 3 p V Z n p 2 2 V z M t V n Automobilový

Více

Á Í Č Ě Č ň ť Š Č Ť ň ň ď Ť Ú ť Č ň ď ť Č Š Ž Ú Ť Ť Ť Ť ň Ť Ť ť Ť Ť Á Ť Ť Ť ď Ť Ť Ť Ť Ť Ť Ť Ť Ť ň ďť Ť Ť Ť Š Š Š ď ň Č Š ň Š ť Š ň Š Š Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ú Š ň ť ť Š ň Š Ž ť ť ť ň Š Č Š Š Í

Více

VENTILOVÉ ROZVODY ÚCEL

VENTILOVÉ ROZVODY ÚCEL VENTILOVÉ ROZVODY ÚCEL uskutečnění výměny obsahu válce (spaliny nahradit čerstvou palivovou směsí nebo vzduchem). DRUHY dnes výhradně u 4-dobých motorů ventily ovládané rozvodem OHC, OHV. ČASOVÁNÍ VENTILŮ

Více

PRŮTOK PLYNU OTVOREM

PRŮTOK PLYNU OTVOREM PRŮTOK PLYNU OTVOREM P. Škrabánek, F. Dušek Univerzita Pardubice, Fakulta chemicko technologická Katedra řízení rocesů a výočetní techniky Abstrakt Článek se zabývá ověřením oužitelnosti Saint Vénantovavy

Více