5 Funkce. jsou si navzájem rovny právě tehdy, když se rovnají jejich.

Rozměr: px
Začít zobrazení ze stránky:

Download "5 Funkce. jsou si navzájem rovny právě tehdy, když se rovnají jejich."

Transkript

1 Fukce. Základí pojmy V kpt.. jsme mluvili o zobrazeí mezi možiami AB., Připomeňme, že se jedá o libovolý předpis, který každému prvku a A přiřadí ejvýše jede prvek b B. Jsou-li A, B číselé možiy, azýváme toto zobrazeí fukcí (zobrazeí jsme v. kapitole ozačovali velkým F, fukci ozačujeme většiou malými písmey f, gh,,...). Ve středoškolské matematice přitom pracujeme s tzv. reálou fukcí jedé reálé proměé (tj. A, B jde o zobrazeí v možiě všech reálých čísel, čísla kompleí euvažujeme). Je-li číslu A fukcí f přiřazeo číslo y B, píšeme [, y] f ebo častěji y = f( ). Číslo azýváme vzor proměá (podroběji ezávisle proměá), číslo y obraz fukčí hodota (popř. závisle proměá). Možiu všech vzorů azýváme defiičím oborem oz. D( f ), možiu všech obrazů oborem hodot fukce f oz. H( f ). Dvě fukce f; f jsou si avzájem rovy právě tehdy, když se rovají jejich defiičí obory [tj. D( f) = D( f) ] a pro každé D( f) = D( f) je f( ) = f( ). Fukce slouží k matematickému vyjádřeí závislosti dvou veliči. Tyto závislosti (fukce) můžeme vyjádřit tabulkou, rovicí ebo grafem. Dříve ež přejdeme k ěkterým příkladům, zopakujme ěkteré důležité pojmy: Pravoúhlou soustavou souřadic v roviě rozumíme dvojici avzájem kolmých číselých os. Jejich průsečík azýváme počátkem souřadé soustavy (začíme obvykle O). Číselé osy azýváme souřadými osami a začíme obvykle, y, přičemž osa je obvykle vodorová orietovaá zleva doprava, osa y svislá orietovaá zdola ahoru. Souřadou soustavu, kde velikost jedotek a obou osách bude stejá, budeme začit Oy,, a azývat kartézskou souřadou soustavou (podle fracouzského filozofa a matematika Reé Descarta lat. Cartesiaus). Souřadé osy rozdělí roviu a čtyři pravé úhly kvadraty. Ty číslujeme většiou římskými číslicemi. Prví kvadrat je ohraiče kladými poloosami, další ásledují v kladém směru proti směru chodu hodiových ručiček. Souřadice bodu v roviě: Každému bodu L v roviě s kartézskou soustavou Oy,, přiřaďme uspořádaou dvojici čísel [, y ] takto: číslo je souřadice paty L kolmice spuštěé z bodu L a osu, číslo y je souřadice paty L kolmice spuštěé z bodu L a osu Moji epřátelé jsou hloupí pseudovědci, kteří se slepě drží Aristotela a které věda zajímá je proto, aby dobře vypadali v talárech a měli za to dobrý plat. Kdyby žil Aristoteles des, byl by prví, kdo by se obrátil proti zaslepecům, kteří stojí a jeho slovech. (Galileo Galilei) 8

2 y (souřadice bodu a přímce viz kpt..4.). Naopak každé uspořádaé dvojici [, y ] reálých čísel přiřadíme bod L takto: Sestrojíme body L = [ ], L = [ y] y, z bodu L vztyčíme kolmici l a osu, z L kolmici l a osu y. Bod L ajdeme pak jako průsečík těchto kolmic, tj. L l l. Říkáme, že bod L má v soustavě Oy,, souřadice [, y ], píšeme L = [, y].. Příklad: Automobil má v ádrži 4 litrů bezíu a spotřebuje 8 litrů a km. Vyjádřete možství bezíu v ádrži jako fukci ujeté vzdáleosti. Řešeí: Zde možství bezíu v ádrži závisí a ujeté vzdáleosti, proto je ujetá vzdáleost ezávisle proměá ( ), možství bezíu v ádrži je pak závisle proměá ( y ). S daým možstvím paliva ujedeme maimálě km, defiičím oborem je tedy možia D( f ) = ;, možství paliva v ádrži může abýt hodot H( f ) = ;4. Tabulka zachycuje ěkteré hodoty ezávisle a závisle proměé, apř: 4 y Rovice y = 4, 8 Graf: Grafem fukce rozumíme možiu všech bodů roviy, jejichž souřadice vyhovují její rovici 8

3 . Vlastosti fukcí Lichá fukce D( f): f( ) = f( ) Sudá fukce D( f): f( ) = f( ) graf je souměrý podle počátku soustavy graf je souměrý podle osy y, apříklad: souřadic, apříklad: f : y = ; D( f ) = ; f : y = ; 4 H( f ) = ; ). D( f ) = ; H( f ) = ; K tomu, aby pro každé D( f) mohlo platit f ( ) = f( ), resp. f ( ) = f( ), musí obě fukčí hodoty f ( ); f( ) eistovat. Pro lichou i sudou fukci musí tedy být [ D( f) ] [ D( f) ]. Samotý defiičí obor liché resp. sudé fukce je souměrý podle počátku, resp. podle osy y. Je-li I D( f ) iterval, pak fukce f () je a tomto itervalu klesající pokud s rostou- cím klesá y, rostoucí pokud s rostoucím roste také y (apř. fukce g : y = je a I = ( ; klesající, a I = ; ) rostoucí), mootoí je fukce, která je buď rostoucí ebo klesající, erostoucí pokud s rostoucím eroste y, eklesající pokud s rostoucím eklesá y. erostoucí : eklesající : = ( ) f : y = ( ) f : y 4 4 8

4 . Elemetárí fukce Přímá úměrost: Je každá fukce a defiovaá rovicí f : y = k ; k {}. Grafem přímé úměrosti je přímka procházející počátkem. Lieárí fukce: Je každá fukce a daá rovicí f : y = k + q; kq ;. V případě k = dostaeme fukci kostatí. Grafem lieárí fukce je přímka, která je růzoběžá s osou y. Nepřímá úměrost: Je každá fukce defiováa rovicí k f : y = ; k ; D( f) = H( f) = {}. Grafem je rovoosá hyperbola (připoje graf pro k = ). Kvadratická fukce: Je každá fukce defiováa rovicí f : y =. Grafem je parabola. D( f ) = ; H( f ) = ; ) 8

5 . Příklad: Z pole o výměře 6 hektarů se sklidilo 68 t cukrovky. Kolik tu by se sklidilo z hektarů, předpokládáme-li stejý hektarový výos? Řešeí: a) Čím větší plochu osejeme, tím více cukrovky sklidíme. Možství cukrovky y je tedy přímo úměré oseté ploše, tedy y = k. Víme, že pro = 6 je y = 68, pro kostatu y 68 k úměrosti dostáváme k = = =. Pro = dostáváme y = k = = 6. 6 Z hektarů by se sklidilo tedy 6 tu cukrovky. Toto řešeí je tzv. řešeí přechodem přes jedotku (kostata úměrosti zde má výzam hektarového výosu, tj. možství cukrovky sklizeého z jedoho hektaru). Úlohu však můžeme řešit také trojčlekou, tj. rovostí dvou poměrů: b) 68 = = = Příklad: Kiha má 6 stra po 4 řádcích. Kolik stra bude mít v ovém vydáí, bude-li a stráce 6 stejě dlouhých řádků? Řešeí: a) Čím kratší budou stráky, tím jich bude více. Počet stra y je tedy epřímo úměrý k jejich délce, tedy y =. Víme, že pro = 4 je y = 6, pro kostatu k úměrosti k 4 dostáváme k = y = 4 6 = 4. Pro = 6 dostáváme y = = = 4. 6 Nové vydáí bude tedy mít 4 stra. I toto řešeí je přechodem přes jedotku. Kostata úměrosti v tomto případě vyjadřuje počet řádků kihy, tedy počet stra v případě, že a každé z ich by byl jediý řádek. Také epřímou úměrost můžeme řešit trojčlekou: b) Proceta a promile: 6 ha...68 t ha... t 4 řádků... 6 stra 6 řádků... stra = = = Speciálí úlohy a přímou úměrost jsou úlohy a proceta a promile. Proceto je jeda setia, promile pak jeda tisícia celku (základu). V těchto úlohách se volí reálé číslo z jako základ (%, popř. ), počet procet, popř. promile p a příslušá část základu č. Na ižších stupích jsme rozlišovali tři typy úloh a proceta: určováí základu, určováí počtu procet a určováí části základu (procetové části). Všechy tyto úlohy jsou však úlohami a přímou úměrost čím větší je počet procet, tím větší je procetová část. 84

6 . Příklad: Chceme získat g pětiprocetího roztoku soli ve vodě. Kolik vody a kolik soli potřebujeme? Řešeí: Určíme apř. možství vody, možství soli pak sado dopočítáme. Pětiprocetí roztok obsahuje 9% vody a % soli: Pro vodu tedy máme: %... g 9 %... g 9 9 = = = 4, K získáí předepsaého roztoku budeme potřebovat 4, g vody a 7, g soli. 4. Příklad: V kolika gramech vody je třeba rozpustit 8 g soli, máme-li získat devítiprocetí roztok? Řešeí: 8 g soli tvoří 9% roztoku, hledaé možství vody pak zbylých 9%: 9 %...8 g 9 %... g = = = K získáí předepsaého roztoku budeme potřebovat 8 g vody..4 Fukce prostá a iverzí V kpt. jsme hovořili o prostém zobrazeí. Pojmem fukce ozačujeme speciálí zobrazeí, kde defiičím oborem i oborem hodot jsou číselé možiy. Tedy: Zobrazeí F (fukce f ) je prosté (prostá) právě tehdy, když každý prvek y jeho (jejího) oboru hodot H( F ) [ H( f )] je obrazem právě jedoho prvku jeho (jejího) defiičího oboru DF ( ) [ D( f )]. U fukcí používáe většiou ásledující ekvivaletí (rovoceou) defiici: Fukce f je prostá právě tehdy, když pro každé ; D( f) ; platí f ( ) f( ). Fukce prostá a mootoí: Často se setkáváme s ázorem, že fukce mootoí a prostá je jedo a totéž. To ovšem eí pravda, jak se přesvědčíme ásledujícím příkladem: 8

7 . Příklad: Sestrojme graf fukce defiovaé takto: 4 pro < f : y = pro 4 Tato fukce je prostá, eboť každá dvě růzá ; mají skutečě dvě růzé fukčí hodoty f ( ); f ( ). Neí však mootoí, eboť a itervalu ( ;) klesá, kdežto a itervalu ; ) roste (viz graf a předchozí straě). Každá mootoí fukce je prostá, ale tuto větu elze obrátit e každá prostá fukce je mootoí. Mootoost fukce je podmíka dostačující k tomu, aby fukce byla prostá, ale eí to podmíka utá. Iverzí fukce: Mějme fukci f : y = f( ) s defiičím oborem D( f ) a oborem hodot H( f ). Tato fukce přiřazuje každému vzoru D( f) právě jede obraz y H( f), pro který je y = f( ). Sestrojme předpis (ozačme ho f ), který aopak každému obrazu y H( f) přiřadí vzor D( f) tak, že = f ( y). Jestliže je původí fukce f prostá, pak předpis f je opět fukcí, tj. každému y H( f) přiřazuje právě jedo D( f). Tuto fukci pak azýváme fukcí iverzí k fukci f. Mějme v kartézské soustavě Oy,, sestroje graf prosté fukce y = f( ). Uvažujme kartézskou souřadou soustavu Oy, ', ' týmž počátkem, kde kladá poloosa ' splye s kladou poloosou y a kladá poloosa y ' splye s kladou poloosou. Pak graf fukce y = f( ) v soustavě Oy,, splye s grafem fukce = f ( y) v soustavě Oy, ', '. Většiou však sestrojujeme graf fukce f v původí soustavě Oy,,, což odpovídá vzájemé záměě proměých ; y. Fukčí předpis platí: = f ( y) pak přejde a tvar y = f ( ). Pro fukci f iverzí k fukci f pak Defiičí obor fukce f se rová oboru hodot fukce f, tj. D( f) = H( f ). Obor hodot fukce f se rová defiičímu oboru fukce f, tj. H( f) = D( f ). Pro každé D( f) H( f = ) a každé y H( f) D( f = ) je y = f( ) f : = f ( y). Grafy fukcí f ; f sestrojeé v téže kartézské souřadé soustavě jsou souměrě sdružeé podle přímky y = (osy I. a III. kvadratu).. Příklad: Sestrojme fukci iverzí k fukci z předchozího příkladu. Řešeí: Protože fukce f je prostá, můžeme iverzí fukci sestrojit. Fukce je defiovaá a možiě D( f ) = ( ;) ; ) =. Pro ( ;) je 4 ( ;), pro ; ) ; ). Oborem hodot fukce f je možia ( ) ( ;) ; ) je 4 iverzí fukci f tak máme: D f = H f =, H f ( ) ( ) H f = =. Pro = D f =. ( ) ( ) Fukčí předpis fukce f získáme záměou proměých ve fukčím předpisu fukce f. Pro ( ;) tedy máme 86

8 4 4 4 f : = y = y = y pro ; ) je y f : = y = 4 y = 4 4 Graf fukce f je souměrý s grafem fukce f podle přímky y = (a obrázku vlevo je graf fukce f sestroje světlejší barvou). Zřejmě pod dojmem představy, že u iverzí fukce je všecho aopak, studeti často tvrdí, že pokud fukce f klesá, fukce f roste a aopak. Ovšem tak tomu eí. Jak je patré už z pohledu a připojeý obrázek, a itervalu ( ;) obě fukce současě klesají a a ; ) obě současě rostou. Platí věty: Fukce Fukce f klesá právě tehdy, když klesá fukce f. f roste právě tehdy, když roste fukce f.. Příklad: Sestrojme iverzí fukci k fukci f : y =. Řešeí: Daá fukce je defiováa a celé možiě, a celém defiičím oboru však eí prostá, eboť apř. f( ) = f() = 4. Pokud tedy chceme iverzí fukci sestrojit, je třeba defiičí obor zúžit tak, aby a tomto zúžeém oboru fukce byla prostá. Fukce f : y = a itervalu ( ; klesá, a ; ) roste, a těchto itervalech je tedy prostá. Lze tedy sestrojit iverzí fukci ke dvěma růzým fukcím, a to k fukci a k fukci f : y = ; D( f ) = ; ). f : y = ; D( f ) = ( ; 87

9 Pro fukci f : y = ; D( f) = ( ; máme H( f ) = ; ). Fukčí předpis fukce k í iverzí je f : = y a je třeba vyjádřit y. Pro číslo y řešíme tedy kvadratickou rovici s parametrem, která má obecě dva růzé reálé kořey y =±. Musíme si ovšem uvědomit, že D( f ) = H( f ) = ; ), tj. číslo je ezáporé); y H( f ) = D( f ) = = ( ; číslo y je ovšem záporé (rovici y = řešíme a itervalu y ( ; ). V tom případě ovšem vyhovuje pouze jedo řešeí, a to y =. Je tedy f y =. Pro fukci f : y = ; D( f) = ; ) je opět H( f ) = ; ). Fukčí předpis fukce f opět vychází z předpisu f : = y, tetokrát ovšem je D( f ) = H( f) = ; ) ( je opět kladé), ale y H( f ) = D( f ) = ; ) ( y je tetokrát kladé), je tedy f y =. : :. Fukce epoeciálí a logaritmická Epoeciálí fukce: Je fukce určeá rovicí f : y = a ; kde a > ; a. Podmíka a > je utá k tomu, aby mocia byla defiováa pro každé reálé, tj. D( f ) =. Pro a = by se jedalo o kostatí fukci : f y =. Oborem hodot je ( ) ( ; ). Příklad: Sestrojme grafy fukcí f : y = ; f : y =. f : y = : y H f =. 4 = = 4 8 f : y = 4 y = Epoeciálí fukci o základu a =, tj. y =, azýváme dekadickou epoeciálí fukcí. Zvláště důležitá je epoeciálí fukce y = e [ y = ep( ) ], jejímž základem je číslo a = e= (Eulerovo číslo). oboru, a to pro ( ;) = a je mootoí a celém svém defiičím Logaritmická fukce: Epoeciálí fukce y a klesající, pro a ( ; ) rostoucí. Je tedy možo k í sestrojit fukci iverzí: y f : = a ; kde a > ; a. Protože ( ) H( f ) = ;, je ( ) D f = ; ( ) = D f =. Tato fukce přiřazuje každému ( ; ) D( f ) = H( f) = ; ; H( f ) ( ) číslo y, a které je třeba umocit daý základ a, abychom obdrželi hodotu ezávisle

10 proměé. Tato fukce se azývá logaritmická fukce se základem a, začíme ji log a. Místo y f : = a tedy píšeme f : y = log a. Pro a = píšeme místo log většiou je log (dekadický logaritmus), pro a= e=, píšeme místo log e většiou l ebo lg (přirozeý logaritmus). Vlastosti logaritmické fukce: je mootoí, tudíž prostá, tj. pro každé je log log ; pro (;) a ; je rostoucí. a a a je klesající, pro ( ) 89

11 Platí apř. log =, eboť = ; log = eboť = ; log =, eboť = ; log = eboť = ; log =, eboť = ; log = eboť = ; log =, eboť = ; log = eboť = ; log =, eboť log =, eboť = = ; log = eboť ; log = log = log =, eboť Pro každé X a každé A (;) ( ; ) je = ; log = eboť = ; = = =. log A X X = A. log Je-li tedy apř. a log = a ; a y loga loga y y = a, pak y = a a a podle pravidel o počítáí loga + loga y s mociami je y = a. Položíme-li však yí y = X ; a = A; log + log y = Y, je podle předchozího rámečku: a a Y X = A Y = log X loga loga y y = a + a + a y = a y a + a y = a y A log log log ( ) log log log ( ) Podobě bychom odvodili další vlastosti: Nechť a > ; a a y> ; jsou libovolá kladá reálá čísla. Pak log a( y) = loga + loga y; log = log log y a a a r y ; log = r log ( r ) a a Je-li r = ; kde {}, pak z posledího vzorce dostáváme log a = loga. Příklady: Pro přípusté hodoty upravme pomocí výše uvedeých pravidel: ) ) ) log ( ) = log + log + log ( ) = + log + log ( ) 7 log = log 7 + log log ( + ) = + log log ( + ) ( + ) ( ) ( + ) l = ( ) l( + ) l 9

12 4) 4 log4 log4 4 log4 log4 log4 log4 log4 log4 r = + + r = + + r Naopak: ) 6) 7) 8) 6 + log4 log 4( + ) = log4 6 + log4 = log4 + + a a ( a ) a 6 a l a+ l( a ) l( a+ ) 6 l a = l = l a ( a ) 6 a ( a+ ) 4 ( r ) (4 r ) (6 r) + + = = 4 ( r ) log r log 4r 4log r 4log 6r log r r r r = log = log = log( r ) = log 6 r r r c d E cd E log c+ log d + log E log S log ρ = log = log S ρ S ρ Neřešeé úlohy: 4 ) log( y ) ) log ) log y 4) log + y ) ( log8.log ) 4 4 z 6) log + log a+ ( log b+ log c) 7) log +.(logl log log g) Výsledky ) log + 4log + log y ) log + log log 4log 4 ) log + log y log z 4) 8 l log + log( + y) ) log 6) log(a bc ) 7) log 6 g.6 Epoeciálí a logaritmické rovice Epoeciálí rovice je každá rovice, ve které je ezámá v epoetu ějaké f ( ) g( ) mociy. Nejjedodušší epoeciálí rovice jsou rovice tvaru a = a, kde a > ; a. Rovají-li se základy moci, musí se rovat i jejich epoety, tato rovice je tedy ekvivaletí s rovicí f ( ) = g( ) viz př.. Dále jsou to rovice ejrůzějších tvarů, které však lze úpravami využívajícími vlastosti moci převést a předchozí případ (viz př. ).. Příklad:. Příklad:. Příklad: , 7 = 8 = = 6 ( ) 4( ) = 6, 4, + + = + 4 = + ( ) = 4( ) 6 = 6,= 4, 7 = = 7; = = 9

13 4. Příklad:. Příklad: = = ( ) = = 7 7 ( ) 8 ( + ) (7 ) ( ) ( + ) (7 ) = + = = /: 8 8 = + = ( ) = = = 4; = f ( ) g( ) Dále jsou to rovice tvaru a = b, a b. V ěkterých případech je možo tuto rovici r( ) s( ) upravit a tvar a = a a řešit předchozím způsobem (viz př. 6). Pokud e, je třeba řešit logaritmováím (viz. př. 7). Následují opět rovice ejrůzějších tvarů, které lze a tvar f ( ) g( ) a = b převést a řešit logaritmováím (viz př. 8). Pozor! Logaritmováí rovice epatří k ekvivaletím úpravám. Součástí tohoto řešeí je tedy zkouška. Některé epoeciálí rovice lze substitucí převést a rovice algebraické (viz př. 9). 6. Příklad: 7. Příklad Zkouška: 6 = 7 / 7 = log L = = log 7 = 7 log = log 6 6+ log ( 7) = ( )log= log log L = log = ( ) = log log = log = log L = log = ( log ) = log P = log = log log P = log log log L = log P L = P 8. Příklad: 9. Příklad: = = = 4 4 subst. 9 = y 4 ( + ) = 4(4 ) y y+ 7 = 9 = 6 4 ( y )( y 9) = 6 y = ; y = 9 = 4 9 ze subst. 9 = y 9 = = 7 = 4 ze subst. 9 = y 9 = 9 = (log log 4) = log 7 log log 7 = log log 4 9

14 (chybějící zkoušky zde poecháme čteáři jako cvičeí). Logaritmické rovice: jsou rovice, v ichž se vyskytují logaritmy výrazů s ezámou. Nejjedodušší logaritmickou rovicí je rovice log a = b, a >, a, b, b která má řešeí = a. Další rovice řešíme obvykle úpravou a tvar log a f ( ) = log a g( ), a pak řešíme tzv. delogaritmováím, tj. úpravou a tvar f ( ) = g( ). Často lze vhodou substitucí převést logaritmickou rovici a rovici algebraickou. Pozor! Ai delogaritmováí rovice eí ekvivaletí úpravou. Součástí tohoto řešeí je tedy zkouška. Příklad : log( ) = log(4 ) log( ) log(4 ) ( ) 4 = = 4 + 4= 4 = Příklad : log ( ) = = log = log log = log = log =± = ; = Zkouška L () log( ) log log log 9 P() = log(4 ) = log 9 L() = P() L( ) = log( ) = log( 4) L( ) eí defiováa = = = = = eí kořeem možia řešeí K = {} Zkouška ( ) log ( ) L() = log = log = P() = L() = P() log L( ) = log ( ) = log ( ) = log = P = L = P ( ) ( ) možia řešeí K = {; } Příklad : log (log ) log log(log ) = log log log(log ) = log = = log(log ) = log = = = Zkouška L() = (log) = log L() eí defiováa = eí kořeem log L( ) = (log) = = P () = L() = P() možia řešeí K = {} 9

15 Příklad 4: Zkouška log log log log log L() = + = + = + = / log log P() = + = log log L() = P() + = log log log L( ) = + = + = subst = y P() = y y+ = L() = P() y = ; y = log log log ( ) subst = L = ( ) + ( ) ( ) ( ) ( ) ( + ) log log = log L( ) = + = + = subst log = log = = log log = log log = log =± = ; = ( ) P = ( ) = ( ) L P možia řešeí K = {;; } Neřešeé úlohy: Vypočtěte: ) log 6 ) ) log 6) ) log 4 7) 4) log 6 8) Řešte rovice: log4 6 9) 8 log6 6 ) 4 log6 6 ) log ) log log ) log 8 6 log 4) log 6 8 log ) log log 6 6) log log 7) 8) 9) ) ) ) ) = 6 9) log = 8 = 6 ) log = ) = ) = log = log = + 79 = 8 ) log = log 9 = = 64 ) 4) log = 4 log log( + ) log( + ) = log(+ ) 94

16 4) ( ) = 6) + log( + 7) log( 7) log ) = ) = 8 4 = 6) ( + ) = 8) log( ) log(+ ) = log ) + + = + + 9) log 4 + log = l l 8) 4 4 = 4) e e + 4e = 6 Výsledky: ) 4 ) ) 4) 8 ) 4 6) 7) 8) 9) ) 4 ) ) ) eí defiová 4) eí defiová ) eí defiová 6) 7) 4 8) 7 9). ) ). ). ) 4) ; ). 6) 9 7).7 8) 9). ) ) ) > ; ) 4) ) 6) 7) 8) emá řešeí 9) 4) 4e.7 Oblouková míra a orietovaý úhel V kpt..4 jsme stručě uvedli stupňovou míru úhlů, která však mohdy evyhovuje. Uvedeme tedy i tzv. míru obloukovou. Její jedotkou je jede radiá (rad). Před jeho defiicí je však třeba uvést tzv. středový úhel: Úhel ω = ASB, jehož vrcholem je střed kružice a ramea procházejí krajími body oblouku AB, azýváme středový úhel příslušý tomuto oblouku. Úhel má velikost jedoho radiáu právě tehdy, když je shodý se středovým úhlem kružice, jejíž poloměr je rove délce příslušého oblouku. Má-li kružice poloměr r = (tzv. jedotková kružice), pak velikost úhlu v radiáech je číselě přímo rova délce příslušého oblouku. Jedotka radiá je ve fyzikálím slova smyslu jedotkou bezrozměrou (vziká jako podíl dvou délek ). V matematice se většiou vyechává a velikost úhlu se tak udává je reálým číslem. Také my budeme tuto jedotku výslově zapisovat pouze výjimečě. Budeme-li chtít zdůrazit, že velikost úhlu α je zadáa v radiáech, budeme psát arc α ( arcus alfa ). Převod stupňů a radiáy a aopak: Uvažujme jedotkovou kružici. Ta má délku l =. Plý úhel má tedy velikost radiáů. Zároveň je zřejmé, že teto plý úhel je součtem čtyř pravých úhlů a ve stupňové míře má tedy velikost α = 4 9 = 6. Je tedy rad = 6. Velikost úhlu v radiáech (ozačme arc α ) je přímo úměrá velikosti úhlu ve stupích (ozačme α ): 6... α... arc α α arc α 8 arc α α = 6 α = arc α = α α arc α = arc α =

17 Příklady: 8 ) arc = =,7... rad ) arc 8 = =,4... rad , ) arc 4 ' = arc 4, =, rad ) rad = = 7,9 78 = 7 7'4'' Velikosti ěkterých úhlů se ve výpočtech vyskytují velmi často, proto je dobré si je rychle uvědomit: stupě radiáy 6 4 Orietovaý úhel: Orietovaým úhlem v roviě rozumíme uspořádaou dvojici polopřímek se společým počátkem. Prví z polopřímek je počátečí rameo, druhá kocové rameo, společý počátek polopřímek pak vrchol orietovaého úhlu. Orietovaý úhel AVB budeme začit AVB. Vzhledem k tomu, že rozlišujeme počátečí a kocové rameo orietovaého úhlu, je AVB BVA. Velikost orietovaého úhlu AVB azýváme každé reálé číslo α + k ; k (v obloukové míře) popř. α + k 6 ; k (ve stupňové míře), kde α (popř. α ) určíme takto: a) Je-li VA = VB, je α = (popř. α = ) b) Je-li VA VB, je α ( α ) velikost eorietovaého úhlu, který vzike otáčeím počátečího ramee VA do polohy kocového ramee VB, a to proti směru chodu hodiových ručiček v obloukové (ve stupňové) míře. Směr proti směru chodu hodiových ručiček považujeme za kladý. Velikost α ( α ) azýváme základí velikostí orietovaého úhlu. Další velikosti α + k ( α + k 6 ) si můžeme představit jako polohu kocového ramee VB po k otáčkách..8 Goiometrické fukce Uvažujme kartézskou souřadou soustavu O ; ; s počátkem O. Ozačme J obraz jedičky a ose. Dále libovolý orietovaý úhel s vrcholem O, počátečím rameem OJ a velikostí (v obloukové míře). Sestrojme jedotkovou kružici k (tj. kružici o poloměru r = ) se středem v bodě O. Ozačme M = [ m; m] průsečík této kružice s kocovým rameem orietovaého úhlu. Pro každé pak můžeme defiovat fukci 96

18 sius: si = m pro každé ; H( f ) = ;, kosius: cos = m pro každé ; H( f ) = ;. Dále defiujeme tages: si tg = cos pro každé { k + } ( ) ; H( f ) =, k cos kotages: cotg = si pro každé { k} ; H( f ) =. k Přímo z defiice pro každé plye: a tedy si cos + =, si cos =, cos si =. Zaméka hodot goiometrických fukcí kvadrat I II III IV iterval ; ; ; ; si + + cos + + tg + + cotg

19 Důležité hodoty goiometrických fukcí 6 4 si cos tg edef edef cotg edef edef edef Dále je cotg cos si si tg k cos si( ) = cos + ; cos( ) si = + Fukce sius je lichá si = si( ) kosius sudá cos = cos( ) tages lichá tg = tg( ) kotages lichá cot g = cot g( ) = = = pro každé { k } V zápisu dalších vlastostí budeme potřebovat dvě hodoty ezávisle proměé. Abychom emuseli používat idey (apř. při ozačeí ; ) ebo aby edocházelo k záměě se 98

20 závisle proměou (apř. při začeí ; y ), budeme argumety goiometrických fukcí ozačovat řeckými písmey ( α, β...) tak, jak je to obvyklé v řadě aplikací. Odvoďme ěkteré další vlastosti, které záme ze středí školy: V kapitole 7. zopakujeme, že pro skalárí souči dvou vektorů u = ( u; u) ; v = ( v; v) platí: u v = u v cosϕ = = uv + uv. Speciálě pro vektory o souřadicích u = (cos α;si α) ; v = (cos β;si β ), které mají jedotkovou velikost a které svírají úhel α β, pak dostáváme u v = cos( α β) = cosαcosβ + siαsiβ, tedy cos( α β) = cosαcos β + siαsi β Dosadíme-li za β hodotu β, máme cos[ α ( β)] = cos( α + β) = cosαcos( β) + siαsi( β). Protože cos( β ) = cos β; si( β) = si( β), máme cos( α + β) = cosαcos β siαsi β. Dále využijeme vlastosti si( ) = cos + pro = α + β : si( α + β) = cos ( α + β) + = cos α + + β = cos α + cos β + si α + si β Protože však cos α + = siα a si α + = cosα, je si( α + β) = siαcos β + cosαsi β. Dosadíme-li za β hodotu β, máme si( α β) = siαcos( β) + cosαsi( β), tedy si( α β) = siαcos β cosαsi β Sečtěme vzorce pro si( α + β ) a si( α β ) si( α + β) + si( α β) = siαcos β α + β α β a dosaďme za α a za β : α + β α β α + β α β α + β α β si + + si = si cos, α + β α β tedy siα + si β = si cos. Podobě odečteím těchto vzorců dostaeme α + β α β siα si β = cos si. Ze vzorců pro cos( α + β ) a cos( α β ) podobě dostaeme: α + β α β cosα + cos β = cos cos ; α + β α β cosα cos β = si si. Položíme-li α = β, dostáváme ze vzorce pro si( α + β ) : si( α + α) = siαcosα + cosαsiα, 99

21 tedy si α = siαcosα. Podobě ze vzorce pro cos( α + β ) cos( α + α) = cosαcosα siαsiα α α α cos = cos si. α Dosadíme-li do vzorce pro cos α za α hodotu, dostaeme α α α α cos = cosα = cos si = si, α si tedy Koečě α α cosα α cosα cosα = si si = si =. α α cosα + cosα α + cosα cos = si = = cos =. Shrňme tedy ejdůležitější vztahy mezi fukcemi sius a kosius: si α = siαcosα α = α α cos cos si α cosα si = α + cosα cos = si( α + β) = siαcos β + cosαsi β cos( α + β) = cosαcos β siαsi β si( α β) = siαcos β cosαsi β cos( α β) = cosαcos β + siαsi β α + β α β siα + si β = si cos α + β α β siα si β = cos si α + β α β cosα + cos β = cos cos α + β α β cosα cos β = si si Příklady: Upravme výrazy ) v v v v + = v v v + v v+ = cos si ( ) si( )cos( ) cos si( )si( ) si cos = cos v( si v)( si v) + si vcos v+ = cos vsi v+ si vcos v+ = (si vcos v+ ) ) si z cos z+ si z cos z ( + tg z)cos z = + cos z cos z = = = cos z cos z cos z + = + = + = sicos+ = tg + cotg si cos si + cos + cos si si cos ) = si cos + si + cos = (si + cos ) = si + cos

22 4) ) (si b cos b) (si b cos b) + + = si b si b cosb cos b si b si b cosb cos b si b cos b = = + = si d si d si d( + cos d) + si d( cos d) + = = cos d + cos d ( cos d)( + cos d) si d( + cos d + cos d) si d = = = cos d si d si d si v si vcosv si vcosv si v tg v + cos v = si v+ cos v+ cos v si v = cos v = cos v = 6) si z+ si z si z+ si zcos z si z( + cos z) = = = + cosz+ cosz si z+ cos z+ cos z+ cos z si z cos z+ cos z si z( + cos z) si z = = = tg z cos z(+ cos z) cosz 7) 8) 9) cosα + cosα cos α cos α α α 4 si si cos α = = = = tgα = + cosα cosα cosα cosα cosα α α cos si α si cos si lépe : subst = : = = tg = tgα cos si cos cos( α + β) + cos( α β) cosαcos β siαsi β + cosαcos β + siαsi β = = cos( α + β) cos( α β) cosαcos β siαsi β cosαcos β siαsi β = cosα cosβ cotgαcotgβ siαsiβ = cos( α + β) + cos( α β) cos + cos y Nebo: subst. α + β = ; α β = y : = = cos( α + β) cos( α β) cos cos y + y y cos cos cosαcos β = = = cotgαcotgβ + y y si si siαsi β ) si + si + si + si 7 (si 7+ si ) + (si + si ) = = cos + cos+ cos+ cos 7 (cos 7+ cos ) + (cos+ cos ) si cos + si cos = = cos cos + cos cos si 4 cos + si 4 cos si 4 (cos + cos ) = = = tg4 cos 4 cos + cos 4 cos cos 4 (cos + cos ) Bez výpočtu t určeme hodoty zbývajících goiometrických fukcí, víme-li, že t ; :

23 ) 4 cost = si t = = = = 9 9 sit si t = tgt = = = = cost cotgt = = tgt ) tgt =,8 : Je zřejmě cotgt = tgt =,8 = 4. Připomeňme, že t ;. Dále je tedy: Neřešeé úlohy: Upravte: tgt =,8 si t =,8 cost si t =,8 si t si t =,64 si t si t =,64,64si t =,64 si t =, 64 6, 64si, 64 si t = si t = = = t cost = si cost = cost = cost = 6 4 cost = cost = 4 cost = 4 4 cost = 4 t ) cos( u)cosu si usi( u) si p ) + cos p ) + +tg +cotg 4) si a si acos a ) + si c + si c si f si g 6) cos f cos g cos u 7) si u+ cosu 8) + cos t sit α cos 9) α α si + cos 4 4 α (ávod: subst. = )

24 si( α + β) + si( α β) ) si( α + β) si( α β) si + si 4+ si 6+ si8 ) cos + cos 4+ cos 6+ cos8 ) cos( + z)si + cos + z si si z cos si si( + z) ) Bez výpočtu r určete hodoty zbývajících goiometrických fukcí, víte-li, že r ; : a) si r =.4 b) cos r =. c) tg. r = d) 8 cotg r = Výsledky: ) ) cos p ) 4) si a ) 6) 7) cosu si u 8) cotg t 9) cos c α α si + cos ) tgαcotgβ ) tg ) ) a) cos r = ; tg r = ; cotg r = b) si r = ; tg r = ; cotg r = c) si r = ; cos r = ; cotg r = d) si r = ; cos r = ; tg r = Goiometrické rovice Goiometrická rovice je každá rovice, v íž se ezámá vyskytuje v goiometrických výrazech. Nejjedodušší jsou rovice tvaru si = a ; cos = a ; tg = a ; cot g = a. Perioda siu a kosiu je. Určíme tedy ejdříve všecha řešeí a itervalu ; ) a ke každému řešeí připojíme periodu k; k. Perioda fukcí tages a kotages je. U těchto fukcí určíme všecha řešeí a itervalu ; ) a ke každému řešeí připojíme periodu k ; k.. Příklad: Řešme goiometrickou rovici si = Řešeí: Určíme kořey v itervalu ; ), a to buď pomocí jedotkové kružice (viz připojeý obrázek) ebo pomocí grafu fukce sius. Fukce sius je kladá v I. a II. kvadratu, tj. = ; 6 = = =. K oběma řešeím je třeba 6 6 připojit periodu, tj. = + k ; k, 6 = + k; k. 6. Příklad: Řešme goiometrickou rovici cos =. Řešeí: Opět určíme ejprve kořey v itervalu ; ). Hodota fukce kosius má být záporá. V tom případě je výhodé vyjít z řešeí rovice

25 cosα = α =, které zakreslíme buď do jedotkové kružice ebo do grafu kosiu. Fukce kosius je záporá ve II. a III. kvadratu, tj. = α = = (II. kvadrat) 4 a = + α = + = (III. kvadrat). K oběma řešeím opět připojíme periodu, tj. = + k; k, 4 = + k; k. Pozor! V přijímacích testech se občas objevují rovice typu si =, resp. cos = apod. Tyto rovice studeti často zaměňují s rovicemi si =, resp. cos( ) = a uvádějí řešeí =, resp. = ( popř. = + k, resp. = + k ). Obor hodot fukce sius i kosius je H( f ) = ; a ; ; ;. Rovice si = ; cos = proto emají řešeí. V rovicích typu si f ( ) = a; cos f ( ) = a; tg f ( ) = a; cot g f ( ) = a zavádíme substituci f ( ) = z, čímž tyto rovice převedeme a předchozí případ.. Příklad: Řešme rovici tg 4 =. Řešeí: Zavedeme substituci 4 = z a řešíme ejdříve rovici tg z =. Je-li tg α =, pak v I. kvadratu je α =. Fukce tages má periodu a je záporá ve druhém kvadratu. Převodem hodoty α = do II. kvadratu po vzoru předchozích příkladů a připojeím periody je z = + k. V použité substituci tedy je 4 = + k 4 = + + k 4= + k k =

26 Složitější rovice lze často vhodou substitucí převést a rovice algebraické. Pokud se v rovici vyskytuje více goiometrických fukcí, převádíme je a fukci jediou. 4si cos 4. Příklad: Řešme rovici. Příklad: Řešme rovici + = si cos + si = si cos Řešeí: Řešeí: 4si cos si cos + si = + = si cos si + si + si = 4si cos si si + si = + = sicos cos subst. si = y si cos si y + y = + = si cos cos cos y = ; y =. si cos si = si cos si cos si = si cos Návratem k použité substituci se řešeí rozpade a dva případy: si cos si = cos si = cos + si si = = + k, si = si = = + k 6 = +k = + k. 6 = + k. 4 Neřešeé úlohy: Řešte rovice: ) cos = ) tg = ) cot g= 4) si = ) si = si 6 6) cos = cos 7) + si = si 8) tg + = + tg 9) cos = + cos ) 4cos + 4cos = ) si + si = ) cotg + 4cos = ) si + si = tg 4) si + si si = Výsledky: 7 ) = + k ; = + k ) = + k ) = + k 4) = + k ) = + k ; = + k 6) = + k ; = + k 7) = + k ; = + k 8) = + k 9) = + k ; = + k ) = + k ; 6

1. Číselné obory, dělitelnost, výrazy

1. Číselné obory, dělitelnost, výrazy 1. Číselé obory, dělitelost, výrazy 1. obor přirozeých čísel - vyjadřující počet prvků možiy - začíme (jsou to kladá edesetiá čísla) 2. obor celých čísel - možia celých čísel = edesetiá, ale kladá i záporá

Více

6. Posloupnosti a jejich limity, řady

6. Posloupnosti a jejich limity, řady Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme

Více

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D.

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D. MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ PH.D. Obsah MNOŽINY.... ČÍSELNÉ MNOŽINY.... OPERACE S MNOŽINAMI... ALGEBRAICKÉ VÝRAZY... 6. OPERACE S JEDNOČLENY A MNOHOČLENY...

Více

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce MATEMATICKÁ INDUKCE ALEŠ NEKVINDA. Pricip matematické idukce Nechť V ) je ějaká vlastost přirozeých čísel, apř. + je dělitelé dvěma či < atd. Máme dokázat tvrzeí typu Pro každé N platí V ). Jeda možost

Více

1.3. POLYNOMY. V této kapitole se dozvíte:

1.3. POLYNOMY. V této kapitole se dozvíte: 1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde POLYNOM Zákldí pojmy Polyomem stupě zveme fukci tvru y ( L +, P + + + + kde,,, R,, N Čísl,,, se zývjí koeficiety polyomu Číslo c zveme kořeem polyomu P(, je-li P(c výrz (-c pk zýváme kořeový čiitel Vlstosti

Více

Základní požadavky a pravidla měření

Základní požadavky a pravidla měření Základí požadavky a pravidla měřeí Základí požadavky pro správé měřeí jsou: bezpečost práce teoretické a praktické zalosti získaé přípravou a měřeí přesost a spolehlivost měřeí optimálí orgaizace průběhu

Více

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Úloha obchodího cestujícího OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Nejprve k pojmům používaým v okružích a rozvozích úlohách: HAMILTONŮV CYKLUS je typ cesty,

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

1 Trochu o kritériích dělitelnosti

1 Trochu o kritériích dělitelnosti Meu: Úloha č.1 Dělitelost a prvočísla Mirko Rokyta, KMA MFF UK Praha Jaov, 12.10.2013 Růzé dělitelosti, třeba 11 a 7 (aeb Jak zfalšovat rodé číslo). Prvočísla: které je ejlepší, které je ejvětší a jak

Více

1. K o m b i n a t o r i k a

1. K o m b i n a t o r i k a . K o m b i a t o r i k a V teorii pravděpodobosti a statistice budeme studovat míru výskytu -pravděpodobostvýsledků procesů, které mají áhodý charakter, t.j. při opakováí za stejých podmíek se objevují

Více

ŘADY Jiří Bouchala a Petr Vodstrčil

ŘADY Jiří Bouchala a Petr Vodstrčil ŘADY Jiří Bouchala a Petr Vodstrčil Text byl vytvoře v rámci realizace projektu Matematika pro ižeýry 2. století (reg. č. CZ..07/2.2.00/07.0332), a kterém se společě podílela Vysoká škola báňská Techická

Více

SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU

SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU Matematické modelováí (KMA/MM Téma: Model pohybu mraveců Zdeěk Hazal (A8N18P, zhazal@sezam.cz 8/9 Obor: FAV-AVIN-FIS 1. ÚVOD Model byl převzat z kihy Spojité modely v biologii

Více

Číselné řady. 1 m 1. 1 n a. m=2. n=1

Číselné řady. 1 m 1. 1 n a. m=2. n=1 Číselé řady Úvod U řad budeme řešit dva typy úloh: alezeí součtu a kovergeci. Nalezeí součtu (v případě, že řada koverguje) je obecě mohem těžší, elemetárě lze sečíst pouze ěkolik málo typů řad. Součet

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

9.1.12 Permutace s opakováním

9.1.12 Permutace s opakováním 9.. Permutace s opakováím Předpoklady: 905, 9 Pedagogická pozámka: Pokud echáte studety počítat samostatě příklad 9 vyjde tato hodia a skoro 80 miut. Uvažuji o tom, že hodiu doplím a rozdělím a dvě. Př.

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1 Matice Matice Maticí typu m/ kde m N azýváme m reálých čísel a sestaveých do m řádků a sloupců ve tvaru a a a a a a M M am am am Prví idex i začí řádek a druhý idex j sloupec ve kterém prvek a leží Prvky

Více

Geometrická optika. Zákon odrazu a lomu světla

Geometrická optika. Zákon odrazu a lomu světla Geometrická optika Je auka o optickém zobrazováí. Je vybudováa a 4 zákoech, které vyplyuly z pozorováí a ke kterým epotřebujeme zalosti o podstatě světla: ) přímočaré šířeí světla (paprsky) ) ezávislost

Více

Matematika I. Název studijního programu. RNDr. Jaroslav Krieg. 2014 České Budějovice

Matematika I. Název studijního programu. RNDr. Jaroslav Krieg. 2014 České Budějovice Matematika I Název studijího programu RNDr. Jaroslav Krieg 2014 České Budějovice 1 Teto učebí materiál vzikl v rámci projektu "Itegrace a podpora studetů se specifickými vzdělávacími potřebami a Vysoké

Více

IAJCE Přednáška č. 12

IAJCE Přednáška č. 12 Složitost je úvod do problematiky Úvod praktická realizace algoritmu = omezeí zejméa: o časem o velikostí paměti složitost = vztah daého algoritmu k daým prostředkům: časová složitost každé možiě vstupích

Více

3.1 OBSAHY ROVINNÝCH ÚTVARŮ

3.1 OBSAHY ROVINNÝCH ÚTVARŮ 3 OBSAHY ROVINNÝCH ÚTVARŮ Představa obsahu roviého obrazce byla pro lidi důležitá od pradávých dob ať již se jedalo o velikost a přeměu polí či apříklad rozměry základů obydlí Úlohy a výpočet obsahu základích

Více

Posloupnosti a číselné řady. n + 1. n + 1 + n n + 1 + n. n n + 1 + n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b 2 + + b n) = 1 b

Posloupnosti a číselné řady. n + 1. n + 1 + n n + 1 + n. n n + 1 + n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b 2 + + b n) = 1 b Najděte itu Poslouposti a číselé řady ) + Protože + = + x ) + + =, je + + + + ) + = = 0 + + Najděte itu 3 si! + Protože je si! a 3 = 0, je 3 si! = 0 Najděte itu + a + a + + a + b + b, a

Více

Zformulujme PMI nyní přesně (v duchu výrokové logiky jiný kurz tohoto webu):

Zformulujme PMI nyní přesně (v duchu výrokové logiky jiný kurz tohoto webu): Pricip matematické idukce PMI) se systematicky probírá v jié části středoškolské matematiky. a tomto místě je zařaze z důvodu opakováí matka moudrosti) a proto, abychom ji mohli bez uzarděí použít při

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu.

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu. 2. URČITÝ INTEGRÁL 2. Určitý itegrál Průvodce studiem V předcházející kapitole jsme se sezámili s pojmem eurčitý itegrál, který daé fukci přiřazoval opět fukci (přesěji možiu fukcí). V této kapitole se

Více

9.1.13 Permutace s opakováním

9.1.13 Permutace s opakováním 93 Permutace s opakováím Předpoklady: 906, 9 Pedagogická pozámka: Obsah hodiy přesahuje 45 miut, pokud emáte k dispozici další půlhodiu, musíte žáky echat projít posledí dva příklady doma Př : Urči kolik

Více

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení.,

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení., Def: Vetorovým součiem vetorů u =(u, u, u 3 ) v = (v, v, v 3 ) zýváme vetor u v = (u v 3 u 3 v, u 3 v u v 3, u v u v ) Vět: Pro vetory i, j, ortoormálí báze pltí i i = j = i, i = j Vět: Nechť u v, w, jsou

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

Diskrétní matematika

Diskrétní matematika Diskrétí matematika Biárí relace, zobrazeí, Teorie grafů, Teorie pravděpodobosti Diskrétí matematika látka z I semestru iformatiky MFF UK Zpracovali: Odřej Keddie Profat, Ja Zaatar Štětia Obsah Biárí relace2

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

8. Základy statistiky. 8.1 Statistický soubor

8. Základy statistiky. 8.1 Statistický soubor 8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě

Více

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATED RA F YZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméo TUREČEK Daiel Datum měřeí 8.11.2006 Stud. rok 2006/2007 Ročík 2. Datum odevzdáí 15.11.2006 Stud.

Více

Téma 11 Prostorová soustava sil

Téma 11 Prostorová soustava sil Stavebí statka,.ročík bakalářského studa Téma Prostorová soustava sl Prostorový svazek sl Statcký momet síly a dvojce sl v prostoru Obecá prostorová soustava sl Prostorová soustava rovoběžých sl Katedra

Více

DISKRÉTNÍ MATEMATIKA PRO INFORMATIKY

DISKRÉTNÍ MATEMATIKA PRO INFORMATIKY DISKRÉTNÍ MATEMATIKA PRO INFORMATIKY URČENO PRO VZDĚLÁVÁNÍ V AKREDITOVANÝCH STUDIJNÍCH PROGRAMECH IVAN KŘIVÝ ČÍSLO OPERAČNÍHO PROGRAMU: CZ..07 NÁZEV OPERAČNÍHO PROGRAMU: VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST

Více

Tržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c t tedy platí c t = c t + ε t.

Tržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c t tedy platí c t = c t + ε t. Techická aalýza Techická aalýza z vývoje cey a obchodovaých objemů akcie odvozuje odhad budoucího vývoje cey. Dalšími metodami odhadu vývoje ce akcií jsou apř. fudametálí aalýza (zkoumá podrobě účetictví

Více

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR Ze serveru www.czso.cz jsme sledovali sklizeň obilovi v ČR. Sklizeň z ěkolika posledích let jsme vložili do tabulky 10.10. V kapitole 7. Idexy

Více

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus Podklady předmětu pro akademický rok 006007 Radim Faraa Obsah Tvorba algoritmů, vlastosti algoritmu. Popis algoritmů, vývojové diagramy, strukturogramy. Hodoceí složitosti algoritmů, vypočitatelost, časová

Více

VLASTNOSTI ÚLOH CELOČÍSELNÉHO PROGRAMOVÁNÍ

VLASTNOSTI ÚLOH CELOČÍSELNÉHO PROGRAMOVÁNÍ Vlastosti úloh celočíselého programováí VLASTNOSTI ÚLOH CELOČÍSELNÉHO PROGRAMOVÁNÍ PRINCIP ZESILOVÁNÍ NEROVNOSTÍ A ZÁKLADNÍ METODY. METODA VĚTVENÍ A HRANIC. TYPY ÚLOH 1. Úloha lieárího programováí: max{c

Více

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly.

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly. 0. KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Dovedosti :. Chápat pojem faktoriál a ovládat operace s faktoriály.. Zát defiici kombiačího čísla a základí vlastosti kombiačích čísel. Ovládat jedoduché operace

Více

ZÁKLADY DISKRÉTNÍ MATEMATIKY

ZÁKLADY DISKRÉTNÍ MATEMATIKY ZÁKLADY DISKRÉTNÍ MATEMATIKY Michael Kubesa Text byl vytvoře v rámci realizace projektu Matematika pro ižeýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), a kterém se společě podílela Vysoká škola báňská

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení Odhad parametru p biomického rozděleí a test hypotézy o tomto parametru Test hypotézy o parametru p biomického rozděleí Motivačí úloha Předpokládejme, že v důsledku realizace jistého áhodého pokusu P dochází

Více

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava-

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava- Okruhy z učiv středoškolské mtemtiky pro příprvu ke studiu VŠB TU Ostrv- I Zákldí poztky z logistiky teorie moži: výrok prvdivostí hodot výroku, egce, disjukce, kojukce, implikce, ekvivlece, složeé výroky,

Více

Cvičení z termomechaniky Cvičení 5.

Cvičení z termomechaniky Cvičení 5. Příklad V kompresoru je kotiuálě stlačová objemový tok vzduchu [m 3.s- ] o teplotě 20 [ C] a tlaku 0, [MPa] a tlak 0,7 [MPa]. Vypočtěte objemový tok vzduchu vystupujícího z kompresoru, jeho teplotu a příko

Více

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel. 5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených

Více

6. KOMBINATORIKA 181. 6.1. Základní pojmy 181 6.1.1. Počítání s faktoriály a kombinačními čísly 182. 6.2. Variace 184. 6.3.

6. KOMBINATORIKA 181. 6.1. Základní pojmy 181 6.1.1. Počítání s faktoriály a kombinačními čísly 182. 6.2. Variace 184. 6.3. Zálady matematiy Kombiatoria. KOMBINATORIKA 8.. Záladí pojmy 8... Počítáí s fatoriály a ombiačími čísly 8.. Variace 8.. Permutace 85.. Kombiace 87.5. Biomicá věta 89 Úlohy samostatému řešeí 9 Výsledy úloh

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

GRADIENTNÍ OPTICKÉ PRVKY Gradient Index Optical Components

GRADIENTNÍ OPTICKÉ PRVKY Gradient Index Optical Components Nové metody a postupy v oblasti přístrojové techiky, automatického řízeí a iformatiky Ústav přístrojové a řídicí techiky ČVUT v Praze, odbor přesé mechaiky a optiky Techická 4, 66 7 Praha 6 GRADIENTNÍ

Více

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb:

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb: ruhlář Michal 8.. 5 Laboratorí práce č. Úloha č. 9 Polarizace světla a Browův pohyb: ϕ p, C 4% 97,kPa Úkol: - Staovte polarizačí schopost daého polaroidu - Určete polarimetrem úhel stočeí kmitavé roviy

Více

Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců.

Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců. 8..4 Užití ritmetických posloupostí Předpokldy: 80,80 Př. : S hloubkou roste teplot Země přibližě rovoměrě o 0 C 000 m. Jká bude teplot dě dolu hlubokého 900 m, je-li v hloubce 5 m teplot 9 C? Jký by byl

Více

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika)

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika) Kvatová a statistická fyzika (Termodyamika a statistická fyzika) Boltzmaovo - Gibbsovo rozděleí - ilustračí příklad Pro ilustraci odvozeí rozděleí eergií v kaoickém asámblu uvažujme ásledující příklad.

Více

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ČÍSELNÉ OBORY vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z mtemtiky školí rok 204/205

Více

z možností, jak tuto veličinu charakterizovat, je určit součet

z možností, jak tuto veličinu charakterizovat, je určit součet 6 Charakteristiky áhodé veličiy. Nejdůležitější diskrétí a spojitá rozděleí. 6.1. Číselé charakteristiky áhodé veličiy 6.1.1. Středí hodota Uvažujme ejprve diskrétí áhodou veličiu X s rozděleím {x }, {p

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Náhodá veličia Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 45/004. Náhodá veličia Většia áhodých pokusů má jako výsledky reálá čísla. Budeme tedy dále áhodou veličiou rozumět proměou, která

Více

STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ 30, p. o. MATEMATIKA

STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ 30, p. o. MATEMATIKA STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ, p. o. MATEMATIKA Ig. Rudolf PŠENICA 6 OBSAH:. SHRNUTÍ A PROHLOUBENÍ UČIVA... 5.. Zákldí možiové pojmy... 5.. Číselé možiy... 6.. Itervly... 6.. Absolutí

Více

4.5.9 Vznik střídavého proudu

4.5.9 Vznik střídavého proudu 4.5.9 Vzik střídavého proudu Předpoklady: 4508 Miulá hodia: Pokud se v uzavřeém závitu měí magetický idukčí tok, idukuje se v ěm elektrické apětí =. Př. 1: Vodorově orietovaá smyčka se pohybuje rovoměrě

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzta Karlova v Praze Pedagogcká fakulta SEMINÁRNÍ PRÁCE Z OBECNÉ ALGEBRY DĚLITELNOST CELÝCH ČÍSEL V SOUSTAVÁCH O RŮZNÝCH ZÁKLADECH / Cfrk C. Zadáí: Najděte pět krtérí pro děltelost v jých soustavách

Více

FINANČNÍ MATEMATIKA SBÍRKA ÚLOH

FINANČNÍ MATEMATIKA SBÍRKA ÚLOH FINANČNÍ MATEMATIKA SBÍRKA ÚLOH Zpracováo v rámci projektu " Vzděláváí pro kokureceschopost - kokureceschopost pro Třeboňsko", registračí číslo CZ.1.07/1.1.10/02.0063 Gymázium, Třeboň, Na Sadech 308 Autor:

Více

Jestliže nějaký objekt A můžeme vybrat m způsoby a jiný objekt B lze vybrat n způsoby, potom výběr buď A nebo B je možné provést m+n způsoby.

Jestliže nějaký objekt A můžeme vybrat m způsoby a jiný objekt B lze vybrat n způsoby, potom výběr buď A nebo B je možné provést m+n způsoby. V kapitole Ituitiví kobiatorika jse řešili příklady více éě stejý způsobe a stejých pricipech. Nyí si je zobecíe a adefiujee obvyklou teriologii. pravidlo součtu: Jestliže ějaký objekt A ůžee vybrat způsoby

Více

!!! V uvedených vzorcích se vyskytují čísla n a k tato čísla musí být z oboru čísel přirozených.

!!! V uvedených vzorcích se vyskytují čísla n a k tato čísla musí být z oboru čísel přirozených. Kombiatoria Kombiatoria část matematiy, terá se zabývá růzými číselými "ombiacemi". Využití - apř při hledáí počtu možých tipů ve sportce ebo jiých soutěžích hrách, v chemii při spojováí moleul... Záladím

Více

Matematicko-fyzikální fakulta Univerzita Karlova. Diplomová práce. Renata Sikorová

Matematicko-fyzikální fakulta Univerzita Karlova. Diplomová práce. Renata Sikorová Matematicko-fyzikálí fakulta Uiverzita Karlova Diplomová práce e Reata Sikorová Obor: Učitelství matematika - fyzika Katedra didaktiky matematiky Vedoucí práce: RNDr. Jiří Kottas, CSc. i Prohlašuji, že

Více

β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra:

β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra: GONIOMETRIE Veliost úhlu v oblouové a stupňové míře: Stupňová míra: Jednota (stupeň) 60 600 jeden stupeň 60 minut 600 vteřin Př. 5,4 5 4 0,4 0,4 60 4 Oblouová míra: Jednota radián radián je veliost taového

Více

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová, E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................

Více

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti 1 Základí statistické zpracováí dat 1.1 Základí pojmy Populace (základí soubor) je soubor objektů (statistických jedotek), který je vymeze jejich výčtem ebo charakterizací jejich vlastostí, může být proto

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

Jednotkou tepla je jednotka energie, tj. 1 Joule (J). Z definice dále plyne, že jednotkou tepelného toku je 1 J/s ( neboli 1 W )

Jednotkou tepla je jednotka energie, tj. 1 Joule (J). Z definice dále plyne, že jednotkou tepelného toku je 1 J/s ( neboli 1 W ) 5. Sdíleí tepla. pomy: Pomem tepelá eergie ozačueme eergii mikroskopického pohybu částic (traslačího, rotačího, vibračího). Měřitelou mírou této eergie e teplota. Teplo e část vitří eergie, která samovolě

Více

20. Eukleidovský prostor

20. Eukleidovský prostor 20 Eukleidovský prostor V této kapitole budeme pokračovat ve studiu dalších vlastostí afiích prostorů avšak s tím rozdílem že místo obecého vektorového prostoru budeme uvažovat prostor uitárí Proto bude

Více

1. Definice elektrického pohonu 1.1 Specifikace pohonu podle typu poháněného pracovního stroje 1.1.1 Rychlost pracovního mechanismu

1. Definice elektrického pohonu 1.1 Specifikace pohonu podle typu poháněného pracovního stroje 1.1.1 Rychlost pracovního mechanismu 1. Defiice elektrického pohou Pod pojmem elektrický poho rozumíme soubor elektromechaických vazeb a vztahů mezi pracovím mechaismem a elektromechaickou soustavou. Mezi základí tři části elektrického pohou

Více

1. Nakreslete všechny kostry následujících grafů: nemá žádnou kostru, roven. roven n,

1. Nakreslete všechny kostry následujících grafů: nemá žádnou kostru, roven. roven n, DSM2 Cv 7 Kostry grafů Defiice kostry grafu: Nechť G = V, E je souvislý graf. Kostrou grafu G azýváme každý jeho podgraf, který má stejou možiu vrcholů a je zároveň stromem. 1. Nakreslete všechy kostry

Více

Pojem času ve finančním rozhodování podniku

Pojem času ve finančním rozhodování podniku Pojem času ve fiačím rozhodováí podiku 1.1. Výzam faktoru času a základí metody jeho vyjádřeí Fiačí rozhodováí podiku je ovlivěo časem. Peěží prostředky získaé des mají větší hodotu ež tytéž peíze získaé

Více

Posloupnosti na střední škole Bakalářská práce

Posloupnosti na střední škole Bakalářská práce MASARYKOVA UNIVERZITA V BRNĚ Přírodovědecká fkult Ktedr mtemtiky Poslouposti středí škole Bklářská práce Bro 00 Kteři Rábová Prohlášeí Prohlšuji, že tto bklářská práce je mým původím utorským dílem, které

Více

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti.

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti. Mtemtik II 5 Fzikálí plikce 5 Fzikálí plikce Cíle Sezámíte se s použitím určitého itegrálu při výpočtu hmotosti, sttických mometů, souřdic těžiště mometů setrvčosti Předpokládé zlosti Předpokládáme, že

Více

3 - Póly, nuly a odezvy

3 - Póly, nuly a odezvy 3 - Póly, uly a odezvy Michael Šebek Automatické řízeí 5 3--5 Automatické řízeí - Kyberetika a robotika Póly přeosu jsou kořey jmeovatele pro gs () = bs () as () jsou to komplexí čísla si: as ( i) = pokud

Více

2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl:

2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl: KVINTA úlohy k opakování 1. Jsou dány množiny: = {xr; x - 9 5} B = {xr; 1 - x } a) zapište dané množiny pomocí intervalů b) stanovte A B, A B, A - B, B A. Zapište daná racionální čísla ve tvaru zlomku

Více

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují

Více

Základní pojmy kombinatoriky

Základní pojmy kombinatoriky Základí pojy kobiatoriky Začee příklade Příklad Máe rozesadit lidí kole kulatého stolu tak, aby dva z ich, osoby A a B, eseděly vedle sebe Kolika způsoby to lze učiit? Pro získáí odpovědi budee potřebovat

Více

IV-1 Energie soustavy bodových nábojů... 2 IV-2 Energie elektrického pole pro náboj rozmístěný obecně na povrchu a uvnitř objemu tělesa...

IV-1 Energie soustavy bodových nábojů... 2 IV-2 Energie elektrického pole pro náboj rozmístěný obecně na povrchu a uvnitř objemu tělesa... IV- Eergie soustavy bodových ábojů... IV- Eergie elektrického pole pro áboj rozmístěý obecě a povrchu a uvitř objemu tělesa... 3 IV-3 Eergie elektrického pole v abitém kodezátoru... 3 IV-4 Eergie elektrostatického

Více

STATISTIKA. Základní pojmy

STATISTIKA. Základní pojmy Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci

Více

Střední průmyslová škola zeměměřická GEODETICKÉ VÝPOČTY. 2. část. Ing. Danuše Mlčková

Střední průmyslová škola zeměměřická GEODETICKÉ VÝPOČTY. 2. část. Ing. Danuše Mlčková Středí průmslová škola zeměměřická GEODETICKÉ VÝPOČTY. část Ig. Dauše Mlčková Úvod Tet avazuje a. část, je urče pro studet. až 4. ročíku středích průmslových škol se zaměřeí a geodézii. Jedá se o přepracovaou

Více

GONIOMETRIE A TRIGONOMETRIE

GONIOMETRIE A TRIGONOMETRIE GONIOMETRIE A TRIGONOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

Vzorcem pro n-tý člen posloupnosti, např.:, Rekurentně zadáním prvního členu a rekurentního vzorce, který vyjadřuje, např.: výčtem prvků graficky

Vzorcem pro n-tý člen posloupnosti, např.:, Rekurentně zadáním prvního členu a rekurentního vzorce, který vyjadřuje, např.: výčtem prvků graficky Posloupnosti Motivace Víš, jaký bude následující člen v řadách 2, 4, 6, 8,? a 2, 4, 8, 16,?? Urči součet řady Jak převedeš číslo na zlomek? 1 Definice posloupnosti Posloupnost je funkce. Definiční obor

Více

1. Základy počtu pravděpodobnosti:

1. Základy počtu pravděpodobnosti: www.cz-milka.et. Základy počtu pravděpodobosti: Přehled pojmů Jev áhodý jev, který v závislosti a áhodě může, ale emusí při uskutečňováí daého komplexu podmíek astat. Náhoda souhr drobých, ezjistitelých

Více

PříkladykecvičenízMMA ZS2013/14

PříkladykecvičenízMMA ZS2013/14 PříkladykecvičeízMMA ZS203/4 (středa, M3, 9:50 :20) Pozámka( ):Pokudebudeuvedeojiakbudemevždypracovatsprostoryadtělesem T= R.Ve všech ostatích případech(tj. při T = C), bude těleso explicitě specifikováo.

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

-1- Finanční matematika. Složené úrokování

-1- Finanční matematika. Složené úrokování -- Fiačí ateatika Složeé úrokováí Při složeé úročeí se úroky přičítají k počátečíu kapitálu ( k poskytutí úvěru, k uložeéu vkladu ) a společě s í se úročí. Vzorec pro kapitál K po letech při složeé úročeí

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta B)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta B) Přijímací řízeí pro akademický rok 24/5 a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata B) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ALGEBRAICKÉ VÝRAZY vtvořil: RNDr. Věr Effeberger epertk olie příprvu SMZ z mtemtik školí rok 04/05

Více

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0. Ukázky typových maturitních příkladů z matematiky..reálná čísla. 3} x R; I. Zobrazte množiny A = {x є 3} < + x R; B = {x є II. Zapište ve tvaru zlomku číslo, 486.Komplexní čísla. I. Určete a + b, a - b,

Více

1.1 Definice a základní pojmy

1.1 Definice a základní pojmy Kaptola. Teore děltelost C. F. Gauss: Matematka je královou všech věd a teore čísel je králova matematky. Základím číselým oborem se kterým budeme v této kaptole pracovat jsou celá čísla a pouze v ěkterých

Více

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications)

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications) Základy datové aalýzy, modelového vývojářství a statistického učeí (Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applicatios) Lukáš Pastorek POZOR: Autor upozorňuje, že se jedá

Více

17. Statistické hypotézy parametrické testy

17. Statistické hypotézy parametrické testy 7. Statistické hypotézy parametrické testy V této části se budeme zabývat statistickými hypotézami, pomocí vyšetřujeme jedotlivé parametry populace. K takovýmto šetřeím většiou využíváme ám již dobře zámé

Více