5 Funkce. jsou si navzájem rovny právě tehdy, když se rovnají jejich.

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "5 Funkce. jsou si navzájem rovny právě tehdy, když se rovnají jejich."

Transkript

1 Fukce. Základí pojmy V kpt.. jsme mluvili o zobrazeí mezi možiami AB., Připomeňme, že se jedá o libovolý předpis, který každému prvku a A přiřadí ejvýše jede prvek b B. Jsou-li A, B číselé možiy, azýváme toto zobrazeí fukcí (zobrazeí jsme v. kapitole ozačovali velkým F, fukci ozačujeme většiou malými písmey f, gh,,...). Ve středoškolské matematice přitom pracujeme s tzv. reálou fukcí jedé reálé proměé (tj. A, B jde o zobrazeí v možiě všech reálých čísel, čísla kompleí euvažujeme). Je-li číslu A fukcí f přiřazeo číslo y B, píšeme [, y] f ebo častěji y = f( ). Číslo azýváme vzor proměá (podroběji ezávisle proměá), číslo y obraz fukčí hodota (popř. závisle proměá). Možiu všech vzorů azýváme defiičím oborem oz. D( f ), možiu všech obrazů oborem hodot fukce f oz. H( f ). Dvě fukce f; f jsou si avzájem rovy právě tehdy, když se rovají jejich defiičí obory [tj. D( f) = D( f) ] a pro každé D( f) = D( f) je f( ) = f( ). Fukce slouží k matematickému vyjádřeí závislosti dvou veliči. Tyto závislosti (fukce) můžeme vyjádřit tabulkou, rovicí ebo grafem. Dříve ež přejdeme k ěkterým příkladům, zopakujme ěkteré důležité pojmy: Pravoúhlou soustavou souřadic v roviě rozumíme dvojici avzájem kolmých číselých os. Jejich průsečík azýváme počátkem souřadé soustavy (začíme obvykle O). Číselé osy azýváme souřadými osami a začíme obvykle, y, přičemž osa je obvykle vodorová orietovaá zleva doprava, osa y svislá orietovaá zdola ahoru. Souřadou soustavu, kde velikost jedotek a obou osách bude stejá, budeme začit Oy,, a azývat kartézskou souřadou soustavou (podle fracouzského filozofa a matematika Reé Descarta lat. Cartesiaus). Souřadé osy rozdělí roviu a čtyři pravé úhly kvadraty. Ty číslujeme většiou římskými číslicemi. Prví kvadrat je ohraiče kladými poloosami, další ásledují v kladém směru proti směru chodu hodiových ručiček. Souřadice bodu v roviě: Každému bodu L v roviě s kartézskou soustavou Oy,, přiřaďme uspořádaou dvojici čísel [, y ] takto: číslo je souřadice paty L kolmice spuštěé z bodu L a osu, číslo y je souřadice paty L kolmice spuštěé z bodu L a osu Moji epřátelé jsou hloupí pseudovědci, kteří se slepě drží Aristotela a které věda zajímá je proto, aby dobře vypadali v talárech a měli za to dobrý plat. Kdyby žil Aristoteles des, byl by prví, kdo by se obrátil proti zaslepecům, kteří stojí a jeho slovech. (Galileo Galilei) 8

2 y (souřadice bodu a přímce viz kpt..4.). Naopak každé uspořádaé dvojici [, y ] reálých čísel přiřadíme bod L takto: Sestrojíme body L = [ ], L = [ y] y, z bodu L vztyčíme kolmici l a osu, z L kolmici l a osu y. Bod L ajdeme pak jako průsečík těchto kolmic, tj. L l l. Říkáme, že bod L má v soustavě Oy,, souřadice [, y ], píšeme L = [, y].. Příklad: Automobil má v ádrži 4 litrů bezíu a spotřebuje 8 litrů a km. Vyjádřete možství bezíu v ádrži jako fukci ujeté vzdáleosti. Řešeí: Zde možství bezíu v ádrži závisí a ujeté vzdáleosti, proto je ujetá vzdáleost ezávisle proměá ( ), možství bezíu v ádrži je pak závisle proměá ( y ). S daým možstvím paliva ujedeme maimálě km, defiičím oborem je tedy možia D( f ) = ;, možství paliva v ádrži může abýt hodot H( f ) = ;4. Tabulka zachycuje ěkteré hodoty ezávisle a závisle proměé, apř: 4 y Rovice y = 4, 8 Graf: Grafem fukce rozumíme možiu všech bodů roviy, jejichž souřadice vyhovují její rovici 8

3 . Vlastosti fukcí Lichá fukce D( f): f( ) = f( ) Sudá fukce D( f): f( ) = f( ) graf je souměrý podle počátku soustavy graf je souměrý podle osy y, apříklad: souřadic, apříklad: f : y = ; D( f ) = ; f : y = ; 4 H( f ) = ; ). D( f ) = ; H( f ) = ; K tomu, aby pro každé D( f) mohlo platit f ( ) = f( ), resp. f ( ) = f( ), musí obě fukčí hodoty f ( ); f( ) eistovat. Pro lichou i sudou fukci musí tedy být [ D( f) ] [ D( f) ]. Samotý defiičí obor liché resp. sudé fukce je souměrý podle počátku, resp. podle osy y. Je-li I D( f ) iterval, pak fukce f () je a tomto itervalu klesající pokud s rostou- cím klesá y, rostoucí pokud s rostoucím roste také y (apř. fukce g : y = je a I = ( ; klesající, a I = ; ) rostoucí), mootoí je fukce, která je buď rostoucí ebo klesající, erostoucí pokud s rostoucím eroste y, eklesající pokud s rostoucím eklesá y. erostoucí : eklesající : = ( ) f : y = ( ) f : y 4 4 8

4 . Elemetárí fukce Přímá úměrost: Je každá fukce a defiovaá rovicí f : y = k ; k {}. Grafem přímé úměrosti je přímka procházející počátkem. Lieárí fukce: Je každá fukce a daá rovicí f : y = k + q; kq ;. V případě k = dostaeme fukci kostatí. Grafem lieárí fukce je přímka, která je růzoběžá s osou y. Nepřímá úměrost: Je každá fukce defiováa rovicí k f : y = ; k ; D( f) = H( f) = {}. Grafem je rovoosá hyperbola (připoje graf pro k = ). Kvadratická fukce: Je každá fukce defiováa rovicí f : y =. Grafem je parabola. D( f ) = ; H( f ) = ; ) 8

5 . Příklad: Z pole o výměře 6 hektarů se sklidilo 68 t cukrovky. Kolik tu by se sklidilo z hektarů, předpokládáme-li stejý hektarový výos? Řešeí: a) Čím větší plochu osejeme, tím více cukrovky sklidíme. Možství cukrovky y je tedy přímo úměré oseté ploše, tedy y = k. Víme, že pro = 6 je y = 68, pro kostatu y 68 k úměrosti dostáváme k = = =. Pro = dostáváme y = k = = 6. 6 Z hektarů by se sklidilo tedy 6 tu cukrovky. Toto řešeí je tzv. řešeí přechodem přes jedotku (kostata úměrosti zde má výzam hektarového výosu, tj. možství cukrovky sklizeého z jedoho hektaru). Úlohu však můžeme řešit také trojčlekou, tj. rovostí dvou poměrů: b) 68 = = = Příklad: Kiha má 6 stra po 4 řádcích. Kolik stra bude mít v ovém vydáí, bude-li a stráce 6 stejě dlouhých řádků? Řešeí: a) Čím kratší budou stráky, tím jich bude více. Počet stra y je tedy epřímo úměrý k jejich délce, tedy y =. Víme, že pro = 4 je y = 6, pro kostatu k úměrosti k 4 dostáváme k = y = 4 6 = 4. Pro = 6 dostáváme y = = = 4. 6 Nové vydáí bude tedy mít 4 stra. I toto řešeí je přechodem přes jedotku. Kostata úměrosti v tomto případě vyjadřuje počet řádků kihy, tedy počet stra v případě, že a každé z ich by byl jediý řádek. Také epřímou úměrost můžeme řešit trojčlekou: b) Proceta a promile: 6 ha...68 t ha... t 4 řádků... 6 stra 6 řádků... stra = = = Speciálí úlohy a přímou úměrost jsou úlohy a proceta a promile. Proceto je jeda setia, promile pak jeda tisícia celku (základu). V těchto úlohách se volí reálé číslo z jako základ (%, popř. ), počet procet, popř. promile p a příslušá část základu č. Na ižších stupích jsme rozlišovali tři typy úloh a proceta: určováí základu, určováí počtu procet a určováí části základu (procetové části). Všechy tyto úlohy jsou však úlohami a přímou úměrost čím větší je počet procet, tím větší je procetová část. 84

6 . Příklad: Chceme získat g pětiprocetího roztoku soli ve vodě. Kolik vody a kolik soli potřebujeme? Řešeí: Určíme apř. možství vody, možství soli pak sado dopočítáme. Pětiprocetí roztok obsahuje 9% vody a % soli: Pro vodu tedy máme: %... g 9 %... g 9 9 = = = 4, K získáí předepsaého roztoku budeme potřebovat 4, g vody a 7, g soli. 4. Příklad: V kolika gramech vody je třeba rozpustit 8 g soli, máme-li získat devítiprocetí roztok? Řešeí: 8 g soli tvoří 9% roztoku, hledaé možství vody pak zbylých 9%: 9 %...8 g 9 %... g = = = K získáí předepsaého roztoku budeme potřebovat 8 g vody..4 Fukce prostá a iverzí V kpt. jsme hovořili o prostém zobrazeí. Pojmem fukce ozačujeme speciálí zobrazeí, kde defiičím oborem i oborem hodot jsou číselé možiy. Tedy: Zobrazeí F (fukce f ) je prosté (prostá) právě tehdy, když každý prvek y jeho (jejího) oboru hodot H( F ) [ H( f )] je obrazem právě jedoho prvku jeho (jejího) defiičího oboru DF ( ) [ D( f )]. U fukcí používáe většiou ásledující ekvivaletí (rovoceou) defiici: Fukce f je prostá právě tehdy, když pro každé ; D( f) ; platí f ( ) f( ). Fukce prostá a mootoí: Často se setkáváme s ázorem, že fukce mootoí a prostá je jedo a totéž. To ovšem eí pravda, jak se přesvědčíme ásledujícím příkladem: 8

7 . Příklad: Sestrojme graf fukce defiovaé takto: 4 pro < f : y = pro 4 Tato fukce je prostá, eboť každá dvě růzá ; mají skutečě dvě růzé fukčí hodoty f ( ); f ( ). Neí však mootoí, eboť a itervalu ( ;) klesá, kdežto a itervalu ; ) roste (viz graf a předchozí straě). Každá mootoí fukce je prostá, ale tuto větu elze obrátit e každá prostá fukce je mootoí. Mootoost fukce je podmíka dostačující k tomu, aby fukce byla prostá, ale eí to podmíka utá. Iverzí fukce: Mějme fukci f : y = f( ) s defiičím oborem D( f ) a oborem hodot H( f ). Tato fukce přiřazuje každému vzoru D( f) právě jede obraz y H( f), pro který je y = f( ). Sestrojme předpis (ozačme ho f ), který aopak každému obrazu y H( f) přiřadí vzor D( f) tak, že = f ( y). Jestliže je původí fukce f prostá, pak předpis f je opět fukcí, tj. každému y H( f) přiřazuje právě jedo D( f). Tuto fukci pak azýváme fukcí iverzí k fukci f. Mějme v kartézské soustavě Oy,, sestroje graf prosté fukce y = f( ). Uvažujme kartézskou souřadou soustavu Oy, ', ' týmž počátkem, kde kladá poloosa ' splye s kladou poloosou y a kladá poloosa y ' splye s kladou poloosou. Pak graf fukce y = f( ) v soustavě Oy,, splye s grafem fukce = f ( y) v soustavě Oy, ', '. Většiou však sestrojujeme graf fukce f v původí soustavě Oy,,, což odpovídá vzájemé záměě proměých ; y. Fukčí předpis platí: = f ( y) pak přejde a tvar y = f ( ). Pro fukci f iverzí k fukci f pak Defiičí obor fukce f se rová oboru hodot fukce f, tj. D( f) = H( f ). Obor hodot fukce f se rová defiičímu oboru fukce f, tj. H( f) = D( f ). Pro každé D( f) H( f = ) a každé y H( f) D( f = ) je y = f( ) f : = f ( y). Grafy fukcí f ; f sestrojeé v téže kartézské souřadé soustavě jsou souměrě sdružeé podle přímky y = (osy I. a III. kvadratu).. Příklad: Sestrojme fukci iverzí k fukci z předchozího příkladu. Řešeí: Protože fukce f je prostá, můžeme iverzí fukci sestrojit. Fukce je defiovaá a možiě D( f ) = ( ;) ; ) =. Pro ( ;) je 4 ( ;), pro ; ) ; ). Oborem hodot fukce f je možia ( ) ( ;) ; ) je 4 iverzí fukci f tak máme: D f = H f =, H f ( ) ( ) H f = =. Pro = D f =. ( ) ( ) Fukčí předpis fukce f získáme záměou proměých ve fukčím předpisu fukce f. Pro ( ;) tedy máme 86

8 4 4 4 f : = y = y = y pro ; ) je y f : = y = 4 y = 4 4 Graf fukce f je souměrý s grafem fukce f podle přímky y = (a obrázku vlevo je graf fukce f sestroje světlejší barvou). Zřejmě pod dojmem představy, že u iverzí fukce je všecho aopak, studeti často tvrdí, že pokud fukce f klesá, fukce f roste a aopak. Ovšem tak tomu eí. Jak je patré už z pohledu a připojeý obrázek, a itervalu ( ;) obě fukce současě klesají a a ; ) obě současě rostou. Platí věty: Fukce Fukce f klesá právě tehdy, když klesá fukce f. f roste právě tehdy, když roste fukce f.. Příklad: Sestrojme iverzí fukci k fukci f : y =. Řešeí: Daá fukce je defiováa a celé možiě, a celém defiičím oboru však eí prostá, eboť apř. f( ) = f() = 4. Pokud tedy chceme iverzí fukci sestrojit, je třeba defiičí obor zúžit tak, aby a tomto zúžeém oboru fukce byla prostá. Fukce f : y = a itervalu ( ; klesá, a ; ) roste, a těchto itervalech je tedy prostá. Lze tedy sestrojit iverzí fukci ke dvěma růzým fukcím, a to k fukci a k fukci f : y = ; D( f ) = ; ). f : y = ; D( f ) = ( ; 87

9 Pro fukci f : y = ; D( f) = ( ; máme H( f ) = ; ). Fukčí předpis fukce k í iverzí je f : = y a je třeba vyjádřit y. Pro číslo y řešíme tedy kvadratickou rovici s parametrem, která má obecě dva růzé reálé kořey y =±. Musíme si ovšem uvědomit, že D( f ) = H( f ) = ; ), tj. číslo je ezáporé); y H( f ) = D( f ) = = ( ; číslo y je ovšem záporé (rovici y = řešíme a itervalu y ( ; ). V tom případě ovšem vyhovuje pouze jedo řešeí, a to y =. Je tedy f y =. Pro fukci f : y = ; D( f) = ; ) je opět H( f ) = ; ). Fukčí předpis fukce f opět vychází z předpisu f : = y, tetokrát ovšem je D( f ) = H( f) = ; ) ( je opět kladé), ale y H( f ) = D( f ) = ; ) ( y je tetokrát kladé), je tedy f y =. : :. Fukce epoeciálí a logaritmická Epoeciálí fukce: Je fukce určeá rovicí f : y = a ; kde a > ; a. Podmíka a > je utá k tomu, aby mocia byla defiováa pro každé reálé, tj. D( f ) =. Pro a = by se jedalo o kostatí fukci : f y =. Oborem hodot je ( ) ( ; ). Příklad: Sestrojme grafy fukcí f : y = ; f : y =. f : y = : y H f =. 4 = = 4 8 f : y = 4 y = Epoeciálí fukci o základu a =, tj. y =, azýváme dekadickou epoeciálí fukcí. Zvláště důležitá je epoeciálí fukce y = e [ y = ep( ) ], jejímž základem je číslo a = e= (Eulerovo číslo). oboru, a to pro ( ;) = a je mootoí a celém svém defiičím Logaritmická fukce: Epoeciálí fukce y a klesající, pro a ( ; ) rostoucí. Je tedy možo k í sestrojit fukci iverzí: y f : = a ; kde a > ; a. Protože ( ) H( f ) = ;, je ( ) D f = ; ( ) = D f =. Tato fukce přiřazuje každému ( ; ) D( f ) = H( f) = ; ; H( f ) ( ) číslo y, a které je třeba umocit daý základ a, abychom obdrželi hodotu ezávisle

10 proměé. Tato fukce se azývá logaritmická fukce se základem a, začíme ji log a. Místo y f : = a tedy píšeme f : y = log a. Pro a = píšeme místo log většiou je log (dekadický logaritmus), pro a= e=, píšeme místo log e většiou l ebo lg (přirozeý logaritmus). Vlastosti logaritmické fukce: je mootoí, tudíž prostá, tj. pro každé je log log ; pro (;) a ; je rostoucí. a a a je klesající, pro ( ) 89

11 Platí apř. log =, eboť = ; log = eboť = ; log =, eboť = ; log = eboť = ; log =, eboť = ; log = eboť = ; log =, eboť = ; log = eboť = ; log =, eboť log =, eboť = = ; log = eboť ; log = log = log =, eboť Pro každé X a každé A (;) ( ; ) je = ; log = eboť = ; = = =. log A X X = A. log Je-li tedy apř. a log = a ; a y loga loga y y = a, pak y = a a a podle pravidel o počítáí loga + loga y s mociami je y = a. Položíme-li však yí y = X ; a = A; log + log y = Y, je podle předchozího rámečku: a a Y X = A Y = log X loga loga y y = a + a + a y = a y a + a y = a y A log log log ( ) log log log ( ) Podobě bychom odvodili další vlastosti: Nechť a > ; a a y> ; jsou libovolá kladá reálá čísla. Pak log a( y) = loga + loga y; log = log log y a a a r y ; log = r log ( r ) a a Je-li r = ; kde {}, pak z posledího vzorce dostáváme log a = loga. Příklady: Pro přípusté hodoty upravme pomocí výše uvedeých pravidel: ) ) ) log ( ) = log + log + log ( ) = + log + log ( ) 7 log = log 7 + log log ( + ) = + log log ( + ) ( + ) ( ) ( + ) l = ( ) l( + ) l 9

12 4) 4 log4 log4 4 log4 log4 log4 log4 log4 log4 r = + + r = + + r Naopak: ) 6) 7) 8) 6 + log4 log 4( + ) = log4 6 + log4 = log4 + + a a ( a ) a 6 a l a+ l( a ) l( a+ ) 6 l a = l = l a ( a ) 6 a ( a+ ) 4 ( r ) (4 r ) (6 r) + + = = 4 ( r ) log r log 4r 4log r 4log 6r log r r r r = log = log = log( r ) = log 6 r r r c d E cd E log c+ log d + log E log S log ρ = log = log S ρ S ρ Neřešeé úlohy: 4 ) log( y ) ) log ) log y 4) log + y ) ( log8.log ) 4 4 z 6) log + log a+ ( log b+ log c) 7) log +.(logl log log g) Výsledky ) log + 4log + log y ) log + log log 4log 4 ) log + log y log z 4) 8 l log + log( + y) ) log 6) log(a bc ) 7) log 6 g.6 Epoeciálí a logaritmické rovice Epoeciálí rovice je každá rovice, ve které je ezámá v epoetu ějaké f ( ) g( ) mociy. Nejjedodušší epoeciálí rovice jsou rovice tvaru a = a, kde a > ; a. Rovají-li se základy moci, musí se rovat i jejich epoety, tato rovice je tedy ekvivaletí s rovicí f ( ) = g( ) viz př.. Dále jsou to rovice ejrůzějších tvarů, které však lze úpravami využívajícími vlastosti moci převést a předchozí případ (viz př. ).. Příklad:. Příklad:. Příklad: , 7 = 8 = = 6 ( ) 4( ) = 6, 4, + + = + 4 = + ( ) = 4( ) 6 = 6,= 4, 7 = = 7; = = 9

13 4. Příklad:. Příklad: = = ( ) = = 7 7 ( ) 8 ( + ) (7 ) ( ) ( + ) (7 ) = + = = /: 8 8 = + = ( ) = = = 4; = f ( ) g( ) Dále jsou to rovice tvaru a = b, a b. V ěkterých případech je možo tuto rovici r( ) s( ) upravit a tvar a = a a řešit předchozím způsobem (viz př. 6). Pokud e, je třeba řešit logaritmováím (viz. př. 7). Následují opět rovice ejrůzějších tvarů, které lze a tvar f ( ) g( ) a = b převést a řešit logaritmováím (viz př. 8). Pozor! Logaritmováí rovice epatří k ekvivaletím úpravám. Součástí tohoto řešeí je tedy zkouška. Některé epoeciálí rovice lze substitucí převést a rovice algebraické (viz př. 9). 6. Příklad: 7. Příklad Zkouška: 6 = 7 / 7 = log L = = log 7 = 7 log = log 6 6+ log ( 7) = ( )log= log log L = log = ( ) = log log = log = log L = log = ( log ) = log P = log = log log P = log log log L = log P L = P 8. Příklad: 9. Příklad: = = = 4 4 subst. 9 = y 4 ( + ) = 4(4 ) y y+ 7 = 9 = 6 4 ( y )( y 9) = 6 y = ; y = 9 = 4 9 ze subst. 9 = y 9 = = 7 = 4 ze subst. 9 = y 9 = 9 = (log log 4) = log 7 log log 7 = log log 4 9

14 (chybějící zkoušky zde poecháme čteáři jako cvičeí). Logaritmické rovice: jsou rovice, v ichž se vyskytují logaritmy výrazů s ezámou. Nejjedodušší logaritmickou rovicí je rovice log a = b, a >, a, b, b která má řešeí = a. Další rovice řešíme obvykle úpravou a tvar log a f ( ) = log a g( ), a pak řešíme tzv. delogaritmováím, tj. úpravou a tvar f ( ) = g( ). Často lze vhodou substitucí převést logaritmickou rovici a rovici algebraickou. Pozor! Ai delogaritmováí rovice eí ekvivaletí úpravou. Součástí tohoto řešeí je tedy zkouška. Příklad : log( ) = log(4 ) log( ) log(4 ) ( ) 4 = = 4 + 4= 4 = Příklad : log ( ) = = log = log log = log = log =± = ; = Zkouška L () log( ) log log log 9 P() = log(4 ) = log 9 L() = P() L( ) = log( ) = log( 4) L( ) eí defiováa = = = = = eí kořeem možia řešeí K = {} Zkouška ( ) log ( ) L() = log = log = P() = L() = P() log L( ) = log ( ) = log ( ) = log = P = L = P ( ) ( ) možia řešeí K = {; } Příklad : log (log ) log log(log ) = log log log(log ) = log = = log(log ) = log = = = Zkouška L() = (log) = log L() eí defiováa = eí kořeem log L( ) = (log) = = P () = L() = P() možia řešeí K = {} 9

15 Příklad 4: Zkouška log log log log log L() = + = + = + = / log log P() = + = log log L() = P() + = log log log L( ) = + = + = subst = y P() = y y+ = L() = P() y = ; y = log log log ( ) subst = L = ( ) + ( ) ( ) ( ) ( ) ( + ) log log = log L( ) = + = + = subst log = log = = log log = log log = log =± = ; = ( ) P = ( ) = ( ) L P možia řešeí K = {;; } Neřešeé úlohy: Vypočtěte: ) log 6 ) ) log 6) ) log 4 7) 4) log 6 8) Řešte rovice: log4 6 9) 8 log6 6 ) 4 log6 6 ) log ) log log ) log 8 6 log 4) log 6 8 log ) log log 6 6) log log 7) 8) 9) ) ) ) ) = 6 9) log = 8 = 6 ) log = ) = ) = log = log = + 79 = 8 ) log = log 9 = = 64 ) 4) log = 4 log log( + ) log( + ) = log(+ ) 94

16 4) ( ) = 6) + log( + 7) log( 7) log ) = ) = 8 4 = 6) ( + ) = 8) log( ) log(+ ) = log ) + + = + + 9) log 4 + log = l l 8) 4 4 = 4) e e + 4e = 6 Výsledky: ) 4 ) ) 4) 8 ) 4 6) 7) 8) 9) ) 4 ) ) ) eí defiová 4) eí defiová ) eí defiová 6) 7) 4 8) 7 9). ) ). ). ) 4) ; ). 6) 9 7).7 8) 9). ) ) ) > ; ) 4) ) 6) 7) 8) emá řešeí 9) 4) 4e.7 Oblouková míra a orietovaý úhel V kpt..4 jsme stručě uvedli stupňovou míru úhlů, která však mohdy evyhovuje. Uvedeme tedy i tzv. míru obloukovou. Její jedotkou je jede radiá (rad). Před jeho defiicí je však třeba uvést tzv. středový úhel: Úhel ω = ASB, jehož vrcholem je střed kružice a ramea procházejí krajími body oblouku AB, azýváme středový úhel příslušý tomuto oblouku. Úhel má velikost jedoho radiáu právě tehdy, když je shodý se středovým úhlem kružice, jejíž poloměr je rove délce příslušého oblouku. Má-li kružice poloměr r = (tzv. jedotková kružice), pak velikost úhlu v radiáech je číselě přímo rova délce příslušého oblouku. Jedotka radiá je ve fyzikálím slova smyslu jedotkou bezrozměrou (vziká jako podíl dvou délek ). V matematice se většiou vyechává a velikost úhlu se tak udává je reálým číslem. Také my budeme tuto jedotku výslově zapisovat pouze výjimečě. Budeme-li chtít zdůrazit, že velikost úhlu α je zadáa v radiáech, budeme psát arc α ( arcus alfa ). Převod stupňů a radiáy a aopak: Uvažujme jedotkovou kružici. Ta má délku l =. Plý úhel má tedy velikost radiáů. Zároveň je zřejmé, že teto plý úhel je součtem čtyř pravých úhlů a ve stupňové míře má tedy velikost α = 4 9 = 6. Je tedy rad = 6. Velikost úhlu v radiáech (ozačme arc α ) je přímo úměrá velikosti úhlu ve stupích (ozačme α ): 6... α... arc α α arc α 8 arc α α = 6 α = arc α = α α arc α = arc α =

17 Příklady: 8 ) arc = =,7... rad ) arc 8 = =,4... rad , ) arc 4 ' = arc 4, =, rad ) rad = = 7,9 78 = 7 7'4'' Velikosti ěkterých úhlů se ve výpočtech vyskytují velmi často, proto je dobré si je rychle uvědomit: stupě radiáy 6 4 Orietovaý úhel: Orietovaým úhlem v roviě rozumíme uspořádaou dvojici polopřímek se společým počátkem. Prví z polopřímek je počátečí rameo, druhá kocové rameo, společý počátek polopřímek pak vrchol orietovaého úhlu. Orietovaý úhel AVB budeme začit AVB. Vzhledem k tomu, že rozlišujeme počátečí a kocové rameo orietovaého úhlu, je AVB BVA. Velikost orietovaého úhlu AVB azýváme každé reálé číslo α + k ; k (v obloukové míře) popř. α + k 6 ; k (ve stupňové míře), kde α (popř. α ) určíme takto: a) Je-li VA = VB, je α = (popř. α = ) b) Je-li VA VB, je α ( α ) velikost eorietovaého úhlu, který vzike otáčeím počátečího ramee VA do polohy kocového ramee VB, a to proti směru chodu hodiových ručiček v obloukové (ve stupňové) míře. Směr proti směru chodu hodiových ručiček považujeme za kladý. Velikost α ( α ) azýváme základí velikostí orietovaého úhlu. Další velikosti α + k ( α + k 6 ) si můžeme představit jako polohu kocového ramee VB po k otáčkách..8 Goiometrické fukce Uvažujme kartézskou souřadou soustavu O ; ; s počátkem O. Ozačme J obraz jedičky a ose. Dále libovolý orietovaý úhel s vrcholem O, počátečím rameem OJ a velikostí (v obloukové míře). Sestrojme jedotkovou kružici k (tj. kružici o poloměru r = ) se středem v bodě O. Ozačme M = [ m; m] průsečík této kružice s kocovým rameem orietovaého úhlu. Pro každé pak můžeme defiovat fukci 96

18 sius: si = m pro každé ; H( f ) = ;, kosius: cos = m pro každé ; H( f ) = ;. Dále defiujeme tages: si tg = cos pro každé { k + } ( ) ; H( f ) =, k cos kotages: cotg = si pro každé { k} ; H( f ) =. k Přímo z defiice pro každé plye: a tedy si cos + =, si cos =, cos si =. Zaméka hodot goiometrických fukcí kvadrat I II III IV iterval ; ; ; ; si + + cos + + tg + + cotg

19 Důležité hodoty goiometrických fukcí 6 4 si cos tg edef edef cotg edef edef edef Dále je cotg cos si si tg k cos si( ) = cos + ; cos( ) si = + Fukce sius je lichá si = si( ) kosius sudá cos = cos( ) tages lichá tg = tg( ) kotages lichá cot g = cot g( ) = = = pro každé { k } V zápisu dalších vlastostí budeme potřebovat dvě hodoty ezávisle proměé. Abychom emuseli používat idey (apř. při ozačeí ; ) ebo aby edocházelo k záměě se 98

20 závisle proměou (apř. při začeí ; y ), budeme argumety goiometrických fukcí ozačovat řeckými písmey ( α, β...) tak, jak je to obvyklé v řadě aplikací. Odvoďme ěkteré další vlastosti, které záme ze středí školy: V kapitole 7. zopakujeme, že pro skalárí souči dvou vektorů u = ( u; u) ; v = ( v; v) platí: u v = u v cosϕ = = uv + uv. Speciálě pro vektory o souřadicích u = (cos α;si α) ; v = (cos β;si β ), které mají jedotkovou velikost a které svírají úhel α β, pak dostáváme u v = cos( α β) = cosαcosβ + siαsiβ, tedy cos( α β) = cosαcos β + siαsi β Dosadíme-li za β hodotu β, máme cos[ α ( β)] = cos( α + β) = cosαcos( β) + siαsi( β). Protože cos( β ) = cos β; si( β) = si( β), máme cos( α + β) = cosαcos β siαsi β. Dále využijeme vlastosti si( ) = cos + pro = α + β : si( α + β) = cos ( α + β) + = cos α + + β = cos α + cos β + si α + si β Protože však cos α + = siα a si α + = cosα, je si( α + β) = siαcos β + cosαsi β. Dosadíme-li za β hodotu β, máme si( α β) = siαcos( β) + cosαsi( β), tedy si( α β) = siαcos β cosαsi β Sečtěme vzorce pro si( α + β ) a si( α β ) si( α + β) + si( α β) = siαcos β α + β α β a dosaďme za α a za β : α + β α β α + β α β α + β α β si + + si = si cos, α + β α β tedy siα + si β = si cos. Podobě odečteím těchto vzorců dostaeme α + β α β siα si β = cos si. Ze vzorců pro cos( α + β ) a cos( α β ) podobě dostaeme: α + β α β cosα + cos β = cos cos ; α + β α β cosα cos β = si si. Položíme-li α = β, dostáváme ze vzorce pro si( α + β ) : si( α + α) = siαcosα + cosαsiα, 99

21 tedy si α = siαcosα. Podobě ze vzorce pro cos( α + β ) cos( α + α) = cosαcosα siαsiα α α α cos = cos si. α Dosadíme-li do vzorce pro cos α za α hodotu, dostaeme α α α α cos = cosα = cos si = si, α si tedy Koečě α α cosα α cosα cosα = si si = si =. α α cosα + cosα α + cosα cos = si = = cos =. Shrňme tedy ejdůležitější vztahy mezi fukcemi sius a kosius: si α = siαcosα α = α α cos cos si α cosα si = α + cosα cos = si( α + β) = siαcos β + cosαsi β cos( α + β) = cosαcos β siαsi β si( α β) = siαcos β cosαsi β cos( α β) = cosαcos β + siαsi β α + β α β siα + si β = si cos α + β α β siα si β = cos si α + β α β cosα + cos β = cos cos α + β α β cosα cos β = si si Příklady: Upravme výrazy ) v v v v + = v v v + v v+ = cos si ( ) si( )cos( ) cos si( )si( ) si cos = cos v( si v)( si v) + si vcos v+ = cos vsi v+ si vcos v+ = (si vcos v+ ) ) si z cos z+ si z cos z ( + tg z)cos z = + cos z cos z = = = cos z cos z cos z + = + = + = sicos+ = tg + cotg si cos si + cos + cos si si cos ) = si cos + si + cos = (si + cos ) = si + cos

22 4) ) (si b cos b) (si b cos b) + + = si b si b cosb cos b si b si b cosb cos b si b cos b = = + = si d si d si d( + cos d) + si d( cos d) + = = cos d + cos d ( cos d)( + cos d) si d( + cos d + cos d) si d = = = cos d si d si d si v si vcosv si vcosv si v tg v + cos v = si v+ cos v+ cos v si v = cos v = cos v = 6) si z+ si z si z+ si zcos z si z( + cos z) = = = + cosz+ cosz si z+ cos z+ cos z+ cos z si z cos z+ cos z si z( + cos z) si z = = = tg z cos z(+ cos z) cosz 7) 8) 9) cosα + cosα cos α cos α α α 4 si si cos α = = = = tgα = + cosα cosα cosα cosα cosα α α cos si α si cos si lépe : subst = : = = tg = tgα cos si cos cos( α + β) + cos( α β) cosαcos β siαsi β + cosαcos β + siαsi β = = cos( α + β) cos( α β) cosαcos β siαsi β cosαcos β siαsi β = cosα cosβ cotgαcotgβ siαsiβ = cos( α + β) + cos( α β) cos + cos y Nebo: subst. α + β = ; α β = y : = = cos( α + β) cos( α β) cos cos y + y y cos cos cosαcos β = = = cotgαcotgβ + y y si si siαsi β ) si + si + si + si 7 (si 7+ si ) + (si + si ) = = cos + cos+ cos+ cos 7 (cos 7+ cos ) + (cos+ cos ) si cos + si cos = = cos cos + cos cos si 4 cos + si 4 cos si 4 (cos + cos ) = = = tg4 cos 4 cos + cos 4 cos cos 4 (cos + cos ) Bez výpočtu t určeme hodoty zbývajících goiometrických fukcí, víme-li, že t ; :

23 ) 4 cost = si t = = = = 9 9 sit si t = tgt = = = = cost cotgt = = tgt ) tgt =,8 : Je zřejmě cotgt = tgt =,8 = 4. Připomeňme, že t ;. Dále je tedy: Neřešeé úlohy: Upravte: tgt =,8 si t =,8 cost si t =,8 si t si t =,64 si t si t =,64,64si t =,64 si t =, 64 6, 64si, 64 si t = si t = = = t cost = si cost = cost = cost = 6 4 cost = cost = 4 cost = 4 4 cost = 4 t ) cos( u)cosu si usi( u) si p ) + cos p ) + +tg +cotg 4) si a si acos a ) + si c + si c si f si g 6) cos f cos g cos u 7) si u+ cosu 8) + cos t sit α cos 9) α α si + cos 4 4 α (ávod: subst. = )

24 si( α + β) + si( α β) ) si( α + β) si( α β) si + si 4+ si 6+ si8 ) cos + cos 4+ cos 6+ cos8 ) cos( + z)si + cos + z si si z cos si si( + z) ) Bez výpočtu r určete hodoty zbývajících goiometrických fukcí, víte-li, že r ; : a) si r =.4 b) cos r =. c) tg. r = d) 8 cotg r = Výsledky: ) ) cos p ) 4) si a ) 6) 7) cosu si u 8) cotg t 9) cos c α α si + cos ) tgαcotgβ ) tg ) ) a) cos r = ; tg r = ; cotg r = b) si r = ; tg r = ; cotg r = c) si r = ; cos r = ; cotg r = d) si r = ; cos r = ; tg r = Goiometrické rovice Goiometrická rovice je každá rovice, v íž se ezámá vyskytuje v goiometrických výrazech. Nejjedodušší jsou rovice tvaru si = a ; cos = a ; tg = a ; cot g = a. Perioda siu a kosiu je. Určíme tedy ejdříve všecha řešeí a itervalu ; ) a ke každému řešeí připojíme periodu k; k. Perioda fukcí tages a kotages je. U těchto fukcí určíme všecha řešeí a itervalu ; ) a ke každému řešeí připojíme periodu k ; k.. Příklad: Řešme goiometrickou rovici si = Řešeí: Určíme kořey v itervalu ; ), a to buď pomocí jedotkové kružice (viz připojeý obrázek) ebo pomocí grafu fukce sius. Fukce sius je kladá v I. a II. kvadratu, tj. = ; 6 = = =. K oběma řešeím je třeba 6 6 připojit periodu, tj. = + k ; k, 6 = + k; k. 6. Příklad: Řešme goiometrickou rovici cos =. Řešeí: Opět určíme ejprve kořey v itervalu ; ). Hodota fukce kosius má být záporá. V tom případě je výhodé vyjít z řešeí rovice

25 cosα = α =, které zakreslíme buď do jedotkové kružice ebo do grafu kosiu. Fukce kosius je záporá ve II. a III. kvadratu, tj. = α = = (II. kvadrat) 4 a = + α = + = (III. kvadrat). K oběma řešeím opět připojíme periodu, tj. = + k; k, 4 = + k; k. Pozor! V přijímacích testech se občas objevují rovice typu si =, resp. cos = apod. Tyto rovice studeti často zaměňují s rovicemi si =, resp. cos( ) = a uvádějí řešeí =, resp. = ( popř. = + k, resp. = + k ). Obor hodot fukce sius i kosius je H( f ) = ; a ; ; ;. Rovice si = ; cos = proto emají řešeí. V rovicích typu si f ( ) = a; cos f ( ) = a; tg f ( ) = a; cot g f ( ) = a zavádíme substituci f ( ) = z, čímž tyto rovice převedeme a předchozí případ.. Příklad: Řešme rovici tg 4 =. Řešeí: Zavedeme substituci 4 = z a řešíme ejdříve rovici tg z =. Je-li tg α =, pak v I. kvadratu je α =. Fukce tages má periodu a je záporá ve druhém kvadratu. Převodem hodoty α = do II. kvadratu po vzoru předchozích příkladů a připojeím periody je z = + k. V použité substituci tedy je 4 = + k 4 = + + k 4= + k k =

26 Složitější rovice lze často vhodou substitucí převést a rovice algebraické. Pokud se v rovici vyskytuje více goiometrických fukcí, převádíme je a fukci jediou. 4si cos 4. Příklad: Řešme rovici. Příklad: Řešme rovici + = si cos + si = si cos Řešeí: Řešeí: 4si cos si cos + si = + = si cos si + si + si = 4si cos si si + si = + = sicos cos subst. si = y si cos si y + y = + = si cos cos cos y = ; y =. si cos si = si cos si cos si = si cos Návratem k použité substituci se řešeí rozpade a dva případy: si cos si = cos si = cos + si si = = + k, si = si = = + k 6 = +k = + k. 6 = + k. 4 Neřešeé úlohy: Řešte rovice: ) cos = ) tg = ) cot g= 4) si = ) si = si 6 6) cos = cos 7) + si = si 8) tg + = + tg 9) cos = + cos ) 4cos + 4cos = ) si + si = ) cotg + 4cos = ) si + si = tg 4) si + si si = Výsledky: 7 ) = + k ; = + k ) = + k ) = + k 4) = + k ) = + k ; = + k 6) = + k ; = + k 7) = + k ; = + k 8) = + k 9) = + k ; = + k ) = + k ; 6

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

1 Trochu o kritériích dělitelnosti

1 Trochu o kritériích dělitelnosti Meu: Úloha č.1 Dělitelost a prvočísla Mirko Rokyta, KMA MFF UK Praha Jaov, 12.10.2013 Růzé dělitelosti, třeba 11 a 7 (aeb Jak zfalšovat rodé číslo). Prvočísla: které je ejlepší, které je ejvětší a jak

Více

Číselné řady. 1 m 1. 1 n a. m=2. n=1

Číselné řady. 1 m 1. 1 n a. m=2. n=1 Číselé řady Úvod U řad budeme řešit dva typy úloh: alezeí součtu a kovergeci. Nalezeí součtu (v případě, že řada koverguje) je obecě mohem těžší, elemetárě lze sečíst pouze ěkolik málo typů řad. Součet

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

9.1.12 Permutace s opakováním

9.1.12 Permutace s opakováním 9.. Permutace s opakováím Předpoklady: 905, 9 Pedagogická pozámka: Pokud echáte studety počítat samostatě příklad 9 vyjde tato hodia a skoro 80 miut. Uvažuji o tom, že hodiu doplím a rozdělím a dvě. Př.

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

9.1.13 Permutace s opakováním

9.1.13 Permutace s opakováním 93 Permutace s opakováím Předpoklady: 906, 9 Pedagogická pozámka: Obsah hodiy přesahuje 45 miut, pokud emáte k dispozici další půlhodiu, musíte žáky echat projít posledí dva příklady doma Př : Urči kolik

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

8. Základy statistiky. 8.1 Statistický soubor

8. Základy statistiky. 8.1 Statistický soubor 8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

Téma 11 Prostorová soustava sil

Téma 11 Prostorová soustava sil Stavebí statka,.ročík bakalářského studa Téma Prostorová soustava sl Prostorový svazek sl Statcký momet síly a dvojce sl v prostoru Obecá prostorová soustava sl Prostorová soustava rovoběžých sl Katedra

Více

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ČÍSELNÉ OBORY vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z mtemtiky školí rok 204/205

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

ZÁKLADY DISKRÉTNÍ MATEMATIKY

ZÁKLADY DISKRÉTNÍ MATEMATIKY ZÁKLADY DISKRÉTNÍ MATEMATIKY Michael Kubesa Text byl vytvoře v rámci realizace projektu Matematika pro ižeýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), a kterém se společě podílela Vysoká škola báňská

Více

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava-

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava- Okruhy z učiv středoškolské mtemtiky pro příprvu ke studiu VŠB TU Ostrv- I Zákldí poztky z logistiky teorie moži: výrok prvdivostí hodot výroku, egce, disjukce, kojukce, implikce, ekvivlece, složeé výroky,

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

Matematicko-fyzikální fakulta Univerzita Karlova. Diplomová práce. Renata Sikorová

Matematicko-fyzikální fakulta Univerzita Karlova. Diplomová práce. Renata Sikorová Matematicko-fyzikálí fakulta Uiverzita Karlova Diplomová práce e Reata Sikorová Obor: Učitelství matematika - fyzika Katedra didaktiky matematiky Vedoucí práce: RNDr. Jiří Kottas, CSc. i Prohlašuji, že

Více

STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ 30, p. o. MATEMATIKA

STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ 30, p. o. MATEMATIKA STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ, p. o. MATEMATIKA Ig. Rudolf PŠENICA 6 OBSAH:. SHRNUTÍ A PROHLOUBENÍ UČIVA... 5.. Zákldí možiové pojmy... 5.. Číselé možiy... 6.. Itervly... 6.. Absolutí

Více

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti 1 Základí statistické zpracováí dat 1.1 Základí pojmy Populace (základí soubor) je soubor objektů (statistických jedotek), který je vymeze jejich výčtem ebo charakterizací jejich vlastostí, může být proto

Více

STATISTIKA. Základní pojmy

STATISTIKA. Základní pojmy Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci

Více

Posloupnosti na střední škole Bakalářská práce

Posloupnosti na střední škole Bakalářská práce MASARYKOVA UNIVERZITA V BRNĚ Přírodovědecká fkult Ktedr mtemtiky Poslouposti středí škole Bklářská práce Bro 00 Kteři Rábová Prohlášeí Prohlšuji, že tto bklářská práce je mým původím utorským dílem, které

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ALGEBRAICKÉ VÝRAZY vtvořil: RNDr. Věr Effeberger epertk olie příprvu SMZ z mtemtik školí rok 04/05

Více

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ FUNKCE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE DO ROZVOJE

Více

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications)

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications) Základy datové aalýzy, modelového vývojářství a statistického učeí (Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applicatios) Lukáš Pastorek POZOR: Autor upozorňuje, že se jedá

Více

Základní pojmy kombinatoriky

Základní pojmy kombinatoriky Základí pojy kobiatoriky Začee příklade Příklad Máe rozesadit lidí kole kulatého stolu tak, aby dva z ich, osoby A a B, eseděly vedle sebe Kolika způsoby to lze učiit? Pro získáí odpovědi budee potřebovat

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzta Karlova v Praze Pedagogcká fakulta SEMINÁRNÍ PRÁCE Z OBECNÉ ALGEBRY DĚLITELNOST CELÝCH ČÍSEL V SOUSTAVÁCH O RŮZNÝCH ZÁKLADECH / Cfrk C. Zadáí: Najděte pět krtérí pro děltelost v jých soustavách

Více

, jsou naměřené a vypočtené hodnoty závisle

, jsou naměřené a vypočtené hodnoty závisle Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,

Více

1.1 Definice a základní pojmy

1.1 Definice a základní pojmy Kaptola. Teore děltelost C. F. Gauss: Matematka je královou všech věd a teore čísel je králova matematky. Základím číselým oborem se kterým budeme v této kaptole pracovat jsou celá čísla a pouze v ěkterých

Více

PříkladykecvičenízMMA ZS2013/14

PříkladykecvičenízMMA ZS2013/14 PříkladykecvičeízMMA ZS203/4 (středa, M3, 9:50 :20) Pozámka( ):Pokudebudeuvedeojiakbudemevždypracovatsprostoryadtělesem T= R.Ve všech ostatích případech(tj. při T = C), bude těleso explicitě specifikováo.

Více

7. P o p i s n á s t a t i s t i k a

7. P o p i s n á s t a t i s t i k a 7. P o p i s á s t a t i s t i k a 7.. Pozámka: Při statistickém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákoitosti, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

Zobrazení čísel v počítači

Zobrazení čísel v počítači Zobraeí ísel v poítai, áklady algoritmiace Ig. Michala Kotlíková Straa 1 (celkem 10) Def.. 1 slabika = 1 byte = 8 bitů 1 bit = 0 ebo 1 (ve dvojkové soustavě) Zobraeí celých ísel Zobraeí ísel v poítai Ke

Více

-1- Finanční matematika. Složené úrokování

-1- Finanční matematika. Složené úrokování -- Fiačí ateatika Složeé úrokováí Při složeé úročeí se úroky přičítají k počátečíu kapitálu ( k poskytutí úvěru, k uložeéu vkladu ) a společě s í se úročí. Vzorec pro kapitál K po letech při složeé úročeí

Více

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh:

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh: Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT 5. temtický okruh: POSLOUPNOSTI A FINANČNÍ MATEMATIKA vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ 4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ 77 4. ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu

Více

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů Semárky, předášky, bakalářky, testy - ekoome, ace, účetctví, ačí trhy, maagemet, právo, hstore... PODNIKOVÁ EKONOMIKA 3. Cea ceých papírů Ceé papíry jsou jedím ze způsobů, jak podk může získat potřebý

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

11. Časové řady. 11.1. Pojem a klasifikace časových řad

11. Časové řady. 11.1. Pojem a klasifikace časových řad . Časové řad.. Pojem a klasfkace časových řad Specfckým statstckým dat jsou časové řad pomocí chž můžeme zkoumat damku jevů v čase. Časovou řadou (damcká řada, vývojová řada) rozumíme v čase uspořádaé

Více

8.2.10 Příklady z finanční matematiky I

8.2.10 Příklady z finanční matematiky I 8..10 Příklady z fiačí matematiky I Předoklady: 807 Fiačí matematika se zabývá ukládáím a ůjčováím eěz, ojišťováím, odhady rizik aod. Poměrě důležitá a výosá discilía. Sořeí Při sořeí vkladatel uloží do

Více

M a t i c e v e s t ř e d o š k o l s k é m a t e m a t i c e

M a t i c e v e s t ř e d o š k o l s k é m a t e m a t i c e M t i c e v e s t ř e d o š k o l s k é m t e m t i c e P t r i k K v e c k ý M e d e l o v o g y m á z i u m v O p v ě S t u d i j í m t e r i á l - M t i c e v e s t ř e d o š k o l s k é m t e m t i

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH ECHNICKÝ AUDI VODÁRENSKÝCH DISRIBUČNÍCH SYSÉMŮ Ig. Ladislav uhovčák, CSc. 1), Ig. omáš Kučera 1), Ig. Miroslav Svoboda 1), Ig. Miroslav Šebesta 2) 1) 2) Vysoké učeí techické v Brě, Fakulta stavebí, Ústav

Více

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu ÚROKVÁ SAZBA A VÝPOČET BUDOUÍ HODNOTY. Typy a druhy úročeí, budoucí hodota ivestice Úrok - odměa za získáí úvěru (cea za službu peěz) Ročí úroková sazba (míra)(i) úrok v % z hodoty kapitálu za časové období

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1.

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1. Eponenciální rovnice Eponenciální rovnice jsou rovnice, ve kterých se neznámá vsktuje v eponentu. Řešíme je v závislosti na tpu rovnice několika základními metodami. A. Metoda převedení na stejný základ

Více

MATEMATIKA Přijímací zkoušky na ČVUT

MATEMATIKA Přijímací zkoušky na ČVUT Kolektiv MATEMATIKA Přijímací zkoušky na ČVUT Praha 200 Vydavatelství ČVUT Lektoři: doc. RNDr. Čeněk Zlatník, CSc. doc. RNDr. Ludmila Machačová, CSc. Jaroslav Černý, Růžena Černá, František Gemperle, Vladimíra

Více

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1 Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1 Funkce pro UO 1 Co je to matematická funkce? Mějme dvě množiny čísel. Množinu A a množinu B, které jsou neprázdné. Jestliže přiřadíme

Více

1. ČÍSELNÉ OBORY 10. Kontrolní otázky 24. Úlohy k samostatnému řešení 25. Výsledky úloh k samostatnému řešení 25. Klíč k řešení úloh 26

1. ČÍSELNÉ OBORY 10. Kontrolní otázky 24. Úlohy k samostatnému řešení 25. Výsledky úloh k samostatnému řešení 25. Klíč k řešení úloh 26 Zákld mtemtik Číselé oor ČÍSELNÉ OBORY 0 Některé pojm z mtemtické logik 0 Výroková logik 0 Moži vzth mezi imi Možiové operce Grfické zázorěí moži Číselé oor Čísl ázv jejich chrkteristik Chrkteristik číselých

Více

M - Goniometrie a trigonometrie

M - Goniometrie a trigonometrie M - Goniometrie a trigonometrie Určeno jako učební text pro studenty dálkového studia a jako shrnující učební text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven

Více

STATISTIKA PRO EKONOMY

STATISTIKA PRO EKONOMY EDICE UČEBNÍCH TEXTŮ STATISTIKA PRO EKONOMY EDUARD SOUČEK V Y S O K Á Š K O L A E K O N O M I E A M A N A G E M E N T U Eduard Souček Statistika pro ekoomy UČEBNÍ TEXT VYSOKÁ ŠKOLA EKONOMIE A MANAGEMENTU

Více

Sbírka úloh z matematiky

Sbírka úloh z matematiky Střední průmyslová škola a Střední odborné učiliště, Trutnov, Školní 101 Sbírka úloh z matematiky v rámci projektu královéhradeckého kraje zavádění inovativních metod výuky pomocí ICT v předmětu matematika

Více

Aritmetická posloupnost

Aritmetická posloupnost /65 /65 Obsh Obsh... Aritmetická posloupost.... Soustv rovic, součet.... AP - předpis... 5. AP - součet... 6. AP - prvoúhlý trojúhelík... 7. Součet čísel v itervlu... 8 Geometrická posloupost... 0. Soustv

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C) Přijímací řízeí pro akademický rok 24/ a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata C) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad Metody vyhodoceí efektvost vestc Časová hodota peěz Metody vyhodoceí Časová hodota peěz Prostředky, které máme k dspozc v současost mají vyšší hodotu ež prostředky, které budeme mít k dspozc v budoucost.

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

Téma 6: Indexy a diference

Téma 6: Indexy a diference dexy a dferece Téma 6: dexy a dferece ředáška 9 dvdálí dexy a dferece Základí ojmy Vedle elemetárího statstckého zracováí dat se hromadé jevy aalyzjí tzv. srováváím růzých kazatelů. Statstcký kazatel -

Více

15. Goniometrické funkce

15. Goniometrické funkce @157 15. Goniometrické funkce Pravoúhlý trojúhelník Ze základní školy znáte funkce sin a cos jako poměr odvěsen pravoúhlého trojúhelníka ku přeponě. @160 Měření úhlů Velikost úhlů se měří buď mírou stupňovou

Více

Asynchronní motory Ing. Vítězslav Stýskala, Ph.D., únor 2006

Asynchronní motory Ing. Vítězslav Stýskala, Ph.D., únor 2006 8 ELEKTRCKÉ STROJE TOČVÉ říklad 8 Základí veličiy Určeo pro poluchače akalářkých tudijích programů FS Aychroí motory g Vítězlav Stýkala, hd, úor 006 Řešeé příklady 3 fázový aychroí motor kotvou akrátko

Více

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.

Více

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu.

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu. KVALIMETRIE Miloslav Sucháek 16. Statistické metody v metrologii a aalytické chemii Řešeé příklady a CD-ROM v Excelu Eurachem ZAOSTŘENO NA ANALYTICKOU CHEMII V EVROPĚ Kvalimetrie 16 je zatím posledí z

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

5. Výpočty s využitím vztahů mezi stavovými veličinami ideálního plynu

5. Výpočty s využitím vztahů mezi stavovými veličinami ideálního plynu . ýpočty s využití vztahů ezi stavovýi veličiai ideálího plyu Ze zkušeosti víe, že obje plyu - a rozdíl od objeu pevé látky ebo kapaliy - je vyeze prostore, v ěž je ply uzavře. Přítoost plyu v ádobě se

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1.

v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1. Řešení S-I-4-1 Hledáme vlastně místo, kde se setkají. A to tak, aby nemusel pes na zajíce čekat nebo ho dohánět. X...místo setkání P...místo, kde vybíhá pes Z...místo, kde vybíhá zajíc ZX = v z t P X =

Více

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy 5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,

Více

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444 ARITMETIKA CELÁ ČÍSLA Celá čísla jsou. -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, Celá čísla rozdělujeme na záporná (-1, -2, -3, ) kladná (1, 2, 3,.) nula 0 (není číslo kladné ani záporné) absolutní

Více

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost Dráha [m] 9. Měřeí závslostí ve statstce Měřeí závslostí ve statstce se zývá především zkoumáím vzájemé závslost statstckých zaků vícerozměrých souborů. Závslost přtom mohou být apříklad pevé, volé, jedostraé,

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

[ ] = [ ] ( ) ( ) [ ] ( ) = [ ] ( ) ( ) ( ) ( ) = ( ) ( ) ( ) 2 1 :: MOCNINY A ODMOCNINY

[ ] = [ ] ( ) ( ) [ ] ( ) = [ ] ( ) ( ) ( ) ( ) = ( ) ( ) ( ) 2 1 :: MOCNINY A ODMOCNINY Daniel Nechvátal :: maturitní otázky z matematiky 008 :: MOCNINY A ODMOCNINY ) Zjednodušte následující výrazy a určete, pro které hodnoty proměnných mají smysl a) ( ) ( ) [ ] ( ) ( ) [ ] : n n n n b) [

Více

Petr Otipka Vladislav Šmajstrla

Petr Otipka Vladislav Šmajstrla VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA PRAVDĚPODOBNOST A STATISTIKA Petr Otipka Vladislav Šmajstrla Vytv ořeo v rámci projektu Operačího programu Rozv oje lidských zdrojů CZ.04..03/3..5./006

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS.

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS. Dopraví stroje a zařízeí odborý zálad AR 04/05 Idetifiačí číslo: Počet otáze: 6 Čas : 60 miut Počet bodů Hodoceí OTÁZKY: ) Vypočtěte eálí poměr rozděleí brzdých sil a ápravy dvouápravového vozla bez ABS.

Více

Carl Friedrich Gauss

Carl Friedrich Gauss Carl Friedrich Gauss F. KOUTNÝ, Zlí (. 4. 777.. 855) Každé vyprávěí o ěkom, kdo žil dávo, je utě je kompilací prameů a odkazů, které v ejlepším případě pocházejí od jeho pamětíků. Rámec tohoto textu tvoří

Více

Laboratorní práce č. 4: Úlohy z paprskové optiky

Laboratorní práce č. 4: Úlohy z paprskové optiky Přírodí ědy moderě a iteraktiě FYZKA 4. ročík šestiletého a. ročík čtyřletého studia Laboratorí práce č. 4: Úlohy z paprskoé optiky G Gymázium Hraice Přírodí ědy moderě a iteraktiě FYZKA 3. ročík šestiletého

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/.5./34.948 IV-2 Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- JEDNODCHÉ

Více

4.2.15 Funkce kotangens

4.2.15 Funkce kotangens 4..5 Funkce kotangens Předpoklady: 44 Pedagogická poznámka: Pokud nemáte čas, doporučuji nechat tuto hodinu studentům na domácí práci. Nedá se na tom nic zkazit a v budoucnu to není nikde příliš potřeba.

Více

Interval spolehlivosti pro podíl

Interval spolehlivosti pro podíl Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této

Více

KOMBINATORIKA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMBINATORIKA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMBINATORIKA Gymázium Jiřího Wolera v Prostějově Výuové materiály z matematiy pro vyšší gymázia Autoři projetu Studet a prahu. století - využití ICT ve vyučováí matematiy a gymáziu INVESTICE DO ROZVOJE

Více

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/../.98 IV- Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- SLOŽENÉ ÚROOVÁNÍ

Více

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn!

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn! MATEMATIKA vyšší úroveň obtížnosti MAGVD10C0T01 DIDAKTICKÝ TEST Didaktický test obsahuje 21 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky: psací a rýsovací

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro základní vzdělávání Vzdělávací oblast: Matematika a její aplikace Tematický okruh:

Více

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman ASYNCHRONNÍ STROJE Obsah. Pricip čiosti asychroího motoru. Náhradí schéma asychroího motoru. Výko a momet asychroího motoru 4. Spouštěí trojfázových asychroích motorů 5. Řízeí otáček asychroích motorů

Více

Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky ELEKTRICKÉ POHONY. pro kombinované a distanční studium

Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky ELEKTRICKÉ POHONY. pro kombinované a distanční studium Vysoká škola báňská - Techická uiverzita Ostrava Fakulta elektrotechiky a iformatiky ELEKTRICKÉ POHONY pro kombiovaé a distačí studium Ivo Neborák Václav Sládeček Ostrava 004 1 Doc. Ig. Ivo Neborák, CSc.,

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor Číslo projektu CZ.1.07/1.5.00/34.0743 Název škol Moravské gmnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika. Funkce. Definice funkce, graf funkce. Tet a příklad.

Více

Střední hodnoty. Aritmetický průměr prostý Aleš Drobník strana 1

Střední hodnoty. Aritmetický průměr prostý Aleš Drobník strana 1 Středí hodoty. Artmetcký průměr prostý Aleš Drobík straa 0. STŘEDNÍ HODNOTY Př statstckém zjšťováí často zpracováváme statstcké soubory s velkým možstvím statstckých jedotek. Např. soubor pracovíků orgazace,

Více

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů - 12.1 - Přehled Ifomace po odhad ákladů Míy po áklady dotazu Opeace výběu Řazeí Opeace spojeí Vyhodocováí výazů Tasfomace elačích výazů Výbě pláu po vyhodoceí Kapitola 12: Zpacováí dotazů Základí koky

Více

GONIOMETRICKÉ FUNKCE

GONIOMETRICKÉ FUNKCE Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol GONIOMETRICKÉ

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

5.2. Funkce, definiční obor funkce a množina hodnot funkce

5.2. Funkce, definiční obor funkce a množina hodnot funkce 5. Funkce 8. ročník 5. Funkce 5.. Opakování - Zobrazení a zápis intervalů a) uzavřený interval d) otevřený interval čísla a,b krajní body intervalu číslo a patří do intervalu (plné kolečko) číslo b patří

Více

pravděpodobnostn podobnostní jazykový model

pravděpodobnostn podobnostní jazykový model Pokročilé metody rozpozáváířeči Předáška 8 Rozpozáváí s velkými slovíky, pravděpodobost podobostí jazykový model Rozpozáváí s velkým slovíkem Úlohy zaměřeé a diktováíči přepis řeči vyžadují velké slovíky

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více