Pluto již není planetou, z astronomie však nemizí

Rozměr: px
Začít zobrazení ze stránky:

Download "Pluto již není planetou, z astronomie však nemizí"

Transkript

1 uto již není plnetou, z stronomie všk nemizí Vldimír Štefl, Brno Cílem příspěvku je vysvětlit čtenářům - žákům i učitelům, proč bylo uto při svém objevu v roce 1930 oznčeno z plnetu nopk jké byly důvody, které n kongresu IAU v srpnu roku 006 v Prze vedly k jeho vyřzení ze seznmu plnet. K pochopení změny názorů n toto kosmické těleso je podáván stručný výkld vývoje nšich pozntků o utu. Souběžně s tím jsou do textu zřzeny úlohy, neboť soustv uto ron je velmi námětově vhodná. K objsnění důvodů původního zřzení ut do seznmu plnet uvedeme historické souvislosti. Neptun byl objeven německým stronomem Johnnem Gottfriedem Gllem ( ) v září 1846 n zákldě výpočtů dráhových elementů. Předpokládnou polohu spočítl do Berlín Gllemu zsll frncouzský stronom mtemtik Urbn Jen Leverriere ( ). Nově objevený Neptun zčli stronomové systemticky pozorovt, v jeho polohách zjistili mírné odchylky 3 od vypočtené dráhy. To vedlo k hypotéze o existenci dlší plnety, která n něj grvitčně působí. N zákldě předběžných výpočtů, zložených n nepřesných hodnotách hmotností Urn zejmén Neptun, i strometrických chybách určování jejich poloh, objevil v únoru roku 1930 Clyde Willim Tombugh ( ) n snímcích pořízených v lednu n Lowellově observtoři ve Flgstffu v Arizoně nové kosmické těleso sluneční soustvy poblíž hvězdy δ Gem [ 1 ], [ ]. První snímek vlevo je z 3. ledn 1930, druhý z 9. ledn téhož měsíce. Šipk oznčuje kosmické těleso s hvězdnou velikostí 15 mg, jehož poloh se z 6 dnů vzhledem k hvězdám n pozdí změnil. N fotogrfických deskách pořízených dlekohledem o průměru 33 cm byl původně zchycen hvězdná pole o velikostech 13 o x

2 13 o. Při expozicích přibližně jedné hodiny byly n deskách zobrzeny objekty s hvězdnou velikostí do 17 mg. Oznámení o nlezení plnety provedl Vesto elvin Slipher ( ) 13. březn 1930, v den nedožitých nrozenin Lowell. Shodou okolností téměř 150 roků po objevu Urnu 13. březn 1781 Willimem Herschelem (173 18). V průběhu několik měsíců bylo kosmické těleso nzván uto, kronym jmén Percivl Lowell ( ), zkldtele mecenáše hvězdárny ve Flgsttfu. Stlo se devátou plnetou nší sluneční soustvy. Po objevu provedený výpočetní odhd hmotnosti ut vedl k hodnotě přibližně Z. O přípdných dlších tělesech Kuiperov pásu nebylo tehdy nic známo. Proto nebyly pochybnosti o zřzení nově objeveného těles mezi plnety. Zásdní objev pro upřesnění hmotnosti ut učinil v roce 1978 Jmes Wlter risty (1938) [ 3 ] n Námořní observtoři ve Flgstffu, shodou okolností pouze 6 km od Lowellovy observtoře. Objevil měsíc ut rón, jehož oběžná dob byl shodná s rotčními periodmi jk ut, tk ron, tudíž jde o stv vázné rotce obou těles.

3 Fotometrická pozorování ut odhlil kolísání jsnosti v periodě 6 dnů, 9 hodin 18 minut, tedy 6,3874 dne, což odpovídlo nlezené rotční periodě. Změny jsnosti vysvětlujeme výskytem světlých tmvých oblstí n povrchu, tvořeném hlvně dusíkovým ledem. Existenci dvou těles obíhjících kolem společného hmotného středu můžeme využít k řdě zjímvých úloh. Stnovte úhlové rozlišení mezi utem ronem při jejich pozorování v opozici ze Země v perihéliu jejich dráhy s excentricitou e = 0,5. Velikost velké poloosy dráhy ut je = 39,5 AU, velikost velké poloosy dráhy ron je d = km. Jký průměr dlekohledu D je nezbytný k úhlovému rozlišení obou těles n vlnové délce λ = 550 nm? Perihéliová vzdálenost obou těles od Slunce je r = (1 e) = 9,6 AU, vzdálenost od Země je všk pouze 8,6.1, m = 4, m. K výpočtu úhlového rozlišení dosdíme do vzthu d Θ = = r 6 19,6.10 m = 4, rd = 0,9. Toto rozlišení je dosžitelné z povrchu 11 8,6.1,5.10 m Země jen z výjimečných pozorovcích podmínek při kvlitním seeingu. Nezbytný minimální průměru dlekohledu nlezneme podle vzthu D = 1, λ Θ = 0,13 m. Druhou možností je použití dlekohledů vynesených mimo zemskou tmosféru, npř. Hubbleov kosmického dlekohledu HST, viz snímek ut ron z roku Jk již bylo uvedeno, objevem ron se otevřel cest k zpřesnění chrkteristik ut, především jeho hmotnosti [ 4 ], což lze demonstrovt úlohou. ron obíhá kolem ut ve vzdálenosti = km s oběžnou dobou T = 6,39 dne. Poloměr ut je R = km, R = 593 km. Z zjednodušujícího předpokldu, že obě těles mjí stejnou hustotu, určete jejich hmotnosti. G 4π Z III. Keplerov zákon ( + ) ron 3 = T + = 1,4. 10 kg. Vzhledem k objemům těles V ~ stnovíme hmotnost soustvy uto 3 R dostneme =

4 1,5.10 kg, = 1, kg. Poznámk: Ve skutečnosti je poměr hustot přibližně ρ : ρ = 10 : 9. Kinemtické předstvy o soustvě uto ron doplníme řešením úlohy: V jké vzdálenosti od ut se nchází hmotný střed soustvy uto ron? uto má hmotnost =1,5.10 kg ron = 1, kg, vzdálenost ron je =19, km. tí vzth P + = ( + ) c. Zvolme souřdnou soustvu, kde P = 0, je vzdálenost mezi oběm objekty, je vzdálenost středu hmotnosti ut. Řešením dostneme c c = = 150 km. Hmotný střed soustvy - brycentrum se nchází při + poloměru ut km přibližně km nd povrchem ut. Termodynmické podmínky n utu lze přiblížit následující úlohou. Hodnot solární konstnty pro Zemi je ve vzdálenosti 1 AU od Slunce S Z = W.m -. Určete hodnotu solární konstnty pro uto, který obíhá ve střední vzdálenosti 39,5 AU od Slunce. Stnovte celkové množství přijímné zářivé energie z sekundu, které uto získává od Slunce, jestliže poloměr ut je R P = km jeho lbedo je A = 0,15. 1 Solární konstntu ut stnovíme pomocí vzthu S = S Z = 0,88 W.m -. Celkové 39,5 množství přijímné energie z sekundu je L S = S πr. (1 A) = 3, W. Stnovte efektivní teplotu rovnovážného záření ut, známe-li jeho lbedo A = 0,15, efektivní povrchovou teplotu Slunce T efs = K, poloměr Slunce R S = m, střední vzdálenost Slunce uto je = 39,5 AU = 5, m. Jk by se změnil teplot ut, jestliže by se hypoteticky zářivý výkon Slunce zvětšil o 5 %? Předpokládejme neměnnost lbed. Vzorec pro teplotu rovnovážného záření plnety dostneme úprvou vzthu 4 R 4 R 4π R σ T ef = ( 1 A ) L S = ( 1 A ) 4π R S σ T efs, odkud pro teplotu obdržíme 4 4 T 1 R 1 S = TefS ( 1 A)4 = 4,6 K. Vyzářená energie je úměrná T 4, pro teploty pltí P 4 1 T P ln 1,05 = 4 TP ln = 1, 05 T = 43,5 K. T Určete hodnotu škálové výšky tmosféry ut, předpokládáme-li její složení z N, teplotu T = 43 K g = 0,66 m.s -.

5 3 kt 1, Škálovou výšku tmosféry získáme ze vzthu H = = 7 gm 0, ,67.10 = 44 km. Vzhledem ke znčně excentrické dráze e = 0,5 ut kolem Slunce musíme uvžovt změnu teploty tmosféry. Nárůst teploty o zhrub 5 K má z následek změnu škálové výšky H tmosféry ut při přechodu z féli k perihéliu. Škálová výšk tmosféry je dán vzthem 1 H = kt gm, přičemž pro teplotu rovnovážného záření ut pltí T r, kde r je vzdálenost od Slunce. Aféliová periheliová vzdálenost jsou dány vzthy r = ( 1 + e) ( e) V tomto poměru se mění škálová výšk tmosféry. r p 1 1 T p + e = 1. Doszením obdržíme = = 1, 3. T 1 e Změnu sttutu plnety komentovli i strologové, kterým údjně nijk nevdí Jejich přesným výpočtům vlivu ut n člověk nevdil v minulosti ni nepřesná znlost hodnoty hmotnosti ut. Nesprávnost jejich úvh lze doložit následující úlohou. Astrologové tvrdí, že plnety svými,,strologickými silmi v okmžiku nrození lidí ovlivňují jejich chrktery. Vypočtěte poměr hypotetických strologických sil ut Země n nově nrozené dítě v okmžiku, kdy se uto nchází v opozici ve vzdálenosti 38,5 AU od Země. md G F r Určíme poměr grvitčních sil ut Země = = F m Z d Z G R grvitční vliv ut je zcel znedbtelný. Přejděme zpět k vývoji stronomických pozntků o utu. K,,upřesnění poloměru n km došlo ž v roce 1950 Gerrdem Peterem Kuiperem ( ). Přesná hodnot R = km, R = 593 km, zjištěná při vzájemných Z, Je zřejmé, že zákrytech obou těles v roce 1985, znmenl podsttnou revizi nšich předstv o velikostech těles. N obrázku jsou zchyceny ve stejném měřítku Země, ěsíc, uto ron.

6 Podle součsných předstv [ 5 ] má uto v nitru kmenné jádro o poloměru 900 km, následuje vrstv o tloušťce 00 km hustotě přibližně, kg.m -3 s povrchovým pláštěm z H 0, CO, CO CH 4. Atmosfér shjící do výšky přibližně 3 00 km nd povrchem plnety, je složen z N, CO, CO Ne [ 6 ]. Její existence byl prokázán pozorováním zákrytu hvězd, kdy pozvolný pokles trvjící několik desítek sekund signlizuje tmosféru. Tlk plynu n povrchu doshuje 1,5 P. Průzkum ut pokrčuje i v součsnosti, snímek zchycuje dv dlší objevené ěsíce ut Nix Hydru. Jsnější je vnější měsíc Hydr, obíhjící ve vzdálenosti přibližně km. S menší jsností je měsíc Nix, obíhá ve vzdálenosti si km. Jejich téměř kruhové dráhy leží ve stejné rovině s drhou ron. rkteristiky ut:. 1,3.10 kg T 43 K D..., m i 17, o ρ.10 3 kg.m -3 e 0,48 P 48 roků 39,59 AU lbedo 0,15 Již od objevu ut někteří stronomové upozorňovli, že jeho dráh má velkou excentricitu e = 0,5 nezvykle velký sklon dráhové roviny k ekliptice - přes 17 o. Rovněž průměrná hustot zjištěná po objevu ron v roce 1978 vyvolávl pochybnosti, neboť její hodnot kg.m -3, spdá do intervlu mezi průměrnou hustotou plnet terestrických velkých plynných. Zřejmě uto s ronem jsou pozůsttkem plnetesimál, tedy původních těles, z kterých vznikly jednotlivé plnety. Ve vnější části sluneční mlhoviny kondenzovl

7 z ochlzujícího se plynu větší počet,,ledových těles. Po roce 000 byl postupně objevován trnsneptunická těles, v některých přípdech srovntelná svojí velikostí s utem, npř. UB313. Proto v poslední době zvýrznily snhy po změně sttutu plnety. Bylo třeb změnit strší vymezení pojmu plnet, jenž definovlo plnetu jko těleso, jehož hmotnost leží mezi hmotností ut ptnáctinásobkem hmotnosti Jupiter - 15 J ( J = 1, kg). Přitom obíhá těleso, které produkuje ve svém nitru energii pomocí termonukleárních rekcí. K rozhodnutí, zd uto je či není plnetou bylo nově definován ktegorie kosmických těles - plnet. N kongresu IAU v Prze 006 byl přijt nová definice pojmu plnet. Podle ní je plnet kosmické těleso, které obíhá okolo Slunce, má dosttečnou hmotnost, by jeho grvitce ustvil tvr (přibližně kultý), odpovídjící hydrosttické rovnováze, nejde všk o měsíc. net je v prostoru ntolik dominntní, že ho,,vyčistí od osttních těles. ezi osm plnet sluneční soustvy dnes ptří erkur, Venuše, Země, rs, Jupiter, Sturn, Urn Neptun. uto bylo z tohoto seznmu vyřzeno. Je přímo symbolické, že právě stoleté výročí nrození objevitele ut Clyd Tombugh je rokem, kdy jím objevené kosmické těleso bylo přeregistrováno z plnety n trpsličí plnetku, s nově přiřzeným číslem Přestože uto zmizelo ze seznmu plnet v učebnicích všech typů škol, neztrtilo nic ze své tjemnosti nesporně zůstává velmi zjímvým kosmických tělesem, jk jsme v článku ukázli. ůžeme souhlsit s strologií, v které uto symbolizuje vynášení n povrch skrytých tjemství. Nejen proto byl vyslán 19. ledn 006 kosmická sond New Horizont o hmotnosti si 480 kg, jejímž úkolem bude podrobné studium,,z blízk ut, ron těles Kuiperov pásu. K oběm prvně uvedeným tělesům má sond dorzit v roce 015, což ještě umožní výzkum tmosféry ut, která se zvýrznil rozvinul při průchodu perihéliem 5. září Dlší návrt do perihéli nstne ž v roce 37.

8 Snímky ut můžeme získt v součsnosti, viz npříkld foto z zně ze dne 11. srpn 005. Litertur: [ 1 ] Tombugh, C. W.: Reminiscences of the Discovery of uto. Sky nd Telescope 19, no. 5, rch [ ] Grygr, J.: uto podivná poslední plnet. Čs. čsopis pro fyziku 48, 1998, č. 5, s. 93. [ 3 ] risty. J. W., R. S. Hrrington.: The Stellite of uto. The Astronomy Journl vol. 83, 1978, p [ 4 ] Olkin, C. B., Wssermn L. H., Frnz, O. G.: The mss rtion of ron to uto from Hubble Spce Telescope strometry with the fine guidnce sensors. Ikrus vol. 164, 003, p. 54. [ 5 ] Simonelli, D. P., Reynolds, R. T:: The interiors of uto nd ron Structure, composition nd implictions. Geophysicl Reserch Letters, vol. 16, Nov. 1989, p [ 6 ] Pschoff, J.. et l.: The Structure of uto s Atmosphere from the 00 August 1 Stellr Occulttion. The Astronomicl Journl vol. 19, 005, p

Astronomická olympiáda 2010/2011

Astronomická olympiáda 2010/2011 Astronomická olympiád 00/0 Úvod V roce 00 jsme si připomenuli jedno význmné domácí výročí, uplynulo totiž 600 let od vyrobení nejstrších částí pržského orloje. V roce 0 nás tké čeká celá řd stronomických

Více

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman STEJNOSĚRNÉ STROJE 1. Princip činnosti stejnosměrného stroje 2. Rekce kotvy komutce stejnosměrných strojů 3. Rozdělení stejnosměrných strojů 4. Stejnosměrné generátory 5. Stejnosměrné motory 2002 Ktedr

Více

7.5.8 Středová rovnice elipsy

7.5.8 Středová rovnice elipsy 758 Středová rovnice elips Předpokld: 750, 7507 Př : Vrchol elips leží v odech A[ ;], B [ 3;], [ ;5], [ ; 3] elips souřdnice jejích ohnisek Urči prmetr Zdné souřdnice už n první pohled vpdjí podezřele,

Více

Vzorová řešení čtvrté série úloh

Vzorová řešení čtvrté série úloh FYZIKÁLNÍ SEKCE Přírodovědecká fkult Msrykovy univerzity v Brně KORESPONDENČNÍ SEMINÁŘ Z FYZIKY 8. ročník 001/00 Vzorová řešení čtvrté série úloh (5 bodů) Vzorové řešení úlohy č. 1 (8 bodů) Volný pád Měsíce

Více

1 i= VLIV ZMĚN FYZIKÁLNÍCH PARAMETRŮ FLUIDNÍCH VRSTEV NA CHARAKTERISTIKY TLAKOVÝCH FLUKTUACÍ. OTAKAR TRNKA a MILOSLAV HARTMAN. i M

1 i= VLIV ZMĚN FYZIKÁLNÍCH PARAMETRŮ FLUIDNÍCH VRSTEV NA CHARAKTERISTIKY TLAKOVÝCH FLUKTUACÍ. OTAKAR TRNKA a MILOSLAV HARTMAN. i M Chem. Listy, 55 53 (7) VLIV ZMĚN FYZIKÁLNÍCH PARAMETRŮ FLUIDNÍCH VRSTEV NA CHARAKTERISTIKY TLAKOVÝCH FLUKTUACÍ OTAKAR TRNKA MILOSLAV HARTMAN Ústv chemických procesů, AV ČR, Rozvojová 35, 65 Prh 6 trnk@icpf.cs.cz

Více

GRAVITAČNÍ POLE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

GRAVITAČNÍ POLE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník GRAVITAČNÍ POLE Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Gravitace Vzájemné silové působení mezi každými dvěma hmotnými body. Liší se od jiných působení. Působí vždy přitažlivě. Působí

Více

Téma: Světlo a stín. Zpracoval Doc. RNDr. Zdeněk Hlaváč, CSc

Téma: Světlo a stín. Zpracoval Doc. RNDr. Zdeněk Hlaváč, CSc Téma: Světlo a stín Zpracoval Doc. RNDr. Zdeněk Hlaváč, CSc Objekty na nebeské sféře září ve viditelném spektru buď vlastním světlem(hvězdy, galaxie) nebo světlem odraženým(planety, planetky, satelity).

Více

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501 1.5. Mechnická práce II Předpokldy: 1501 Př. 1: Těleso o hmotnosti 10 kg bylo vytženo pomocí provzu do výšky m ; poprvé rovnoměrným přímočrým pohybem, podruhé pohybem rovnoměrně zrychleným se zrychlením

Více

PRAVIDELNÉ MNOHOSTĚNY

PRAVIDELNÉ MNOHOSTĚNY PRVIDELNÉ MNOHOĚNY Vlst Chmelíková, Luboš Morvec MFF UK 007 1 Úvod ento text byl vytvořen s cílem inspirovt učitele středních škol k zčlenění témtu prvidelné mnohostěny do hodin mtemtiky, neboť při výuce

Více

2 i i. = m r, (1) J = r m = r V. m V

2 i i. = m r, (1) J = r m = r V. m V Měření momentu setrvčnosti 1 Měření momentu setrvčnosti Úko č. 1: Změřte moment setrvčnosti obdéníkové desky přímou metodou. Pomůcky Fyzické kyvdo (kovová obdéníková desk s třemi otvory), kovové těísko

Více

Astronomická pozorování

Astronomická pozorování KLASICKÁ ASTRONOMIE Astronomická pozorování Základní úloha při pozorování nějakého děje, zejména pohybu těles je stanovení jeho polohy (rychlosti) v daném okamžiku Astronomie a poziční astronomie Souřadnicové

Více

Větvené mazací systémy a jejich proudové poměry tribologicko-hydraulické aspekty

Větvené mazací systémy a jejich proudové poměry tribologicko-hydraulické aspekty OBHAJOBA DISETAČNÍ PÁCE Větvené mzcí systémy jejich proudové poměry triologicko-hydrulické spekty PhD student: Ing. Antonín Dvořák Školitel: Doc. NDr. Ing. Josef Nevrlý, CSc. Ústv konstruování VUT- BNO

Více

2.2.9 Grafické řešení rovnic a nerovnic

2.2.9 Grafické řešení rovnic a nerovnic ..9 Grfické řešení rovnic nerovnic Předpokldy: 0, 06 Př. : Řeš početně i grficky rovnici x + = x. Početně: Už umíme. x + = x x = x = K = { } Grficky: Kždá ze strn rovnice je výrzem pro lineární funkci

Více

Střípky z historie objevu Pluta

Střípky z historie objevu Pluta Střípky z historie objevu Pluta V letošním roce uplynulo 85 let od okamžiku, kdy se svět dozvěděl, že za Neptunem obíhá kolem Slunce další planeta. V červenci kolem této planety, která dostala název Pluto,

Více

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90 ROVNICE A NEROVNICE 8 Lineární rovnice 8 Kvdrtické rovnice 8 Rovnice s bsolutní hodnotou 88 Ircionální rovnice 90 Eponenciální rovnice 9 Logritmické rovnice 9 7 Goniometrické rovnice 98 8 Nerovnice 0 Úlohy

Více

Vztlaková síla působící na těleso v atmosféře Země

Vztlaková síla působící na těleso v atmosféře Země Vztlaková síla působící na těleso v atmosféře Země (Učebnice strana 140 141) Na pouti koupíme balonek. Pustíme-li ho v místnosti, stoupá ke stropu.po určité době (balonek mírně uchází) se balonek od stropu

Více

Krajské kolo 2015/16, kategorie GH (6. a 7. třída ZŠ) Identifikace

Krajské kolo 2015/16, kategorie GH (6. a 7. třída ZŠ) Identifikace Identifikace Na každý list se zadním nebo řešením napiš dolů svoje jméno a identifiktor. Neoznačené listy nebudou opraveny! Žk jméno: příjmení: identifiktor: Škola nzev: město: PSČ: Hodnocení A B C D E

Více

13. Exponenciální a logaritmická funkce

13. Exponenciální a logaritmická funkce @11 1. Eponenciální logritmická funkce Mocninná funkce je pro r libovolné nenulové reálné číslo dán předpisem f: y = r, r R, >0 Eponent r je konstnt je nezávisle proměnná. Definičním oborem jsou pouze

Více

Konzultace z předmětu MATEMATIKA pro první ročník dálkového studia

Konzultace z předmětu MATEMATIKA pro první ročník dálkového studia - - Konzultce z předmětu MATEMATIKA pro první ročník dálkového studi ) Číselné obor ) Zákldní početní operce procentový počet ) Absolutní hodnot reálného čísl ) Intervl množinové operce ) Mocnin ) Odmocnin

Více

Vesmír pohledem Hubblova teleskopu

Vesmír pohledem Hubblova teleskopu Vesmír pohledem Hubblova teleskopu Hubble dalekohled Hubbleův teleskop se nachází mimo naši atmosféru a krouží okolo Země ve výšce 593 km na hladinou moře a naši planetu oběhne rychlostí 28.000 km/h za

Více

c 2 b 2 a 2 2.8.20 Důkazy Pythagorovy věty Předpoklady: 020819

c 2 b 2 a 2 2.8.20 Důkazy Pythagorovy věty Předpoklady: 020819 .8.0 Důkzy Pythgorovy věty Předpokldy: 00819 Pedgogická poznámk: V řešení kždého příkldu jsou uvedeny rdy, které dávám postupně žákům, bych jim pomohl. Pedgogická poznámk: Diskuse o následujícím příkldu

Více

Část A strana A 1. (14 b) (26 b) (60 b) (100 b)

Část A strana A 1. (14 b) (26 b) (60 b) (100 b) Část A strana A 1 Bodové hodnocení vyplňuje komise! část A B C Celkem body (14 b) (26 b) (60 b) (100 b) Pokyny k testovým otázkám: U následujících otázek zakroužkuj vždy právě jednu správnou odpověď. Zmýlíš-li

Více

Identifikace. Přehledový test (online)

Identifikace. Přehledový test (online) Identifikace Na každý list se zadním nebo řešením napiš dolů svoje jméno a identifiktor. Neoznačené listy nebudou opraveny! Žk jméno: příjmení: identifiktor: Škola nzev: město: PSČ: Hodnocení A B C D E

Více

R2.213 Tíhová síla působící na tělesa je mnohem větší než gravitační síla vzájemného přitahování těles.

R2.213 Tíhová síla působící na tělesa je mnohem větší než gravitační síla vzájemného přitahování těles. 2.4 Gravitační pole R2.211 m 1 = m 2 = 10 g = 0,01 kg, r = 10 cm = 0,1 m, = 6,67 10 11 N m 2 kg 2 ; F g =? R2.212 F g = 4 mn = 0,004 N, a) r 1 = 2r; F g1 =?, b) r 2 = r/2; F g2 =?, c) r 3 = r/3; F g3 =?

Více

ASTRO Keplerovy zákony pohyb komet

ASTRO Keplerovy zákony pohyb komet ASTRO Keplerovy zákony pohyb komet První Keplerův zákon: Planety obíhají kolem Slunce po elipsách, v jejichž společném ohnisku je Slunce. Druhý Keplerův zákon: Plochy opsané průvodičem planety za stejné

Více

Obr. 1: Optická lavice s příslušenstvím při měření přímou metodou. 2. Určení ohniskové vzdálenosti spojky Besselovou metodou

Obr. 1: Optická lavice s příslušenstvím při měření přímou metodou. 2. Určení ohniskové vzdálenosti spojky Besselovou metodou MĚŘENÍ PARAMETRŮ OPTICKÝCH SOUSTAV Zákldním prmetrem kždé zobrzovcí soustvy je především její ohnisková vzdálenost. Existuje několik metod k jejímu určení le téměř všechny jsou ztíženy určitou nepřesností

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvlity výuky technických oorů Klíčová ktivit IV. Inovce zkvlitnění výuky směřující k rozvoji mtemtické grmotnosti žáků středních škol Tém IV.. Algerické výrzy, výrzy s mocninmi odmocninmi Kpitol

Více

Identifikace práce. POZOR, nutné vyplnit čitelně! vyplňuje hodnotící komise A I: A II: B I: B II: C: D I: D II: Σ:

Identifikace práce. POZOR, nutné vyplnit čitelně! vyplňuje hodnotící komise A I: A II: B I: B II: C: D I: D II: Σ: vyplňuje žák Identifikace práce POZOR, nutné vyplnit čitelně! Žák jméno příjmení věk Bydliště ulice, č.p. město PSČ jiný kontakt (např. e-mail) vyplňuje škola Učitel jméno příjmení podpis Škola ulice,

Více

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. Ústav aplikované fyziky a matematiky ZÁKLADY FYZIKY II

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. Ústav aplikované fyziky a matematiky ZÁKLADY FYZIKY II UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ Ústav aplikované fyziky a matematiky ZÁKLADY FYZIKY II Sbírka příkladů pro ekonomické obory kombinovaného studia Dopravní fakulty Jana Pernera (PZF2K)

Více

CVIČENÍ č. 3 STATIKA TEKUTIN

CVIČENÍ č. 3 STATIKA TEKUTIN Rovnováha, Síly na rovinné stěny CVIČENÍ č. 3 STATIKA TEKUTIN Příklad č. 1: Nákladní automobil s cisternou ve tvaru kvádru o rozměrech H x L x B se pohybuje přímočarým pohybem po nakloněné rovině se zrychlením

Více

Úlohy pro 52. ročník fyzikální olympiády, kategorie EF

Úlohy pro 52. ročník fyzikální olympiády, kategorie EF FO52EF1: Dva cyklisté Dva cyklisté se pohybují po uzavřené závodní trase o délce 1 200 m tak, že Lenka ujede jedno kolo za dobu 120 s, Petr za 100 s. Při tréninku mohou vyjet buď stejným směrem, nebo směry

Více

Úřední věstník Evropské unie 25.6.2004 ÚŘEDNÍ VĚSTNÍK EVROPSKÉ UNIE

Úřední věstník Evropské unie 25.6.2004 ÚŘEDNÍ VĚSTNÍK EVROPSKÉ UNIE 03/sv. 45 75 32004R0854 25.6.2004 ÚŘEDNÍ VĚSTNÍK EVROPSKÉ UNIE L 226/83 NAŘÍZENÍ EVROPSKÉHO PARLAMENTU A RADY (ES) č. 854/2004 ze dne 29. dubn 2004, kterým se stnoví zvláštní prvidl pro orgnizci úředních

Více

Goniometrické funkce obecného úhlu

Goniometrické funkce obecného úhlu 0 Goniometrické funkce oecného úhlu V prvoúhlém trojúhelníku ABC jsou definovány funkce,, tg, cotg liovolného úhlu tkto: α α tg α cotg α Význmné hodnoty gon. funkcí 0 0 60 90 α 0 α 0 tg α 0 nedef. cotg

Více

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky.

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky. Výrzy Výrz je druh mtemtického zápisu, který obshuje konstnty, proměnné, symboly mtemtických opercí, závorky. Příkldy výrzů: + výrz obshuje pouze konstnty číselný výrz x výrz obshuje konstntu ( proměnnou

Více

S = 2. π. r ( r + v )

S = 2. π. r ( r + v ) horní podstava plášť výška válce průměr podstavy poloměr podstavy dolní podstava Válec se skládá ze dvou shodných podstav (horní a dolní) a pláště. Podstavou je kruh. Plášť má tvar obdélníka, který má

Více

JAN VÁLEK, PETR SLÁDEK Katedra fyziky, chemie a odborného vzdělávání, Pedagogická fakulta, Masarykova univerzita, Poříčí 7, Brno

JAN VÁLEK, PETR SLÁDEK Katedra fyziky, chemie a odborného vzdělávání, Pedagogická fakulta, Masarykova univerzita, Poříčí 7, Brno Veletrh nápdů učitelů fyziky 18 Fyzik cyklist JAN VÁLEK, PETR SLÁDEK Ktedr fyziky, chemie odorného vzdělávání, Pedgogická fkult, Msrykov univerzit, Poříčí 7, 603 00 Brno Astrkt Jízdní kolo spojuje mnoho

Více

Úvod do numerické matematiky. Přednáška pro posluchače informatiky. Zimní resp. Letní semestr 2/2

Úvod do numerické matematiky. Přednáška pro posluchače informatiky. Zimní resp. Letní semestr 2/2 Úvod do numerické mtemtiky Přednášk pro posluchče informtiky Zimní resp Letní semestr 2/2 Ivo Mrek, Petr Myer Bohuslv Sekerk 1 Úvodní poznámky Vymezení problemtiky vystihuje následující chrkteristik Numerická

Více

9. Astrofyzika. 9.4 Pod jakým úhlem vidí průměr Země pozorovatel na Měsíci? Vzdálenost Měsíce od Země je 384 000 km.

9. Astrofyzika. 9.4 Pod jakým úhlem vidí průměr Země pozorovatel na Měsíci? Vzdálenost Měsíce od Země je 384 000 km. 9. Astrofyzika 9.1 Uvažujme hvězdu, která je ve vzdálenosti 4 parseky od sluneční soustavy. Určete: a) jaká je vzdálenost této hvězdy vyjádřená v kilometrech, b) dobu, za kterou dospěje světlo z této hvězdy

Více

Objevte planety naší sluneční soustavy Za 90 minut přes vesmír Na výlet mezi Ehrenfriedersdorf a Drebach

Objevte planety naší sluneční soustavy Za 90 minut přes vesmír Na výlet mezi Ehrenfriedersdorf a Drebach Objevte planety naší sluneční soustavy Za 90 minut přes vesmír Na výlet mezi Ehrenfriedersdorf a Drebach Sluneční soustava Sonnensystem Sluneční soustava (podle Pravidel českého pravopisu psáno s malým

Více

Podivná poslední planeta Pluto její pád a nová sláva

Podivná poslední planeta Pluto její pád a nová sláva Podivná poslední planeta Pluto její pád a nová sláva Zbývá už jen pár dní do historického milníku, kdy si pery skoro zlatými (či digitálními) napíšeme do sešitů i knih nové významné datum ve výzkumu Sluneční

Více

Zadání. stereometrie. 1) Sestrojte řez krychle ABCDEFGH rovinou KS GHM; K AB; BK =3 AK ; M EH; HM =3 EM.

Zadání. stereometrie. 1) Sestrojte řez krychle ABCDEFGH rovinou KS GHM; K AB; BK =3 AK ; M EH; HM =3 EM. STEREOMETRIE Zadání 1) Sestrojte řez krychle ABCDEFGH rovinou KS GHM; K AB; BK = AK ; M EH; HM = EM ) Sestrojte řez pravidelného čtyřbokého jehlanu ABCDV rovinou KLM; K AB; BK = AK ; L CD; DL = CL ; M

Více

Využití animací letů kosmických sond ve výuce fyziky

Využití animací letů kosmických sond ve výuce fyziky Využití animací letů kosmických sond ve výuce fyziky TOMÁŠ FRANC Matematicko-fyzikální fakulta UK, Praha Zajímavým oživením hodin fyziky jsou lety kosmických sond, o kterých žáci gymnázií příliš mnoho

Více

Matematika II: Testy

Matematika II: Testy Mtemtik II: Testy Petr Schreiberová Ktedr mtemtiky deskriptivní geometrie VŠB - Technická univerzit Ostrv Mtemtik II - testy 69. Řy 9 - Test Ktedr mtemtiky deskriptivní geometrie, VŠB - Technická univerzit

Více

2.3. DETERMINANTY MATIC

2.3. DETERMINANTY MATIC 2.3. DETERMINANTY MATIC V této kpitole se dozvíte: definici determinntu čtvercové mtice; co je to subdeterminnt nebo-li minor; zákldní vlstnosti determinntů, používné v mnoh prktických úlohách; výpočetní

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ TERMOAKUSTICKÉ MĚŘENÍ VÝKONU ULTRAZVUKU

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ TERMOAKUSTICKÉ MĚŘENÍ VÝKONU ULTRAZVUKU VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

Více

Pluto již není planetou, z astronomie však nemizí

Pluto již není planetou, z astronomie však nemizí uto již není planetou, z astronomie však nemizí Vladimír Štefl, Brno Julius Domański, Toruň Cílem článku je vysvětlit čtenářům žákům i učitelům, proč bylo uto při svém objevu v roce 1930 označeno za planetu

Více

Vodorovné protipožární konstrukce > Podhledy Interiér/Exteriér > Vzhled s utěsněnou spárou a hlavičkami vrutů

Vodorovné protipožární konstrukce > Podhledy Interiér/Exteriér > Vzhled s utěsněnou spárou a hlavičkami vrutů Technický průvodce Vodorovné protipožární konstrukce > Rozsh pltnosti N zákldě výsledků zkoušek, které jsou zde uvedené, lze plikovt desky CETRIS v těchto typech protipožárních vodorovných konstrukcí:

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

Exoplanety (extrasolar planet)

Exoplanety (extrasolar planet) Exoplanety Exoplanety (extrasolar planet) Existují planety také kolem jiných hvězd než Slunce? antika myslitelé proč ne? od 18. století - Laplace, Kant vznik Sluneční soustavy 1988 - planeta γ Cep (hypotéza)

Více

Složení hvězdy. Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ

Složení hvězdy. Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ Hvězdy zblízka Složení hvězdy Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ Plazma zcela nebo částečně ionizovaný plyn,

Více

Astronomický rok 2015

Astronomický rok 2015 Astronomický rok 2015 V následujícím článku jsou vybrány nejzajímavější nebeské úkazy a události vztahující se k astronomii, které nám nabídne nadcházející rok. Dnes si projdeme první pololetí 2015. Ze

Více

O PLUTU SE STÁLE MLUVÍ ANALÝZA DAT SID MONITORINGU NEJBLIŽŠÍ AKCE A ÚKAZY. Hvězdy jsou krásné protože jsou neuchopitelné.

O PLUTU SE STÁLE MLUVÍ ANALÝZA DAT SID MONITORINGU NEJBLIŽŠÍ AKCE A ÚKAZY. Hvězdy jsou krásné protože jsou neuchopitelné. Hvězdy jsou krásné protože jsou neuchopitelné. Periodikum pro milovníky astronomie na Karlovarsku Zpravodaj KARLOVARSKÉ HVĚZDÁRNY ASTR PATR LA 2 16 Číslo vychází 9. 3. 2016 O PLUTU SE STÁLE MLUVÍ ANALÝZA

Více

Kód vzdělávacího materiálu: Název vzdělávacího materiálu: Datum vytvoření: Jméno autora: Předmět: Ročník: 1 a 2

Kód vzdělávacího materiálu: Název vzdělávacího materiálu: Datum vytvoření: Jméno autora: Předmět: Ročník: 1 a 2 Kód vzdělávacího materiálu: Název vzdělávacího materiálu: VY_32_INOVACE_0505 Planety Datum vytvoření: 17.5.2013 Jméno autora: Předmět: Mgr. Libor Kamenář Fyzika Ročník: 1 a 2 Anotace způsob použití ve

Více

ČLOVĚK A ROZMANITOST PŘÍRODY VESMÍR A ZEMĚ. GRAVITACE

ČLOVĚK A ROZMANITOST PŘÍRODY VESMÍR A ZEMĚ. GRAVITACE ČLOVĚK A ROZMANITOST PŘÍRODY VESMÍR A ZEMĚ. GRAVITACE Sluneční soustava Vzdálenosti ve vesmíru Imaginární let fotonovou raketou Planety, planetky Planeta (oběžnice) ve sluneční soustavě je takové těleso,

Více

Studium termoelektronové emise:

Studium termoelektronové emise: Truhlář Michl 2. 9. 26 Lbortorní práce č.11 Úloh č. II Studium termoelektronové emise: Úkol: 1) Změřte výstupní práci w wolfrmu pomocí Richrdsonovy-Dushmnovy přímky. 2) Vypočítejte pro použitou diodu intenzitu

Více

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření.

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření. Úloh č. 9 je sestven n zákldě odkzu n dv prmeny. Kždý z nich přistupuje k stejnému úkolu částečně odlišnými způsoby. Níže jsou uvedeny ob zdroje v plném znění. V kždém z nich jsou pro posluchče cenné inormce

Více

Stereometrie pro učební obory

Stereometrie pro učební obory Variace 1 Stereometrie pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz 1. Vzájemná poloha prostorových

Více

TÉMA: Molekulová fyzika a tepelné děje v plynech VNITŘNÍ ENERGIE TĚLESA

TÉMA: Molekulová fyzika a tepelné děje v plynech VNITŘNÍ ENERGIE TĚLESA U.. vnitřní energie tělesa ( termodynamické soustavy) je celková kinetická energie neuspořádaně se pohybujících částic tělesa ( molekul, atomů, iontů) a celková potenciální energie vzájemné polohy těchto

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

Interpretace pozorování planet na obloze a hvězdné obloze

Interpretace pozorování planet na obloze a hvězdné obloze Interpretace pozorování planet na obloze a hvězdné obloze - role vztažné soustavy - modely Sluneční soustavy stejná pozorování je možné vysvětlit různými modely! heliocentrický x geocentrický model Tanec

Více

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:

Více

Základní jednotky v astronomii

Základní jednotky v astronomii v01.00 Základní jednotky v astronomii Ing. Neliba Vlastimil AK Kladno 2005 Délka - l Slouží pro určení vzdáleností ve vesmíru Základní jednotkou je metr metr je definován jako délka, jež urazí světlo ve

Více

7. AUTOEVALUACE ŠKOLY A JEJÍ EVALUAČNÍ ČINNOST

7. AUTOEVALUACE ŠKOLY A JEJÍ EVALUAČNÍ ČINNOST 7. AUTOEVALUACE ŠKOLY A JEJÍ EVALUAČNÍ ČINNOST Autoevluce školy dlší evluční činnosti slouží ke zjištění toho, jk se dří uskutečňovt stnovené vzdělávcí jká je mteriální úroveň školy. Oblstí hodnocení je

Více

HVĚZDNÁ OBLOHA, SOUHVĚZDÍ

HVĚZDNÁ OBLOHA, SOUHVĚZDÍ HVĚZDNÁ OBLOHA, SOUHVĚZDÍ Souhvězdí I. Souhvězdí je optické uskupení hvězd různých jasností na obloze, které mají přesně stanovené hranice Podle usnesení IAU je celá obloha rozdělena na 88 souhvězdí Ptolemaios

Více

Optická zobrazovací soustava

Optická zobrazovací soustava Optická zobrzovcí soustv Mteriál je určen pouze jko pomocný mteriál pro studenty zpsné v předmětu: Videometrie bezdotykové měření, ČVUT- FEL, ktedr měření, přednášející Jn Fischer Jn Fischer, 2013 1 Měření

Více

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Příkld 22 : Kpcit rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Předpokládné znlosti: Elektrické pole mezi dvěm nbitými rovinmi Příkld 2 Kpcit kondenzátoru je

Více

matematika vás má it naupravidl

matematika vás má it naupravidl VÝZNAM Algebrický výrz se zvádí intuitivn bez p esn ího vmezení v kolizi s názv dvoj len, troj len, mnoho len. Stále se udr uje fle ná p edstv, e ísl ozn ují mno ství, e jsou zobecn ním vnímné skute nosti.

Více

Interpretace pozorování planet na obloze a hvězdné obloze

Interpretace pozorování planet na obloze a hvězdné obloze Interpretace pozorování planet na obloze a hvězdné obloze - role vztažné soustavy - modely Sluneční soustavy stejná pozorování je možné vysvětlit různými modely! heliocentrický x geocentrický model Tanec

Více

Auto během zrychlování z počáteční rychlost 50 km/h se zrychlením dráhu 100 m. Jak dlouho auto zrychlovalo? Jaké rychlosti dosáhlo?

Auto během zrychlování z počáteční rychlost 50 km/h se zrychlením dráhu 100 m. Jak dlouho auto zrychlovalo? Jaké rychlosti dosáhlo? ..7 Ronoměrně zrychlený pohyb příkldech III Předpokldy: 6 Pedgogická poznámk: Hodinu dělím n dě části: 5 minut n prní d příkldy zbytek n osttní. I když šichni nestihnout spočítt druhý příkld je potřeb,

Více

Relativistická dynamika

Relativistická dynamika Relativistická dynamika 1. Jaké napětí urychlí elektron na rychlost světla podle klasické fyziky? Jakou rychlost získá při tomto napětí elektron ve skutečnosti? [256 kv, 2,236.10 8 m.s -1 ] 2. Vypočtěte

Více

F Fyzika Sluneční soustavy

F Fyzika Sluneční soustavy F3160 - Fyzika Sluneční soustavy Pavel Gabzdyl (gabzdyl@hvezdarna.cz) Jan Píšala (pisala@hvezdarna.cz) Co od nás můžete čekat? - sérii přehledových přednášek - po každé přednášce umístíme na IS soubor

Více

Seriál XXVII.III Aplikační

Seriál XXVII.III Aplikační Seriál XXVII.III Aplikční Seriál: Aplikční Tento díl seriálu bude tk trochu plikční. Minule jsme si pověděli úvod k vričním metodám ve fyzice, nyní bychom rádi nbyté znlosti plikovli n tři speciální přípdy.

Více

Přijímací řízení akademický rok 2014/2015 Bc. studium Kompletní znění testových otázek matematika

Přijímací řízení akademický rok 2014/2015 Bc. studium Kompletní znění testových otázek matematika Přijímcí řízení kemický rok 0/0 Bc. stuium Kompletní znění testových otázek mtemtik Koš Znění otázky Opověď ) Opověď ) Opověď c) Opověď ) Správná opověď. Které číslo oplníte místo otzníku? 9 7?. Které

Více

DYNAMICKÉ MODULY PRUŽNOSTI NÁVOD DO CVIČENÍ

DYNAMICKÉ MODULY PRUŽNOSTI NÁVOD DO CVIČENÍ DYNAMICKÉ MODUY PRUŽNOSTI NÁVOD DO CVIČNÍ D BI0 Zkušebnctví a technologe Ústav stavebního zkušebnctví, FAST, VUT v Brně 1. STANOVNÍ DYNAMICKÉHO MODUU PRUŽNOSTI UTRAZVUKOVOU IMPUZOVOU MTODOU [ČSN 73 1371]

Více

VY_32_INOVACE_06_III./17._PLANETY SLUNEČNÍ SOUSTAVY

VY_32_INOVACE_06_III./17._PLANETY SLUNEČNÍ SOUSTAVY VY_32_INOVACE_06_III./17._PLANETY SLUNEČNÍ SOUSTAVY Planety Terestrické planety Velké planety Planety sluneční soustavy a jejich rozdělení do skupin Podle fyzikálních vlastností se planety sluneční soustavy

Více

Filip Hroch. Astronomické pozorování. Filip Hroch. Výpočet polohy planety. Drahové elementy. Soustava souřadnic. Pohyb po elipse

Filip Hroch. Astronomické pozorování. Filip Hroch. Výpočet polohy planety. Drahové elementy. Soustava souřadnic. Pohyb po elipse ÚTFA,Přírodovědecká fakulta MU, Brno, CZ březen 2005 březnového tématu Březnové téma je věnováno klasické sférické astronomii. Úkol se skládá z měření, výpočtu a porovnání výsledků získaných v obou částech.

Více

Integrály definované za těchto předpokladů nazýváme vlastní integrály.

Integrály definované za těchto předpokladů nazýváme vlastní integrály. Mtemtik II.5. Nevlstní integrály.5. Nevlstní integrály Cíle V této kpitole poněkud rozšíříme definii Riemnnov určitého integrálu i n přípdy, kdy je integrční oor neohrničený (tj. (, >,

Více

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2010, ročník X, řada stavební článek č. 17.

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2010, ročník X, řada stavební článek č. 17. Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2010, ročník X, řada stavební článek č. 17 Lenka LAUSOVÁ 1 OSOVĚ ZATÍŽEÉ SLOUPY ZA POŽÁRU AXIALLY LOADED COLUMS DURIG

Více

terénní praktikum : Pila Ptení jméno a příjmení : třída : datum :

terénní praktikum : Pila Ptení jméno a příjmení : třída : datum : Pracovní list vytvořil : Mgr. Lenka Krčová lektor terénních praktik : Mgr. Petr Žůrek terénní praktikum : Pila Ptení jméno a příjmení : třída : datum : Základní škola Prostějov, Dr. Horáka 24 1) Jistě

Více

V i s k o z i t a N e w t o n s k ý c h k a p a l i n

V i s k o z i t a N e w t o n s k ý c h k a p a l i n V i s k o z i t a N e w t o n s k ý c h k a p a l i n Ú k o l : Změřit dynamickou viskozitu destilované vody absolutní metodou a její závislost na teplotě relativní metodou. P o t ř e b y : Viz seznam

Více

Zajímavosti: Zákryty hvězd transneptunickými tělesy

Zajímavosti: Zákryty hvězd transneptunickými tělesy http:/hvr.cz Únor 2010 (2) Zajímavosti: Zákryty hvězd transneptunickými tělesy V nedávné době se objevily informace o dvou pozorováních, která byla uskutečněna zcela odlišně, ale jejich společným ukazatelem

Více

Fyzika (učitelství) Zkouška - teoretická fyzika. Čas k řešení je 120 minut (6 minut na úlohu): snažte se nejprve rychle vyřešit ty nejsnazší úlohy,

Fyzika (učitelství) Zkouška - teoretická fyzika. Čas k řešení je 120 minut (6 minut na úlohu): snažte se nejprve rychle vyřešit ty nejsnazší úlohy, Státní bakalářská zkouška. 9. 05 Fyzika (učitelství) Zkouška - teoretická fyzika (test s řešením) Jméno: Pokyny k řešení testu: Ke každé úloze je správně pouze jedna odpověď. Čas k řešení je 0 minut (6

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník NÁZEV: VY_32_INOVACE_197_Planety

NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník NÁZEV: VY_32_INOVACE_197_Planety NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník REDIZO: 600 150 585 NÁZEV: VY_32_INOVACE_197_Planety AUTOR: Ing. Gavlas Miroslav ROČNÍK, DATUM: 9., 25.11.2011 VZDĚL. OBOR, TÉMA: Fyzika ČÍSLO PROJEKTU:

Více

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace VY_32_INOVACE_MAT_190 Opkovcí test lgebrické výrzy, logik, množiny A, B Mgr. Rdk Mlázovská Období vytvoření: září 2012 Ročník: čtvrtý Temtická oblst: mtemtické vzdělávání Klíčová slov: výrz, intervl, množin,

Více

1 Pracovní úkoly. 2 Vypracování. Úloha #9 Akustika.

1 Pracovní úkoly. 2 Vypracování. Úloha #9 Akustika. FYZIKÁLNÍ PRAKTIKUM I FJFI ƒvut v Praze Úloha #9 Akustika. Datum m ení: 18.10.2013 Skupina: 7 Jméno: David Roesel Krouºek: ZS 5 Spolupracovala: Tereza Schönfeldová Klasikace: 1 Pracovní úkoly 1. Domácí

Více

4.2. Lineární rovnice s jednou neznámou, její řešení a ekvivalentní úpravy

4.2. Lineární rovnice s jednou neznámou, její řešení a ekvivalentní úpravy 4. Lineární rovnice 8. ročník 4. Lineární rovnice 4.. Rovnost. Vlstnosti rovnosti. Rovnost v ritmetice vzth mezi dvěm číselnými výrzy Př. 4 + 8 = 0 + Skládá se z : levé strny rovnosti prvé strny rovnosti

Více

18. x x 5 dx subst. t = 2 + x x 1 + e2x x subst. t = e x ln 2 x. x ln 2 x dx 34.

18. x x 5 dx subst. t = 2 + x x 1 + e2x x subst. t = e x ln 2 x. x ln 2 x dx 34. I. Určete integrály proved te zkoušku. Určete intervl(y), kde integrál eistuje... 3. 4. 5. 6. 7. 8. 9. 0... 3. 4. 5. 6. 7. e d substituce t = ln ln(ln ) d substituce t = ln(ln ), dt = ln 3 e 4 d substituce

Více

sf_2014.notebook March 31, 2015 http://cs.wikipedia.org/wiki/hudebn%c3%ad_n%c3%a1stroj

sf_2014.notebook March 31, 2015 http://cs.wikipedia.org/wiki/hudebn%c3%ad_n%c3%a1stroj http://cs.wikipedia.org/wiki/hudebn%c3%ad_n%c3%a1stroj 1 2 3 4 5 6 7 8 Jakou maximální rychlostí může projíždět automobil zatáčku (o poloměru 50 m) tak, aby se navylila voda z nádoby (hrnec válec o poloměru

Více

Tělesa sluneční soustavy

Tělesa sluneční soustavy Tělesa sluneční soustavy Měsíc dráha vzdálenost 356 407 tis. km (průměr 384400km); určena pomocí laseru/radaru e=0,0549, elipsa mění tvar gravitačním působením Slunce i=5,145 deg. měsíce siderický 27,321661

Více

URČITÝ INTEGRÁL FUNKCE

URČITÝ INTEGRÁL FUNKCE URČITÝ INTEGRÁL FUNKCE Formulce: Nším cílem je určit přibližnou hodnotu určitého integrálu I() = () d, kde předpokládáme, že unkce je n intervlu, b integrovtelná. Poznámk: Geometrický význm integrálu I()

Více

Úvod do Teoretické Informatiky (456-511 UTI)

Úvod do Teoretické Informatiky (456-511 UTI) Úvod do Teoretické Informtiky (456-511 UTI) Doc. RNDr. Petr Hliněný, Ph.D. petr.hlineny@vs.cz 25. ledn 2006 Verze 1.02. Copyright c 2004 2006 Petr Hliněný. (S využitím části mteriálů c Petr Jnčr.) Osh

Více

Kolik otáček udělá válec parního válce, než uválcuje 150 m dlouhý úsek silnice? Válec má poloměr 110 cm a je 3 m dlouhý.

Kolik otáček udělá válec parního válce, než uválcuje 150 m dlouhý úsek silnice? Válec má poloměr 110 cm a je 3 m dlouhý. DDÚ Kolik otáček udělá válec parního válce, než uválcuje 150 m dlouhý úsek silnice? Válec má poloměr 110 cm a je m dlouhý. Na délce válce vůbec nezáleží, záleží na jeho obvodu, poloměr je 110 cm, vypočítám

Více

Příklady - rovnice kontinuity a Bernouliho rovnice

Příklady - rovnice kontinuity a Bernouliho rovnice DUM Základy přírodních věd DUM III/2-T3-20 Téma: Mechanika tekutin a rovnice kontinuity Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý Příklady Příklady - rovnice kontinuity a Bernouliho

Více

( 5 ) 6 ( ) 6 ( ) Přijímací řízení ak. r. 2010/11 Kompletní znění testových otázek - matematický přehled

( 5 ) 6 ( ) 6 ( ) Přijímací řízení ak. r. 2010/11 Kompletní znění testových otázek - matematický přehled řijímcí řízení k. r. / Kompletní znění testových otázek - mtemtický přehled Koš Znění otázky Odpověď ) Odpověď b) Odpověď c) Odpověď d) Správná odpověď. Které číslo doplníte místo otzníku? 8?. Které číslo

Více

Proudění viskózní tekutiny. Renata Holubova renata.holubova@upol.cz

Proudění viskózní tekutiny. Renata Holubova renata.holubova@upol.cz Název Tematický celek Jméno a e-mailová adresa autora Cíle Obsah Pomůcky Poznámky Proudění viskózní tekutiny Mechanika kapalin Renata Holubova renata.holubova@upol.cz Popis základních zákonitostí v mechanice

Více

fyzika v příkladech 1 a 2

fyzika v příkladech 1 a 2 Sbírka pro předmět Středoškolská fyzika v příkladech 1 a 2 Mechanika: kapaliny a plyny zadání 1. Ve dně nádoby je otvor, kterým vytéká voda. Hladina vody v nádobě je 30 cm nade dnem. Jakou rychlostí vytéká

Více

ZÁKLADY MATEMATIKY 2. 1. SÉRIE: URƒITÝ INTEGRÁL, APLIKACE

ZÁKLADY MATEMATIKY 2. 1. SÉRIE: URƒITÝ INTEGRÁL, APLIKACE ZÁKLADY MATEMATIKY 2. SÉRIE: URƒITÝ INTEGRÁL, APLIKACE I. P íprvní úlohy. V této sérii pot ebujete znlost výpo t následujících úloh - otestujte si ji:. Vypo ítejte neur ité integrály: ) (x 2 x + ) 2 dx

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Měření Poissonovy konstanty vzduchu. Abstrakt

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Měření Poissonovy konstanty vzduchu. Abstrakt FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úloha 4: Měření dutých objemů vážením a kompresí plynu Datum měření: 23. 10. 2009 Měření Poissonovy konstanty vzduchu Jméno: Jiří Slabý Pracovní skupina: 1 Ročník

Více

x + F F x F (x, f(x)).

x + F F x F (x, f(x)). I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných

Více