ANALÝZA RIZIKA A CITLIVOSTI JAKO SOUČÁST STUDIE PROVEDITELNOSTI 1. ČÁST

Rozměr: px
Začít zobrazení ze stránky:

Download "ANALÝZA RIZIKA A CITLIVOSTI JAKO SOUČÁST STUDIE PROVEDITELNOSTI 1. ČÁST"

Transkript

1 Abstrakt ANALÝZA ZKA A CTLOST JAKO SOUČÁST STUDE POVEDTELNOST 1. ČÁST Jří Marek Úspěšnost nvestce závsí na tom, jaké nejstoty ovlvní její předpokládaný žvotní cyklus. Pomocí managementu rzka a analýzy jeho ctlvost je lze s určtým úspěchem optmalzovat. Jak analýza rzka (jeden z dílčích procesů managementu rzka), tak analýza ctlvost jsou vzájemně propojeny se studí provedtelnost. Příspěvek poskytuje metodku zejména ke zpracování kvaltatvní a kvanttatvní analýzy rzka. Jeho pokračování bude zaměřeno na analýzu ctlvost rzka. Klíčová slova Management rzka, analýza stromem událostí, kvantfkace rzka. 1. Úvod Na nvestc v průběhu žvotního cyklu působí mnoho faktorů. Obecně se jedná o faktory vnější (poltcké, socální, ekologcké, legslatvní, kulturní, tržní apod.) a vntřní (chyby ve fáz přípravy, nedobré řízení realzace atd.). ůzné faktory mohou mít na úspěšnost nvestce odlšný vlv. Vzhledem k tomu, že se předem nezná s jstotou výsledek nvestování, zpracovává se analýza rzka nvestce (entty, projektu), která má posílt míru očekávání úspěchu. Prostřednctvím oné analýzy se budoucí nejstoty odhalují (dříve než nastanou), ohodnocují a optmalzují. V rámc čnností souvsejících se zpracováním stude provedtelnost by měla analýza rzka tvořt zejména závěrečnou část prací, neboť základem maxmální přesnost výsledků z analýzy rzka je mít před zahájením jejího zpracování co nejvíce nformací o nvestc []. Analýza rzka je pro lustrac aplkována pouze na skupny čnností zemní práce a práce betonářské bytového domu. Celková plánovaná cena zemních prací V je 1,4 ml. Kč a prací betonářských Z,1 ml. Kč. Předpokládá se, že z hledska nejstot budou vstupovat do analýzy rzka pouze faktory přímo souvsející s prováděním oněch dvou skupn čnností. Zpráva geologckého průzkumu udává, že nebezpečí průsaků základovou deskou, na níž je budova založena, hrozí pouze př dlouhodobých srážkách. Základová půda se v rozsahu stavenště výrazně nemění.. zko V rámc managementu rzka se usluje o maxmalzac pravděpodobnost úspěchu nvestce a současně o mnmalzac možných negatvních dopadů vnějších a vntřních faktorů působících na nvestc. Optmalzace těchto parametrů se provádí prostřednctvím optmalzací dílčích pravděpodobností P odpovídajících jednotlvým nákladovým odchylkám, č C ng. Jří Marek, The Unversty of Tokyo, Faculty of Engneerng, Department of Cvl Engneerng, Laboratory of Constructon Management and nfrastructure Systems, 1

2 optmalzací těchto nákladových odchylek, které vstupují do výpočtu celkového rzka vyjádřeného v peněžních jednotkách: m 1 P * C, (1) kde C (1, m) je výše pěněžní odchylky oprot plánovaným nákladům -té položky nvestce vyjádřená v peněžních jednotkách. nvestční položkou se zde myslí různé stavební práce č skupny prací, jejchž realzací se v deálním případě dosáhne očekávaného výsledku stavby. Bezrzková nvestce bude mít vždy všechny součny P * rovny nule. V C managementu rzka jsou nejdůležtější hodnoty součnů P * C, které mohou být ve svém poměru vzhledem k celkovým uvažovaným nákladům (resp. k nákladům žvotního cyklu - lfe cycle costs) nvestce významné tj. v případech, kdy P nabývají vysokých hodnot, případně P je vysoká a C nkolv nebo P je nízká a C C vysoká. Pravděpodobnost P se obecně mohou vztahovat k časovým úsekům různé délky. V tomto jednoduchém případě se předpokládá, že jsou konstantní do konce doby realzace nvestce.. Strom událostí Jednou z metod umožňujících výpočet rzka nvestce dle (1) je analýza stromem událostí (event tree analyss). Nutnou dentfkac zdrojů nebezpečí lze provést (před samotnou analýzou rzka) expertním dotazováním č například dle některé z metod popsaných v [4]. Zde je vysvětlení postupu dentfkace vynecháno a příspěvek je zaměřen hlavně na kalkulac rzka, která po ní zpravdla následuje k procesům managementu rzka blíže vz [], [4]. Nebezpečí, vztahující se k nvestc, jsou převzata ze zprávy geologckého průzkumu sousední budovy a jná nebezpečí se nepředpokládají: 1. základová spára může být důsledkem delšího období dešťů ohrožena podzemní agresvní vodou,. geologckým průzkumem stavenště budou objeveny jné geologcké poměry než předpokládané v původní koncepc řešení. Z uvedeného vyplývá, že odhad rzka vždy souvsí s faktory náhodné povahy. Ty faktory, které lze ohodnott pravděpodobnostm blízkým jedné, je třeba bezprostředně uplatnt v deovém (koncepčním) návrhu projektu. Betonářské práce budou zahájeny až po dokončení zemních prací. Vedle výchozího nvestčního scénáře (vz čl. 1.) tedy exstují další dva možné scénáře ( a ) vztahující se k realzac zemních prací a prací betonáže, které mohou mít vlv na celkové plánované náklady těchto čnností (nvestce) vz obr. 1. Dále je ve stromu událostí zahrnuta položka (scénář ), která představuje možnost, že scénáře a nastanou současně. Jedná se o tzv. koncdenc scénářů. Obecně u skupny zemních prací mohou nastat v rámc každého alternatvního scénáře tř vývoje cen: vzrůst -, pokles -, neměnnost -. Totéž může nastat u prací betonáže.

3 1. úroveň. úroveň. úroveň P P * C P 0, ,00000 A B P ( Z V ) 0,9 0, ,005 P ( V ) 0,9 P ( Z V ) 0, 0 0,0000 P ( Z V ) 0,1 0,0045 0,00090 P ( Z V ) P 0,05 P ( V ) 0, 0 ( Z V ) 0, 0 P 0,0000 0,015 P ( Z V ) P ( Z V ) 1,0 0,0050 0,00100 P ( V ) 0,1 P ( Z V ) 0, 0 0,0000 P ( Z V ) P ( Z V ) 0,7 0, ,040 P ( V ) 0,9 P ( Z V ) 0, 0, ,00864 P ( Z V ) P ( Z V ) P 0,08 P ( V ) 0, 0 ( Z V ) 0, 0 P 0,0000 0,0516 P ( Z V ) P ( Z V ) 1,0 0, ,000 P ( V ) 0,1 ( Z V ) 0, 0 P 0,0000 P ( Z V ) P 0, ,0048 1, 0 0,07869 Obr. 1 Strom událostí pro práce Z a V Pravděpodobnost u větví stromu událostí uvedené na. až. úrovn jsou podmíněné pravděpodobnost. Na druhé úrovn větví se jedná o pravděpodobnost podmíněné pouze

4 typem scénáře, na třetí úrovn větví o pravděpodobnost podmíněné jak typem scénáře, tak vývojem nákladů zemních prací. Pro součet pravděpodobností přpsovaných jednotlvým scénářům až platí: P P + P + P 1,0. () + Následně pro každé tř pravděpodobnost vycházející z některého ze scénářů, č musí opět platt, že součet jejch hodnot je roven jedné, neboť tyto pravděpodobnost popsují v celku jstotu. Totéž platí pro každé tř pravděpodobnost vycházející z podmíněných pravděpodobností na. úrovn stromu událostí. Scénář počítá s tím, že skutečně nastane takové období dešťů, že stoupne hladna podzemní vody nad úroveň základové spáry. Vzhledem k tomu, že se dále předpokládá (dle předběžného časového plánu stavby) realzace zemních prací v měsíc květnu a jsou známy statstcké charakterstky srážek v něm (na základě údajů z mnulých let), vč. srážek nutných k tomu, aby HPV stoupla nad úroveň základové spáry, lze stanovt pravděpodobnost P, že událost skutečně nastane. Konkrétně se uvažuje P 0, 05. U scénáře hrozí nebezpečí, že budou zjštěny jné základové podmínky než předpokládané skutečná výpočtová únosnost základové půdy bude o 15 až 0% nžší než únosnost uvažovaná ve výchozím scénář. Skupna expertů pravděpodobnost P ohodnotla na 0,08. Na základě předchozích údajů je koncdenční pravděpodobnost: P P * P 0,05* 0,08 0,004. Výpočtem se dostane: P 1 ( P + P + P ) 1 (0,05 + 0,08 + 0,004) 0,866 Nyní k určení všech ostatních pravděpodobností stromu událostí, které jsou uvedeny taktéž v obr. 1: Pravděpodobnost na. úrovn větví stromu byly získány expertním dotazováním na všechny možné kombnace vývojů nákladů skupny zemních prací v závslost na typu scénáře a. Například P ( V / ) 0, 9 říká, že s pravděpodobností 0,9 dojde k růstu nákladů skupny zemních prací oprot plánu, za podmínky, že skutečně nastane scénář. Hodnoty pravděpodobností (dvakrát podmíněných) na třetí úrovn větví stromu událostí byly stanoveny stejným způsobem. Například P ( Z / V / ) 0, 9 říká, že s pravděpodobností 0,9 dojde k růstu ceny prací souvsejících se zřízením základových konstrukcí Z oprot plánu, za podmínek, že nastane scénář a současně dojde k nárůstu ceny zemních prací V. Spočtené hodnoty podmíněných pravděpodobností P u konců jednotlvých větví stromu událostí se získají pronásobením pravděpodobností přřazených všem větvím, které tvoří cestu vedoucí z kořenu stromu událostí do koncových větví. Hodnoty jsou vstupním údaj P ve vzorc (1). Dále k postupu stanovení druhé skupny vstupů potřebných př výpočtu rzka dle (1), a to hodnot : Za použtí expertních odhadů musí expert jž v tomto jednoduchém příkladě C (obr. 1) ohodnott podmíněných pravděpodobností plus pravděpodobnost P a P. Protože rzko dle (1) je rovno prostému součtu P * C a některé hodnoty P na obr. 1 4

5 jsou nulové, není nutné se dotazovat expertů na všechny nákladové odchylky podmíněných pravděpodobností, ale pouze na odchylky vztahující se k nenulovým hodnotám P (na tom samém obrázku jsou uvedeny v šedých buňkách). Odpověd expertů jsou v následující tabulce, kde C značí nákladové odchylky na. úrovn stromu událostí obr. 1 a C totéž, ale na. úrovn stromu. C C C C 1 V 0,0 Z V 0,0 0,50 Dtto 0,0 Z V 0,00 0,0 V 0,00 Z V 0,0 0,0 4 V 0,40 Z V 0,40 0,80 5 Dtto 0,40 Z V 0,00 0,40 6 V 0,00 Z V 0,40 0,40 Tab. 1 Nákladové odchylky v ml. Kč + C Předchozím postupem se získaly všechny hodnoty potřebné pro výpočet rzka dle (1). zko se nyní spočte bez hodnoty a tato hodnota se dopočte na závěr: 6 P * C , ,866 *0,0 + 0,0405* 0,50 + 0,0045* 0,0 + 0,0050* 0, , * 0,80 + 0,016 * 4 0, ,0080 * 0,40 + 0,0516 ( 0,0741+ ) ml. Kč () Operace 0,866*0,0 v předchozím výpočtu představuje součn pravděpodobnost P 0, 866, že stavba bude postavena bez dodatečných nákladů, a nulové odchylky nákladů, která je s touto pravděpodobností logcky spjatá. V případě scénáře je rzko úměrné pravděpodobnost P P * P, což lze po formální úpravě zapsat ve tvaru: 6 P * C * P + P * C * P 1 4 0, (0,0405* 0,50 + 0,0045* 0,0 + 0,0050 *0,0) * 0, (0,0504* ,80 + 0,016* 4 0, ,0080*0,40) *0,05 0,0048 ml. Kč 0,0516 (4) 5

6 Jednotlvé sčítance uvádí poslední sloupec v obr. 1. Po dosazení hodnoty se dostane: 0, , ,0048 0,07869 ml. Kč do vzorce pro Vypočtené celkové rzko není konečným krokem managementu rzka, ba právě naopak. Po jeho výpočtu následuje posouzení jeho výše vzhledem k plánovaným LCC nvestce, zpětný rozbor stromu událostí, navrhnutí nejvhodnějších opatření k mnmalzac rzka, příp. další procesy managementu rzka popsané např. v [], [4]. zko totž není zpravdla totéž, co dodatečné náklady jím vyvolané, pokud skutečně nastane. Nepoměr je dán právě pravděpodobnostm obsaženým ve vzorc (1) pro jeho výpočet. Obsahem příspěvku jž není detalní analýza výsledků, ncméně alespoň z část je tato čnnost naznačena. Celkové rzko entty je 78,69 ts. Kč a v porovnání s plánovaným náklady obou skupn prací (4,5 ml. Kč) se jedná o malou částku. Poslední sloupec obr. 1 ukazuje, jak se jednotlvé scénáře podílejí na celkovém rzku. Největší příspěvky zřejmě plynou pro 4 (0,040 ml. Kč) a 1 (0,005 ml. Kč). Za předpokladu, že skutečně nastane scénář, tedy budou zjštěny horší geologcké podmínky základové spáry než plánované, a například nastane také jeden z dalších dentfkovaných dílčích scénářů v rámc scénáře (například Z / V / ), k nárůstu nákladů výkopových prací a prací betonáže dojde nkolv o částku 0,0504*0,80,040 ml. Kč, ale přímo o částku 0,8 ml. Kč. Částka 0,040 ml. Kč je dílčí rzko nvestce spočtené pro konkrétní scénář a nenformuje o přírůstku nákladů, který může ve skutečnost nastat. Na druhou stranu právě pomocí pravděpodobnost (o hodnotě 0,0504) v tomto rzku zabudované lze mnohem lépe vnímat a řídt možné budoucí odchylky nákladů nvestce než bez ní. Uvedené je podstatou managementu rzka. 4. ZÁVĚ Management rzka je nedílnou a ntegrální součástí managementu nvestc (projektů, entt) obdobně jako například management kvalty, času, ldských zdrojů []. Ne všechny nvestční akce vyžadují, aby byl důsledně a systematcky prováděn. Jako každá čnnost management rzka představuje pro jeho zpracovatele (nvestora) náklady. Z dlouhodobého hledska však celkové náklady nvestc snžuje a zvyšuje jejch zsky. Příspěvek byl získán za fnančního přspění Mnsterstva školství, mládeže a tělovýchovy v rámc podpory projektu výzkumu a vývoje č. 1M Lteratura [1] Seber, P.: Společný regonální program - stude provedtelnost (feasblty study), metodcká příručka, Mnsterstvo pro místní rozvoj, Praha, květen 004 [] Petráková,.: nvestování 10, ČVUT, Praha 1998 [] PMBOK Gude 000 Edton, Project Management nsttute, Four Campus Boulevard, Newton Square, USA [4] Prtchard, C. L.: sk Management, nd edton ES nternatonal, Arlngton, Vrgna, 001 [5] Flanagan,., Norman, G.: sk management and constructon, Blackwell Scence Oxford, 199 6

ANALÝZA RIZIKA A JEHO CITLIVOSTI V INVESTIČNÍM PROCESU

ANALÝZA RIZIKA A JEHO CITLIVOSTI V INVESTIČNÍM PROCESU AALÝZA RIZIKA A JEHO CITLIVOSTI V IVESTIČÍM PROCESU Jří Marek ) ABSTRAKT Príspevek nformuje o uplatnene manažmentu rzka v nvestčnom procese. Uvádza príklad kalkulace rzka a analýzu jeho ctlvost. Kľúčové

Více

Hodnocení účinnosti údržby

Hodnocení účinnosti údržby Hodnocení účnnost ekonomka, pojmy, základní nástroje a hodnocení Náklady na údržbu jsou nutné k obnovení funkce výrobního zařízení Je potřeba se zabývat ekonomckou efektvností a hodnocením Je třeba řešt

Více

Rizikového inženýrství stavebních systémů

Rizikového inženýrství stavebních systémů Rzkového nženýrství stavebních systémů Mlan Holcký, Kloknerův ústav ČVUT Šolínova 7, 166 08 Praha 6 Tel.: 24353842, Fax: 24355232 E-mal: Holcky@vc.cvut.cz Základní pojmy Management rzk Metody analýzy rzk

Více

Grantový řád Vysoké školy ekonomické v Praze

Grantový řád Vysoké školy ekonomické v Praze Vysoké školy ekonomcké v Praze Strana / 6 Grantový řád Vysoké školy ekonomcké v Praze Anotace: Tato směrnce s celoškolskou působností stanoví zásady systému pro poskytování účelové podpory na specfcký

Více

Společné zátěžové testy ČNB a vybraných pojišťoven

Společné zátěžové testy ČNB a vybraných pojišťoven Společné zátěžové testy ČNB a vybraných pojšťoven Zátěžových testů se účastní tuzemské pojšťovny které dohromady představují přblžně 90 % pojstného trhu. Výpočty provádějí samotné pojšťovny dle metodky

Více

Posuzování výkonnosti projektů a projektového řízení

Posuzování výkonnosti projektů a projektového řízení Posuzování výkonnost projektů a projektového řízení Ing. Jarmla Ircngová Západočeská unverzta v Plzn, Fakulta ekonomcká, Katedra managementu, novací a projektů jrcngo@kp.zcu.cz Abstrakt V současnost je

Více

radiační ochrana Státní úřad pro jadernou bezpečnost

radiační ochrana Státní úřad pro jadernou bezpečnost Státní úřad pro jadernou bezpečnost radační ochrana DOPORUČENÍ Měření a hodnocení obsahu přírodních radonukldů ve vodě dodávané k veřejnému zásobování ptnou vodou Rev. 1 SÚJB únor 2012 Předmluva Zákon

Více

Attitudes and criterias of the financial decisionmaking under uncertainty

Attitudes and criterias of the financial decisionmaking under uncertainty 8 th Internatonal scentfc conference Fnancal management of frms and fnancal nsttutons Ostrava VŠB-TU Ostrava, faculty of economcs,fnance department 6 th 7 th September 2011 Atttudes and crteras of the

Více

9.12.2009. Metody analýzy rizika. Předběžné hodnocení rizika. Kontrolní seznam procesních rizik. Bezpečnostní posudek

9.12.2009. Metody analýzy rizika. Předběžné hodnocení rizika. Kontrolní seznam procesních rizik. Bezpečnostní posudek 9.2.29 Bezpečnost chemckých výrob N Petr Zámostný místnost: A-72a tel.: 4222 e-mal: petr.zamostny@vscht.cz Analýza rzka Vymezení pojmu rzko Metody analýzy rzka Prncp analýzy rzka Struktura rzka spojeného

Více

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d Korelační energe Referenční stavy Energ molekul a atomů lze vyjádřt vzhledem k různým referenčním stavům. V kvantové mechance za referenční stav s nulovou energí bereme stav odpovídající nenteragujícím

Více

Vykazování solventnosti pojišťoven

Vykazování solventnosti pojišťoven Vykazování solventnost pojšťoven Ing. Markéta Paulasová, Techncká unverzta v Lberc, Hospodářská fakulta marketa.paulasova@centrum.cz Abstrakt Pojšťovnctví je fnanční službou zabývající se přenosem rzk

Více

Teorie efektivních trhů (E.Fama (1965))

Teorie efektivních trhů (E.Fama (1965)) Teore efektvních trhů (E.Fama (965)) Efektvní efektvní zpracování nových nformací Efektvní trh trh, který rychle a přesně absorbuje nové nf. Ceny II (akcí) náhodná procházka Předpoklady: na trhu partcpuje

Více

VLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ

VLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ VLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ Abstrakt Martn Cupal 1 Prncp tvorby tržní ceny nemovtost je sce založen na tržní nabídce a poptávce, avšak tento trh je značně nedokonalý. Nejvíce ovlvňuje

Více

Věstník ČNB částka 9/2012 ze dne 29. června 2012. ÚŘEDNÍ SDĚLENÍ ČESKÉ NÁRODNÍ BANKY ze dne 27. června 2012

Věstník ČNB částka 9/2012 ze dne 29. června 2012. ÚŘEDNÍ SDĚLENÍ ČESKÉ NÁRODNÍ BANKY ze dne 27. června 2012 ÚŘEDNÍ SDĚLENÍ ČESKÉ NÁRODNÍ BANKY ze dne 27. června 2012 k ověřování dostatečného krytí úvěrových ztrát Třídící znak 2 1 1 1 2 5 6 0 I. Účel úředního sdělení Účelem tohoto úředního sdělení je nformovat

Více

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu 6. Demonstrační smulační projekt generátory vstupních proudů smulačního modelu Studjní cíl Na příkladu smulačního projektu představeného v mnulém bloku je dále lustrována metodka pro stanovování typů a

Více

Měření solventnosti pojistitelů neživotního pojištění metodou míry solventnosti a metodou rizikově váženého kapitálu

Měření solventnosti pojistitelů neživotního pojištění metodou míry solventnosti a metodou rizikově váženého kapitálu Měření solventnost pojsttelů nežvotního pojštění metodou míry solventnost a metodou rzkově váženého kaptálu Martna Borovcová 1 Abstrakt Příspěvek je zaměřen na metodku vykazování solventnost. Solventnost

Více

Proces řízení rizik projektu

Proces řízení rizik projektu Proces řízení rzk projektu Rzka jevy a podmínky, které nejsou pod naší přímou kontrolou a ovlvňují cíl projektu odcylky, předvídatelná rzka, nepředvídatelná rzka, caotcké vlvy Proces řízení rzk sled aktvt,

Více

Optimalizační přístup při plánování rekonstrukcí vodovodních řadů

Optimalizační přístup při plánování rekonstrukcí vodovodních řadů Optmalzační přístup př plánování rekonstrukcí vodovodních řadů Ladslav Tuhovčák*, Pavel Dvořák**, Jaroslav Raclavský*, Pavel Vščor*, Pavel Valkovč* * Ústav vodního hospodářství obcí, Fakulta stavební VUT

Více

Navrhování betonových železničních mostů podle evropských norem

Navrhování betonových železničních mostů podle evropských norem Navrhování betonových železnčních mostů podle evropských norem Doc. Ing. Vladslav Hrdoušek, CSc., Stavební fakulta ČVUT v Praze Ing. Roman Šafář, Stavební fakulta ČVUT v Praze Do soustavy ČSN se postupně

Více

Spojité regulátory - 1 -

Spojité regulátory - 1 - Spojté regulátory - 1 - SPOJIÉ EGULÁOY Nespojté regulátory mají většnou jednoduchou konstrukc a jsou levné, ale jsou nevhodné tím, že neudržují regulovanou velčnu přesně na žádané hodnotě, neboť regulovaná

Více

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ.

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ. CHYBY MĚŘENÍ Úvod Představte s, že máte změřt délku válečku. Použjete posuvné měřítko a získáte určtou hodnotu. Pamětlv přísloví provedete ještě jedno měření. Ale ouha! Výsledek je jný. Co dělat? Měřt

Více

Časová hodnota peněz ve finančním rozhodování podniku. 1.1. Význam faktoru času a základní metody jeho vyjádření

Časová hodnota peněz ve finančním rozhodování podniku. 1.1. Význam faktoru času a základní metody jeho vyjádření Časová hodnota peněz ve fnančním rozhodování podnku 1.1. Význam faktoru času a základní metody jeho vyjádření Fnanční rozhodování podnku je ovlvněno časem. Peněžní prostředky získané dnes mají větší hodnotu

Více

Specifikace, alokace a optimalizace požadavků na spolehlivost

Specifikace, alokace a optimalizace požadavků na spolehlivost ČESKÁ SPOLEČNOST PRO JAKOST Novotného lávka 5, 116 68 Praha 1 47. SEMINÁŘ ODBORNÉ SKUPINY PRO SPOLEHLIVOST pořádané výborem Odborné skupny pro spolehlvost k problematce Specfkace, alokace a optmalzace

Více

VOLBA HODNOTÍCÍCH KRITÉRIÍ VE VEŘEJNÝCH ZAKÁZKÁCH

VOLBA HODNOTÍCÍCH KRITÉRIÍ VE VEŘEJNÝCH ZAKÁZKÁCH VOLBA HODNOTÍCÍCH KRITÉRIÍ VE VEŘEJNÝCH ZAKÁZKÁCH THE CHOICE OF EVALUATION CRITERIA IN PUBLIC PROCUREMENT Martn Schmdt Masarykova unverzta, Ekonomcko-správní fakulta m.schmdt@emal.cz Abstrakt: Článek zkoumá

Více

Solventnost II. Standardní vzorec pro výpočet solventnostního kapitálového požadavku. Iva Justová

Solventnost II. Standardní vzorec pro výpočet solventnostního kapitálového požadavku. Iva Justová 2. část Solventnost II Standardní vzorec pro výpočet solventnostního kaptálového požadavku Iva Justová Osnova Úvod Standardní vzorec Rzko selhání protstrany Závěr Vstupní údaje Vašíčkovo portfolo Alternatvní

Více

ČVUT FEL. X16FIM Finanční Management. Semestrální projekt. Téma: Optimalizace zásobování teplem. Vypracoval: Marek Handl

ČVUT FEL. X16FIM Finanční Management. Semestrální projekt. Téma: Optimalizace zásobování teplem. Vypracoval: Marek Handl ČVUT FEL X16FIM Fnanční Management Semestrální projekt Téma: Optmalzace zásobování teplem Vypracoval: Marek Handl Datum: květen 2008 Formulace úlohy Pro novou výstavbu 100 bytových jednotek je třeba zvolt

Více

MODEL LÉČBY CHRONICKÉHO SELHÁNÍ LEDVIN. The End Stage Renal Disease Treatment Model

MODEL LÉČBY CHRONICKÉHO SELHÁNÍ LEDVIN. The End Stage Renal Disease Treatment Model ROČNÍK LXXII, 2003, č. 1 VOJENSKÉ ZDRAVOTNICKÉ LISTY 5 MODEL LÉČBY CHRONICKÉHO SELHÁNÍ LEDVIN 1 Karel ANTOŠ, 2 Hana SKALSKÁ, 1 Bruno JEŽEK, 1 Mroslav PROCHÁZKA, 1 Roman PRYMULA 1 Vojenská lékařská akademe

Více

Iterační výpočty. Dokumentace k projektu pro předměty IZP a IUS. 22. listopadu projekt č. 2

Iterační výpočty. Dokumentace k projektu pro předměty IZP a IUS. 22. listopadu projekt č. 2 Dokumentace k projektu pro předměty IZP a IUS Iterační výpočty projekt č.. lstopadu 1 Autor: Mlan Setler, setl1@stud.ft.vutbr.cz Fakulta Informačních Technologí Vysoké Učení Techncké v Brně Obsah 1 Úvod...

Více

BEZRIZIKOVÁ VÝNOSOVÁ MÍRA OTEVŘENÝ PROBLÉM VÝNOSOVÉHO OCEŇOVÁNÍ

BEZRIZIKOVÁ VÝNOSOVÁ MÍRA OTEVŘENÝ PROBLÉM VÝNOSOVÉHO OCEŇOVÁNÍ Prof. Ing. Mloš Mařík, CSc. BEZRIZIKOVÁ VÝNOSOVÁ MÍRA OEVŘENÝ PROBLÉM VÝNOSOVÉHO OCEŇOVÁNÍ RESUMÉ: Jedním z důležtých a přtom nepřílš uspokojvě řešených problémů výnosového oceňování podnku je kalkulace

Více

POLYMERNÍ BETONY Jiří Minster Ústav teoretické a aplikované mechaniky AV ČR, v. v. i.

POLYMERNÍ BETONY Jiří Minster Ústav teoretické a aplikované mechaniky AV ČR, v. v. i. Odborná skupna Mechanka kompoztních materálů a konstrukcí České společnost pro mechanku s podporou frmy Letov letecká výroba, s. r. o. a Ústavu teoretcké a aplkované mechanky AV ČR v. v.. Semnář KOMPOZITY

Více

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky. Bakalářská práce. Zpracování výsledků vstupních testů z matematiky

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky. Bakalářská práce. Zpracování výsledků vstupních testů z matematiky Západočeská unverzta v Plzn Fakulta aplkovaných věd Katedra matematky Bakalářská práce Zpracování výsledků vstupních testů z matematky Plzeň, 13 Tereza Pazderníková Prohlášení Prohlašuj, že jsem bakalářskou

Více

Zpráva o postupu stanovení základních parametrů regulačního vzorce a stanovení cen pro II. regulační období v odvětví plynárenství

Zpráva o postupu stanovení základních parametrů regulačního vzorce a stanovení cen pro II. regulační období v odvětví plynárenství Zpráva o postupu stanovení základních parametrů regulačního vzorce a stanovení cen pro II. regulační období v odvětví plynárenství 1 1. Úvod... 1 1.1. I. regulační období... 1 1.2. Obecný přístup regulátora

Více

Assessment of the Sensitivity of the Regulatory Requirement for Credit Risk. Posouzení citlivosti regulatorního kapitálu na kreditní riziko

Assessment of the Sensitivity of the Regulatory Requirement for Credit Risk. Posouzení citlivosti regulatorního kapitálu na kreditní riziko Assessment of the Senstvty of the Regulatory Requrement for Credt Rsk Posouzení ctlvost regulatorního kaptálu na kredtní rzko Josef Novotný 1 Abstract The paper s devodet to concept of Captal adequacy

Více

Vícekriteriální rozhodování. Typy kritérií

Vícekriteriální rozhodování. Typy kritérií Vícekrterální rozhodování Zabývá se hodnocením varant podle několka krtérí, přčemž varanta hodnocená podle ednoho krtéra zpravdla nebývá nelépe hodnocená podle krtéra ného. Metody vícekrterálního rozhodování

Více

Základy finanční matematiky

Základy finanční matematiky Hodna 38 Strana 1/10 Gymnázum Budějovcká Voltelný předmět Ekonome - jednoletý BLOK ČÍSLO 6 Základy fnanční matematky ředpokládaný počet : 5 hodn oužtá lteratura : Frantšek Freberg Fnanční teore a fnancování

Více

ANALÝZA VLIVU DEMOGRAFICKÝCH FAKTORŮ NA SPOKOJENOST ZÁKAZNÍKŮ VE VYBRANÉ LÉKÁRNĚ S VYUŽITÍM LOGISTICKÉ REGRESE

ANALÝZA VLIVU DEMOGRAFICKÝCH FAKTORŮ NA SPOKOJENOST ZÁKAZNÍKŮ VE VYBRANÉ LÉKÁRNĚ S VYUŽITÍM LOGISTICKÉ REGRESE ANALÝZA VLIVU DEMOGRAFICKÝCH FAKTORŮ NA SPOKOJENOST ZÁKAZNÍKŮ VE VYBRANÉ LÉKÁRNĚ S VYUŽITÍM LOGISTICKÉ REGRESE Jana Valečková 1 1 Vysoká škola báňská-techncká unverzta Ostrava, Ekonomcká fakulta, Sokolská

Více

Metody vícekriteriálního hodnocení variant a jejich využití při výběru produktu finanční instituce

Metody vícekriteriálního hodnocení variant a jejich využití při výběru produktu finanční instituce . meznárodní konference Řízení a modelování fnančních rzk Ostrava VŠB-TU Ostrava, Ekonomcká fakulta, katedra Fnancí 8. - 9. září 200 Metody vícekrterálního hodnocení varant a ech využtí př výběru produktu

Více

Staré mapy TEMAP - elearning

Staré mapy TEMAP - elearning Staré mapy TEMAP - elearnng Modul 4 Kartometrcké analýzy Ing. Markéta Potůčková, Ph.D., 2013 Přírodovědecká fakulta UK v Praze Katedra aplkované geonformatky a kartografe Kartometre a kartometrcké vlastnost

Více

Metody volby financování investičních projektů

Metody volby financování investičních projektů 7. meznárodní konference Fnanční řízení podnků a fnančních nsttucí Ostrava VŠB-T Ostrava konomcká fakulta katedra Fnancí 8. 9. září 00 Metody volby fnancování nvestčních projektů Dana Dluhošová Dagmar

Více

PŘÍSTAVBA KLINIKY SV. KLIMENTA DOKUMENTACE PRO STAVEBNÍ POVOLENÍ GENNET STUDIE DENNÍHO OSVĚTLENÍ. Gennet Letná s.r.o.

PŘÍSTAVBA KLINIKY SV. KLIMENTA DOKUMENTACE PRO STAVEBNÍ POVOLENÍ GENNET STUDIE DENNÍHO OSVĚTLENÍ. Gennet Letná s.r.o. PŘÍSTAVBA KLNKY SV. KLMENTA ul. Kostelní, p.č. 2118/9, k.ú. Holešovce, 170 00, Praha 7 DOKUMENTACE PRO STAVEBNÍ POVOLENÍ výškový systém b.p.v. ±0,000 = +230,030 m.n.m., souřadncový systém S - JTSK Gennet

Více

Konverze kmitočtu Štěpán Matějka

Konverze kmitočtu Štěpán Matějka 1.Úvod teoretcký pops Konverze kmtočtu Štěpán Matějka Směšovač měnč kmtočtu je obvod, který přeměňuje vstupní sgnál s kmtočtem na výstupní sgnál o kmtočtu IF. Někdy bývá tento proces označován také jako

Více

Řízení projektů. Konstrukce síťového grafu pro řízení projektů Metoda CPM Metoda PERT

Řízení projektů. Konstrukce síťového grafu pro řízení projektů Metoda CPM Metoda PERT Řízení projektů Konstrukce síťového grafu pro řízení projektů Metoda CPM Metoda PERT 1 Úvod základní pojmy Projekt souhrn činností, které musí být všechny realizovány, aby byl projekt dokončen Činnost

Více

Návrh a posouzení plošného základu podle mezního stavu porušení ULS dle ČSN EN 1997-1

Návrh a posouzení plošného základu podle mezního stavu porušení ULS dle ČSN EN 1997-1 Návrh a posouzení plošného základu podle mezního stavu porušení ULS dle ČSN EN 1997-1 1. Návrhové hodnoty účinků zatížení Účinky zatížení v mezním stavu porušení ((STR) a (GEO) jsou dány návrhovou kombinací

Více

VYUŽÍVANÍ GEOINFORMAČNÍCH TECHNOLOGIÍ V OBDOBÍ REORGANIZACE ÚŘADŮ V RESORTU MPSV

VYUŽÍVANÍ GEOINFORMAČNÍCH TECHNOLOGIÍ V OBDOBÍ REORGANIZACE ÚŘADŮ V RESORTU MPSV VYUŽÍVANÍ GEOINFORMAČNÍCH TECHNOLOGIÍ V OBDOBÍ REORGANIZACE ÚŘADŮ V RESORTU MPSV Tomáš INSPEKTOR 1, Jří HORÁK 1, Igor IVAN 1, Davd VOJTEK 1, Davd FOJTÍK 2, Pavel ŠVEC 1, Luce ORLÍKOVÁ 1,Pavel BELAJ 1 1

Více

1. Mezinárodní trh peněz

1. Mezinárodní trh peněz 1. Meznárodní trh peněz Na počátku 21. století je vývoj světového hospodářství slně ovlvněn procesem globalzace 1, v důsledku čehož dochází k dost výraznému otevírání národních ekonomk, které tak jž nemůžeme

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Závslost příčnná (kauzální). Závslostí pevnou se označuje případ, kdy výskytu jednoho jevu nutně odpovídá výskyt druhé jevu (a často naopak). Z pravděpodobnostního hledska

Více

ALGORITMUS SILOVÉ METODY

ALGORITMUS SILOVÉ METODY ALGORITMUS SILOVÉ METODY CONSISTENT DEFORMATION METHOD ALGORITHM Petr Frantík 1, Mchal Štafa, Tomáš Pal 3 Abstrakt Příspěvek se věnuje popsu algortmzace slové metody sloužící pro výpočet statcky neurčtých

Více

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese cvčící 9. cvčení 4ST01 Obsah: Jednoduchá lneární regrese Vícenásobná lneární regrese Korelační analýza Vysoká škola ekonomcká 1 Jednoduchá lneární regrese Regresní analýza je statstcká metoda pro modelování

Více

Výslednice, rovnováha silové soustavy.

Výslednice, rovnováha silové soustavy. Výslednce, ovnováha slové soustavy. Základy mechanky, 2. přednáška Obsah přednášky : výslednce a ovnováha slové soustavy, ovnce ovnováhy, postoová slová soustava Doba studa : as 1,5 hodny Cíl přednášky

Více

ARITMETICKOLOGICKÁ JEDNOTKA

ARITMETICKOLOGICKÁ JEDNOTKA Vyšší odborná škola a Střední průmyslová škola elektrotechncká Božetěchova 3, Olomouc Třída : M4 Školní rok : 2000 / 2001 ARITMETICKOLOGICKÁ JEDNOTKA III. Praktcká úloha z předmětu elektroncké počítače

Více

Znamená vyšší korupce dražší dálnice? Evidence z dat Eurostatu. Michal Dvořák *

Znamená vyšší korupce dražší dálnice? Evidence z dat Eurostatu. Michal Dvořák * Znamená vyšší korupce dražší dálnce? Evdence z dat Eurostatu Mchal Dvořák * Článek je pozměněnou verzí práce Analýza vztahu mez mírou korupce a cenovou úrovní nfrastrukturních staveb, kterou autor zakončl

Více

( ) = H zásobitel = 1. H i = 1+ +...

( ) = H zásobitel = 1. H i = 1+ +... sou fnance důležté? nanční management Základní pojmy e NPV důležté? Základy úrokového počtu reálná aktva fnanční aktva hmotná aktva nehmotná aktva sou fnance důležté? Kolk a do jakých aktv má frma nvestovat?

Více

Dynamika psaní na klávesnici v kombinaci s klasickými hesly

Dynamika psaní na klávesnici v kombinaci s klasickými hesly Dynamka psaní na klávesnc v kombnac s klasckým hesly Mloslav Hub Ústav systémového nženýrství a nformatky, FES, Unverzta Pardubce Abstract Authentfcaton as a data securty nstrument n our nformatonal socety

Více

1.2. Postup výpočtu. , [kwh/(m 3.a)] (6)

1.2. Postup výpočtu. , [kwh/(m 3.a)] (6) 1. Stavebn energetcké vlastnost budov Energetcké chování budov v zním období se v současné době hodnotí buď s pomocí průměrného součntele prostupu tepla nebo s pomocí měrné potřeby tepla na vytápění. 1.1.

Více

Mechatronické systémy s elektronicky komutovanými motory

Mechatronické systémy s elektronicky komutovanými motory Mechatroncké systémy s elektroncky komutovaným motory 1. EC motor Uvedený motor je zvláštním typem synchronního motoru nazývaný též bezkartáčovým stejnosměrným motorem (anglcky Brushless Drect Current

Více

2 TESTOVÁNÍ HYPOTÉZ. RYCHLÝ NÁHLED KAPITOLY Neříkej: Objevil jsem pravdu! ale raději: Objevil jsem jednu z pravd! Chalil Gibran

2 TESTOVÁNÍ HYPOTÉZ. RYCHLÝ NÁHLED KAPITOLY Neříkej: Objevil jsem pravdu! ale raději: Objevil jsem jednu z pravd! Chalil Gibran Elena Melcová, Radmla Stoklasová a Jaroslav Ramík; Statstcké programy TESTOVÁNÍ HYPOTÉZ RYCHLÝ NÁHLED KAPITOLY Neříkej: Objevl jsem pravdu! ale raděj: Objevl jsem jednu z pravd! Chall Gbran Testování hypotéz

Více

Bezporuchovost a pohotovost

Bezporuchovost a pohotovost Bezporuchovost a pohotovost Materály z 59. semnáře odborné skupny pro spolehlvost Konaného dne 24. 2. 205 Česká společnost pro jakost, ovotného lávka 5, 6 68 raha, www.csq.cz ČJ 205 Obsah: Ing. Jan Kamencký,

Více

Zpráva o postupu stanovení základních parametrů regulačního vzorce a stanovení cen pro II. regulační období v odvětví elektroenergetiky

Zpráva o postupu stanovení základních parametrů regulačního vzorce a stanovení cen pro II. regulační období v odvětví elektroenergetiky Zpráva o postupu stanovení základních parametrů regulačního vzorce a stanovení cen pro II. regulační období v odvětví elektroenergetky 1 1. Úvod... 1 1.1. I. regulační období... 1 1.2. Obecný přístup regulátora

Více

Monte Carlo metody Josef Pelikán CGG MFF UK Praha.

Monte Carlo metody Josef Pelikán CGG MFF UK Praha. Monte Carlo metody 996-7 Josef Pelkán CGG MFF UK Praha pepca@cgg.mff.cun.cz http://cgg.mff.cun.cz/~pepca/ Monte Carlo 7 Josef Pelkán, http://cgg.ms.mff.cun.cz/~pepca / 44 Monte Carlo ntegrace Odhadovaný

Více

SIMULACE A ŘÍZENÍ PNEUMATICKÉHO SERVOPOHONU POMOCÍ PROGRAMU MATLAB SIMULINK. Petr NOSKIEVIČ Petr JÁNIŠ

SIMULACE A ŘÍZENÍ PNEUMATICKÉHO SERVOPOHONU POMOCÍ PROGRAMU MATLAB SIMULINK. Petr NOSKIEVIČ Petr JÁNIŠ bstrakt SIMULCE ŘÍZENÍ PNEUMTICKÉHO SERVOPOHONU POMOCÍ PROGRMU MTL SIMULINK Petr NOSKIEVIČ Petr JÁNIŠ Katedra automatzační technky a řízení Fakulta stroní VŠ-TU Ostrava Příspěvek popsue sestavení matematckého

Více

LOGICKÉ OBVODY J I Ř Í K A L O U S E K

LOGICKÉ OBVODY J I Ř Í K A L O U S E K LOGICKÉ OBVODY J I Ř Í K A L O U S E K Ostrava 2006 Obsah předmětu 1. ČÍSELNÉ SOUSTAVY... 2 1.1. Číselné soustavy - úvod... 2 1.2. Rozdělení číselných soustav... 2 1.3. Polyadcké číselné soustavy... 2

Více

Sylabus 18. Stabilita svahu

Sylabus 18. Stabilita svahu Sylabus 18 Stablta svahu Stablta svahu Smykové plochy rovnná v hrubozrnných zemnách ev. u vrstevnatého ukloněného podloží válcová v jemnozrnných homogenních zemnách obecná nehomogenní podloží vč. stavebních

Více

5 ST ADATEL, FONDOVATEL, ZÁSOBITEL, NESTEJNÉ PENùÎNÍ PROUDY, REÁLNÁ ÚROKOVÁ MÍRA

5 ST ADATEL, FONDOVATEL, ZÁSOBITEL, NESTEJNÉ PENùÎNÍ PROUDY, REÁLNÁ ÚROKOVÁ MÍRA 5 ST ADATEL, FONDOVATEL, ZÁSOBITEL, NESTEJNÉ PENùÎNÍ PROUDY, REÁLNÁ ÚROKOVÁ MÍRA Střadatel se používá pro výpočet úroku na konc období, kdy jste pravdelně ukládal stejnou částku, ve stejný okamžk, po určté

Více

ANOVA. Analýza rozptylu při jednoduchém třídění. Jana Vránová, 3.lékařská fakulta UK, Praha

ANOVA. Analýza rozptylu při jednoduchém třídění. Jana Vránová, 3.lékařská fakulta UK, Praha ANOVA Analýza rozptylu př jednoduchém třídění Jana Vránová, 3.léařsá faulta UK, Praha Teore Máme nezávslých výběrů, > Mají rozsahy n, teré obecně nemusí být stejné V aždém z nch známe průměr a rozptyl

Více

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně 9. Měření knetky dohasínání fluorescence ve frekvenční doméně Gavolův experment (194) zdroj vzorek synchronní otáčení fázový posun detektor Měření dob žvota lumnscence Frekvenční doména - exctace harmoncky

Více

Využití logistické regrese pro hodnocení omaku

Využití logistické regrese pro hodnocení omaku Využtí logstcké regrese pro hodnocení omaku Vladmír Bazík Úvod Jedním z prmárních proevů textlí e omak. Jedná se o poct který vyvolá textle př kontaktu s pokožkou. Je to ntegrální psychofyzkální vlastnost

Více

í I - 13 - Průchod a rozptyl záření gama ve vrstvách materiálu Prof. Ing. J. Šeda, DrSc. KDAIZ - PJPI

í I - 13 - Průchod a rozptyl záření gama ve vrstvách materiálu Prof. Ing. J. Šeda, DrSc. KDAIZ - PJPI - 13 - í Průchod a rozptyl záření gama ve vrstvách materálu Prof. ng. J. Šeda, DrSc. KDAZ - PJP Na našem pracovšt byl vypracován program umožňující modelovat průchod záření gama metodou Monte Carlo, homogenním

Více

MEZNÍ STAVY A SPOLEHLIVOST OCELOVÝCH KONSTRUKCÍ LIMIT STATES AND RELIABILITY OF STEEL STRUCTURES

MEZNÍ STAVY A SPOLEHLIVOST OCELOVÝCH KONSTRUKCÍ LIMIT STATES AND RELIABILITY OF STEEL STRUCTURES VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta stavební Ústav stavební mechanky Doc. Ing. Zdeněk Kala, Ph.D. MEZNÍ STAVY A SPOLEHLIVOST OCELOVÝCH KONSTRUKCÍ LIMIT STATES AND RELIABILITY OF STEEL STRUCTURES TEZE

Více

Hodnocení využití parku vozidel

Hodnocení využití parku vozidel Hodnocení využtí parku vozdel Všechna kolejová vozdla přdělená jednotlvým DKV (provozním jednotkám) tvoří bez ohledu na jejch okamžté použtí jejch nventární stav. Evdenční stav se skládá z vozdel vlastního

Více

3 VYBRANÉ MODELY NÁHODNÝCH VELIČIN. 3.1 Náhodná veličina

3 VYBRANÉ MODELY NÁHODNÝCH VELIČIN. 3.1 Náhodná veličina 3 VBRANÉ MODEL NÁHODNÝCH VELIČIN 3. Náhodná velčna Tato kaptola uvádí stručný pops vybraných pravděpodobnostních modelů spojtých náhodných velčn s důrazem na jejch uplatnění př rozboru spolehlvost stavebních

Více

Jak se budou vyvíjet výplaty dávek z penzijního připojištění v časovém horizontu za 30 a 40 let?

Jak se budou vyvíjet výplaty dávek z penzijního připojištění v časovém horizontu za 30 a 40 let? Jak se budou vyvíjet výplaty dávek z penzijního připojištění v časovém horizontu za 30 a 40 let? Vědecký seminář doktorandů VŠFS, 30. ledna 2013, VŠFS, Estonská 500, Praha 10 Jana Kotěšovcová Vysoká škola

Více

DETERMINATION OF THE NUMBER OF PERIODIC AND UNDPLANNED REPAIRS CAUSED BY VIOLENT DAMAGE ON RAILWAY TRACTION VEHICLES FOR NEWLY PROPOSED REPAIR SHOP

DETERMINATION OF THE NUMBER OF PERIODIC AND UNDPLANNED REPAIRS CAUSED BY VIOLENT DAMAGE ON RAILWAY TRACTION VEHICLES FOR NEWLY PROPOSED REPAIR SHOP STAOVEÍ POČTU PERIODICKÝCH OPRAV A EPÁOVAÝCH OPRAV VZIKÝCH VIVEM ÁSIÉHO POŠKOZEÍ A HACÍCH KOEJOVÝCH VOZIDECH PRO OVĚ AVRHOVAOU OPRAVU DETERMIATIO OF THE UMBER OF PERIODIC AD UDPAED REPAIRS CAUSED BY VIOET

Více

MONETÁRNÍ A FISKÁLNÍ POLITIKA V OTEVŘENÉ EKONOMICE

MONETÁRNÍ A FISKÁLNÍ POLITIKA V OTEVŘENÉ EKONOMICE MONETÁRNÍ A FISKÁLNÍ POLITIKA V OTEVŘENÉ EKONOMICE MONETÁRNÍ A FISKÁLNÍ POLITIKA V OTEVŘENÉ EKONOMICE Stále krátké období NEMĚNÍ SE P!! Dopady fskální/monetární poltky na a S tím spojené další proměnné:

Více

Simulační metody hromadné obsluhy

Simulační metody hromadné obsluhy Smulační metody hromadné osluhy Systém m a model vstupy S výstupy Systém Část prostředí, kterou lze od jeho okolí oddělt fyzckou neo myšlenkovou hrancí Model Zjednodušený, astraktní nástroj používaný pro

Více

MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN.

MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN. MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN. Mroslav VARNER, Vktor KANICKÝ, Vlastslav SALAJKA ČKD Blansko Strojírny, a. s. Anotace Uvádí se výsledky teoretckých

Více

Teoretické modely diskrétních náhodných veličin

Teoretické modely diskrétních náhodných veličin Teoretcké modely dskrétních náhodných velčn Velčny, kterým se zabýváme, bývají nejrůznější povahy. Přesto však estují skupny náhodných velčn, které mají podobně rozloženou pravděpodobnostní funkc a lze

Více

Využití nástrojů GIS při analýze vztahů socio-ekonomických faktorů a úrovně sociální péče

Využití nástrojů GIS při analýze vztahů socio-ekonomických faktorů a úrovně sociální péče Využtí nástrojů GIS př analýze vztahů soco-ekonomckých faktorů a úrovně socální péče Renata Klufová Katedra aplkované matematky a nformatky, Ekonomcká fakulta JU, Studentská 13 370 05 České Budějovce,

Více

Příprava ke státním maturitám 2011, vyšší úroveň obtížnosti materiál stažen z www.e-matematika.cz

Příprava ke státním maturitám 2011, vyšší úroveň obtížnosti materiál stažen z www.e-matematika.cz Příprava ke státním maturtám 0, všší úroveň obtížnost materál stažen z wwwe-matematkacz 80 60 Jsou dána čísla s 90, t 5 0 Ve stejném tvaru (součn co nejmenšího přrozeného čísla a mocnn deset) uveďte čísla

Více

Úloha II.P... Temelínská

Úloha II.P... Temelínská Úloha IIP Temelínská 4 body; průměr 278; řešlo 49 studentů Odhadněte kolk jaderného palva se spotřebuje v jaderné elektrárně na 1 MWh elektrcké energe kterou spotřebují ldé až v domácnost Srovnejte to

Více

Posuzování dynamiky pohybu drážních vozidel ze záznamu jejich jízdy

Posuzování dynamiky pohybu drážních vozidel ze záznamu jejich jízdy Posuzování dynamky pohybu drážních vozdel ze záznamu jejch jízdy Ing. Jaromír Šroký, Ph.D. ŠB-Techncká unverzta Ostrava, Fakulta strojní, Insttut dopravy, tel: +40 597 34 375, jaromr.sroky@vsb.cz Úvod

Více

Teorie her a ekonomické rozhodování. 10. Rozhodování při jistotě, riziku a neurčitosti

Teorie her a ekonomické rozhodování. 10. Rozhodování při jistotě, riziku a neurčitosti Teore her a ekonomcké rozhodování 10. Rozhodování př stotě, rzku a neurčtost 10.1 Jednokrterální dskrétní model Jednokrterální model rozhodování: f a ) max a Aa, a,..., a ( 1 2 f krterální funkce (zsk,

Více

Regresní analýza 1. Regresní analýza

Regresní analýza 1. Regresní analýza Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému

Více

HODNOCENÍ DODAVATELE SUPPLIER EVALUATION

HODNOCENÍ DODAVATELE SUPPLIER EVALUATION oční 6., Číslo IV., lstopad 20 HODNOCENÍ DODAVATELE SUPPLIE EVALUATION oman Hruša Anotace: Článe se zabývá hodnocením dodavatele pomocí scorng modelu, což znamená vanttatvní hodnocení dodavatele podle

Více

"Competitivness in the EU Challenge for the V4 countries" Nitra, May 17-18, 2006

Competitivness in the EU Challenge for the V4 countries Nitra, May 17-18, 2006 INTERNATIONAL SCIENTIFIC DAYS 006 Faculty of Economc and Management SAU n Ntra "Compettvness n the EU Challenge for the V countres" Ntra, May 17-18, 006 VÝVOJ PORODNOSTI, ÚMRTNOSTI A PŘIROZENÉHO PŘÍRŮSTKU

Více

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové.

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové. Příprava na cvčení č.1 Čísla a artmetka Číselné soustavy Obraz čísla A v soustavě o základu z: m A ( Z ) a z (1) n kde: a je symbol (číslce) z je základ m je počet řádových míst, na kterých má základ kladný

Více

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 SIMULACE numercké řešení dferencálních rovnc smulační program dentfkace modelu Numercké řešení obyčejných dferencálních rovnc krokové metody pro řešení lneárních dferencálních rovnc 1.řádu s počátečním

Více

PŘEHLED PŘÍSTUPŮ K MANAGEMENTU RIZIK PROJEKTŮ

PŘEHLED PŘÍSTUPŮ K MANAGEMENTU RIZIK PROJEKTŮ PŘEHLED PŘÍSTUPŮ K MANAGEMENTU RIZIK PROJEKTŮ Jan Havlík, AIT s.r.o., jhavlik@ait.cz, www.ait.cz AIT, 2002 1 Obsah 1. Příležitosti, rizika, projekty 2. Management rizik v procesech managementu projektu

Více

MĚRENÍ V ELEKTROTECHNICE

MĚRENÍ V ELEKTROTECHNICE EAICKÉ OKHY ĚENÍ V ELEKOECHNICE. řesnost měření. Chyby analogových a číslcových měřcích přístrojů. Chyby nepřímých a opakovaných měření. rmární etalon napětí. Zdroje referenčních napětí. rmární etalon

Více

Přemysl Žiška, Pravoslav Martinek. Katedra teorie obvodů, ČVUT Praha, Česká republika. Abstrakt

Přemysl Žiška, Pravoslav Martinek. Katedra teorie obvodů, ČVUT Praha, Česká republika. Abstrakt ALGORITMUS DIFERENCIÁLNÍ EVOLUCE A JEHO UŽITÍ PRO IDENTIFIKACI NUL A PÓLŮ PŘE- NOSOVÉ FUNKCE FILTRU Přemysl Žška, Pravoslav Martnek Katedra teore obvodů, ČVUT Praha, Česká republka Abstrakt V příspěvku

Více

Bezpečnost chemických výrob N111001

Bezpečnost chemických výrob N111001 Bezpečnost chemckých výrob N00 Petr Zámostný místnost: A-72a tel.: 4222 e-mal: petr.zamostn@vscht.cz Rzka spojená s hořlavým látkam 2 Povaha procesů hoření a výbuchu Požární charakterstk látek Prostředk

Více

Transformace dat a počítačově intenzivní metody

Transformace dat a počítačově intenzivní metody Transformace dat a počítačově ntenzvní metody Jří Mltký Katedra textlních materálů, Textlní fakulta, Techncká unversta v Lberc, Lberec, e- mal jr.mltky@vslb.cz Mlan Meloun, Katedra analytcké cheme, Unversta

Více

SÍŤOVÁ ANALÝZA. Základní pojmy síťové analýzy. u,. Sjednocením množin { u, u,..., 2. nazýváme grafem G.

SÍŤOVÁ ANALÝZA. Základní pojmy síťové analýzy. u,. Sjednocením množin { u, u,..., 2. nazýváme grafem G. SÍŤOVÁ ANALÝZA Využívá grafcko-analytcké metody pro plánování, řízení a kontrolu složtých návazných procesů. yto procesy se daí rozložt na dílčí a organzačně spolu souvseící čnnost. yto procesy se nazývaí

Více

STATISTIKA (pro navazující magisterské studium)

STATISTIKA (pro navazující magisterské studium) Slezská unverzta v Opavě Obchodně podnkatelská fakulta v Karvné STATISTIKA (pro navazující magsterské studum) Jaroslav Ramík Karvná 007 Jaroslav Ramík, Statstka Jaroslav Ramík, Statstka 3 OBSAH MODULU

Více

katedra technických zařízení budov, fakulta stavební ČVUT TZ 31: Vzduchotechnika, cvičení č.1: Větrání stájových objektů vypracoval: Adamovský Daniel

katedra technických zařízení budov, fakulta stavební ČVUT TZ 31: Vzduchotechnika, cvičení č.1: Větrání stájových objektů vypracoval: Adamovský Daniel Základy větrání stájových objektů Stájové objekty: objekty otevřené skot, ovce, kozy apod. - přístřešky chránící ustájená zvířata pouze před přímým náporem větru, před dešťovým a sněhovým srážkam, v létě

Více

24.11.2009 Václav Jirchář, ZTGB

24.11.2009 Václav Jirchář, ZTGB 24.11.2009 Václav Jirchář, ZTGB Síťová analýza 50.let V souvislosti s potřebou urychlit vývoj a výrobu raket POLARIS v USA při závodech ve zbrojení za studené války se SSSR V roce 1958 se díky aplikaci

Více

ZADÁVACÍ DOKUMENTACE. Kulturní dům Šternberk II. etapa SVAZEK 4

ZADÁVACÍ DOKUMENTACE. Kulturní dům Šternberk II. etapa SVAZEK 4 ZADÁVACÍ DOKUMENTACE pro zjednodušené podlimitní řízení podle zákona č.134/2016 Sb. o zadávání veřejných zakázek, pro podlimitní veřejnou zakázku na stavební práce Kulturní dům Šternberk II. etapa SVAZEK

Více

Řešení problému batohu dynamickým programováním, metodou větví a hranic a aproximativním algoritmem

Řešení problému batohu dynamickým programováním, metodou větví a hranic a aproximativním algoritmem 2. 1. 213 MI-PAA úkol č. 2 Antonín Daněk Řešení problému batohu dynamickým programováním, metodou větví a hranic a aproximativním algoritmem 1 SPECIFIKACE ÚLOHY Cílem tohoto úkolu bylo naprogramovat řešení

Více

REGRESNÍ ANALÝZA. 13. cvičení

REGRESNÍ ANALÝZA. 13. cvičení REGRESNÍ ANALÝZA 13. cvčení Závslost náhodných velčn Závslost mez kvanttatvním proměnným X a Y: Funkční závslost hodnotam nezávsle proměnných je jednoznačně dána hodnota závslé proměnné. Y=f(X) Stochastcká

Více

Pracovní list č. 6: Stabilita svahu. Stabilita svahu. Návrh či posouzení svahu zemního tělesa. FS s

Pracovní list č. 6: Stabilita svahu. Stabilita svahu. Návrh či posouzení svahu zemního tělesa. FS s Pracovní lst č. 6: Stablta svahu Stablta svahu 1 - máme-l násyp nebo výkop, uvntř svahu vznká smykové napětí - aktvuje se smykový odpor zemny - porušení - na celé smykové ploše se postupně dosáhne maxma

Více

Model IS-LM Zachycuje současnou rovnováhu na trhu zboží a služeb a trhu peněz.

Model IS-LM Zachycuje současnou rovnováhu na trhu zboží a služeb a trhu peněz. 3 Určení rovnovážné produkce v modelu -LM Teoretcká východska Model -LM je neokeynesánským modelem, jeho autorem je anglcký ekonom J.R. Hcks. Model -LM Zachycuje současnou rovnováhu na trhu zboží a služeb

Více