3. Absorpční spektroskopie

Rozměr: px
Začít zobrazení ze stránky:

Download "3. Absorpční spektroskopie"

Transkript

1 3. Absorpční spetrosope

2 Lambert-Beerův záon Nechť olmovaný svaze ntenzty (λ) dopadá na homogenní planparalelní vrstvu tloušťy l. (λ) (x) Př průchodu vrstvou (x, x+dx) se ntenzta dx sníží o d = -α(λ) (λ,x) dx (3.1) de α(λ) e absorpční onstanta. Úpravou a prontegrováním dostáváme ( λ, l ) d, ln ( λ x) ( λ, l) ( λ) = α = α ( λ)l. ( λ, l) = ( λ) l ( λ) e α ( λ ) dx. l (3.2) (3.3) (3.4) Lambertův záon (λ,l) x l x dx Poud e v obemové ednotce N částc s absorpčním průřezem σ(λ) a předpoládáme, že se v tené vrstvě nepřerývaí, pa ve vrstvě dx se ch nachází N dx a vyryí plochu σ(λ) N dx. Protože d = - (λ,x) σ(λ) N dx (3.5) Srovnáním s (3.1) dostáváme α(λ) = σ(λ) N (3.6) Beerův záon σ

3 Spoením (3.4) a (3.6) dostáváme Lambert-Beerův záon ( λ, l) ( λ) σ ( λ ). N. l = (3.7) e Častě se setáváme s pratcým zápsem ε ( λ ). c. l (3.8) ( λ, l) = ( λ). 1 de c e molární oncentrace [mol.l -1 = M] ε 1N A ln1 ( λ) = σ ( λ) e molární extnční oefcent [l.mol -1.cm -1 = M -1 cm -1 ] l e tloušťa v cm POZOR NA JEDNOTKY! Spetra bývaí prezentována ao: a) Transmtance ( λ) T = ( λ, l) ( ) λ.1% b) Absorbance A (optcá hustota, OD) ( λ, l) ( λ) A ( λ ) = log = ε. ( λ). c l (3.9) (3.1) Protože absorbance e přímo úměrná oncentrac moleul a eí měření e velm snadné, e měření absorbance neužívaněší metodou pro stanovení oncentrace láty, č pro sledování nety chemcých reací.

4 Expermentální uspořádání Absorpční spetrosope Lneární uspořádání reference dvoupaprsové ednopaprsové zdro monochromátor vzore detetor Specální techny 1) Dferenční spetrofotometre do referenčního svazu se dává vzore beze změn, do měřeného svazu vzore, v němž sou vyvolány změny (šála A). 2) Dvouvlnové spetrofotometry ednou yvetou procházeí mírně různoběžně dva paprsy o různých vlnových délách de o dva nezávslé systémy monochromátor + detetor. 3) Dervační spetrofotometre zaznamenává se 1.(2.,3.,4.) dervace spetra umožňue přesněší stanovení polohy a tvaru pásu 4) Lneární a crulární dchrosmus vzore e osvětlován lneárně (popř. ruhově) polarzovaným světlem nutno uvážt, že deteční soustava může reagovat odlšně na různé polarzace světla.

5 Pratcé poznámy Měření e nenvazvní a nedestrutvní (tzn. vzore e možno dále použít). Př měření porovnáváme ntenztu světla po průchodu vzorem s ntenztou bez vzoru (standard). Lepší bývá dát ao standard yvetu s vodou (č pufrem). K zeslabení ntenzty nepřspívá en absorpce vzorem, ale taé rozptyl (měření pouze absorpce, tzv. absorptuance e v prncpu taé možné, ale vyžadue ntegrační oul). Absorbance e rozumně měřtelná pro vzory s A >,5 (T < 99,5%), př velm pečlvém měření A >,1 (T < 99,9%). Měření e přesné pro A < 1, měření pro A > 2 e ž zatíženo velou chybou. Přílad 3.1: Chceme určt oncentrac roztou 1-4 M Rhodamnu B, terý má extnční oefcent 1 M -1 cm -1 na 59 nm v yvetě s optcou dráhou 1 cm. Díy nedoonalost monochromátoru e 99,99% ntenzty na světla na 59 nm a,1% na delších vlnových délách, teré nesou absorbovány Rhodamnem B. Jaá e sutečná a aá e naměřená optcá hustota roztou? Přílad 3.2: Ja e možné měřt oncentrac vzorů, teré absorbuí přílš slně nebo naopa přílš slabě? Něteré moleuly posunuí své spetrum podle toho, v aém stavu se nacházeí (protonovaná vs. deprotonovaná nebo volná vs. vázaná). Exstue edna vlnová déla, př teré má moleula stený extnční oefcent za obou podmíne sobestcý bod.

6 Kvantově-mechancý pops stavů moleul Do nerelatvstcé nečasové Schrödngerovy rovnce (SR) H Ψ = E Ψ (3.11) vložíme hamltonán ve tvaru 2 h 2m n = 1 N = 1 2 h 2M + V Ψ = EΨ (3.12) de první 2 členy popsuí netcou energ eletronů a ader, V e potencál zahrnuící nterace eletrony-eletrony, ádra-ádra, eletrony-ádra a nterac eletronů a ader s vněším pol. Malá písmena označuí velčny vztahuící se eletronům a velá písmena se vztahuí ádrům. Vzhledem tomu, že eletrony sou mnohem lehčí než ádra (m p =1836 m e ), můžeme předpoládat, že eletrony se pohybuí podstatně rychle než ádra. V prvním přblížení tedy předpoládáme, že: 1) Eletrony se pohybuí v pol pevných ader 2) Rychle se pohybuící eletrony vytvářeí náboový obla (efetvní pole), na ehož změny ádra en pomalu reaguí. Budeme proto předpoládat, že řešíme 2 Schrödngerovy rovnce, ednu pro pohyb eletronů v pol pevných ader a druhou pro pohyb ader v efetvním pol vytvářeném rychle se pohybuícím eletrony.

7 To odpovídá separac proměnných ψ(r,r ) = u R (r ) v(r ) (3.13) de r sou proměnné eletronů, R sou proměnné ader a u a v sou vlnové funce eletronů a ader. Předpoládáme, že eletronováčást vlnové funce u R (r ) splňue SR s pevným ádry. 2 n h 2m =1 + V u R = U u R (3.14) Vlnová funce u a vlastní energe U této rovnce závsí parametrcy na polohách ader R. Abychom dostal SR pro vlnovou func ader v, dosadíme předpolad o separac (3.13) do (3.12). Po dosazení a použtí (3.14) dostáváme U [ ( ) ( ) ] E ( r ) v( R ) 2 h ( R ) ( r ) v( R ) v( R ) ( r ) ( r ) ( v R ) ( r ) v( R ) R u + 2 R u + R u R u = 2M Tato rovnce představue tzv. adabatcou aproxmac. (3.15) Budeme-l dále předpoládat, že se eletronová vlnová funce u R (r ) se změnou polohy ader mění en málo a že platí u R = u R = dostaneme po vyrácení u ednodušší rovnc, v níž vystupue pouze vlnová funce ader v N =1 2 h 2M + U v ( R ) = Ev( R ) (3.16) což představue tzv. Born-Oppenhemerovu aproxmac (BOa). u R

8 Obecné řešení SR (3.12) lze hledat ve tvaru (3.17) Ψ ( r, R ) = Φ ( R ) Ψ ( r, R ) de Ψ (r,r ) sou funce nalezené v adabatcé aproxmac (3.15) a Φ (R ) sou oefcenty rozvoe. Dosazením tohoto rozvoe do SR (3.12) a využtím (3.15) dostaneme systém rovnc pro oefcenty Φ (R ) energ z rovnce (3.12). Adabatcá aproxmace tedy odpovídá tomu, že bereme enom eden člen řady (3.17) ( r, R ) = Φ ( R ) Ψ ( r, R ) Ψ (3.18) Protože Φ (R ) závsí en na poloze ader, označueme ao vbrační vlnovou func v -tém eletronovém stavu (pohyby ader v moleule), zatímco Ψ (r,r ) závsí na poloze eletronů, taže označueme ao eletronovou vlnovou func. E pa označueme ao potencální nadplochu v prostoru R (3N+1 dmenzí). Př malých vbracích lze řez nadplochou E aproxmovat parabolou.

9 Franc-Condonův prncp Uvažume 2 eletronové stavy (záladní a první exctovaný), přčemž př přechodu mez nm se změní rovnovážná poloha ader. Pravdla 1) Přechod mez eletronovým stavy se děe převážně ve vertálním směru během eletronového přechodu (~ s) nestačí ádra změnt polohu (doba mtu ~1-12 s); vantově přechody se změnou více než ednoho vantového čísla sou málo pravděpodobné. 2) Nevětší pravděpodobnost výsytu e v bodech obratu (romě vbračního stavu, de e pravděpodobnost nevětší uprostřed).

10 Výběrová pravdla pro absorpc Podle Fermho zlatého pravdla e pravděpodobnost přechodu mez stavy a f rovna p = µ el f 2 (3.19) de µ el e operátor průmětu eletrcého dpólu moleuly do pole E, přčemž se sládá z aderné a eletronové omponenty µ el = µ (R) + µ e (r) (3.2) Dosadíme-l výraz pro vlnovou func zobecněný o spnový stav = Ψ R, r Φ R χ (3.21) ( ) ( ) ( R) µ ( r) f = µ ( R) f ( r) f µ + + (3.22) e µ e Předpoládeme, že můžeme zanedbat adernou omponentu a že eletronová funce nezávsí na poloze ader (BOa) µ ( R) f = Ψ (R,r) = Ψ (r) Potom můžeme separovat eletronové, vbrační a spnové souřadnce µ f = Ψ µ Φ f f ( r) ( ) Ψ ( r) Φ ( R) ( R) χ el e r χ (3.23) Eletronový součntel Franc-Condonův ntegrál Pořadí síly záazu: 1) spnový Spnový 2) Franc-Condonův součntel 3) Eletronový Důležtou rol hraí symetre a přeryv orbtalů

11 Typy přechodů mez moleulovým orbtaly Orbtaly σ (na sponc ader), π (mmo sponc ader), n (nevazebný). σ* π* n σ π Energetcy (n,π*) < (π,π*) < (π,σ*),(σ,π*) < (σ,σ*) Přílady přechodů Moleula přechod λ[nm] ε[m -1 cm -1 ] CH 3 -CH 3 (σ,σ*) <16 CH 3 -CH 2 Cl (n,σ*) ~2 CH 2 =CH-CH=CH 2 (π,π*) ~22 21 (CH 3 ) 2 CO (aceton) (n,π*) ~285 < 1 Rozlšení (n,π*) a (π,π*) přechodů π π* σ ) Podle vlnové dély λ (n,π*) > λ (π,π*) 2) Podle ε ε (n,π*) << ε (π,π*) malý přeryv orbtalů (n,π*) 3) Podle polarzace (n,π*) olmé rovně moleuly (π,π*) rovnoběžné 4) Vlv rozpouštědla λ (n,π*) lesá s rostoucí polartou λ (π,π*) roste Pozn.: u velých heteroaromatcých moleul může být systém energetcých hladn omplovaněší n

12 Vybělování (photobleachng) Tato označueme procesy, dy absorpce světla má za následe snížení absorbance. S 1 S A R Poud by docházelo pouze absorpc, pa bude lesat oncentrace moleul v S a S 1 neabsorbue na λ (předpoládáme, že (x) = ) d [ M ] dt σ λ ( ) [ M ]( t) = (3.24) [ M ] ( t) [ M ] ( ) e ( λ ) σ t =. (3.25) Moleula ale relaxue zpět do záladního stavu s rychlostní onstantou R (~ 1 9 s -1 ). Potom e rovnce (3.24) modfována na d[ M ] = σ ( λ) [ M ]( t) + R [ M 1]( t) (3.26) Odhad dt Reálné světlo ~1 µmol.m -2.s -1 Systém e v rovnováze, dyž d[m ]/dt = a tedy σ(λ) = m 2 [ M 1] σ ( λ) ln1 ε ( λ) = = [ M ] (3.27) [M 1 ]/ [M ] = 2,4.1-1 R 1. N A R zanedbatelné Vybělování přestává být zanedbatelné pro vysoé ntenzty (lasery), nebo dyž systém relaxue do ného než záladního stavu (např. do trpletního).

13 Přechodová absorpce (transent absorpton) Exctace zálad femtocheme (Nobelova cena 1999, Zewal) Sonda Detetor Zpoždění 1 ps =.3 mm fs 5 fs 3 fs 5 fs T. Políva

14 Τ = zpoždění mez exctací a sondou Detetor (Probe) A = log probe ref Exctační puls Absorpton bleachng ESA λ Wavelength Detetor (Reference)

15 Shrnutí Absorpc světla ve vzoru popsue Lambert-Beerův záon. Naměřené hodnoty se vyadřuí ao absorbance nebo transmtance. Absorpc obvyle měříme v lneárním uspořádání Absorpční spetrometry - ednopaprsové, dvoupaprsové ntenztu paprsu procházeícího vzorem zeslabue taé rozptyl. Měření dává rozumné výsledy pro absorbanc v ntervalu (,5 1). Teoretcé výpočty sou založeny na tom, že eletrony sou mnohem lehčí než ádra a pohybuí se tedy mnohem rychle. Uvažueme tedy, že se eletrony pohybuí v pol nehybných ader a ádra v efetvním pol eletronového oblau (adabatcá a Born- Oppenhemerova aproxmace). V BOa má vlnová funce eletronovou a vbrační část. Franc-Condonův prncp - Přechod mez eletronovým stavy se děe převážně ve vertálním směru. Vybělování není zanedbatelné pro vysoé ntenzty (lasery), nebo dyž systém relaxue do ného než záladního stavu (např. do trpletního). Využtí vybělování - přechodová absorpce (transent absorpton)

Lambertův-Beerův zákon

Lambertův-Beerův zákon Lambertův-Beerův zákon Intenzta záření po průchodu kavtou se vzorkem: Integrovaný absorpční koecent: I nal = I ntal e ε c L A = ε ( ~ ν ) d~ ν Bezjednotková včna síla osclátoru: v cm -1 = 4.3 10 9 A Síla

Více

Agregace vzájemné spojování destabilizovaných částic ve větší celky, případně jejich adheze na povrchu jiných materiálů

Agregace vzájemné spojování destabilizovaných částic ve větší celky, případně jejich adheze na povrchu jiných materiálů Agregace - úvod 1 Agregace vzáemné spoování destablzovaných částc ve větší cely, případně ech adheze na povrchu ných materálů Částce mohou agregovat, poud vyazuí adhezní schopnost a poud e umožněno ech

Více

7. ZÁKLADNÍ TYPY DYNAMICKÝCH SYSTÉMŮ

7. ZÁKLADNÍ TYPY DYNAMICKÝCH SYSTÉMŮ 7. ZÁKADNÍ TYPY DYNAMICKÝCH SYSTÉMŮ 7.. SPOJITÉ SYSTÉMY Téměř všechny fyzálně realzovatelné spojté lneární systémy (romě systémů s dopravním zpožděním lze vytvořt z prvů tří typů: proporconálních členů

Více

Molekulová vibrace dvojatomové molekuly. Disociační křivka dvojatomové molekuly

Molekulová vibrace dvojatomové molekuly. Disociační křivka dvojatomové molekuly Molekulová vbrace dvojatomové molekuly Dsocační křvka dvojatomové molekuly x Potencální energe, E Repulsvní síly x Přtažlvé síly síly x Pro malé odchylky [(x-x ) ] možno aproxmovat parabolou, jak plyne

Více

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d Korelační energe Referenční stavy Energ molekul a atomů lze vyjádřt vzhledem k různým referenčním stavům. V kvantové mechance za referenční stav s nulovou energí bereme stav odpovídající nenteragujícím

Více

Kmity a rotace molekul

Kmity a rotace molekul Kmity a rotace moleul Svět moleul je neustále v pohybu l eletrony se pohybují oolo jader l jádra mitají olem rovnovážných poloh l moleuly rotují a přesouvají se Ion H + podrobněji Kmity vibrace moleul

Více

Příklady: - počet členů dané domácnosti - počet zákazníků ve frontě - počet pokusů do padnutí čísla šest - životnost televizoru - věk člověka

Příklady: - počet členů dané domácnosti - počet zákazníků ve frontě - počet pokusů do padnutí čísla šest - životnost televizoru - věk člověka Náhodná veličina Náhodnou veličinou nazýváme veličinu, terá s určitými p-stmi nabývá reálných hodnot jednoznačně přiřazených výsledům příslušných náhodných pousů Náhodné veličiny obvyle dělíme na dva záladní

Více

Oddělení pohybu elektronů a jader

Oddělení pohybu elektronů a jader Oddělení pohybu elektronů a ader Adiabatická aproximace Born-Oppenheimerova aproximace Důležité vztahy sou 4, 5, 7, 0,,, udělal sem to zbytečně podrobně, e to samostatný okruh Separace translačního pohybu:

Více

11 Kvantová teorie molekul

11 Kvantová teorie molekul 11 Kvantová teore molekul Pops molekul v rámc kvantové teore je ústředním tématem kvantové cheme. Na rozdíl od atomů nejsou molekuly centrálně symetrcké, což výpočty jejch vlastností komplkuje. V důsledku

Více

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb:

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: MOMENT SETRVAČNOST Obecná část Pomocí Newtonova pohybového záona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: dω M = = ε, (1) d t de M je moment vnější síly působící na těleso, ω úhlová rychlost,

Více

Nerovnovážná termodynamika

Nerovnovážná termodynamika erovnovážná termodynamka Fázový prostor Dmenze 6 Bod ve ázovém prostoru ( phase pont ) ednoznačně určue dynamku systému pohybue se Soubor podmnožna ázového prostoru Hustota bodů ve ázovém prostoru: rakce

Více

Hartreeho-Fockova metoda (HF)

Hartreeho-Fockova metoda (HF) Staonární Shrödngerova rovne H Ψ = EΨ Metoda konfgurační nterake Metoda vázanýh klastrů Poruhová teore Zahrnutí el. korelae Bornova-Oppenhemerova aproxmae Model nezávslýh elektronů Vlnová funke ve tvaru

Více

symetrická rovnice, model Redlich- Kister dvoukonstantové rovnice: Margules, van Laar model Hildebrandt - Scatchard mřížková teorie roztoků příklady

symetrická rovnice, model Redlich- Kister dvoukonstantové rovnice: Margules, van Laar model Hildebrandt - Scatchard mřížková teorie roztoků příklady symetrcá rovnce, model Redlch- Kster dvouonstantové rovnce: Margules, van Laar model Hldebrandt - Scatchard mřížová teore roztoů přílady na procvčení 0 lm Bnární systémy: 0 atvtní oefcenty N I E N I E

Více

Matematické modelování turbulence

Matematické modelování turbulence Matematcé modelování turbulence 1. Reynolds Averaged Naver Stoes (RANS) Řeší se Reynoldsovy rovnce Výsledem ustálené řešení, střední velčny Musí se použít fyzální model pro modelování Reynoldsových napětí

Více

ρ = 0 (nepřítomnost volných nábojů)

ρ = 0 (nepřítomnost volných nábojů) Učební text k přednášce UFY Světlo v izotropním látkovém prostředí Maxwellovy rovnice v izotropním látkovém prostředí: B rot + D rot H ( r, t) div D ρ rt, ( ) div B a materiálové vztahy D ε pro dielektrika

Více

Numerická matematika 1. t = D u. x 2 (1) tato rovnice určuje chování funkce u(t, x), která závisí na dvou proměnných. První

Numerická matematika 1. t = D u. x 2 (1) tato rovnice určuje chování funkce u(t, x), která závisí na dvou proměnných. První Numercká matematka 1 Parabolcké rovnce Budeme se zabývat rovncí t = D u x (1) tato rovnce určuje chování funkce u(t, x), která závsí na dvou proměnných. První proměnná t mívá význam času, druhá x bývá

Více

ANOVA. Analýza rozptylu při jednoduchém třídění. Jana Vránová, 3.lékařská fakulta UK, Praha

ANOVA. Analýza rozptylu při jednoduchém třídění. Jana Vránová, 3.lékařská fakulta UK, Praha ANOVA Analýza rozptylu př jednoduchém třídění Jana Vránová, 3.léařsá faulta UK, Praha Teore Máme nezávslých výběrů, > Mají rozsahy n, teré obecně nemusí být stejné V aždém z nch známe průměr a rozptyl

Více

Buckinghamův Π-teorém (viz Barenblatt, Scaling, 2003)

Buckinghamův Π-teorém (viz Barenblatt, Scaling, 2003) Bucinghamův Π-teorém (viz Barenblatt, Scaling, 2003) Formalizace rozměrové analýzy ( výsledné jednoty na obou stranách musí souhlasit ). Rozměr fyziální veličiny Mějme nějaou třídu jednote, napřílad [(g,

Více

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb:

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: MOMENT SETRVAČNOST Obecná část Pomocí Newtonova pohybového záona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: dω M = = ε, (1) d t de M je moment vnější síly působící na těleso, ω úhlová rychlost,

Více

Optické vlastnosti látek

Optické vlastnosti látek Opticé vlastnosti láte Isaac Newton 64 77 Jan Marcus Marci z Kronlandu 595 677 Světlo je eletromagneticé vlnění James Cler Maxwell 83 879 Maxwellovy rovnice E, B B E, t B j E t Energie eletromagneticých

Více

Reprezentace přirozených čísel ve Fibonacciho soustavě František Maňák, FJFI ČVUT, 2005

Reprezentace přirozených čísel ve Fibonacciho soustavě František Maňák, FJFI ČVUT, 2005 Reprezentace přirozených čísel ve ibonacciho soustavě rantiše Maňá, JI ČVUT, 2005 Úvod Ja víme, přirozená čísla lze vyádřit různými způsoby Nečastěi zápisu čísel používáme soustavu desítovou, ale umíme

Více

ÚVOD DO KVANTOVÉ CHEMIE

ÚVOD DO KVANTOVÉ CHEMIE ÚVOD DO KVANTOVÉ CHEME. Navození kvantové mechanky Postuláty kvantové mechanky, základy operátorové algebry, navození kvantové mechanky, jednoduché modely.. Vodíkový atom 3. Základní aproxmace používané

Více

Teorie plasticity PLASTICITA

Teorie plasticity PLASTICITA Teore platcty PLASTICITA TEORIE PLASTICKÉHO TEČENÍ IDEÁLNĚ PRUŽNĚ-PLASTICKÝ MATERIÁL BEZ ZPEVNĚNÍ V platcém tavu nelze jednoznačně přřadt danému napětí jedné přetvoření a naopa, ja tomu bylo ve tavu elatcém.

Více

Tepelná kapacita = T. Ē = 1 2 hν + hν. 1 = 1 e x. ln dx. Einsteinův výpočet (1907): Soustava N nezávislých oscilátorů se stejnou vlastní frekvencí má

Tepelná kapacita = T. Ē = 1 2 hν + hν. 1 = 1 e x. ln dx. Einsteinův výpočet (1907): Soustava N nezávislých oscilátorů se stejnou vlastní frekvencí má Tepelná kapacta C x = C V = ( ) dq ( ) du Dulong-Pettovo pravdlo: U = 3kT N C V = 3kN x V = T ( ) ds x Tepelná kapacta mřížky Osclátor s kvantovanou energí E n = ( n + 2) hν má střední hodnotu energe (po

Více

Matematika I A ukázkový test 1 pro 2018/2019

Matematika I A ukázkový test 1 pro 2018/2019 Matematka I A ukázkový test 1 pro 2018/2019 1. Je dána soustava rovnc s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napšte Frobenovu větu (předpoklady + tvrzení). b) Vyšetřete

Více

Relativistická kvantová mechanika

Relativistická kvantová mechanika Relatvstcká kvantová mechanka Mchal Lenc Poznámky k přednášce v jarním semestru Obrazy Postulát o kvantové kausaltě Evoluční operátor 3 Schrödngerův a Hesenbergův obraz 3 4 Interakční obraz4 Relatvta a

Více

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně 9. Měření knetky dohasínání fluorescence ve frekvenční doméně Gavolův experment (194) zdroj vzorek synchronní otáčení fázový posun detektor Měření dob žvota lumnscence Frekvenční doména - exctace harmoncky

Více

ANALÝZA ROZPTYLU (Analysis of Variance ANOVA)

ANALÝZA ROZPTYLU (Analysis of Variance ANOVA) NLÝZ OZPYLU (nalyss of Varance NOV) Používá se buď ako samostatná technka, nebo ako postup, umožňuící analýzu zdroů varablty v lneární regres. Př. použtí: k porovnání středních hodnot (průměrů) více než

Více

1. Úvod do základních pojmů teorie pravděpodobnosti

1. Úvod do základních pojmů teorie pravděpodobnosti 1. Úvod do záladních pojmů teore pravděpodobnost 1.1 Úvodní pojmy Většna exatních věd zobrazuje své výsledy rgorózně tj. výsledy jsou zísávány na záladě přesných formulí a jsou jejch nterpretací. em je

Více

6. Měření Youngova modulu pružnosti v tahu a ve smyku

6. Měření Youngova modulu pružnosti v tahu a ve smyku 6. Měření Youngova modulu pružnosti v tahu a ve smyu Úol : Určete Youngův modul pružnosti drátu metodou přímou (z protažení drátu). Prostudujte doporučenou literaturu: BROŽ, J. Zálady fyziálních měření..

Více

Využití logistické regrese pro hodnocení omaku

Využití logistické regrese pro hodnocení omaku Využtí logstcké regrese pro hodnocení omaku Vladmír Bazík Úvod Jedním z prmárních proevů textlí e omak. Jedná se o poct který vyvolá textle př kontaktu s pokožkou. Je to ntegrální psychofyzkální vlastnost

Více

11 Základy analytické statiky

11 Základy analytické statiky Zákady anaytcké statky Ve všech dřívěších kaptoách sme rovnce statcké rovnováhy heda ze vztahů mez sovým účnky t. heda sme případy pro které by vektorový součet s a ech momentů roven nue t. heda sme řešení

Více

Pružnost a plasticita II

Pružnost a plasticita II Pružnost a plastcta II 3. ročník bakalářského stua oc. Ing. Martn Kresa Ph.D. Katera stavební mechank Řešení nosných stěn metoou sítí 3 Řešení stěn metoou sítí metoa sítí (metoa konečných ferencí) těnová

Více

Pružnost a plasticita II

Pružnost a plasticita II Pružnost a plastcta II 3 ročník bakalářského studa doc Ing Martn Kresa PhD Katedra stavební mechank Řešení pravoúhlých nosných stěn metodou sítí Statcké schéma nosné stěn q G υ (μ) h l d 3 wwwfastvsbcz

Více

Teorie Molekulových Orbitalů (MO)

Teorie Molekulových Orbitalů (MO) Teorie Molekulových Orbitalů (MO) Kombinace atomových orbitalů na všech atomech v molekule Vhodná symetrie Vhodná (podobná) energie Z n AO vytvoříme n MO Pro začátek dvouatomové molekuly: H 2, F 2, CO,...

Více

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC Přednáša 04 Přírodovědecá faulta Katedra matematiy KMA/P506 Pravděpodobnost a statistia KMA/P507 Statistia na PC jiri.cihlar@ujep.cz Záon velých čísel Lemma Nechť náhodná veličina nabývá pouze nezáporných

Více

Křivkové integrály prvního druhu Vypočítejte dané křivkové integrály prvního druhu v R 2.

Křivkové integrály prvního druhu Vypočítejte dané křivkové integrály prvního druhu v R 2. Křivové integrál prvního druhu Vpočítejte dané řivové integrál prvního druhu v R. Přílad. ds x, de je úseča AB, A[, ], B[4, ]. Řešení: Pro řivový integrál prvního druhu platí: fx, ) ds β α fϕt), ψt)) ϕ

Více

Výběrové charakteristiky a jejich rozdělení

Výběrové charakteristiky a jejich rozdělení Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový

Více

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad.

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad. 8. Taylorova řada. V urzu matematiy jsme uázali, že je možné funci f, terá má v oolí bodu x derivace aproximovat polynomem, jehož derivace se shodují s derivacemi aproximované funce v bodě x. Poud má funce

Více

Transformátory. Mění napětí, frekvence zůstává

Transformátory. Mění napětí, frekvence zůstává Transformátory Mění napětí, frevence zůstává Princip funce Maxwell-Faradayův záon o induovaném napětí e u i d dt N d dt Jednofázový transformátor Vstupní vinutí Magneticý obvod Φ h0 u u i0 N i 0 N u i0

Více

Absorpční vlastnosti plazmatu směsí SF 6 a PTFE

Absorpční vlastnosti plazmatu směsí SF 6 a PTFE Absorpční vlastnosti plazmatu směsí SF 6 a PTFE N. Bogatyreva, M. Bartlová, V. Aubrecht Faulta eletrotechniy a omuniačních technologií, Vysoé učení technicé v Brně, Technicá 10, 616 00 Brno Abstrat Článe

Více

Alternativní rozdělení. Alternativní rozdělení. Binomické rozdělení. Binomické rozdělení

Alternativní rozdělení. Alternativní rozdělení. Binomické rozdělení. Binomické rozdělení Alternativní rozdělení Alternativní rozdělení Alternativní rozdělení Alternativní rozdělení Náhodná veličina X má alternativní rozdělení s parametrem p, jestliže nabývá hodnot 0 a 1 s pravděpodobnostmi

Více

Statistika a spolehlivost v lékařství Charakteristiky spolehlivosti prvků I

Statistika a spolehlivost v lékařství Charakteristiky spolehlivosti prvků I Statistika a spolehlivost v lékařství Charakteristiky spolehlivosti prvků I Příklad Tahová síla papíru používaného pro výrobu potravinových sáčků je důležitá charakteristika kvality. Je známo, že síla

Více

Rekonstrukce diskrétního rozdělení psti metodou maximální entropie

Rekonstrukce diskrétního rozdělení psti metodou maximální entropie Rekonstrukce diskrétního rozdělení psti metodou maximální entropie Příklad Lze nalézt četnosti nepozorovaných stavů tak, abychom si vymýšleli co nejméně? Nechť n i, i = 1, 2,..., N jsou známé (absolutní)

Více

Kinetika spalovacích reakcí

Kinetika spalovacích reakcí Knetka spalovacích reakcí Základy knetky spalování - nauka o průběhu spalovacích reakcí a závslost rychlost reakcí na různých faktorech Hlavní faktory: - koncentrace reagujících látek - teplota - tlak

Více

SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE)

SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE) SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE) Elektromagnetické vlnění SVĚTLO Charakterizace záření Vlnová délka - (λ) : jednotky: m (obvykle nm) λ Souvisí s povahou fotonu Charakterizace záření

Více

u (x i ) U i 1 2U i +U i+1 h 2. Na hranicích oblasti jsou uzlové hodnoty dány okrajovými podmínkami bud přímo

u (x i ) U i 1 2U i +U i+1 h 2. Na hranicích oblasti jsou uzlové hodnoty dány okrajovými podmínkami bud přímo Metoda sítí základní schémata h... krok sítě ve směru x, tj. h = x x q... krok sítě ve směru y, tj. q = y j y j τ... krok ve směru t, tj. τ = j... hodnota přblžného řešení v uzlu (x,y j ) (Possonova rovnce)

Více

Definice spojité náhodné veličiny zjednodušená verze

Definice spojité náhodné veličiny zjednodušená verze Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f

Více

Born-Oppenheimerova aproximace

Born-Oppenheimerova aproximace Born-Oppenheimerova aproximace Oddělení elektronického a jaderného pohybu Jádra 2000 x těžší než elektrony elektrony kvantová chemie, popis systému (do 100 atomů) na základě vlastností elektronů (jádra

Více

MODELOVÁNÍ A SIMULACE

MODELOVÁNÍ A SIMULACE MODELOVÁNÍ A SIMULACE základní pojmy a postupy vytváření matematckých modelů na základě blancí prncp numerckého řešení dferencálních rovnc základy práce se smulačním jazykem PSI Základní pojmy matematcký

Více

Difuze v procesu hoření

Difuze v procesu hoření Difuze v procesu hoření Fyziální podmíny hoření Záladní podmínou nepřetržitého průběhu spalovací reace je přívod reagentů (paliva a vzduchu) do ohniště a zároveň odvod produtů hoření (spalin). Pro dosažení

Více

Fyzikální praktikum č.: 1

Fyzikální praktikum č.: 1 Datum: 5.5.2005 Fyziální pratium č.: 1 ypracoval: Tomáš Henych Název: Studium činnosti fotonásobiče Úol: 1. Stanovte závislost oeficientu seundární emise na napětí mezi dynodami. yneste do grafu závislost

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOS A SAISIKA Regulární systém hustot Vychází se z: -,, P - pravděpodobnostní prostor -, R neprázdná množna parametrů - X X 1,, náhodný vektor s sdruženou hustotou X n nebo s sdruženou pravděpodobnostní

Více

Matematické modelování ve stavební fyzice

Matematické modelování ve stavební fyzice P6 - Numercké řešení vedení tepla ve stěně Obsa: Stěna z omogennío materálu Stěna z různýc materálů Okraové podmínky Dvorozměrné vedení tepla Rovnce vedení tepla Rovnce kontnuty (v 1D) dq qcd, x qcd, x

Více

Odraz a lom rovinné monochromatické vlny na rovinném rozhraní dvou izotropních prostředí

Odraz a lom rovinné monochromatické vlny na rovinném rozhraní dvou izotropních prostředí Odraz a lom rovnné monochromatcké vlny na rovnném rozhraní dvou zotropních prostředí Doplňující předpoklady: prostředí č.1, ze kterého vlna dopadá na rozhraní neabsorbuje (má r r reálný ndex lomu), obě

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 7.3.9 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme. Vrátíme se obecné rovnici přímy:

Více

MATEMATIKA II V PŘÍKLADECH

MATEMATIKA II V PŘÍKLADECH VYSOKÁ ŠKOL BÁŇSKÁ TECHICKÁ UIVERZIT OSTRV FKULT STROJÍ MTEMTIK II V PŘÍKLDECH CVIČEÍ Č 0 Ing Petra Schreiberová, PhD Ostrava 0 Ing Petra Schreiberová, PhD Vysoá šola báňsá Technicá univerzita Ostrava

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA SP esty dobré shody PRAVDĚPODOBNOS A SAISIKA Lbor Žá SP esty dobré shody Lbor Žá Přpomeutí - estováí hypotéz o rozděleí Ch-vadrát test Chí-vadrát testem terý e založe a tříděém statstcém souboru. SP esty

Více

SPEKTRÁLNÍ METODY. Ing. David MILDE, Ph.D. Katedra analytické chemie Tel.: ; (c) David MILDE,

SPEKTRÁLNÍ METODY. Ing. David MILDE, Ph.D. Katedra analytické chemie Tel.: ;   (c) David MILDE, SEKTRÁLNÍ METODY Ing. David MILDE, h.d. Katedra analytické chemie Tel.: 585634443; E-mail: david.milde@upol.cz (c) -2008 oužitá a doporučená literatura Němcová I., Čermáková L., Rychlovský.: Spektrometrické

Více

BO008 / CO001 KOVOVÉ KONSTRUKCE II

BO008 / CO001 KOVOVÉ KONSTRUKCE II BO008 / CO00 KOVOVÉ KONSTRUKCE II PODKLADY DO CVIČENÍ Tento materál slouží výhradně ao pomůca do cvčení a v žádném případě obemem an typem nformací nenahrazue náplň přednáše. Obsah NORMY PRO NAVRHOVÁNÍ

Více

DYNAMICKÉ MODULY PRUŽNOSTI NÁVOD DO CVIČENÍ

DYNAMICKÉ MODULY PRUŽNOSTI NÁVOD DO CVIČENÍ DYNAMICKÉ MODUY PRUŽNOSTI NÁVOD DO CVIČNÍ D BI0 Zkušebnctví a technologe Ústav stavebního zkušebnctví, FAST, VUT v Brně 1. STANOVNÍ DYNAMICKÉHO MODUU PRUŽNOSTI UTRAZVUKOVOU IMPUZOVOU MTODOU [ČSN 73 1371]

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Náhodný výběr Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr

Více

Mechanické vlastnosti materiálů.

Mechanické vlastnosti materiálů. Mechancké vastnost materáů. Obsah přednášky : tahová zkouška, zákadní mechancké vastnost materáu, prodoužení př tahu nebo taku, potencání energe, řešení statcky neurčtých úoh Doba studa : as hodna Cí přednášky

Více

7 Optická difrakce jako přenos lineárním systémem

7 Optická difrakce jako přenos lineárním systémem 113 7 Opticá difrace jao přenos lineárním systémem 7.1 Impulsová odezva pro Fresnelovu difraci 7. Přenosová funce pro Fresnelovu difraci jao Fourierova transformace impulsové odezvy 7.3 Fourierovsý rozlad

Více

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 SIMULACE numercké řešení dferencálních rovnc smulační program dentfkace modelu Numercké řešení obyčejných dferencálních rovnc krokové metody pro řešení lneárních dferencálních rovnc 1.řádu s počátečním

Více

15 Mletí. I Základní vztahy a definice. Oldřich Holeček (aktualizace v roce 2014 Michal Přibyl & Marek Schöngut)

15 Mletí. I Základní vztahy a definice. Oldřich Holeček (aktualizace v roce 2014 Michal Přibyl & Marek Schöngut) 15 Mletí Oldřch Holeče (atualzace v roce 2014 Mchal Přbyl & Mare Schöngut) I Záladní vztahy a defnce I.1 Úvod Rychlost mnoha chemcých a fyzálních procesů závsí na velost mezfázového povrchu. Je-l v nch

Více

Cvičení 2 (MKP_příklad)

Cvičení 2 (MKP_příklad) VŠB Technicá univezita Ostava aulta stoní Kateda pužnosti a pevnosti (9) Úvod do MKP (Návody do cvičení) Cvičení (MKP_přílad) Auto: Jaoslav oíče Veze: Ostava 9 Úvod do Metody onečných pvů př. tyč. Každé

Více

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN V dokumentu 7a_korelacn_a_regresn_analyza jsme řešl rozdíl mez korelační a regresní analýzou. Budeme se teď věnovat pouze lneárnímu vztahu dvou velčn, protože je nejjednodušší

Více

13. Spektroskopie základní pojmy

13. Spektroskopie základní pojmy základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

Testování hypotéz. December 10, 2008

Testování hypotéz. December 10, 2008 Testování hypotéz December, 2008 (Testování hypotéz o neznámé pravděpodobnosti) Jan a Františe mají pytlíy s uličami. Jan má 80 bílých a 20 červených, Františe má 30 bílých a 70 červených. Vybereme náhodně

Více

3. Mocninné a Taylorovy řady

3. Mocninné a Taylorovy řady 3. Mocninné a Taylorovy řady A. Záladní pojmy. Obor onvergence Mocninné řady jsou nejjednodušším speciálním případem funčních řad. Jsou to funční řady, jejichž členy jsou mocninné funce. V této apitole

Více

Úloha syntézy čtyřčlenného rovinného mechanismu

Úloha syntézy čtyřčlenného rovinného mechanismu Úloha syntézy čtyřčlenného rovnného mechansmu Zracoval: Jaroslav Beran Pracovště: Techncká unverzta v Lberc katedra textlních a ednoúčelových stroů Tento materál vznkl ako součást roektu In-TECH 2, který

Více

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ.

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ. CHYBY MĚŘENÍ Úvod Představte s, že máte změřt délku válečku. Použjete posuvné měřítko a získáte určtou hodnotu. Pamětlv přísloví provedete ještě jedno měření. Ale ouha! Výsledek je jný. Co dělat? Měřt

Více

Československá společnost pro růst krystalů ČVUT FEL Praha, 30. března 2006, 13:30

Československá společnost pro růst krystalů ČVUT FEL Praha, 30. března 2006, 13:30 Československá společnost pro růst krystalů ČVUT FEL Praha, 30. března 2006, 13:30 30. března 2006 1 2 3 4 5 Heterofázové fluktuace vznk nové Nově vznkající (kapalná, krystalcká... ) Matečná (podchlazená

Více

Laserová technika prosince Katedra fyzikální elektroniky.

Laserová technika prosince Katedra fyzikální elektroniky. Laserová technika 1 Aktivní prostředí Šíření rezonančního záření dvouhladinovým prostředím Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 22. prosince 2016 Program

Více

(iv) D - vybíráme 2 koule a ty mají různou barvu.

(iv) D - vybíráme 2 koule a ty mají různou barvu. 2 cvičení - pravděpodobnost 2102018 18cv2tex Definice pojmů a záladní vzorce Vlastnosti pravděpodobnosti Pravděpodobnost P splňuje pro libovolné jevy A a B následující vlastnosti: 1 0, 1 2 P (0) = 0, P

Více

K přednášce NUFY028 Teoretická mechanika prozatímní učební text, verze Malé kmity Leoš Dvořák, MFF UK Praha, 2014

K přednášce NUFY028 Teoretická mechanika prozatímní učební text, verze Malé kmity Leoš Dvořák, MFF UK Praha, 2014 K přednášce NUFY08 Teoetcá mechana pozatímní učební text, veze 0 4. Malé mty Leoš Dvořá, MFF UK Paha, 04 Malé mty soustav hmotných bodů Nyní se budeme věnovat chování soustavy hmotných bodů v oolí ovnovážné

Více

Laserová technika prosince Katedra fyzikální elektroniky.

Laserová technika prosince Katedra fyzikální elektroniky. Laserová technika 1 Aktivní prostředí Šíření optických impulsů v aktivním prostředí Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz. prosince 016 Program přednášek

Více

Chemické reaktory. Chemické reaktory. Mikrokinetika a Makrokinetika. Rychlost vzniku složky reakcí. Rychlost reakce

Chemické reaktory. Chemické reaktory. Mikrokinetika a Makrokinetika. Rychlost vzniku složky reakcí. Rychlost reakce » Počet fází» homogenní» heteogenní (víefázové)» Chemká eake» nekatalytké» katalytké» boeaktoy (fementoy)» Chaakte toku» deálně míhané» s pístovým tokem» s nedokonalým míháním Mkoknetka a Makoknetka» Výměna

Více

je amplituda indukovaného dipólového momentu s frekvencí ω

je amplituda indukovaného dipólového momentu s frekvencí ω Induované oscilující eletricé dipóly jao zdroje rozptýleného záření Ja v lasicém, ta i v vantově-mechanicém přístupu jsou za původce rozptýleného záření považovány oscilující eletricé a magneticé multipólové

Více

LectureV. April 18, celou historii vývoje škálovacího faktoru a Hubleovy konstanty. Otázkou je, jak určit množství hmoty ve vesmíru.

LectureV. April 18, celou historii vývoje škálovacího faktoru a Hubleovy konstanty. Otázkou je, jak určit množství hmoty ve vesmíru. LectureV Aprl 18, 2016 1 Temná hmota V předchozích lekcích sme ukázal, že pokud známe celkové množství hmoty ve vesmíru a eí složení, známe celou hstor vývoe škálovacího faktoru a Hubleovy konstanty. Otázkou

Více

vektor a vrátili jiný vektor. Měli-li jsme jistou pozorovatelnou A, dostali jsme jejím změřením

vektor a vrátili jiný vektor. Měli-li jsme jistou pozorovatelnou A, dostali jsme jejím změřením Operátor hustoty Popsueme-l vývo uzavřeného kvantového systému, vystačíme s většnou s pomem čstého stavu. Jedná se o vektor v Hlbertově prostoru H, který e danému kvantovému systému přdružen. Na daném

Více

Lineární a adaptivní zpracování dat. 8. Kumulační zvýrazňování signálů v šumu 2

Lineární a adaptivní zpracování dat. 8. Kumulační zvýrazňování signálů v šumu 2 Lneární a adaptvní zpracování dat 8. Kumulační zvýrazňování sgnálů v šumu 2 Danel Schwarz Investce do rozvoe vzdělávání Opakování Kumulační zpracování sgnálů co to e, k čemu to e? Prncp metody? Nutné podmínky

Více

Energie elektrického pole

Energie elektrického pole Energe elektrckého pole Jž v úvodní kaptole jsme poznal, že nehybný (centrální elektrcký náboj vytváří v celém nekonečném prostoru slové elektrcké pole, které je konzervatvní, to znamená, že jakýkolv jný

Více

Symetrie Platonovská tělesa

Symetrie Platonovská tělesa Symetrie Platonovská tělesa 1 Symetrie Virus rýmy Virus obrny Virus slintavky a kulhavky 2 Symetrie molekul Jak jsou atomy v molekule uspořádány = ekvivalentní atomy 3 Prvky a operace symetrie Značk a

Více

Dimenzování silnoproudých rozvodů. Návrh napájecího zdroje., obvykle nepracují zároveň při jmenovitém výkonu

Dimenzování silnoproudých rozvodů. Návrh napájecího zdroje., obvykle nepracují zároveň při jmenovitém výkonu Dimenzování silnoproudých rozvodů Návrh napájecího zdroje Supina el. spotřebičů P i Pn, obvyle nepracují zároveň při jmenovitém výonu činitel současnosti Pns s P n P ns současně připojené spotřebiče činitel

Více

do jednotkového prostorového úhlu ve směru svírajícím úhel ϑ s osou dipólu je dán vztahem (1) a c je rychlost světla.

do jednotkového prostorového úhlu ve směru svírajícím úhel ϑ s osou dipólu je dán vztahem (1) a c je rychlost světla. Induované oscilující eletricé dipóly jao zdroje rozptýleného záření Ja v lasicém, ta i v vantově-mechanicém přístupu jsou za původce rozptýleného záření považovány oscilující eletricé a magneticé multipólové

Více

NÁVRH PROVOZOVÁNÍ NOVÉHO ZDROJE 120 MW VÝTOPNA MALOMĚŘICE V DISTRIBUČNÍ SOUSTAVĚ 110 KV E.ON

NÁVRH PROVOZOVÁNÍ NOVÉHO ZDROJE 120 MW VÝTOPNA MALOMĚŘICE V DISTRIBUČNÍ SOUSTAVĚ 110 KV E.ON VYSOKÉ ČENÍ TECHNCKÉ V BRNĚ BRNO NVERSTY OF TECHNOLOGY FAKLTA ELEKTROTECHNKY A KOMNKAČNÍCH TECHNOLOGÍ ÚSTAV ELEKTROENERGETKY FACLTY OF ELECTRCAL ENGNEERNG AND COMMNCATON DEPARTMENT OF ELECTRCAL POWER ENGNEERNG

Více

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457. 0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti

Více

Symetrie Platonovská tělesa

Symetrie Platonovská tělesa Symetrie Platonovská tělesa 1 Symetrie Virus rýmy Virus obrny Virus slintavky a kulhavky 2 Symetrie molekul Jak jsou atomy v molekule uspořádány = ekvivalentní atomy 3 Prvky a operace symetrie Značka Prvek

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Číselné charateristiy náhodných proměnných Charateristiy náhodných proměnných dělíme nejčastěji na charateristiy polohy a variability. Mezi charateristiy polohy se nejčastěji

Více

Using a Kalman Filter for Estimating a Random Constant Použití Kalmanova filtru pro výpočet odhadu konstantní hodnoty

Using a Kalman Filter for Estimating a Random Constant Použití Kalmanova filtru pro výpočet odhadu konstantní hodnoty II. Semnar ASR 007 Instruments and Control, Farana, Smutný, Kočí & Babuch (eds) 007, VŠB-TUO, Ostrava, ISB 978-80-48-7-4 Usng a Kalman Flter for Estmatng a Random Constant Použtí Kalmanova fltru pro výpočet

Více

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU Úloha č 5 MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU ÚKOL MĚŘENÍ: Určete moment setrvačnosti ruhové a obdélníové desy vzhledem jednotlivým osám z doby yvu Vypočtěte moment setrvačnosti ruhové a obdélníové

Více

7. TRANSFORMÁTORY. 7.1 Štítkové údaje. 7.2 Měření odporů vinutí. 7.3 Měření naprázdno

7. TRANSFORMÁTORY. 7.1 Štítkové údaje. 7.2 Měření odporů vinutí. 7.3 Měření naprázdno 7. TRANSFORMÁTORY Pro zjednodušení budeme měření provádět na jednofázovém transformátoru. Na trojfázovém transformátoru provedeme pouze ontrolu jeho zapojení měřením hodinových úhlů. 7.1 Štítové údaje

Více

Délka kružnice (obvod kruhu) II

Délka kružnice (obvod kruhu) II .10.7 Déla užnice (obvod uhu) II Předpolady: 01006 Př. 1: Bod je od středu užnice ( ;cm) vzdálen 7 cm. Uči početně vzdálenost z bodu do bodu, teý je tečným bodem tečny užnice jdoucí z bodu. vůj výslede

Více

Hodnocení přesnosti výsledků z metody FMECA

Hodnocení přesnosti výsledků z metody FMECA Hodnocení přesnosti výsledů z metody FMECA Josef Chudoba 1. Úvod Metoda FMECA je semivantitativní metoda, pomocí teré se identifiují poruchy s významnými důsledy ovlivňující funci systému. Závažnost následů

Více

1.5.7 Prvočísla a složená čísla

1.5.7 Prvočísla a složená čísla 17 Prvočísla a složená čísla Předpolady: 103, 106 Dnes bez alulačy Číslo 1 je dělitelné čísly 1,, 3,, 6 a 1 Množinu, terou tvoří právě tato čísla, nazýváme D 1 množina dělitelů čísla 1, značíme ( ) Platí:

Více

Spinový moment hybnosti /magnetický moment, interakce s magnetickým polem

Spinový moment hybnosti /magnetický moment, interakce s magnetickým polem Spnový oent hybnost /anetcký oent, nterakce s anetcký pole Velkost jednoho elektronového spnu: Velkost jednoho jaderného spnu: s s( s ) 3 ( ) Sudé Sudé Z 0 Sudé Lché Z... apř: He, C, 6 O celočíselné apř:

Více

Literatura: Kapitola 5 ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.

Literatura: Kapitola 5 ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího. Předmět: MA4 Dnešní látka: Metoda sítí pro 2D úlohy. Possonova rovnce. Vlnová rovnce. Rovnce vedení tepla. Lteratura: Kaptola 5 ze skrpt Karel Rektorys: Matematka 43, ČVUT, Praha, 2. Text přednášky na

Více

Cvičení 5 (Potrubní systémy)

Cvičení 5 (Potrubní systémy) VŠ Techncá unvezta Ostava aulta stoní Kateda pužnost a pevnost (9) Pužnost a pevnost v enegetce (Návody do cvčení) Cvčení (Potubní systémy) uto: aoslav oíče Veze: Ostava 9 PP Cvčení Potubní systémy: Ob

Více