ÚSTAV MECHANIKY A MATERIÁLŮ FD ČVUT. DOC. ING. MICHAL MICKA, CSc. PŘEDNÁŠKA 4
|
|
- Andrea Tesařová
- před 6 lety
- Počet zobrazení:
Transkript
1
2 ÚVOD DO TEORIE MATEMATICKÉ PRUŽNOSTI ZÁKLADNÍ PŘEDPOKLADY A POJMY. Látka, která vtváří příslušné těleso je dokonale lineárně pružné, mei napětím a přetvořením je lineární ávislost.. Látka hmotného tělesa je homogenní a iotropní. Homogenita v každém mikroobjemu je stejná látka, která vkauje stejné fikální a chemické vlastnosti. Iotropie vjadřuje skutečnost, že v kterémkoliv směru vcháejícího daného bodu jsou stejné fikálně mechanické vlastnosti.. Posun a deformace tělesa od vnějšího atížení uvažujeme velmi malé, tj. v matematickém přepisu je le pokládat a infiniteimální veličin.
3 Základní úloha určit množinu posunů všech bodů tělesa, tj. určit vektorové pole posunutí. Na teorii pružnosti navauje a souvisí s ní: Teorie pevnosti všímá si přípustných meí napětí, které předepisuje růným druhům materiálů hlediska jejich kvalit. Teorie plasticit všetřuje tělesa, která po svém odlehčení ůstávají trvale deformovaná. Reologie sleduje rovoj silových a deformačních faktorů v ávislosti na čase. Přihlíží k vlivu času na měnu fikálně mechanických vlastností látek.
4 STAV DEFORMACE Vnější atížení vvodí v poddajném tělese posun, pootočení a deformace. Deformace elementu se v obecném případě uskutečňuje relativními měnami délek jeho hran a měnami pravých úhlů mei jeho stěnami, které můžeme koumat ve třech vájemně kolmých rovinách. Posun a pootočení jsou charakteristikami přetvoření tělesa. Úhlová deformace A A d O d O B B d C C obdobně pro G, Vektor posunutí u u v w repreentuje vektorové pole posunutí daného tělesa.
5 Složk tenoru deformace Na obráku je náorněna deformace rovinného elementu posunutí vrcholů ve dvou směrech a kosení. Poměrné prodloužení elementu ve směru souřadnicové os se vpočte výrau d d dub d u d d Podobně ve směru d d dvc d v d d Pravý úhel elementárního obdélníku u vrcholu A se měnil o malý úhel (tv. úhel kosení). Pro platí, že je součtem dvou úhlů, takže le psát dvb duc v u dv B d du C d d d v u A potom
6 Složk tenoru deformace kde, u v w, v u w v u w 6 geometrických rovnic poměrné délkové přetvoření (prodloužení) ve směru souřadnicových os. měn pravých úhlů v rovinách onačených příslušnými inde (poměrné úhlové přetvoření) Rovnice pro přetvoření vtvářejí soustavu 6 geometrických rovnic.,,,,, Tenorové pole deformace T T Geometrické rovnice v maticovém ápisu u
7 Operátorová matice Tenor deformace malých deformací A
8 ROVNICE KOMPATIBILITY (SPOJITOSTI DEFORMACÍ) Tvoří soustavu 6 rovnic, kterým musí vhovovat pole deformace. Platí, že pole deformace musí být v každém bodě tělesa spojité (kompatibilní). V maticovém ápisu T A nulová matice. pole operátorové matice (kromě namének)
9 STAV NAPJATOSTI V tělese vnikají vnitřní síl jako odeva na působení sil vnějších. Vnější síl:. Objemové síl atížení, které působí na objem určité hmot např. síl gravitační, setrvačné N m. Povrchové síl atížení, které působí na plochách povrchu tělesa N m Vnější osamělou sílu definujeme jako výslednici sil působících na elementární plochu A. Vnitřní síl působí na elementárních ploškách tělesa F lim N m n A A vektor napětí v bodě P n kde P n normálová složka vektoru napětí A - tečná složka vektoru napětí (tangenciální) F
10 Výsledné napětí A B C A A A ΔA libovolně volená plocha - výsledné napětí na libovolně orientované ploše ΔA Poměr ploch na čtřstěnu A A cos l cos l A A D - normála k plošce BCD svírá se souřadnicovými osami úhl A cos l A
11 K určení výsledného napětí se sestaví součtové podmínk rovnováh po úpravě A A A A A A l l l l l l l l l A A A A A A C A D A A A B Známe-li tenor napětí A na navájem kolmých ploškách, le vpočítat napětí na libovolné jiné plošce. A T l kde,, T T l l, l, l
12 Tenor napětí A popisuje stav napjatosti v daném bodě. A
13 CAUCHYHO STATICKÉ ROVNICE Statické rovnice vcháejí podmínek spojitosti (kompatibilit) měn ve složkách napětí. Součtové podmínk rovnováh elementárního kvádru nebo X X Y Z d d d d d d d d d d d d
14 d d d d Věta o vájemnosti tečných napětí Z momentové podmínk k těžišti elementárního kvádru le odvodit podmínk vjadřující větu o vájemnosti tečných napětí. d d d d d d d d d d d d d d d d d d d d d d d d d d d d dd d dd d d d d d
15 Obdobně a áměnou indeů se velikost tečného napětí nemění. FYZIKÁLNÍ ROVNICE Do počtu rovnic se musí přidat podmínk, které vjadřují ávislost mei napětím a přetvořeními a jsou váán na konkrétní fikálně-mechanické vlastnosti reálných těles. Vjadřují vtah mei složkami tenoru napětí a tenoru deformace E G E G E G kde E modul pružnosti (Youngův modul) [Nm - ] G modul pružnosti ve smku E me G G m
16 - Poissonova číslo (součinitel) m - Poissonova konstanta součinitel příčné konstrukce l l l a+δa a p l a p a l l+δl p l pro iotropní materiál, 5! E Objemový modul pružnosti E E při relativní měně objemu Fikální rovnice le apsat v maticovém tvaru D D D nebo - matice tuhosti materiálu D - matice poddajnosti materiálu (inversní k matici D)
17 Pro lineárně pružný materiál: E D E D
18 ŘEŠENÍ OBECNÉHO PROBLÉMU Sstém ákladních rovnic je tvořen 5 rovnicemi pro analýu stavu napětí a deformace. Řešení spočívá v určení 5 funkcí proměnných jako funkce (,, ): u u, v, w. složk vektoru posunutí T. 6 složek tenorového pole napětí,,,,, T. 6 složek tenorového pole deformace,,,,, T 5 rovnic pro řešení obecného problému ted obsahuje:. 6 geometrických rovnic. statické rovnice. 6 rovnic fikálních Dále jsou doplněn rovnicemi kompatibilit požadavek spojitosti deformace.
19 Řešení obecného problému má variant:. Deformační varianta Dosaením složek tenorového pole deformace do rovnic fikálních a pak dosaení parametrů napětí ve fikálních rovnicích do statických diferenciálních rovnic a jejich integrováním ískáme nenámé posun u, v, w. V tomto případě tvoří statické rovnice po dosaení Laméov statické rovnice pro tři nenámé posun.. Silová varianta Nenámými jsou složk tenorového pole napětí {}. Postupujeme tak, že rovnice kompatibilit vjádříme pomocí fikálních rovnic v napětích. Těchto rovnic je 6 a mají 6 nenámých funkcí napětí. Protože vjadřují poue podmínku spojitosti, je nutno přičíst upravené Cauchho rovnice rovnováh. Po úpravách dostaneme soustavu 6 Beltramiho rovnic a 6 hledaných funkcí napětí. Volba variant pro řešení ávisí na složitosti problému.
20 Máme-li adán kinematické okrajové podmínk (vektor posunutí) je vhodné aplikovat deformační variantu. Jsou-li adán statické okrajové podmínk (např. atížení je na povrchu) je vhodné použít silovou metodu. V prai se obvkle vsktují kombinované případ okrajových podmínek.
21 HLAVNÍ NAPĚTÍ V obecném bodě atíženého tělesa eistují vžd tři k sobě kolmé ploch na nichž jsou tečná (smková) napětí nulová a normálová napětí nenulová. Budeme je naývat hlavní napětí a rovin, na které působí hlavní rovin. Vhledem k tomu, že na hlavní rovině působí hlavní napětí totožné s výsledným napětím, le pro jeho složk psát: cos cos cos Dosaením do rovnic rovnováh na čtřstěnu mají rovnice rovnováh po úpravě tvar: cos cos cos cos cos cos cos cos cos Tto rovnice mají řešení triviální: cos cos cos, které nevhovuje námému vtahu cos cos cos Netriviální řešení mají a předpokladu nulového determinantu:
22 Pomocí invariantů le poté rovnici ískanou rovojem determinantu upravit takto: I I I kde I je I. invariant napětí I je II.invariant napětí I je III. Invariant napětí Řešením rovnice ískáme velikosti hlavních napětí, pro které platí :.
23 V každém bodě tělesa eistují právě tři hlavní napětí, působící na tři vájemně kolmé ploch. Invariant I, I, I neávisejí na volbě souřadnicového sstému. Tenor napětí ve směrech hlavních napětí má tvar: A příslušné invariant v daném souřadnicovém sstému,, a ve směrech hlavních napětí jsou poté: I I I
24 Hlavní tečná (smková) napětí plnou rovnic: o 45 a k nim korespondují normálové napětí rovnic: Z obráku je řejmé, že hlavní tečná (smková) napětí působí v rovině procháející jednou osou souřadnicového sstému,, a půlící úhel bývajících dvou os.
25 HLAVNÍ DEFORMACE Hlavní poměrné délkové deformace plnou kubické rovnice tvaru: I I I p p p kde I je lineární invariant daný rovnicí: I I je druhý (kvadratický) invariant: 4 I I je třetí (kubický) invariant, daný vtahem: 4 4 I kde kromě dříve uvedených výnamů jsou,, hlavní poměrné délkové deformace. Podobně pro hlavní úhlové deformace platí rovnice:
26 a pro korespondující poměrné délkové přetvoření platí: Ponámka: a předpokladu, že je absolutně největší hlavní úhlová deformace dána vtahem: > > ma
27 Oktaedrické napětí Při studiu plastických deformací je nutné nát smkové napětí působící na plošce ve stejném sklonu ke každé hlavní ose. Tato ploška se jmenuje oktaedrická. C,, Normála k plošce BCD svírá s každou souřadnicovou osou stejný úhel, platí: Protože: cos cos cos platí: cos Oktaedrické napětí je dáno vtahem: Normálová složka oktaedrického napětí je: okt okt, n a tečná složka je okt B A s D
28 POMĚRNÁ ZMĚNA OBJEMU OBJEMOVÁ DEFORMACE, STŘEDNÍ NORMÁLNÉ NAPĚTÍ Uvažujme pravoúhlý hranol o délce stran ve směru jednotlivých os d,d,d atížený na protilehlých stranách stejným napětím. Účinkem těchto napětí se stran hranolu prodlouží ve směru jednotlivých os o přírůstk posunutí. d v d d d u d w d Změna objemu se dá vjádřit w w u dv d d dw d d d d d Při anedbání řádově malých násobků veličin se dostane w u v dv d d dw d d d d d d u d d w v d d
29 Poměrná měna objemu je definována w u v d d dw d d d d d d dv v dv d d d resp. v Dosadí se do tohoto vtahu fikální rovnice v E E E a potom v E Zavede-li se tv. objemový modul pružnosti, který je definován vtahem E E K resp. K dostane se poměrná měna objemu ve tvaru v K
30 Zavede-li se pojem střední normálné napětí s s Le psát s K v resp. v K
31 DEVIÁTOR NAPĚTÍ s s s s s s Stav napjatosti na diferenciálu objemu si můžeme představit jako výsledný účinek dvou stavů napjatosti (vi obr.). V prvním působí na všechn stěn objemu stejné napětí s, jedná se ted o hdrostatické napětí, které vvolává poue měnu objemu. Druhý napěťový stav be hdrostatické složk ase vvolává měnu tvaru. Obecný tenor napětí le takto rodělit na na část hdrostatickou a tv. deviátor napětí.
32 Podobně jako tenor napětí má i deviátor napětí tři invariant. s V deviátoru napětí D s s avedeme nová onačení s s a po dosaení D Invariant deviátoru napětí pak mají hodnot I je I. invariant deviátoru napětí I I je II.invariant deviátoru napětí je III.invariant deviátoru napětí s
33 DEVIÁTOR DEFORMACE Podobně, avedeme-li střední deformaci s a s s s Mají invariant deviátoru deformace tvar I je I. lineární invariant deviátoru deformace I 4 je II. (kvadratický) invariant deviátoru deformace I 4 4 je III. (kubický) invariant deviátoru deformace. Deviátor napětí a deformace se používají v teorii plasticit při tvorbě materiálových modelů.
34 Příklad Pro rovinnou úlohu můžeme výpočet hlavních napětí jednodušit I I I I I,, Grafickým náorněním vtahu je tv. Mohrova kružnice
35 Úhel a je možné určit podle vtahu (vi obr.) tg Konstrukce Mohrov kružnice Znalost velikostí hlavních napětí a jejich průběhů pomáhá poroumět chování konstrukce, nalét v konstrukci slabá místa a provést optimaliaci návrhu konstrukce. Vliv smkových napětí je vidět např. při tlakové koušce betonu
36 Průběh směrů hlavních napětí na dlouhé konole Průběh směrů hlavních napětí na krátké konole
37 Autor: Doc.Ing.M.Krejsa, Ph.D., VSB Ostrava
38 Autor: Doc.Ing.M.Krejsa, Ph.D., VSB Ostrava
6.1 Shrnutí základních poznatků
6.1 Shrnutí ákladních ponatků Prostorová a rovinná napjatost Prostorová napjatost v libovolném bodě tělesa je v pravoúhlé soustavě souřadnic obecně popsána 9 složkami napětí, které le uspořádat do matice
VíceÚVOD DO TEORIE MATEMATICKÉ PRUŽNOSTI
ÚVOD DO TEORIE MATEMATICKÉ PRUŽNOSTI ZÁKLADNÍ PŘEDPOKLADY A POJMY 1. Látka, která vtváří příslušné těleso je dokonale lineárně pružné, mezi napětím a přetvořením je lineární závislost.. Látka hmotného
VíceT leso. T leso. nap ě tí na prostorovém elementu normálové - působí kolmo k ploše smykové - působí v ploše
Prostorový model ákladní veli č in a vtah nejlépe odrážejí skte č nost obtížn ě ř ešitelný sstém rovnic obtížn ě jší interpretace výsledků ákladní vtah posktjí rámec pro odvoení D a 2D modelů D a 2D model
VíceRovinná a prostorová napjatost
Rovinná a prostorová napjatost Vdělme v bodě tělesa elementární hranolek o hranách d, d, d Vnitřní síl ve stěnách hranolku se projeví jako napětí na příslušné ploše a le je roložit do směrů souřadnicových
VíceZ hlediska pružnosti a pevnosti si lze stav napjatosti
S T R O J N IC K Á P Ř ÍR U Č K A část 7, díl 4, kapitola 1, str. 1 7/4.1 T Y P Y N A P J A T O S T I A T R A N S F O R M A C E N A P J A T O S T I Pojmem napjatost roumíme stav určitého bodu tělesa, který
VícePřednáška 08. Obecná trojosá napjatost. Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Příklad zemní tlak v klidu
Přednáška 08 Obecná trojosá napjatost Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův ákon Příklad emní tlak v klidu Copyright (c) 2011 Vít Šmilauer Cech Technical University in
VíceOhyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu.
Ohyb přímých prutů nosníků Ohyb nastává, jestliže v řeu jakožto vnitřní účinek působí ohybový moment, tj dvojice sil ležící v rovině kolmé k rovině řeu Ohybový moment určíme jako součet momentů od všech
VíceCvičení 7 (Matematická teorie pružnosti)
VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Pružnost a pevnost v energetice (Návo do cvičení) Cvičení 7 (Matematická teorie pružnosti) Autor: Jaroslav Rojíček Verze:
VíceAnalýza napjatosti PLASTICITA
Analýza napjatosti PLASTICITA TENZOR NAPĚTÍ Teplota v daném bodě je skalár, je to tenzor nultého řádu, který nezávisí na změně souřadného systému Síla je vektor, je to tenzor prvního řádu, v trojrozměrném
Více( ) Podmínka plasticity: σ σ 0. Podmínky plasticity. Podmínky plasticity. Podmínky plasticity. = σ = σ. f σ σ σ
Podmínka plasticit rovnice popisující všechn stav napětí, které vedou k plastickému přetváření materiálu. ednoosá napjatost charakteriovaná jedinou složkou normálového napětí. Podmínka plasticit: nebo
VíceNormálová napětí v prutech namáhaných na ohyb
Pružnost a plasticita, 2.ročník kombinovaného studia Normálová napětí v prutech namáhaných na ohb Základní vtah a předpoklad řešení Výpočet normálového napětí Dimenování nosníků namáhaných na ohb Složené
VícePružnost a pevnost I
Stránka 1 teoretické otázk 2007 Ing. Tomáš PROFANT, Ph.D. verze 1.1 OBSAH: 1. Tenzor napětí 2. Věta o sdruženosti smkových napětí 3. Saint Venantův princip 4. Tenzor deformace (přetvoření) 5. Geometrická
Vícey 10 20 Obrázek 1.26: Průměrová rovina válcové plochy
36 KAPITOLA 1. KVADRIKY JAKO PLOCHY 2. STUPNĚ 2 1 2 1 1 y 1 2 Obráek 1.26: Průměrová rovina válcové plochy Věta: Je-li definována průměrová rovina sdružená s asymptotickým směrem, potom je s tímto směrem
VíceOTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6
OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 POSUZOVÁNÍ KONSTRUKCÍ PODLE EUROKÓDŮ 1. Jaké mezní stavy rozlišujeme při posuzování konstrukcí podle EN? 2. Jaké problémy řeší mezní stav únosnosti
VícePružnost a plasticita II CD03
Pružnost a plasticita II CD3 uděk Brdečko VUT v Brně, Fakulta stavební, Ústav stavební mechanik tel: 5447368 email: brdecko.l @ fce.vutbr.cz http://www.fce.vutbr.cz/stm/brdecko.l/html/distcz.htm Obsah
VíceZÁKLADNÍ POJMY A VZTAHY V TECHNICKÉ PRUŽNOSTI
ZÁKLDNÍ POJY VZTHY V TECHNICKÉ PRUŽNOSTI Napětí velikost vnitřní síl na jednotku ploch konečné podíl elementů vnitřních sil a ploch Podle směru vnitřních sil avádíme: ds napětí celkové σ r = v obecném
VíceDesky. Petr Kabele. Pružnost a pevnost 132PRPE Přednášky. Deska/stěna/skořepina, desky základní předpoklady, proměnné a rovnice
Pružnost a pevnost 13PRPE Přednášk Desk Deska/stěna/skořepina, desk ákladní předpoklad, proměnné a rovnice Petr Kabele České vsoké učení technické v Prae Fakulta stavební Úvod Přemístění, deformaci a napjatost
VícePřímková a rovinná soustava sil
Přímková a rovinná soustava sil 1) Souřadný systém - v prostoru - v rovině + y + 2) Síla P ( nebo F) - vektorová veličina - působiště velikost orientace Soustavy sil - přehled Soustavy sil můžeme rodělit
Více4. Napjatost v bodě tělesa
p04 1 4. Napjatost v bodě tělesa Předpokládejme, že bod C je nebezpečným bodem tělesa a pro zabránění vzniku mezních stavů je m.j. třeba zaručit, že napětí v tomto bodě nepřesáhne definované mezní hodnoty.
VíceTéma 2 Napětí a přetvoření
Pružnost a plasticita, 2.ročník bakalářského studia Téma 2 Napětí a přetvoření Deformace a posun v tělese Fzikální vztah mezi napětími a deformacemi, Hookeův zákon, fzikální konstant a pracovní diagram
Více1.1 Steinerovy věty. lineární momenty a momenty kvadratické. Zajímat nás budou nyní osové kvadratické. v ohybu. Jejich definice je
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ PRUŽNOST A PEVNOST I Řešené příklad Výpočet osových kvadratických momentů Pátek, 9. května 8 Jan Tihlařík 1 Osové kvadratické moment průřeů
VíceSystém vztahů obecné pružnosti Zobecněný Hookeův zákon
Stém vtahů obecné pružnoti Zobecněný Hookeův ákon V PPI e řešil úloh pružnoti u prutů. Pro řešení pouvů napětí a přetvoření obecného 3D těleo je třeba etavit a řešit tém vtahů obecné pružnoti. Jeho řešení
VíceTENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému
TENSOR NAPĚTÍ A DEFORMACE Obrázek 1: Volba souřadnicového systému Pole posunutí, deformace, napětí v materiálovém bodě {u} = { u v w } T (1) Obecně 9 složek pole napětí lze uspořádat do matice [3x3] -
VíceMetoda konečných prvků Základní veličiny, rovnice a vztahy (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika)
Inovace tudijního oboru Geotechnika Reg. č. CZ..7/../8.9 Metoda konečných prvků Základní veličin, rovnice a vztah (výuková prezentace pro. ročník navazujícího tudijního oboru Geotechnika) Doc. RNDr. Eva
VíceRovinná napjatost a Mohrova kružnice
Rovinná napjatost a ohrova kružnice Dvojosý stav napjatosti - ukák anačení orientace napětí v rovině x Na obr. vlevo dole jsou vnačen složk napětí. Kladná orientace napětí x a je v případě, že vektor směřují
VíceKatedra geotechniky a podzemního stavitelství
Katedra geotechnik a podzemního taviteltví Modelování v geotechnice Základní veličin, rovnice a vztah (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace tudijního
VícePružnost a pevnost. zimní semestr 2013/14
Pružnost a pevnost zimní semestr 2013/14 Organizace předmětu Přednášející: Prof. Milan Jirásek, B322 Konzultace: pondělí 10:00-10:45 nebo dle dohody E-mail: Milan.Jirasek@fsv.cvut.cz Webové stránky předmětu:
VícePřetvořené ose nosníku říkáme ohybová čára. Je to rovinná křivka.
OHYBOVÁ ČÁRA ZA PROSTÉHO OHYBU - rovinné průřez zůstávají po deformaci rovinnými, avšak natáčejí se. - při prostém ohbu hlavní centrální osa setrvačnosti všech průřezů leží v rovině vnějších sil, která
VíceNauka o materiálu. Přednáška č.4 Úvod do pružnosti a pevnosti
Nauka o materiálu Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze kluzu R e, odpovídající
VíceVícerozměrné úlohy pružnosti
Přednáška 07 Víceroměrné úlohy Rovinná napjatost a deformace Hlavní napětí Mohrova kružnice Metoda konečných prvků pro úlohu rovinné napjatosti Příklady Copyright (c) 0 Vít Šmilauer Cech Technical University
VícePřednáška 08. Obecná trojosá napjatost
Přednáška 8 Obecná trojosá napjatost Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Objemový modul pružnosti Oedometrický modul pružnosti Hlavní napětí, hlavní deformace
VíceVlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti
Vlastnosti a zkoušení materiálů Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze
VíceMechanika kontinua. Mechanika elastických těles Mechanika kapalin
Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování
VíceZde je uveden abecední seznam důležitých pojmů interaktivního učebního textu
index 1 Rejstřík Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu Pružnost a pevnost. U každého termínu je uvedeno označení kapitoly a čísla obrazovek, na nichž lze pojem nalézt.
Více2.2 Mezní stav pružnosti Mezní stav deformační stability Mezní stav porušení Prvek tělesa a napětí v řezu... p03 3.
obsah 1 Obsah Zde je uveden přehled jednotlivých kapitol a podkapitol interaktivního učebního textu Pružnost a pevnost. Na tomto CD jsou kapitoly uloženy v samostatných souborech, jejichž název je v rámečku
VíceDynamika soustav hmotných bodů
Dynamika soustav hmotných bodů Mechanický model, jehož pohyb je charakterizován pohybem dvou nebo více bodů, nazýváme soustavu hmotných bodů. Pro každý hmotný bod můžeme napsat pohybovou rovnici. Tedy
Vícepísemky (3 příklady) Výsledná známka je stanovena zkoušejícím na základě celkového počtu bodů ze semestru, ze vstupního testu a z písemky.
POŽADAVKY KE ZKOUŠCE Z PP I Zkouška úrovně Alfa (pro zájemce o magisterské studium) Zkouška sestává ze vstupního testu (10 otázek, výběr správné odpovědi ze čtyř možností, rozsah dle sloupečku Požadavky)
Více6.3 Momenty setrvačnosti a deviační momenty rovinných obrazců. yda. 1) I y, I z > 0. 2) I y, I z závisí na vzdálenosti plochy od osy II I I I I
6.3 Moment setrvačnosti a deviační moment rovinných obraců Statické moment rovinného obrace -k ose xiální moment setrvačnosti rovinného obrace -k ose -k ose Pon.: 1), > 0 S d d d. S d -k ose [m 3 ] [m
VíceVybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí
Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí Skládání a rozklad sil Skládání a rozklad sil v rovině
Více16. Matematický popis napjatosti
p16 1 16. Matematický popis napjatosti Napjatost v bodě tělesa jsme definovali jako množinu obecných napětí ve všech řezech, které lze daným bodem tělesa vést. Pro jednoznačný matematický popis napjatosti
Více5. Statika poloha střediska sil
5. Statika poloha střediska sil 5.1 Rovnoběžné sily a jejich střed Uvažujeme soustavu vzájemně rovnoběžných sil v prostoru s pevnými působišti. Každá síla má působiště dané polohovým vektorem. Všechny
VícePružnost a plasticita CD03
Pružnost a plasticita CD03 Luděk Brdečko VUT v Brně, Fakulta stavební, Ústav stavební mechaniky tel: 541147368 email: brdecko.l @ fce.vutbr.cz http://www.fce.vutbr.cz/stm/brdecko.l/html/distcz.htm Obsah
VícePružnost a pevnost. 2. přednáška, 10. října 2016
Pružnost a pevnost 2. přednáška, 10. října 2016 Prut namáhaný jednoduchým ohybem: rovnoměrně ohýbaný prut nerovnoměrně ohýbaný prut příklad výpočet napětí a ohybu vliv teplotních měn příklad nerovnoměrné
Více1. Úvod do pružnosti a pevnosti
1. Úvod do pružnosti a pevnosti Mechanika je nejstarší vědní obor a její nedílnou součástí je nauka o pružnosti a pevnosti. Pružností nazýváme schopnost pevných těles získat po odstranění vnějších účinků
VíceVnitřní síly v prutových konstrukcích
Vnitřní síly v prutových konstrukcích Síla je vektorová fyikální veličina, která vyjadřuje míru působení těles nebo polí. Zavedení síly v klasické Newtonově mechanice (popis pohybu těles) dp dv F = = m
VíceCvičení 1. Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti
Cvičení 1 Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti Napjatost v bodě tělesa Napjatost (napěťový stav) v bodě tělesa je množinou obecných napětí ve všech řezech, které lze
VíceDefinujte poměrné protažení (schematicky nakreslete a uved te jednotky) Napište hlavní kroky postupu při posouzení prutu na vzpěrný tlak.
00001 Definujte mechanické napětí a uved te jednotky. 00002 Definujte normálové napětí a uved te jednotky. 00003 Definujte tečné (tangenciální, smykové) napětí a uved te jednotky. 00004 Definujte absolutní
Více7 Lineární elasticita
7 Lineární elasticita Elasticita je schopnost materiálu pružně se deformovat. Deformace ideálně elastických látek je okamžitá (časově nezávislá) a dokonale vratná. Působí-li na infinitezimální objemový
VíceX = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)
.6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ. Prof. Ing. DRAHOMÍR NOVÁK, DrSc. Ing. LUDĚK BRDEČKO, Ph.D. PRUŽNOST A PEVNOST
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. Ing. DRAHOMÍR NOVÁK, DrSc. Ing. LUDĚK BRDEČKO, Ph.D. PRUŽNOST A PEVNOST MODUL BD - MO ZÁKLADNÍ POJMY A PŘEDPOKLADY STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY
VíceBIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY
BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala
VíceŘešení : Těleso T je elementárním oborem integrace vzhledem k rovině (x,y) a proto lze přímo aplikovat Fubiniovu větu pro trojný integrál.
E. rožíková, M. Kittlerová, F. Mrá: Sbírka příkladů Matematik II (6 III.6. Aplikace trojných integrálů Příklad 6. Užitím vorce pro výpočet objemu tělesa pomocí trojného integrálu (tj.v ddd ukažte, že objem
VíceFAKULTA STAVEBNÍ NELINEÁRNÍ MECHANIKA. Telefon: WWW:
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ NELINEÁRNÍ MECHANIKA Bakalářské studium, 4. ročník Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz
VíceSTAVEBNÍ STATIKA. Ing. Petr Konečný, Ph.D. LPH 407/3. tel
STAVEBNÍ STATIKA Ing. Petr Konečný, Ph.D. LPH 47/3 tel. 59 732 1394 petr.konecny@vsb.c http://fast1.vsb.c/konecny roklad síly v rovině síla pod úhlem γ - (k ose ) až -18 až +18 x A γ P P P x γ + x P x
VíceTéma 12, modely podloží
Téma 1, modely podloží Statika stavebních konstrukcí II., 3.ročník bakalářského studia Úvod Winklerův model podloží Pasternakův model podloží Pružný poloprostor Nosník na pružném Winklerově podloží, řešení
VíceSkalár (z lat. scala, stupnice) je veličina (teplota, hustota, energie, objem, čas,...), jejíž hodnota. v y. j k i v z. v x
Základní rovnice pro metodu CFD V kapitole budou odvoen ákladní rovnice v diferenciální formě užívané při numerickém řešení toku tekutin. Vžd předpokládáme spojité prostřední, tj. platnost kontinua. Nejdříve
Více3.1 Shrnutí základních poznatků
3.1 Shrnutí ákladních ponatků Uvažujme nosník, tj. prut, jejichž délka převládá nad charakteristickými roměr průřeu. Při tvorbě výpočtového modelu nosník totožňujeme s jeho podélnou osou a uvažujeme skutečný
VíceTéma 7 Smyková napětí v ohýbaných nosnících
Pružnost a plasticita,.ročník bakalářského studia Téma 7 Smková napětí v ohýbaných nosnících Základní vtah a předpoklad řešení Výpočet smkového napětí vbraných průřeů Dimenování nosníků namáhaných na smk
VíceNelineární problémy a MKP
Nelineární problémy a MKP Základní druhy nelinearit v mechanice tuhých těles: 1. materiálová (plasticita, viskoelasticita, viskoplasticita,...) 2. geometrická (velké posuvy a natočení, stabilita konstrukcí)
VíceMECHANIKA PODZEMNÍCH KONSTRUKCÍ PODMÍNKY PLASTICITY A PORUŠENÍ
STUDIJNÍ PODPORY PRO KOMBINOVANOU FORMU STUDIA NAVAZUJÍCÍHO MAGISTERSKÉHO PROGRAMU STAVEBNÍ INŽENÝRSTVÍ -GEOTECHNIKA A PODZEMNÍ STAVITELSTVÍ MECHANIKA PODZEMNÍCH KONSTRUKCÍ PODMÍNKY PLASTICITY A PORUŠENÍ
VíceRozdíly mezi MKP a MHP, oblasti jejich využití.
Rozdíly mezi, oblasti jejich využití. Obě metody jsou vhodné pro určitou oblast problémů. základě MKP vyžaduje rozdělení těles na vhodný počet prvků, jejichž analýza je poměrně snadná a pro většinu částí
VíceMomenty setrvačnosti a deviační momenty
Momenty setrvačnosti a deviační momenty Momenty setrvačnosti a deviační momenty charakterizují spolu shmotností a statickými momenty hmoty rozložení hmotnosti tělesa vprostoru. Jako takové se proto vyskytují
VíceObecný Hookeův zákon a rovinná napjatost
Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou
VíceIntegrální definice vnitřních sil na prutu
Přednáška 04 Integrální definice vnitřních sil Ohb prutu v rovinách x, x Šikmý ohb Kombinace normálové síl s ohbem Poloha neutrální os Jádro průřeu Příklad Copright (c) 011 Vít Šmilauer Cech Technical
Více7.1.2 Kartézské soustavy souřadnic II
7..2 Kartéské soustav souřadnic II Předpoklad: 70 Zavedení kartéské soustav souřadnic minulé hodin: Kartéskou soustavou souřadnic v rovině naýváme dvojici číselných os, v rovině, pro které platí:. obě
VíceSLOUP NAMÁHANÝ TLAKEM A OHYBEM
SOUP NAMÁHANÝ TAKEM A OHYBEM Posuďte únosnost centrick tlačeného sloupu délk 50 m profil HEA 4 ocel S 55 00 00. Schéma podepření a atížení je vidět na následujícím obráku: M 0 M N N N 5m 5m schéma pro
VíceDvě varianty rovinného problému: rovinná napjatost. rovinná deformace
Rovinný problém Řešíme plošné konstrukce zatížené a uložené v jejich střednicové rovině. Dvě varianty rovinného problému: rovinná napjatost rovinná deformace 17 Rovinná deformace 1 Obsahuje složky deformace
VícePrizmatické prutové prvky zatížené objemovou změnou po výšce průřezu (teplota, vlhkost, smrštění )
1 Prizmatické prutové prvky zatížené objemovou změnou po výšce průřezu (teplota, vlhkost, smrštění ) 1. Rozšířený Hookeův zákon pro jednoosou napjatost Základním materiálovým vztahem lineární teorie pružnosti
Více7.1.2 Kartézské soustavy souřadnic II
7..2 Kartéské soustav souřadnic II Předpoklad: 70 Zavedení kartéské soustav souřadnic minulé hodin: Kartéskou soustavou souřadnic v rovině naýváme dvojici číselných os, v rovině, pro které platí:. obě
VíceVícerozměrné úlohy pružnosti
Přednáška 07 Rovinná napjatost nosné stěny Rovinná deformace Hlavní napětí Mohrova kružnice Metoda konečných prvků pro rovinnou napjatost Laméovy rovnice Příklady Copyright (c) 011 Vít Šmilauer Czech Technical
VícePOŽADAVKY KE ZKOUŠCE Z PP I
POŽADAVKY KE ZKOUŠCE Z PP I Zkouška úrovně Alfa (pro zájemce o magisterské studium) Zkouška sestává ze o vstupního testu (10 otázek, výběr správné odpovědi ze čtyř možností, rozsah dle sloupečku Požadavky)
VíceTéma 10 Úvod do rovinné napjatosti
Pružnost a plasticita,.ročník bakalářského studia Téma 0 Úvod do rovinné napjatosti Složk napětí v šikmém řezu při rovinné napjatosti Hlavní napětí a největší smkové napětí Trajektorie hlavního napětí
VíceObr. 9.1 Kontakt pohyblivé části s povrchem. Tomuto meznímu stavu za klidu odpovídá maximální síla, která se nezývá adhezní síla,. , = (9.
9. Tření a stabilita 9.1 Tření smykové v obecné kinematické dvojici Doposud jsme předpokládali dokonale hladké povrchy stýkajících se těles, kdy se silové působení přenášelo podle principu akce a reakce
Více3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky
3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -
VíceOkruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil
Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Souřadný systém, v rovině i prostoru Síla bodová: vektorová veličina (kluzný, vázaný vektor - využití),
VíceKontraktantní/dilatantní
Kontraktantní/dilatantní plasticita - úhel dilatance směr přírůstku plastické deformace Na základě experimentálního měření dospěl St. Venant k závěru, že směry hlavních napětí jsou totožné se směry přírůstku
Více4. Statika základní pojmy a základy rovnováhy sil
4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr
VíceFyzika I mechanika. Rozdělení fyziky podle jednotlivých oborů, tj. podle jevů, které zkoumá:
Fika I mechanika Úvod Základní fikální pojm Fika (fsis je řeck příroda) bla původně vědou o přírodě, ted souhrnem všech přírodních věd, které se s postupem dějin osamostatnil. Fika si však achovává ústřední
VíceNejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.
U. 4. Goniometrie Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. 4.. Orientovaný úhel a jeho velikost. Orientovaným úhlem v rovině rozumíme uspořádanou dvojici polopřímek
Více1.6 Singulární kvadriky
22 KAPITOLA 1. KVADRIKY JAKO PLOCHY 2. STUPNĚ neboť B = C =. Z rovnice (1.34) plne, že přímka, procháející singulárním bodem kvadrik má s kvadrikou společný poue tento singulární bod (je-li A ) nebo celá
VíceOTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011
OTÁZKY VSTUPNÍHO TESTU PP I LS 010/011 Pomocí Thumovy definice, s využitím vrubové citlivosti q je definován vztah mezi součiniteli vrubu a tvaru jako: Součinitel tvaru α je podle obrázku definován jako:
VícePřednáška 1 Obecná deformační metoda, podstata DM
Statika stavebních konstrukcí II., 3.ročník bakalářského studia Přednáška 1 Obecná deformační metoda, podstata DM Základní informace o výuce předmětu SSK II Metody řešení staticky neurčitých konstrukcí
VícePružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test
Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových charakteristik, oficiální přehled
Více4.2. Graf funkce více proměnných
V této kapitole se soustředíme na funkce dvou proměnných. Poue v tomto případě jsme schopni graf funkcí dvou proměnných obrait. Pro funkce tří a více proměnných trácí grafické vjádření smsl. Výklad Definice
VíceGymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna
Předmět: Matematika Náplň: Stereometrie, Analytická geometrie Třída: 3. ročník a septima Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor, učebnice Stereometrie Volné rovnoběžné promítání Zobrazí
VíceNapěťový vektor 3d. Díky Wikipedia za obrázek. n n n
Míry napětí Napěťový vektor 3d n n2 2 n,. n n n Zatížené těleso rozdělíme myšleným řezem na dvě části. Na malou plošku v okolí materiálového bodu P působí napěťový vektor (n) (n, x, t), který je spojitou
VícePopis jednotlivých kvadrik
Kapitola Popis jednotlivých kvadrik V této kapitole se budeme abývat některými kvadrikami podrobněji. Nejprve budeme uvažovat elipsoid a hperboloid, které patří do skupin regulárních středových kvadrik.
VícePřednáška 09. Smyk za ohybu
Přednáška 09 Smk a ohbu Vnitřní síl na nosníku ve vtahu k napětí Smkové napětí pro obdélníkový průře Smkové napětí pro obecný průře Smkové ochabnutí Svar, šroub, spřahovací trn Příklad Copright (c) 2011
VíceAnalytická geometrie lineárních útvarů
) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod
VícePRUŽNOST A PEVNOST II
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ PRUŽNOST A PEVNOST II Navazující magisterské studium, 1. ročník Alois Materna (přednášky) Jiří Brožovský (cvičení) Kancelář: LP C 303/1
VíceRovnoměrně ohýbaný prut
Přednáška 02 Prostý ohb Hpotéa o achování rovinnosti průřeu Křivost prutu, vtah mei momentem a křivostí Roložení napětí při ohbu Pružný průřeový modul Vliv teplot na křivost Copright (c) 2011 Vít Šmilauer
VíceKONSTITUČNÍ VZTAHY. 1. Tahová zkouška
1. Tahová zkouška Tahová zkouška se provádí dle ČSN EN ISO 6892-1 (aktualizována v roce 2010) Je nejčastější mechanickou zkouškou kovových materiálů. Zkoušky se realizují na trhacích strojích, kde se zkušební
VíceNOSNÍK NA PRUŽNÉM PODLOŽÍ (WINKLEROVSKÉM)
NOSNÍK NA PRUŽNÉ PODLOŽÍ (WINKLEROVSKÉ) Uvažujeme spojitý nosník na pružných podporách. Pružná podpora - odpor je úměrný zatlačení. Pružné podpory velmi blízko sebe - jejich účinek lze nahradit spojitou
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY Komentovaný metodický list č. 1/4 Vytvořil: Ing. Oldřich Ševeček & Ing. Tomáš Profant, Ph.D.
VícePRUŽNOST A PLASTICITA I
Otázky k procvičování PRUŽNOST A PLASTICITA I 1. Kdy je materiál homogenní? 2. Kdy je materiál izotropní? 3. Za jakých podmínek můžeme použít princip superpozice účinků? 4. Vysvětlete princip superpozice
VícePružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady.
Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových
VíceTéma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření
Pružnost a plasticita, 2.ročník kombinovaného studia Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření Základní pojmy, výchozí předpoklady Vztahy mezi vnitřními silami a napětími v průřezu
VícePRUŽNOST A PLASTICITA
PRUŽNOST A PLASTICITA Ing. Vladimíra Michalcová LPH 407/1 tel. 59 732 1348 vladimira.michalcova@vsb.cz http://fast10.vsb.cz/michalcova Povinná literatura http://mi21.vsb.cz/modul/pruznost-plasticita Doporučená
VíceBetonové konstrukce (S) Přednáška 3
Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární
Více5. Ohýbané nosníky Únosnost ve smyku, momentová únosnost, klopení, MSP, hospodárný nosník.
5. Ohýbané nosník Únosnost ve smku, momentová únosnost, klopení, P, hospodárný nosník. Únosnost ve smku stojina pásnice poue pro válcované V d h t w Posouení na smk: V pružně: τ = ( τ pl, Rd) I V V t w
Více