Odhad optimálního stupně regresního polynomu

Rozměr: px
Začít zobrazení ze stránky:

Download "Odhad optimálního stupně regresního polynomu"

Transkript

1 XXVI. ASR ' Smar, Istrumts ad Cotrol, Ostrava, Aprl 6-7, Papr 44 Odhad optmálího stupě rgrsího polyomu MORÁVKA, Ja Ig., Ph.D., Třcý žýrg, a.s., Střdso projc, Frýdcá 6, Třc Staré Město, 739 6, Abstrat: V prax j často třba ajít rgrsí závslost v tvaru polyomu. V příspěvu j uvd přhld a otstováí vhodých rtérí odhadu optmálího stupě rgrsího polyomu Byly tstovaá formačí rtéra autorů: Aa, Schwarz-Rssa, Haa- Qu, Gw-Ms a další umrco-statstcá rtéra: RSC, D_df, F-tst, DW (Durb-Watso), MSE, MEP, R p, W (Wald), zaméový tst, stadardzovaá asymtr a xcs, JB (Jarqu-Brra), BP (Brusch-Paga), CW (Coo-Wsbrg), RSC = RSS (Rsdual Sum of Squars) a s (rzduálí rozptyl). Klíčová slova: rgrs, rgrs polyomcá, optmálí stupň rgrsího polyomu Úvod V prax j třba poměrě často ajít rgrsí závslost, trá má a záladě fyzálěchmcé aalýzy, č a záladě xprtího odhadu, tvar rgrsího polyomu ( ~ N(, σ )) s y = b + b x bs x + = ym +, =,...,, () avša stupň s rgrsího polyomu í zám. Prvím úolm j proto zjstt odhad paramtru s. Odhady rgrsích ofctů b j (j =,...,s) lz pa zísat stadardím postupy larzovaé rgrs pomocí mtody jmších čtvrců (MNČ). Mtody řší a rtéra hodocí A. Zdálvě logcý postup přdáváí statstcy výzamých člů s vyšší mocou [ECKSCHLAGER, K. AJ. 98], [LEPŠ, J. 996] (bo opačě jjch ubíráí př startováí od maxmálě možého stupě) až statstcy výzamému ofctu určté mocy, vd uspoojvým výsldům [ANDĚL, J. 993], zvláště z důvodu přrozé multolarty polyomcých modlů, trá způsobuj výzamost rgrsích ofctů a záladě t-tstů [MELOUN, M. & MILITKÝ, J. 994]. B. Hldáí optmálího stupě rgrsího polyomu podl rzduálího součtu čtvrců (RSC) taé vd cíl, protož RSC mootóě lsá (dx dtrmac R mootóě stoupá) s zvyšujícím s stupěm polyomu [MELOUN, M. & MILITKÝ, J. 994]. C. Z ltratury apř. [RALSTON, A. 973], [ANDĚL, J. 993], [CIPRA, T. 986] j zámo, ž př dosaží sutčého (správého) stupě rgrsího polyomu dochází ustálí hodot rzduálího rozptylu. Matmatcy lz tuto formulac vyjádřt ásldově: modl () obsahuj = s + rgrsích paramtrů b,...,b s. Ozačm s výběrový rzduálí rozptyl. Přdpoládjm, ž sutčý počt rgrsích paramtrů j (taž sutčý stupň rgrsího polyomu j s = ). Dá s uázat, ž platí: - -

2 pro < s s > σ σ. () Otázou vša dlouho zůstávalo, ja z grafu hodot s vyčíst právě tu hodotu, od íž počíaj jž graf dostává přblžě vodorový (ostatí) charatr [RALSTON, A. 973], [ECKSCHLAGER, K. AJ. 98]. Naoc s uázalo, ž j třba zavést třídu vhodých fucí palzujících počt člů polyomu. Tyto fuc abývají svého globálího xtrému (mma) v případě správé volby stupě rgrsího polyomu. Mz alzá optmalzačí rtéra hodocí správého stupě polyomu patří dl [ANDĚL, J. 993], [ARLT, J. 999], [CIPRA, T. 986], [MELOUN, M. & MILITKÝ, J. 994] ásldující: AIC = l( s ) +, (3) což j zámé tzv. Aaovo formačí rtérum (Aa s Iformato Crtro, používaé apř. v programch ADSTAT, QC Exprt, TSP, JMP IN a Matlab), d symbol l v vztahu ozačuj přrozý (aturals) logartmus. Toto rtérum vša občas adhodocuj odhad stupě polyomu, tj. odhad můž s určtou ladou pravděpodobostí ovrgovat ějaé vyšší hodotě, ž j. Modfovaé AIC dl Ozaho j uvdo apř. v [ARLT, J. 999], [CIPRA, T. 986]. Dalším oblíbým rtérm, tré avrhl Schwarz a Rssa j SR l( ) = l( s ) +. (4) Používá s taé rtérum, tré odvodl Haa a Qu (s volbou c >, c =, 3) HQ c l(l( )) = l( s ) +. (5) V prax s osvědčlo rtérum dl autorů Gw a Ms GM = s ( ). (6) 4 + Obcě jsou výš uvdá (a další) rtéra používáa hlavě v aalýz časových řad pro staoví optmálích ARMA, ARIMA modlů, č v vícrozměré rgrsí aalýz. D. Vzhldm mootóímu lsáí RSC př zvyšováí stupě polyomu j možé zust použít taé autorm příspěvu avržé jdoduché rtérum obsahující souč počtu člů polyomu (tré lárě stoupají) a RSC s přdpoladm, ž u tohoto rtéra by mohlo docházt ostrému loálímu mmu př volbě optmálího stupě rgrsího polyomu: RSC = RSC = =.. (7) - -

3 Obdobá rtéra obsahující souč a RSC, č, a s byly taé autorm tstováy, ovšm jjch výsldy vyazovaly ta dobré vlastost, jao má rtérum RSC. E. Př aalýz časových řad (zjméa v oomtr) s určí stupě trdového polyomu, bo určí řádu dfrcováí stacoárího modlu ARIMA, používá mtoda postupých dfrcí [CIPRA, T. 986]. Zd s vychází z fatu, ž př postupém dfrcováí hodoty odhadutých rozptylů vysvětlovaé proměé y lsají až mmu (dy j dosaža stacoarta), a pa opět začou růst. Sldovaým rtérm j tdy: D _ df d σ ˆ s d d y y = cov( dff ( y, d)). (8) = d d = (,..., max ) j řád dfrcováí proměé y, s ozačuj výběrový rozptyl a posldí tvar rtéra j zapsá v otac programu Matlab. F. V modrích statstcých postupch a programch rgrsí aalýzy s doporučují a používají jště další rtéra [MELOUN, M. & MILITKÝ, J. 994]: hodota statsty Fshrova F-tstu (v záladím upravém tvaru), rtérum MEP (Ma Error Prdcto střdí vadratcá chyba prdc), prdovaý ofct dtrmac R p. Poz.: Scottovo rtérum přurčost a tím multolarty rgrsího modlu má výzam použít z důvodu přrozé (zbyté) multolarty polyomcých modlů. 3 Aalyzovaý modl a data V ltratuř [ANDĚL, J. 993] j aalyzová případ rgrsího modlu 3. řádu pro jdu hodotu směrodaté odchyly adtvího šumu ~ N(, σ ), σ = / a jsou zd použta jom rtéra AIC, SR, HQ a GM včtě uvdí hodot s. V příspěvu jsou uvdy výsldy pro víc hodot směrodaté odchyly adtvího šumu a pro další dsutovaá rtéra. V programu Matlab byl smulová polyomcý rgrsí modl 3.stupě tvaru y x = + x ~ N(, σ ), σ {,.,.,.,.5,,, 5},, (9) =.( ), + x x 3 + = y m +, =... 3, s uvažováím hodoty ásady grátoru psudoáhodých posloupostí (rad s ormálím rozdělím) sd = 357, maxmálího stupě polyomu max = 9 a hodotou c = 3 rtéra HQ. Na obr. j pro ázorost uvd graf výstupu (přpomíající tvarm momtovou charatrstu asychroího motoru) samotého modlu y m spolu s průběhm výstupu y zatížého adtvím výstupím šumm s směrodatou odchylou σ = /

4 5 Modl polyomu 3.stup 4 3 y ym 9 smrodatá odchyla sumu = x Obr.. Modl aalyzovaého polyomu 3.stupě s σ = / Na obrázu j vdět, ž tzv. osclac fuc y m_osc samotého modlu (rozdíl y m_max y m_m ) v daém trvalu hodot závsl proměé x má hodotu as 6. Pratcy to zamá, ž šum s zvětšující s směrodatou odchylou tuto fuc postupě přryj, bud tdy docházt sžováí odhadutého stupě polyomu a př hodotě srovatlé s hodotou osclac dojd dgrac polyomu. Zd budou zřjmě rtéra sgalzovat ostatí průběh fuc, tj. polyom.stupě (s =, což zamá ostatu) s jdím absolutím člm ( = ) vz obr.: 5 Modl polyomu 3.stup y ym 5 smrodatá odchyla sumu = 5 poct hodot = x Obr.. Modl aalyzovaého polyomu 3.stupě s σ = 5 4 Vyhodocí polyomcé rgrs V tab. jsou uvdy souhré přhldé výsldy odhadů optmálího stupě rgrsího polyomu podl výš uvdých íž dsutovaých rtérí v závslost a směrodaté odchylc výstupího šumu modlu

5 Tab.. Odhad počtu člů ( = s+) rgrsího polyomu v závslost a σ σ Krtérum AIC SR HQ GM RSC RSC s /8 6/8 8 D_df F-statsta (6) DW (>) Poz.: Kurzívou jsou ozačy hodoty ustálí rtérí (ostré, ploché optmum), ormálím písmm pa ostrá optma těchto rtérí. Tučým písmm jsou zvýrazěa spolhlvá a správá rtéra, urzívou pa rtéra použtlá s určtým omzím. DW... hodota Durb-Watsoova ofctu. Hodota rtéra F-tstu dosahuj př optmálí hodotě stupě polyomu (a rozdíl od jých rtérí) svého maxma a hodoty rtéra DW zd spadají dovtř rtcých mzí závslost vlčy. V statstcých programch Statgraphcs, EasyRg a QC Exprt byly pro modl s σ =.5 otstováy ásldující rtéra hodocí valty modlu: hodota statsty F-tstu střdí vadratcá chyba odhadu (MSE... Ma Squard Error) střdí vadratcá chyba prdc (MEP... Ma Error of Prdcto) prdovaý ofct dtrmac R p autoorlac rzduí: Durb-Watsoův ofct (DW), Waldův tst (W) trd rzduí: zaméový tst ormalta rzduí: stadardzovaá asymtr a xcs, Jarqu-Brraův tst (JB) homosdastcta rzduí: Brusch-Pagaův (BP) a Coo-Wsbrgův (CW) tst. Lz vša ostatovat, ž očávaé dtfačí vlastost s projvly pouz u hodot rtéra F-tst (ostré maxmum), JB (ostré mmum, avša rzdua přtom pro všchy stupě polyomu vyazovaly ormaltu) a DW (d s projvly statstcy výzamé hodoty autoorlac od optmálího stupě polyomu výš) obr.3: F-rtérum rtérum Durba-W atsoa.e+6.e+5.e+4 σ =..5 σ = 5.E+3.5.E+.E+.E+.E-.E-.E Obr. 3. Průběhy rtérí F-tst a DW σ =

6 Tto závěr j clm logcý: př polyomch žšího stupě s dá očávat autoorlac rzduí avša aruší jjch ormalty a homosdastcty spíš má opodstatěí. Hodoty R p a MEP vyazovaly jdozačý, bo vhodý průběh (víc loálích maxm pro = 6, 8 a 9, č mmum pro = 8). Proto jsou v tab. uvdy pouz rtéra F-tst a DW. Na obr.4 a obr.5 lz vdět průběhy uvdých záladích umrco-statstcých a formačích rtérí pro σ =.5. log RSC Rzduálí souct ctvrcu * RSC.5 5 Rzduálí rozptyl.5 5 Rozptyl dfrcí 4 log s^ -.5 log D_df - 5 =stup+ - 5 =rád+ Obr. 4. Průběhy záladích rtérí (pro σ = /) AIC : Aa 6 GM : Gw-Ms SR : Schwarz-Rssa 5 HQ : Haa-Qu Obr. 5. Průběhy formačích rtérí (pro σ = /) Na záladě údajů v tabulc a v grafch lz souhrě ostatovat, ž: rtéra RSC a s jsou spíš použtlá pro staoví stupě rgrsího polyomu rtérum F-tst dává jdozačý výsld pro jvětší směrodatou odchylu šumu z hldsa polohy globálího maxma. Poud vša budm uvažovat zásadě pouz prví loálí maxmum, pa jsou jho výsldy jdozačé použtí rtéra DW pro ulový šum j smyslé (zd rtérum raguj a umrcé chyby výpočtu), v ostatích případch posytuj správé hodocí ostatí rtéra dávají dobré a robustí odhady

7 podl průběhů závslostí a σ s uvdá rtéra sdružují do čtyř sup: {F-tst}, {AIC, SR, DW}, {HQ, GM, RSC} a {D_df} - vz obr. 6: Odhad počtu člů polyomu 4 3 F-tst = s + D_df HQ AIC AIC HQ D_df F-tst σ - sm ě rodatá odchyla Obr. 6. Průběhy rtérí F-tst, AIC, HQ a D_df pro σ <, 5> Z průběhů zobrazých sup rtérí j zřjmé, ž jjch robustost (odolost) vzhldm vlost šumu lsá v už uvdém pořadí, tj. {F-tst}, {AIC, SR, DW}, {HQ, GM, RSC} a {D_df}, tré j jctlvější. 5 Závěr Z uvdých rozborů j vdět, ž:. Pro odhad optmálího stupě rgrsího polyomu jsou vhodým rtér: obcá formačí rtéra AIC, SR, HQ, GM, RSC, D_df, s určtým omzím lz použít rtéra: F-tst (př větších ampltudách šumu j třba uvažovat prví maxmum), DW (lz použít pro ulovou ampltudu šumu). Správý odhad stupě rgrsího polyomu j možé usutčt pomocí uvdých rtérí (romě přílš subtlího D_df) pouz do vlost adtvího šumu as o řád žší, ž j osclac fuc a daém trvalu, čl pro: σ s y m _ osc 5 = y m _ max y 5 m _ m () 3. Př větších vlostch šumu dochází podhodocováí stupě polyomu z důvodu problmatcé rostruc (dtfac) průběhu výstupu sutčého modlu

8 6 Ltratura ANDĚL, J Statstcé mtody..vyd. Praha : Matfyzprss MFF UK Praha, s. ARLT, J Modrí mtody modlováí oomcých časových řad..vyd. Praha: Grada Publshg, s.r.o., s. ISBN CIPRA, T Aalýza časových řad s aplacm v oom..vyd. Praha : SNTL/ALFA, s. ECKSCHLAGER, K. AJ. 98. Vyhodocováí aalytcých výsldů a mtod..vyd. Praha : SNTL/ALFA, s. LEPŠ, J Bostatsta..vyd.-dots. Čsé Budějovc : srptum BF JU Čsé Budějovc, s. MELOUN, M. & MILITKÝ, J Statstcé zpracováí xprmtálích dat..vyd. Praha : PLUS, s. ISBN RALSTON, A Zálady umrcé matmaty..vyd. Praha : Acadma, s

Analýza rozptylu (ANOVA)

Analýza rozptylu (ANOVA) Aalýza rozptylu (ANOVA) Tato aptola j věováa záladímu popsu statstcé mtody zvaé aalýza rozptylu, trá j záladí mtodou pro tstováí hypotéz o střdích hodotách víc ž dvou sup a trá využívá srováí pozorovaé

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA P NOV PRVDĚPODOBNOT TTTK Lbor Žák P NOV Lbor Žák Vícvýběrové tsty - NOV NOV tsty s rovádí s omocí aalýzy roztylů NOV souhré tsty ro víc ěž dva výběry. NOV aramtrcká tstováí charaktrstk z zámých rozdělí

Více

Variabilita měření a statistická regulace procesu

Variabilita měření a statistická regulace procesu Variabilita měří a statistická rgulac procsu Ig. Darja Noskivičová, CSc. Katdra kotroly a řízí jakosti, VŠB-TU Ostrava Abstrakt: Efktivost využití statistických mtod pro aalýzu a řízí procsů j odvislá

Více

Doc. Ing. Dagmar Blatná, CSc.

Doc. Ing. Dagmar Blatná, CSc. PRAVDĚPODOBNOST A STATISTIKA Doc. Ig. Dagmar Blatá, CSc. Statsta statstcé údaje o hromadých jevech čost, terá vede zísáí statstcých údajů a jejch zpracováí teore statsty - věda o stavu, vztazích a vývoj

Více

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA P NOV PRVDĚPODOBNOT TTTK Lbor Žák P NOV Lbor Žák Vícvýběrové tty - NOV NOV tty provádí pomocí aalýzy rozptylů NOV ouhré tty pro víc ěž dva výběry. NOV paramtrcká ttováí charaktrtk z zámých rozdělí pokud

Více

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D. Odhady parametrů základího souboru Ig. Mchal Dorda, Ph.D. Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl σ atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA SP esty dobré shody PRAVDĚPODOBNOS A SAISIKA Lbor Žá SP esty dobré shody Lbor Žá Přpomeutí - estováí hypotéz o rozděleí Ch-vadrát test Chí-vadrát testem terý e založe a tříděém statstcém souboru. SP esty

Více

SP2 Korelační analýza. Korelační analýza. Libor Žák

SP2 Korelační analýza. Korelační analýza. Libor Žák Korelačí aalýza Přpomeutí pojmů áhodá proměá áhodý vetor áhodý vetor Náhodý výběr: pro áhodou proměou : pro áhodý vetor : pro áhodý vetor : Přpomeutí pojmů - ovarace Kovarace áhodých proměých ovaračí oefcet

Více

Odhady parametrů základního. Ing. Michal Dorda, Ph.D.

Odhady parametrů základního. Ing. Michal Dorda, Ph.D. Odhady parametrů základího souboru Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt celou populac, provádíme

Více

Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i

Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i : ometové míry polohy zahrují růzé druhy průměrů pomocí kterých můžeme charakterzovat cetrálí tedec dat ometové míry polohy jsou jedoduché číselé charakterstky které se vyčíslují ze všech prvků výběru

Více

REGRESNÍ DIAGNOSTIKA V JAZYCE MATLAB. Jiří Militký a Milan Meloun 1 Technická universita v Liberci; 1 Universita Pardubice

REGRESNÍ DIAGNOSTIKA V JAZYCE MATLAB. Jiří Militký a Milan Meloun 1 Technická universita v Liberci; 1 Universita Pardubice REGRESNÍ DAGNOSKA V JAZYCE MALAB Jří Mltký a Mla Mlou 1 chcká uvrsta v Lbrc; 1 Uvrsta Pardubc 1Úvod V prax s pomocí rgrsích modlů řší řada přírodovědých a tchckých úloh Mz základí patří: 1 Kostrukc kalbračích

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

( NV, )} Řešením Schrödingerovy rovnice pro N částic

( NV, )} Řešením Schrödingerovy rovnice pro N částic Partčí fuc { E ( V, )} Řším Schrödgrovy rovc pro částc Zdoduší (?) H = H E = E Ψ= Ψ BOSOY stavy sou obsazováy bz omzí FERMIOY frmoy mohou být v stém stavu Přílady: Ply (ízý tla) => mzmolulové trac zadbáy

Více

Regrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n

Regrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n Regrese Aproxmace metodou ejmeších čtverců v v ( ) = f x v v x x x x Je dáo bodů [x, ], =,,, předpoládáme závslost a x a chceme ajít fuc, terá vsthuje teto tred - Sažíme se proložt fuc = f x ta, ab v =

Více

2. Vícekriteriální a cílové programování

2. Vícekriteriální a cílové programování 2. Vícerterálí a cílové programováí Úlohy vícerterálího programováí jsou úlohy, ve terých se a možě přípustých řešeí optmalzuje ěol salárích rterálích fucí. Moža přípustých řešeí je přtom defováa podobě

Více

REGRESNÍ DIAGNOSTIKA. Regresní diagnostika

REGRESNÍ DIAGNOSTIKA. Regresní diagnostika 4.11.011 REGRESNÍ DIAGNOSTIKA Chemometrie I, David MILDE Regresí diagostika Obsahuje postupy k posouzeí: kvality dat pro regresí model (přítomost vlivých bodů), kvality modelu pro daá data, splěí předpokladů

Více

Regresní diagnostika v materiálovém výzkumu

Regresní diagnostika v materiálovém výzkumu Rgrsí dagostka v matrálovém výzkumu JŘÍ MLKÝ, Katdra txtlích matrálů, chcká uvrsta v Lbrc, álkova 6 461 17 Lbrc, - mal: jrmlk@vslbcz MLAN MELOUN, Katdra aaltcké chm, Uvrsta Pardubc, Pardubc Abstrakt: Jsou

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

Přednáška č. 2 náhodné veličiny

Přednáška č. 2 náhodné veličiny Předáša č. áhodé velčy Pozámy záladím pojmům z počtu pravděpodobost Pozáma 1: Př výpočtu pravděpodobost áhodého jevu dle lascé defce je uté věovat pozorost způsobu formulace vybraého jevu. V ásledující

Více

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků 1 Pops statstcých dat 1.1 Pops omálích a ordálích zaů K zobrazeí rozděleí hodot omálích ebo ordálích zaů lze použít tabulu ebo graf rozděleí četostí. Tuto formu zobrazeí lze dooce použít pro číselé zay,

Více

OPTIMÁLNÍ FILTRACE METALURGICKÝCH SIGNÁLŮ POMOCÍ INFORMAČNÍCH KRITÉRIÍ

OPTIMÁLNÍ FILTRACE METALURGICKÝCH SIGNÁLŮ POMOCÍ INFORMAČNÍCH KRITÉRIÍ OPTIMÁLNÍ FILTRACE METALURGICKÝCH SIGNÁLŮ POMOCÍ INFORMAČNÍCH KRITÉRIÍ Ja Morávka Třiecký ižeýrig, a.s. Abstract Příspěvek popisuje jede přístup k optimálí filtraci metalurgických sigálů pomocí růzých

Více

Funkce hustoty pravděpodobnosti této veličiny je. Pro obecný počet stupňů volnosti je náhodná veličina

Funkce hustoty pravděpodobnosti této veličiny je. Pro obecný počet stupňů volnosti je náhodná veličina Přdnáša č 6 Náhodné vličiny pro analyticou statistiu Při výpočtch v analyticé statistic s používají vhodné torticé vličiny, tré popisují vlastnosti vytvořných tstovacích charatristi Mzi njpoužívanější

Více

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a) Předáša 7 Derivace a difereciály vyšších řádů Budeme poračovat v ahrazováí fuce f(x v oolí bodu a polyomy, tj hledat vhodé ostaty c ta, aby bylo pro malá x a f(x c 0 + c 1 (x a + c 2 (x a 2 + c 3 (x a

Více

NEPARAMETRICKÉ METODY

NEPARAMETRICKÉ METODY NEPARAMETRICKÉ METODY Jsou to metody, dy předmětem testu hypotézy eí tvrzeí o hodotě parametru ějaého orétího rozděleí, ale ulová hypotéza je formulováa obecěji, apř. jao shoda rozděleí ebo ezávislost

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz:

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz: Ig. Marta Ltschmaová Statstka I., cvčeí 1 TESTOVÁNÍ NEPARAMETRICKÝCH HYPOTÉZ Dosud jsme se zabýval testováím parametrcký hypotéz, což jsou hypotézy o parametrech rozděleí (populace). Statstckým hypotézám

Více

[ jednotky ] Chyby měření

[ jednotky ] Chyby měření Chyby měřeí Provedeme-l určté měřeí za stejých podmíek vícekrát, jedotlvá měřeí se mohou odlšovat (z důvodu koečé rozlšovací schopost měř. přístrojů, áhodých vlvů apod.). Chyba měřeí: e = x x x...přesá

Více

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu Cvičeí 6: Bodové a itervalové odhady středí hodoty, rozptylu a koeficietu korelace, test hypotézy o středí hodotě při zámém rozptylu Příklad : Bylo zkoumáo 9 vzorků půdy s růzým obsahem fosforu (veličia

Více

Generování dvojrozměrných rozdělení pomocí copulí

Generování dvojrozměrných rozdělení pomocí copulí Pravděpodobost a matematcká statstka eerováí dvojrozměrých rozděleí pomocí copulí umbelova copule PRAHA 005 Vpracoval: JAN ZÁRUBA OBSAH: CÍL PRÁCE TEORIE Metoda verzí trasformace O copulích Sklarova věta

Více

Lineární regrese ( ) 2

Lineární regrese ( ) 2 Leárí regrese Častým úolem je staoveí vzájemé závslost dvou (č více) fzálích velč a její matematcé vjádřeí. K tomuto účelu se používají růzé regresí metod, pomocí chž hledáme vhodou fuc f (), apromující

Více

Exponenciální funkce a jejich "využití" - A (Tato doplňková pomůcka nemůže v žádném případě nahradit systematickou matematickou přípravu.

Exponenciální funkce a jejich využití - A (Tato doplňková pomůcka nemůže v žádném případě nahradit systematickou matematickou přípravu. Josf PUNČOCHÁŘ: Epociálí fukc a ich "využití" ld Epociálí fukc a ich "využití" - A (Tato doplňková pomůcka můž v žádém případě ahradit systmatickou matmatickou přípravu. Epociálí fukc dfiováa obcě vztahm

Více

je daná vztahem v 0 Ve fyzice bývá zvykem značit derivaci podle proměnné t (podle času) tečkou, proto píšeme

je daná vztahem v 0 Ve fyzice bývá zvykem značit derivaci podle proměnné t (podle času) tečkou, proto píšeme DERIVACE FUNKCE Má zásadí výzam při vyštřováí fukčích závislostí j v matmatic, al také v aplikacích, apř v chmii, fyzic, koomii a jiých vědích oborch Pricip drivováí formulovali v 7 stoltí závisl a sobě

Více

Téma 2: Náhodná veličina

Téma 2: Náhodná veličina Téma : Náhodá vlča řdáška 3 Záko rozdělí pravděpodobostí Náhodou vlčou rozumím číslé ohodocí výsldku áhodého pokusu Náhodá vlča j rálá ukc E dovaá a možě lmtárích jvů I Každému lmtárímu jvu E z možy lmtárích

Více

Optimalizace portfolia

Optimalizace portfolia Optmalzace portfola ÚVOD Problémy vestováí prostředctvím ákupu ceých papírů sou klasckým tématem matematcké ekoome. Celkový výos z portfola má v době rozhodováí o vestcích povahu áhodé velčy, eíž rozložeí

Více

Spolehlivost a diagnostika

Spolehlivost a diagnostika Spolehlvost a dagostka Složté systémy a jejch spolehlvost: Co je spolehlvost? Vlv spolehlvost kompoetů systému Návrh systému z hledska spolehlvost Aplkace - žvotě důležté systémy - vojeské aplkace Teore

Více

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky Téma 6.: Základí pojmy matematické statistiky Vlastosti důležitých statistik odvozeých z jedorozměrého áhodého výběru: Nechť X,..., X je áhodý výběr z rozložeí se středí hodotou μ, rozptylem σ a distribučí

Více

P1: Úvod do experimentálních metod

P1: Úvod do experimentálních metod P1: Úvod do epermetálích metod Chyby a ejstoty měřeí - Každé měřeí je zatížeo určtou epřesostí, která je způsobea ejrůzějším egatvím vlvy, vyskytujícím se v procesu měřeí. - Výsledek měřeí se díky tomu

Více

k(k + 1) = A k + B. s n = n 1 n + 1 = = 3. = ln 2 + ln. 2 + ln

k(k + 1) = A k + B. s n = n 1 n + 1 = = 3. = ln 2 + ln. 2 + ln Číselé řady - řešeé přílady ČÍSELNÉ ŘADY - řešeé přílady A. Součty řad Vzorové přílady:.. Přílad. Určete součet řady + = + 6 + +.... Řešeí: Rozladem -tého čleu řady a parciálí zlomy dostáváme + = + ) =

Více

Statistické charakteristiky (míry)

Statistické charakteristiky (míry) Stattcé charaterty (míry) - hrují formac, obažeou v datech (vyjadřují j v ocetrovaé formě); - charaterzují záladí ryy zoumaého ouboru dat; - umožňují porováváí více ouborů. upy tattcých charatert :. charaterty

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA Matematka IV PRAVDĚPODOBNOT A TATITIKA Lbor Žák Matematka IV Lbor Žák Regresí aalýza Regresí aalýza zkoumá závslost mez ezávslým proměým X ( X,, X k a závsle proměou Y. Tato závslost se vjadřuje ve tvaru

Více

Testování statistických hypotéz

Testování statistických hypotéz Testováí statstckých hypotéz - Testováí hypotéz je postup, sloužící k ověřeí předpokladů o ZS (hypotéz a základě výběrových dat (tj. hodot z výběrového souboru. - ypotéza = určtý předpoklad o základím

Více

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu Cvičeí 6: Výpočet středí hodoty a rozptylu, bodové a itervalové odhady středí hodoty a rozptylu Příklad 1: Postupě se zkouší spolehlivost čtyř přístrojů Další se zkouší je tehdy, když předchozí je spolehlivý

Více

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

Analýza signálů ve frekvenční oblasti

Analýza signálů ve frekvenční oblasti Aalýza sigálů v frvčí oblasti Fourirova trasformac Záladí ida trasformac () Trasformac () Zpracováí v časové oblasti Zpracováí v trasform. oblasti () Ivrzí Trasformac () Typy Fourirových trasformací Discrt

Více

11. Časové řady. 11.1. Pojem a klasifikace časových řad

11. Časové řady. 11.1. Pojem a klasifikace časových řad . Časové řad.. Pojem a klasfkace časových řad Specfckým statstckým dat jsou časové řad pomocí chž můžeme zkoumat damku jevů v čase. Časovou řadou (damcká řada, vývojová řada) rozumíme v čase uspořádaé

Více

Odhady parametrů 1. Odhady parametrů

Odhady parametrů 1. Odhady parametrů Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOT A TATITIKA Přpomeutí pojmů,, P m θ, R θ R - pravděpodobostí prostor - parametrcký prostor - parametrcká fukce,, T - áhodý vektor defovaý a pravděpodobostím prostoru,, P θ s hustotou f x,

Více

a další charakteristikou je četnost výběrového souboru n.

a další charakteristikou je četnost výběrového souboru n. Předáška č. 8 Testováí rozptylu, testy relatví četost, testy dobré shody, test ezávslost kvaltatvích zaků Testy rozptylu Testy se používají k ověřeí hypotézy o určté velkost rozptylu a k ověřeí vztahu

Více

Lineární a adaptivní zpracování dat. 8. Modely časových řad I.

Lineární a adaptivní zpracování dat. 8. Modely časových řad I. Lieárí a adaptiví zpracováí dat 8. Modely časových řad I. Daiel Schwarz Ivestice do rozvoje vzděláváí Cíl, motivace Popis a idetifikace systémů BLACK BOX Cíl, motivace Popis a idetifikace systémů BLACK

Více

EKONOMETRIE 9. přednáška Zobecněný lineární regresní model

EKONOMETRIE 9. přednáška Zobecněný lineární regresní model EKONOMETRIE 9. předáška Zobecěý lieárí regresí model Porušeí základích podmíek klasického modelu Metoda zobecěých emeších čtverců Jestliže sou porušey ěkteré podmíky klasického modelu. E(u),. E (uu`) σ

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

8.1.2 Vzorec pro n-tý člen

8.1.2 Vzorec pro n-tý člen 8 Vzorec pro -tý čle Předpolady: 80 Pedagogicá pozáma: Přílady a hledáí dalších čleů posloupostí a a objevováí vzorců pro -tý čle do začé míry odpovídají typicým příladům z IQ testů, teré studeti zají

Více

8 NELINEÁRNÍ REGRESNÍ MODELY

8 NELINEÁRNÍ REGRESNÍ MODELY 8 NELINEÁRNÍ REGRESNÍ MODELY 8 Tvorba eleárího regresího modelu Postup tvorby eleárího regresího modelu se dá rozčlet do těchto kroků: Návrh regresího modelu Obvykle se jako eleárí regresí model používá

Více

4.KMITÁNÍ VOLNÉ. Rozlišujeme: 1. nepoddajné vazby - nedovolující pohyb 2. pružně poddajné vazby - dovolují pohyb

4.KMITÁNÍ VOLNÉ. Rozlišujeme: 1. nepoddajné vazby - nedovolující pohyb 2. pružně poddajné vazby - dovolují pohyb 4.MITÁNÍ VOLNÉ 4. Lárí ktáí (harocký osclátor v fyzc) Vl časý pohy hotého odu j ktavý pohy. táí ud lárí, jstlž síla, ktrá př výchylc x vrací hotý od do rovovážé polohy, j úěrá výchylc F x (4..) kostata

Více

1. Okrajové podmínky pro tepeln technické výpo ty

1. Okrajové podmínky pro tepeln technické výpo ty 1. Okrajové podmínky pro tpln tchncké výpo ty Správné stanovní okrajových podmínk j jdnou z základních součástí jakéhokol tchnckého výpočtu. Výjmkou njsou an tplně tchncké analýzy. V násldující kaptol

Více

Pravděpodobnostní modely

Pravděpodobnostní modely Pravděpodobostí modely Meu: QCEpert Pravděpodobostí modely Modul hledá metodou maimálí věrohodosti (MLE Maimum Likelihood Estimate) statistický model (rozděleí) který ejlépe popisuje data. Je přitom k

Více

5. Lineární diferenciální rovnice n-tého řádu

5. Lineární diferenciální rovnice n-tého řádu 5 3.3.8 8:44 Josef Herdla lieárí difereciálí rovice -tého řádu 5. Lieárí difereciálí rovice -tého řádu (rovice s ostatími oeficiety) ( ), a,, a (5.) ( ) ( ) y a y a y ay q L[ y] y a y a y a y, q je spojitá

Více

Fyzika V. Rupert Leitner ÚČJF MFF UK 838A, l Doporučená literatura: W.S.C. Williams: Nuclear and Particle Physics

Fyzika V. Rupert Leitner ÚČJF MFF UK 838A, l Doporučená literatura: W.S.C. Williams: Nuclear and Particle Physics Fyza V urt tr urt.tr@ff.cu.cz ÚČJF FF UK 88 l. Dooručá ltratura: W.S.C. Wllas: Nuclar ad artcl hyscs. tr Fyza V řdáša řdáša..7. Jdoty. Kata -vtory ortzova trasforac a - částcové rozady rahy rací Ivaratí

Více

Analýza a zpracování signálů. 3. Číselné řady, jejich vlastnosti a základní operace, náhodné signály

Analýza a zpracování signálů. 3. Číselné řady, jejich vlastnosti a základní operace, náhodné signály Aalýza a zpracováí sigálů 3. Číselé řady, jejich vlastosti a základí operace, áhodé sigály Diskrétí sigál fukce ezávislé proměé.!!! Pozor!!!! : sigáleí defiová mezi dvěma ásledujícími vzorky ( a eí tam

Více

Jednoduchá lineární regrese

Jednoduchá lineární regrese Jedoduchá leárí regrese Motvace: Cíl regresí aalýz - popsat závslost hodot velč Y a hodotách velč X. Nutost vřešeí dvou problémů: a) jaký tp fukce se použje k popsu daé závslost; b) jak se staoví kokrétí

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV RADIOELEKTRONIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF

Více

11. LOGISTICKÁ REGRESE A JEJÍ UŽITÍ PRO DISKRIMINACI

11. LOGISTICKÁ REGRESE A JEJÍ UŽITÍ PRO DISKRIMINACI LOGSTCKÁ EGESE A JEJÍ UŽTÍ PO DSKMAC LOGSTCKÁ EGESE A JEJÍ UŽTÍ PO DSKMAC as studu: 9 ut Cíl: V této aptol s száít s todou lostcé rrs a s jjí užtí pro dsraí aalýzu VÝKLAD Úvod V prax js asto postav pd

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

Náhodný výběr 1. Náhodný výběr

Náhodný výběr 1. Náhodný výběr Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti

Více

Přednáška č. 10 Analýza rozptylu při jednoduchém třídění

Přednáška č. 10 Analýza rozptylu při jednoduchém třídění Předáška č. 0 Aalýza roztylu ř jedoduchém tříděí Aalýza roztylu je statstcká metoda, kterou se osuzuje romělvost oakovaých realzací áhodého okusu tj. romělvost áhodé velčy. Náhodá velča vzká za relatvě

Více

4. PRŮBĚH FUNKCE. = f(x) načrtnout.

4. PRŮBĚH FUNKCE. = f(x) načrtnout. Etrém funkc 4. PRŮBĚH FUNKCE Průvodc studim V matmatic, al i v fzic a tchnických oborch s často vsktn požadavk na sstrojní grafu funkc K nakrslní grafu funkc lz dns většinou použít vhodný matmatický softwar.

Více

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT Základy práce s tabulkou Výukový modul III. Iovace a zkvaltěí výuky prostředctvím IC éma III..3 echcká měřeí v MS Excel Pracoví lst 5 Měřeí teploty. Ig. Jří Chobot VY_3_INOVACE_33_5 Aotace Iovace a zkvaltěí

Více

Soustava momentů. k s. Je-li tedy ve vzorci obecného momentu s = 1, získáme vzorec aritmetického průměru.

Soustava momentů. k s. Je-li tedy ve vzorci obecného momentu s = 1, získáme vzorec aritmetického průměru. Soutava mometů Momety (Obecé, cetrálí a ormovaé) Do ytému mometových charatert patří ty ejdůležtější artmetcý průměr (mometová míra úrově) a rozptyl (mometová úroveň varablty). Obecý momet -tého tupě:

Více

S k l á d á n í s i l

S k l á d á n í s i l S l á d á í s i l Ú o l : Všetřovat rovováhu tří sil, působících a tuhé těleso v jedom bodě. P o t ř e b : Viz sezam v desách u úloh a pracovím stole. Obecá část: Při sládáí soustav ěolia sil působících

Více

Přednáška V. Úvod do teorie odhadu. Pojmy a principy teorie odhadu Nestranné odhady Metoda maximální věrohodnosti Průměr vs.

Přednáška V. Úvod do teorie odhadu. Pojmy a principy teorie odhadu Nestranné odhady Metoda maximální věrohodnosti Průměr vs. Předáška V. Úvod do teore odhadu Pojmy a prcpy teore odhadu Nestraé odhady Metoda mamálí věrohodost Průměr vs. medá Opakováí výběrová dstrbučí fukce Sestrojíme výběrovou dstrbučí fukc pro výšku a váhu

Více

Zpracování a prezentace výsledků měření (KFY/ZPM)

Zpracování a prezentace výsledků měření (KFY/ZPM) Jihočká uivrzita Pdagogická fakulta katdra fyziky Zpracováí a prztac výldků měří (KFY/ZPM) tručý učbí tt Pavl Kříž Čké Budějovic 005 Úvod Přdmět Zpracováí a prztac výldků měří (ZPM) volě avazuj a přdmět

Více

Úvod do korelační a regresní analýzy

Úvod do korelační a regresní analýzy Úvod do korelačí a regresí aalýz Bude ás zajímat, jak těsě spolu souvsí dva sledovaé jev Příklad: vztah mez rchlostí auta a brzdou dráhou vztah mez věkem žáka a rchlostí v běhu a 60 m vztah mez spotřebou

Více

P2: Statistické zpracování dat

P2: Statistické zpracování dat P: Statistické zpracováí dat Úvodem - Statistika: věda, zabývající se shromažďováím, tříděím a ásledým popisem velkých datových souborů. - Základem statistiky je teorie pravděpodobosti, založeá a popisu

Více

3. cvičení 4ST201 - řešení

3. cvičení 4ST201 - řešení cvčící Ig. Jaa Feclová 3. cvčeí 4ST0 - řešeí Obah: Míry varablty Rozptyl Směrodatá odchyla Varačí oefcet Rozlad rozptylu a mezupovou a vtroupovou varabltu Změa rozptylu Vyoá šola eoomcá VŠE urz 4ST0 Míry

Více

8.1.2 Vzorec pro n-tý člen

8.1.2 Vzorec pro n-tý člen 8.. Vzorec pro -tý čle Předpolady: 80 Pedagogicá pozáma: Myslím, že jde o jedu z velmi pěých hodi. Přílady a hledáí dalších čleů posloupostí a a objevováí vzorců pro -tý čle do začé míry odpovídají typicým

Více

Chyby přímých měření. Úvod

Chyby přímých měření. Úvod Chyby přímých měřeí Úvod Př zjšťováí velkost sledovaé velčy dochází k růzým chybám, které ovlvňují celkový výsledek. V pra eestuje žádá metoda měřeí a měřcí zařízeí, které by bylo absolutě přesé, což zameá,

Více

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Katedra statistiky a pravděpodobnosti STATISTIKA. VZORCE PRO 4ST201 a 4ST210

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Katedra statistiky a pravděpodobnosti STATISTIKA. VZORCE PRO 4ST201 a 4ST210 VYOKÁ ŠKOLA EKONOMICKÁ V RAZE FAKULA INFORMAIKY A AIIKY Kaedra sas a pravděpodobos AIIKA VZORCE RO 4 a 4 verze 8 posledí aualzace:. 9. 8 K 8 opsá sasa p p =,,...,... () () ( ),, z, ( z ) ( z ) ( z), z

Více

Elementární zpracování statistického souboru

Elementární zpracování statistického souboru Elemetárí zpracováí statistického souboru Obsah kapitoly 4. Elemetárí statistické zpracováí - parametrizace vhodými empirickými parametry Studijí cíle Naučit se výsledky měřeí parametrizovat vhodými empirickými

Více

n 3 lim 3 1 = lim Je vidět, že posloupnost je neklesající, tedy z Leibnize řada konverguje, ( 1) k 1 k=1

n 3 lim 3 1 = lim Je vidět, že posloupnost je neklesající, tedy z Leibnize řada konverguje, ( 1) k 1 k=1 3. cvičeí Přílady. (a) (b) (c) ( ) ( 3 ) = Otestujeme itu 3 = 3 = = 0. Je vidět, že posloupost je elesající, tedy z Leibize řada overguje, ( ) Řada overguje podle Leibizova ritéria, ebot je zjevě erostoucí.

Více

Pravděpodobnostní model doby setrvání ministra školství ve funkci

Pravděpodobnostní model doby setrvání ministra školství ve funkci Pravděpodobostí model doby setrváí miistra školství ve fukci Základí statistická iferece Data Zdro: http://www.msmt.cz/miisterstvo/miistri-skolstvi-od-roku-848. Ke statistickému zpracováí byla vzata pozorováí

Více

1.1 Rozdělení pravděpodobnosti dvousložkového náhodného vektoru

1.1 Rozdělení pravděpodobnosti dvousložkového náhodného vektoru Lekce Normálí rozděleí v rově V této lekc se udeme věovat měřeí korelačí závslost dvojce áhodých velč (dvousložkového áhodého vektoru) Vcházet udeme z ormálího rozděleí pravděpodoost áhodého vektoru v

Více

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR Středí hodoty Artmetcý průměr vážeý ze tříděí Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR Výzam a užtí vážeého artmetcého průměru uážeme a ásledujících příladech Přílad 0 Ve frmě Gama Blatá máme soubor

Více

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti. 10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé

Více

Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby.

Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby. ováí - Hru IV /6 ováí Hru IV Mila RůžR ůžička, Josef Jureka,, Zbyěk k Hrubý zbyek.hruby hruby@fs.cvut.cz ováí - Hru IV /6 ravděpodobostí úavové diagramy s uvažováím předpětí R - plocha ve čtyřrozměrém

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor SP Náhodý vektor PRAVDĚPODOBNOS A SAISIKA Náhodý vektor Lbor Žák SP Náhodý vektor Lbor Žák Náhodý vektor Náhodý vektor slouží k popsu výsledku pokusu kdy měříme více údaů o procesu. Před provedeím pokusu

Více

Tvorba nelineárních regresních modelů v analýze dat

Tvorba nelineárních regresních modelů v analýze dat Univerzita Pardubice Fakulta chemicko-technologická, Katedra analytické chemie Licenční studium GALILEO Interaktivní statistická analýza dat Semestrální práce z předmětu Tvorba nelineárních regresních

Více

Intervalové odhady parametrů některých rozdělení.

Intervalové odhady parametrů některých rozdělení. 4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:

Více

, jsou naměřené a vypočtené hodnoty závisle

, jsou naměřené a vypočtené hodnoty závisle Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 3. ÚKOL JB TEST 3. Úkol zadáí pro statistické testy U každého z ásledujících testů uveďte ázev (včetě autora), předpoklady použití, ulovou

Více

STATISTIKA. Základní pojmy

STATISTIKA. Základní pojmy Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci

Více

M ě ř e n í o d p o r u r e z i s t o r ů

M ě ř e n í o d p o r u r e z i s t o r ů M ě ř n í o d p o r u r z s t o r ů Ú k o l : Proměřt sadu rzstorů s nznámým odporm různým mtodam a porovnat přsnost jdnotlvých měřní P o t ř b y : Vz sznam v dskách u úlohy na pracovním stol Obcná část:

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 6. KAPITOLA CENTRÁLNÍ LIMITNÍ VĚTA 6.11.2017 Opakováí: Čebyševova erovost příklad Pravděpodobost vyrobeí zmetku je 0,5. Odhaděte pravděpodobost,

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor SP Náhodý vektor PRAVDĚPODOBNOS A SAISIKA Náhodý vektor SP Náhodý vektor Náhodý vektor Náhodý vektor slouží k popsu výsledku pokusu kdy měříme více údaů o procesu. Před provedeím pokusu eho výsledek a

Více

Diskrétní Fourierova transformace

Diskrétní Fourierova transformace Disrétí Fourierova trasformace Záladí idea trasformace x Trasformace Zpracováí v časové oblasti Zpracováí v trasform. oblasti x Iverzí Trasformace Spojitá Fourierova trasformace f j πft x t e dt Disrétí

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA SP4 Přpomeutí pojmů PRAVDĚPODOBNOST A STATISTIKA SP4 Přpomeutí pojmů SP4 Přpomeutí pojmů Pravděpodobost Náhodý jev: - základí prostor - elemetárí áhodý jev A - áhodý jev, - emožý jev, jstý jev podjev opačý

Více