Rozměr: px
Začít zobrazení ze stránky:

Download ""

Transkript

1

2

3

4

5 :;< 38;<6 %$(%&*%,!%$(%-# #)!! +#$!! 5$%3 3%!!%5$% 33% % %%!3 % ++ ++!+3%!5++! 9 /0%%! 3%5$% +$%,++!"! $(!#$% $!&63 )! & )%$#-&*%!)$!,!$ $)) 3&43$3% )& $%3% &'$! &/%$3 +!$+ $!&45$ )!&*%!"" +$( $#$!# $!"! $%+ ( %)

6 )!"%505/.67 ),%!"#$% (%#"089(%.":;<>?(3$)5"$-,'./-*5 &'()&*+,-%./0(%#34(/

7 $&'()#!% * *+!#$!./,0,., ""' "%-$!'!"%""'$(,!""!#$%&!#!&#$&$$!&!'"!&)!#! "&!* +&",, 34&5

8 %&'(#%)$)#*&+,# &)-%'&+&,./)0"&%'%)" &.+.).#,. &.)-(&'.#', /&)#+&'.+#3&)4%!"#$%

9 Jiří Horák 03 Obsah. Úvod.... Kombinovaná výroba energií..... Kogenerace a trigenerace..... Výhody kogenerace oroti oddělené výrobě Kogenerační systémy a technologie Kogenerační jednotka Loatkový stroj Modelový říklad rodinného a bytového domu Počet toných dnů Roční diagram trvání otřeb tela a elektřiny Sestavení diagramu trvání otřeb tela a elektřiny Sotřeba energií RD Sotřeba energií BD Komerční mikrokogenerační systémy Jednotky se salovacím motorem Komerční jednotky se salovacím motorem Jednotky se Stirlingovým motorem Komerční jednotky se Stirlingovým motorem Jednotky se salovací turbínou Komerční jednotky se salovací turbínou Jednotky s arním motorem Komerční jednotky s arním motorem Jednotky s alivovým článkem Komerční jednotky s alivovým článkem Výhody a nevýhody konkrétních kogeneračních jednotek Volba mikrokogeneračního systému ro modelový říklad Vazba mezi sotřebou a výrobou Předoklady rovozu mikrokogenerační jednotky Výběr kogenerační jednotky Rozbor ročního diagramu sotřeby Volba kogenerační jednotky Posouzení vybrané kogenerační jednotky Návrh oběhu kogenerační jednotky Postu výočtu teelného oběhu kogenerační jednotky Výočet oběhu horkovzdušné turbíny Vzduchový turbokomresor Sání vzduchu na vstuu turbíny (bod 0) Sání vzduchu na vstuu do komresoru (bod ) Izoentroický výstu komresoru (bod ) Skutečný výstu z komresoru (bod 3)... 37

10 Jiří Horák Exanzní vzduchová turbína Vstu do turbíny (bod 4) Izoentroický výstu z turbíny (bod 5) Skutečný výstu z turbíny (bod 6) Energetická bilance horkovzdušné turbíny Návrh oběžného kola komresoru a turbíny Oběžné kolo komresoru Oběžné kolo turbíny Výočet salovacího zařízení Vlastnosti aliva Množství salin a vzduchu Složení salin a jejich entalie Bilanční výočet salovacího zařízení Stav salin na výstuu ze salovacího zařízení Ochlazování salin ve výměnících a jejich výkon Účinnost oběhu kogenerační jednotky Výočet výměníku tela Volba rozměrů a usořádání výměníku Střední logaritmický telotní rozdíl Součinitel řestuu tela v trubkovém rostoru Součinitel řestuu tela v mezitrubkovém rostoru Korekční faktory ro mezitrubkový rostoru Velikost výměníku Tlakové ztráty výměníku Tlakové ztráty v trubkovém rostoru Tlaková ztráta v mezitrubkovém rostoru Výměník na telou vodu Rozměry a arametry výměníků Pevnostní kontrola trubek výměníků Příkon salinového ventilátoru Ekonomické osouzení nového systému Stanovení ročních nákladů modelových říkladů Posouzení investice do kogeneračního systému Závěr a technickoekonomické hodnocení Seznam oužité literatury a zdrojů Seznam oužitých zkratek a symbolů Seznam říloh Přílohy ráce... 89

11 Jiří Horák 03. Úvod Ve vývoji lidstva hrála energie vždy důležitou roli, zvláště v dnešní moderní době, kdy je role energie na naší lanetě důležitější něž kdykoliv řed tím, zvláště elektrické energie. Světová sotřeba energie se stále zvyšuje, tudíž je třeba se zamýšlet nad tím, zdali i v budoucnu bude možné okrýt otávku o energii. Je nezodovědné brát na lehkou váhu fakt, že nastane doba, kdy budou sotřebovány některé zdroje fosilních aliv, do kterých se na naší lanetě ukládala energie o miliony let a které lidstvo ravděodobně stihne sotřebovat za zlomek této doby. Samozřejmě nelze mluvit o sotřebě jako takové, rotože energie nezaniká ani nevzniká, ouze se řeměňuje na jiné formy. Toto vede ke snaze co možná nejefektivněji využívat zdrojů energie zvláště fosilních zdrojů, na kterých je lidstvo chtě nechtě závislé. Jedním ze zůsobů, jak šetřit zdroji energie je kombinovaná výroba elektřiny a tela. Tato technologie řináší určitou úsoru, než v říadech kdy jsou elektřina a telo vyráběny odděleně. Sojení výroby elektřiny a tela naomáhá fakt, že elektřina se dá oměrně jednoduše vyrábět z tela a také ři její výrobě vzniká určité množství odadního tela, které lze účelně dále využívat. S vývojem salovacích turbín, zvláště v období o. světové válce, jako leteckých motorů se rovněž naskytla možnost využití salovacích turbín v energetice a nejen tam, ale i v doravě a růmyslu. V druhé olovině 0. století se tedy začalo využívat salovacích turbín, jakožto loatkového stroje, ro výrobu elektřiny omocí generátorů. Vývoj turbín okračuje dále stejně rychle, jako robíhá vývoj materiálů. Jako v mnoha odvětvích tak i v energetice není největším roblémem technické řešení, ale síše roblém materiálů, které by vydržely extrémní teelné a mechanické namáhání, které se objevuje rávě ve salovacích turbínách. Jelikož vývoj od doby, kdy byly zrovozňovány rvní energetické salovací turbíny, značně okročil, lze oužít salovací turbínu ro čím dál širší horizont alikací. Jednou z těchto alikací jsou kogenerační jednotky schoné současně vyrábět elektřinu i užitné telo. Účelem ráce je navrhnout lynovou turbínu malého výkonu, aby byla schoná alesoň částečně okrývat sotřebu elektřiny a tela rodinného či bytového domu a využívat ři tom energie z biomasy. Energetické využívání biomasy je také jeden ze zůsobů, jak šetřit zdroje fosilních aliv a solu s kombinovanou výrobou elektřiny a tela se jeví jako slibná možnost zbavování se závislosti na fosilních alivech. - -

12 Jiří Horák 03. Kombinovaná výroba energií Kombinovanou výrobou energií rozumíme výrobu více druhů energie současně. V kontextu s energetikou se jedná ředevším o teelnou a elektrickou energii. Výroba obou druhů energií solu souvisí, rotože byly, jsou a dlouhou dobu ještě budou získávány z rimárních zdrojů energie a to ředevším fosilních aliv nebo také z obnovitelných zdrojů, tedy i z biomasy. Dalším faktem, který umožňuje sojit výrobu elektrické a teelné energie dohromady, je samotný mechanismus výroby elektrické energie, která se získává z teelné. Podle druhého zákona termodynamiky je zřejmé, že abychom získali z nějakého teelného cyklu mechanickou ráci, otažmo elektrickou energii, musíme teelnou energii řivést a hlavně taky část energie odvést. Tudíž ři výrobě elektrické energie vzniká také římo teelná energie. Pokud se tato vzniklá energie bude účelně využívat, můžeme hovořit a kombinované výrobě energií. Ovšem tato odvedená teelná energie musí mít ožadovanou kvalitu... Kogenerace a trigenerace Pojmem kogenerace je označována současná výroba tela a elektrické energie, řičemž obě tyto energie jsou účelně využívány. Dalším roduktem kombinované výroby může být i chlad. Chlad je v odstatě také teelná energie, ovšem o jiné kvalitě něž telo. Veličina, která vyjadřuje kvalitu teelné energie je telota. Pojmem trigenerace se tedy označuje současná výroba elektřiny, tela a chladu. Na Obr. je znázorněno schéma výroby energie z aliva. Obr. Schéma výroby energií omocí kogenerace a trigenerace... Výhody kogenerace oroti oddělené výrobě Hlavním důvodem, roč oužívat kogeneraci místo oddělené výroby je úsora rimárních zdrojů energie označovaná jako PES. Lze ji definovat jako oměr úsory sotřebovaných energií z rimárního energetického zdroje ro solečnou výrobu a oddělené výroby elektřiny a tela. [] Zavedeme-li referenční hodnoty účinnosti ro oddělenou výrobu teelné energie (η T 85 %), elektrické energie (η E 35%), účinnost kogenerace (η K 85%) a zavedeme-li telárenský modul e, můžeme oté definovat účinnosti využití rimárního energetického zdroje. [], [3] telárenský modul využitá elektrická energie e () využitá teeln á enegrie - -

13 Jiří Horák 03 účinnost oddělené výroby η D + e e + η η T E () účinnost kombinované výroby η K ηd (3) PES rocentuelní úsora energie PES η η D (4) K V závislosti na telárenském modulu, který vyjadřuje oměr elektrického a teelného výkonu, se účinnosti mění odle Obr.. Pro telárenský modul e 0 je účinnost oddělené výroby h D rovna referenční hodnotě účinnosti výroby tela (η T 85 %), tudíž se vyrábí ouze teelná energie. V oačném říadě, kdy e se účinnost blíží k hodnotě (η E 35 %), se vyrábí ouze elektřina. Úsora rimárního zdroje energie PES je také závislá na telárenském modulu. Pro modul e 0 je nulová úsora, rotože vyrobené telo je stejné jak ro kogeneraci, tak ro oddělenou výrobu. (h K h D 85 %). V oačném říadě, kde jde ouze o výrobu elektřiny e, se PES blíží k hodnotě odle vtahu (4) ro (h K 85 %, h D 35 %). Při uvažování jakékoliv úsory energie z rimárního zdroje PES je otom účinnost solečné výroby h K větší než účinnost oddělené výroby h D. 00% 90% 80% 70% 60% ηd ηk ro PES 0% PES ro ηk 85% 00% 90% 80% 70% 60% ηd, ηk 50% 50% PES 40% 40% 30% 30% 0% 0% 0% 0% 0% 0% 0,0,0,0 3,0 4,0 5,0 6,0 e Obr. Účinnost solečné η k a oddělené η d výroby teelné a elektrické energie. Podle [0] by měla být minimální hodnota PES 0 %. Takto vysokých hodnot účinností solečné výroby h K lze v raxi běžně dosáhnout. Znamená to tedy, že dochází k úsoře rimárních energetických zdrojů a kogenerace tedy řisívá k zvyšování celkového využití energie v orovnání s oddělenou výrobou tela a elektřiny

14 Jiří Horák 03 Úsory rimárních zdrojů mají za následek snížení zatížení životního rostředí. Ze stejného množství aliva za oužití kogenerace lze účelně vyrobit a sotřebovat větší množství energie než ři oddělené výrobě. Nebo-li naoak, ro stejné množství sotřebovaných energií je třeba menší množství aliva..3. Kogenerační systémy a technologie Existuje mnoho zůsobů, jak lze řeměnit energii aliva na elektrickou a teelnou energii, tudíž existuje i mnoho technologií řeměny. Tyto technologie lze dělit odle několika následujících hledisek. [] oloha výroby a zásobování (centralizované a decentralizované zásobování): zásobování telem a elektřinou může být realizováno omocí rozvodů, centralizovaná výroba. V takovém říadě se energie vyrábí v jednom zdroji, který zásobuje své okolí. Oakem centralizované výroby je decentralizovaná výroba jejíž odstata sočívá v tom, že se energie vyrábí římo tam, kde je jí zaotřebí, tedy u sotřebitele. Tudíž odadá otřeba budovat složité rozvody, které mají velké ztráty. očet transformací (římá a neřímá metoda): udává, kolik je zaotřebí energetických transformací mezi alivem a elektřinou. U římé metody je elektrická energie získávána bezrostředně reakcí aliva omocí alivového článku. Neřímá metoda v sobě zahrnuje transformaci aliva na teelnou energii, ze které je získána omocí teelného stroje mechanická ráce a nakonec omocí el. generátoru elektrická energie. racovní látka ro neřímou metodu transformace (otevřený a uzavřený oběh): oběhy, které racují s levnou a dostunou látkou, čímž je rakticky vzduch nebo směs vzduchu a salin, si mohou dovolit tuto látku vyouštět do okolí o té, co látka vykoná ráci v oběhu. Takové oběhy se nazývají otevřené oběhy. U dražších racovních látek nebo u látek, které je třeba uravovat, je jejich vyouštění do okolí neříustné. S těmito látkami, jako je nař. voda či hélium, racují uzavřené oběhy. salovací rostor ro neřímou metodu transformace (vnitřní a vnější): je to rostor, ve kterém dochází k uvolňování teelné energie a také místo, kde se ředává energie racovní látce. Pokud je salovací rostor součástí teelného stroje, jedná se o vnitřní salování. U strojů, kde dochází ke salování mimo teelný stroj, se energie ředává racovní látce omocí teelného výměníku. Toto salování lze označit jako neřímé salování. maximální dosažitelný elektrický výkon: mikro-kogenerace - do 50 kw E mini-kogenerace - do 500 kw E kogenerace malého výkonu - do MW E kogenerace středního výkonu - do 50 MW E kogenerace velkého výkonu - nad 50 MW E Tato ráce je omezena ouze na tzv. dolní kogenerační systém, který dává řednost výrobě el. energie a teelná energie je získávána z odadního tela teelného oběhu. Existuje také horní kogenerační systém, který nejrve využívá teelnou energii o vysokých arametrech ro různé technologické rocesy v růmyslu. Odadní telo z těchto rocesů je oté využíváno k výrobě el. energie

15 Jiří Horák Kogenerační jednotka Předmět ráce, mikrokogenerační jednotka na bázi loatkového stroje, je tedy jednotka ro decentralizovanou výrobu elektřiny a tela využívající neřímou transformaci energie z aliva. Jednotka může racovat s otevřeným i uzavřeným oběhem racovního média. Očekává se vnější salování, neboť energie je získávána z biomasy, která se z technologických důvodů nehodí ro římé salování viz Obr. 3. Jednotka ro neřímou metodu transformace se skládá z teelného stroje a systémů výměníků ro řívod a odvod tela. V souladu se zadáním ráce bude jako teelný stroj sloužit loatkový stroj, jehož účelem bude transformovat teelnou energii na mechanickou ráci..5. Loatkový stroj Loatkový stroj je ojem, který v sobě obsahuje velmi širokou oblast strojů, která slouží k transformaci energie. Energie je transformována kontinuálně omocí tekutiny, stlačitelné či nestlačitelné, řičemž tato energie je řenášena z tekutiny na rotor nebo oačně, z rotoru na tekutinu. Rozhodujícím znakem je změna rychlosti tekutiny neboli změna kinetické energie tekutiny ři roudění kanály, které jsou tvořeny meziloatkovým rostorem. Loatkový stroj má vždy statorovou část, kde dochází k řeměně tlakové neboli teelné energie na kinetickou a rotorovou část, kde se kinetická energie racovního média mění na mechanickou energii otáčejícího se rotoru. Podle této oslounosti racuje exanzní turbína. Uvedené návaznosti latí i naoak, tedy že z mechanickou energii lze omocí loatkového stroje transformovat na tlakovou a teelnou energii, v tomto říadě se jedná o turbokomresor, turbočeradlo a ventilátor. Je tedy zřejmé, že se jedná o rotační stroj neboli turbostroj z lat. turbo, což znamená mít sin neboli otáčky. [6] Použití loatkového stroje ři kombinované výrobě elektrické energie a tela je narosto běžná věc. Parní a lynové turbíny nacházejí ulatnění ředevším v telárnách a ve velkých odnicích. V menších rovozech ale ostuně získávají ulatnění i jiné stroje, nař. salovací motory. Je to dáno vyšší účinnosti salovacích motorů v malých výkonech a také nižší ořizovací cenou. [6] Obr. 3 Schéma kogenerační jednotky s neřímým salováním v teelném stroji

16 Jiří Horák Modelový říklad rodinného a bytového domu Pro definování otřeb na vytáění, ohřev TUV a sotřebu elektrické energie bude vytvořen energetický model na základě ročních sotřeb energií existujících objektů a meteorologických dat z lokality objektů. Potřeby tela velice dobře demonstruje roční diagram trvání otřeb tela, který rávě bude ředstavovat modelový říklad. 3.. Počet toných dnů Počet toných dnů lze v souladu s vyhláškou 5/00 Sb. zjednodušeně stanovit jako očet dnů, kdy růměrná venkovní telota v otoném období klesne od 3 C. Ze získaných růměrných denních telot za rok 0 (řestuný rok), [4] se tedy určí, kolik dní by se mělo vytáět a také jak moc v závislosti na venkovní telotě. 3.. Roční diagram trvání otřeb tela a elektřiny Diagram vyjadřuje kolik dní by měl být k disozici atřičný teelný či elektrický výkon kogenerační jednotky, aby bylo možno vyhovět otřebám sotřebitele. Tento výkon je však ouze růměrnou hodnotou. To znamená, že na otřebu tela je nahlíženo v rámci celého dne ři dané růměrné venkovní telotě jako na konstantní. Integrací diagramu na Obr. 4 odle času dostáváme množství energie (locha od křivkou), která je zaotřebí ro okrytí otřeb uživatele. Tato energie se dělí na tři základní části: vytáění - sotřebovaná energie je závislá na venkovní telotě a očtu toných dnů, v rámci dnů je roměnná, telá užitková voda - je otřeba celoročně a uvažuje se, že každý den je sotřebováno řibližně stejné množství energie ro výrobu TUV, tedy v rámci celého roku lze otřebu ovažovat za konstantní, elektrická energie - taktéž celoroční otřeba s ředokládaným stejným denním množstvím a konstantním růběhem. V souvislosti s trigenerací je také možno do otřeb energie zahrnou i chlazení, které racuje na rinciu absorbčního oběhu. [] Obr. 4 Roční diagram trvání otřeb tela a elektřiny

17 Jiří Horák Sestavení diagramu trvání otřeb tela a elektřiny Postu se oírá o základní myšlenky: integrací křivky z diagramu odle času ( rok) dostaneme množství energie toný výkon je římo úměrný venkovní telotě ři telotě větší jak 3 C je toný výkon roven nule v souladu s vyhláškou 5/00 Sb. Známe-li tedy množství sotřebované energie za jeden rok, růběh růměrných venkovních telot a očet toných dnů, můžeme sestavit diagram trvání otřeb tela a elektřiny ro konkrétní hodnoty Sotřeba energií RD Pro otřeby ráce byl vybrán starý rodinný dvouatrový dům vystavěný z lných álených cihel (řízemí) a órobetonových tvárnic (. atro). Dům ostrádá jakoukoliv seciální teelnou izolaci. Významným zásahem do teelných vlastností byla výměna stávajících oken za lastové rámy s dvojsklem v roce 0. Vyhodnocení sotřeby energií v RD je oměrně komlikované a oírá se o odhady a statistické hodnoty. Pro otřeby ráce lze tento ostu okládat za dostačující. elektrická energie: nejjednodušší říad, rotože elektřina v RD není užívána ro otřeby vytáění a říravy TUV. Množství sotřebované energie lze tedy římo odečíst z faktury za elektřinu viz. Tab.. vytáění: v tomto říadě lze sotřebu tela za jeden rok odhadnout z množství sotřebovaného aliva, jeho výhřevnosti a účinnosti salovacího zařízení. Tyto hodnoty jsou uvedeny v Tab. solu s hodnotou ze zjišťování ENERGO 004 Českým statistickým úřadem. [3], [8], [6]. TUV: ři odhadu sotřeby TUV ve vybraném RD se nelze ořít o žárné konkrétní odklady. Množství sotřebované energie na říravu TUV bude tedy určeno z hodnot ENERGO 004, které udávají sotřebovanou energii ve venkovské lokalitě na jeden byt s růměrným očtem 3 osob na byt. [3]. Energie Palivo Sotřeba Výhřevnost Účinnost řeměny Množství energie Celkem [GJ] ENERGO 004 [GJ] Elektrická ,4 MWh* 5,8 - uhelné brikety 300 kg MJ/kg 80%,84 GJ Vytáění 73,0 8,7 smrkové dřevo 3500 kg 4 MJ/kg 80% 5, GJ TUV ,5 GJ,5 8,6 Tab. Sotřeba energií za jeden rok ro rodinný dům. V osledním slouci jsou uvedeny hodnoty vylývající z měření [3]. * kwh 3,6 GJ Pro hodnoty v Tab. a v souladu s odstavcem 3.. lze tedy sestavit roční diagram sotřeby tela ro rodinný dům viz. Obr

18 Jiří Horák 03 8,0 6,0 4,0 P [kw],0 0,0 8,0 6,0 4,0,0 0,0 8,0 vytáění 73 GJ/rok TUV + vytáění 84,5 GJ/rok TUV,5 GJ/rok elektřina 5,8 GJ/rok (4,4 MWh) 6,0 4,0,0 0, n [dny] Obr. 5 Roční diagram sotřeby tela a elektřiny ro rodinný dům. Pro dané venkovní teloty uvedené v říloze č. tedy vylývá, že toné období má 3 dní. Data otřebná ro sestrojení ročního diagramu sotřeby rodinného domu jsou uvedena v říloze č Sotřeba energií BD Bytový dům byl vystavěn v roce 974 anelovou technologií. Nachází se na konci řady sídliště s celkovým očtem 5 bytových jednotek. Dům má čtyři obytná atra a jedno technické odlaží v suterénu, které není účelově vytáěné. Střecha je lochá jednolášťová. Dům rodělal v roce 006 rekonstrukci. Došlo k výměně okenních a dveřních konstrukcí, zatelení svislých vnějších konstrukcí a výměně domovní ředávací stanice. Množství energií je stanoveno z ročního vyúčtování tela a elektřiny, které oskytl k nahlédnutí srávce objektu. Tab. Energie Množství Jednotka Přeočet na [GJ] Elektrická 39 MWh 4 Vytáění 430 GJ 430 TUV 70 GJ 70 Sotřeba energií za jeden rok ro bytový dům. MWh 3,6 GJ Jelikož energie ro vytáění a TUV je účtována souhrnně jako odebrané telo, množství energie ro TUV bylo stanoveno z měsíce červenec a sren, kdy se neředokládá sotřeba energie na vytáění. Množství energie ro TUV je ředokládáno o celý rok konstantní. Stejným zůsobem jsou tyto energie stanovovány i srávcem BD. Podle odstavce 3.. lze nyní ro dané množství energií sestrojit diagram sotřeby tela a elektřiny viz. Obr

19 Jiří Horák 03 P [kw] vytáění 430 GJ/rok TUV + vytáění 600 GJ/rok TUV 70 GJ/rok elektřina 4 GJ/rok (39 MWh) n [dny] Obr. 6 Roční diagram sotřeby tela a elektřiny ro bytový dům. Pro dané venkovní teloty uvedené v říloze č. tedy vylývá, že toné období má 3 dní. Data otřebná ro sestrojení ročního diagramu sotřeby bytového domu jsou uvedena v říloze č

20 Jiří Horák Komerční mikrokogenerační systémy Pro modelový říklad rodinného a bytového domu trh s kogeneračními jednotkami nabízí několik tyů mikrokogeneračních jednotek. Jedná se o jednotky elektrického výkonu do 50 kwe. Trh s jednotkami se rychle rozvíjí. Je to zůsobeno zvyšujícími se cenami energií, které nutí sotřebitele hledat úsornější a ekonomičtější metody hosodaření. Na existující otávku o úsorných a k životnímu rostředí šetrných zařízeních existuje i odovídající nabídka těchto zařízení ve formě mikrokogeneračních jednotek. [] 4.. Jednotky se salovacím motorem Jelikož výroba a rovoz salovacího motoru je dnes velmi dobře zvládnutá technologie a salovací motor je také rozšířen o celém světě, je díky své konstrukci a vlastnostem oužíván i v kogeneračních jednotkách. Salovací motor slouží jako osvědčený a solehlivý zdroj mechanické energie, která se v el. generátoru řeměňuje na elektrickou energii, a také jako zdroje teelné energie, která se získává omocí výměníků z energie výfukových lynů, chladícího okruhu motoru a z mazacího oleje motoru. Obr. 7 Schéma kogenerační jednotky se salovacím motorem.[4] Pro účely výroby jednotek se oužívají seciálně vyvinuté motory a nebo se také většinou uravují motory, které byly ůvodně zkonstruovány k jiným účelům, jako třeba ohon automobilů či jiných strojů. Úrava motoru sočívá hlavně v alivovém hosodářství, rotože mikrokogenerační jednotky se salovacím motorem salují hlavně lynná aliva a to ředevším zemní lyn. V říadě salování lynných aliv motory racují odle Ottova cyklu. Naroti tomu ři salování toných či jiných olejů racuje motor síše s Dieselovým cyklem

21 Jiří Horák Komerční jednotky se salovacím motorem V tabulce níže jsou uvedeny základní arametry několika mikrokogeneračních jednotek různých výrobců. V České reublice má zastouení ouze firma TEDOM se svou řadou jednotek Micro T7 a T30. Ostatní výrobci jsou řevážně z Německa. Uvedené jednotky jsou těch nejmenších výkonů, jakých lze vůbec na trhu nalézt. Výrobce Viessmann Vaillant Vaillant TEDOM Intelli Jednotka Vitobloc 00 Ty EM-5 ecopower e3.0 Mini- BHKW ecopower.0 Mikro- KWK Micro T7 intelli Heimkraftwerk Palivo - zemní lyn zemní lyn zemní lyn zemní lyn Sotřeba - - -,85 m 3 /h - Servis Hlučnost < 50 dba 46 dba 58 db < 50 db Motor Ottův cyklus Honda Zyl. Ottův cyklus, 4T, Ottův čtyřdobý cyklus - Ottův cyklus El. výkon 5,5 kw,3 až 3 kw kw 7 kw,5 kw Te. výkon 3,5 kw 4 až 8 kw,5 kw 7, kw 8,75 kw Účinnost 94% 90% 9% 9,7% 90% Rozměry VxŠxH 70x30x x370x760 30x30x80 380x700x x000x00 Hmotnost 350 kg - 00 kg Cena? 8 00 EUR EUR Kč EUR Poznámky - - včetně kondenzačního kotle 3 až 5 kw - - Tab. 3 Výběr kogeneračních jednotek se salovacím motorem. [7], [8], [9], [30] Cena jednotek se ohybuje kolem Kč, součástí ceny může být i montáž oříadě další zařízení (akumulační nádrž atd.) 4.. Jednotky se Stirlingovým motorem Stirlingův motor je zařízení, které řeměňuje telo římo na ráci, řičemž teelná energie je získávána z telotního rozdílu dvou rostředí. Tento druh motoru se nerosadil v automobilovém růmyslu, tudíž jeho vývoji nebyla věnována řílišná ozornost jako salovacímu motoru. Hlavní myšlena sočívá v tom, že racovní médium, které racuje v uzavřeném oběhu, je omocí vhodné konstrukce měnících se rostor střídavě řeouštěno mezi telou a studenou stranou motoru. V těchto rostorách je médiu dodávána energie ve formě tela a médium má snahu exandovat a konat ráci, která se odvádí. Po exanzi je omocí změn racovních rostor médium ochlazováno a stlačeno. Takto ochlazené médium se řeustí oět do telé části motoru kde může oět exandovat. Pro zlešení energetické bilance je oužito regenerátoru, který v sobě akumuluje část teelné energie média roudícího z telé strany do studené a ři zětném roudění toto médium oět ohřívá. - -

22 Jiří Horák 03 Obr. 8 Stirlingův motor: - regenerátor, - studená strana, 3 - telá strana, 4, 5 - racovní ísty, 6 - klikový mechanismus Obdobně jako u salovacího motoru je elektřina získávána v generátoru, který ohání Stirlingův motor. Pomocí teelných výměníků je z motoru odváděno užitečné telo. Stirlingův motor má však oroti salovacímu motoru velikou výhodu v tom, že ke salovaní nedochází v racovních rostorách válců nýbrž v samostatné salovací komoře otimálně navržené ke salování aliva Komerční jednotky se Stirlingovým motorem V Tab. 4 je vidět výhoda samostatné salovací komory a to sice ta, že lze oměrně jednoduše salovat i evná aliva. Ve dvou jednotkách je jako aliva oužito dřevěných elet co by obnovitelného zdroje energie. Výrobce Stirling Energy Viessmann Sunmachine ÖkoFEN Cleanergy Jednotka Whisergen kwe Vitotwin 300- V Sunmachine Pellet PELLEMATIC SMART-e Holzellet- BHWK CleanGen Power-Stirling Cleanergy C9G Palivo zemní lyn, biometan zemní lyn dřevěné elety dřevěné elety zemní lyn Sotřeba,55 m 3 /h - 3 kg/h - - Servis hod Hlučnost < 46 db < 54 db 49 db - 67 db St. motor 4-válcový -válcový, dva - dvojčinný ísty - Stirling V- El. výkon kw kw,5 až 3 kw kw až 9 kw Te. výkon 7,5 až 4,5 kw 6 kw 4,5 až 0,5 kw 4 kw 8 až 5 kw Účinnost 9% 97% 90% 0% 95% Rozměry VxŠxH 838x563x49 900x480x x60x x0x5 000x450x700 Hmotnost 48 kg 0 kg 40 kg 430 kg 470 kg Cena 7 5 EUR 000 EUR EUR EUR - Poznámky - integrovaný cena ouze za kondenzační samostatnou kotel 6-0 jednotku kw - - Tab. 4 Výběr kogeneračních jednotek se Stirlingovým motorem. [3], [3] - -

23 Jiří Horák Jednotky se salovací turbínou Získávání elektrické energie omocí mikroturbíny je stejné jako u ředchozích teelných motorů, omocí el. generátoru. Ovšem generátor je vybaven frekvenčním měničem, rotože mikroturbíny racují v desetitisících otáčkách za minutu. Frekvenční měnič je ro malé výkony v jednotkách kilowat ekonomicky i technologicky říustný. Teelná energie je oět získávána z výfukových salin omocí výměníku. Obr. 9 Mikroturbína Castone C30. [5] Mikroturbíny mají oroti salovacímu motoru menší účinnost a tedy i menší oměr elektřiny ku telu. Proto je nutné oužít regeneraci, která omáhá zvýšit účinnost výroby elektřiny. Výhodou salovacích turbín je ovšem to, že mají odobně jako Stirlingův motor samostatnou salovací komoru, ale lyny vzniklé v této komoře musí rojít loatkováním turbíny. Další nesornou výhodou je fakt, že turbíny mají ouze jednu ohyblivou rotační součást. Díky tomuto dosahují větší životnosti a menších vibrací oroti salovacím motorům. Mezi velkou nevýhodu atří ředevším nutnost komrese lynného aliva, aby bylo možno je doravit do řetlakové salovací komory Komerční jednotky se salovací turbínou Mikrokogenerační jednotky se salovací turbínou nemají řílišné zastouení na trhu tak jako salovací motory na Stirlingův motor. Výrobou jednotek se zabývá nař. firma Castone (USA), která nabízí jednotky od 30 kw elektrického výkonu nejen ro výrobu elektřiny a tela ale i chladu. Výrobce Castone MTT Micro Turbine Technology BV Jednotka C30 LP MTT's micro CHP system Palivo zemní lyn, LPG - Sotřeba 50 kw - Servis až 6000 hod/rok Hlučnost 65 db - Turbína rad. turbína i komresor - El. výkon 8 kw 3 kw - 3 -

24 Jiří Horák 03 Te. výkon 68 kw 8 kw Účinnost 83% 6,5% (*) Rozměry VxŠxH 600x54x760 - Hmotnost 555 až 78 kg - Cena EUR EUR Poznámky (*) elektrická účinnost Tab. 5 Výběr kogeneračních jednotek s mikroturbínou. [5], [33], [7] 4.4. Jednotky s arním motorem Parní stroj jako takový je starý a roracovaný stroj, který rodělává dlouhý vývoj a inovaci už od doby svého vzniku. Doba jeho masivního oužívání již ominula, ale stále nachází ulatnění v různých odvětvích. Parní motory nacházejí využití tam, kde už arní turbíny nedosahují otřebných účinností, tedy v oblasti těch nejmenších výkonů, řádově kilowatů. Parní motor může být ve dvou odobách. Klasická konstrukce, jak je všeobecně známa s klikovým úlným mechanismem a nebo lineární arní motor s jedním dvojčinným volným ístem viz. Obr. 0. Obr. 0 Lineární arní motor Lion-PowerBlocks: - lineární motor, - arní otrubí, 3 - ravý válec, 4 - vyvíječ áry, 5 - hořák, 6 - el. vodiče, 7 - volný íst, 8 - teelný výměník, 9 - indukční cívka, 0 - levý válec. [6] Mezi výhody arní jednotky atří oět možnost salování různých druhů aliv díky externí salovací komoře. Životnost se dá také ředokládat dobrá vzhledem k tomu, že íst je uložen volně s stroj ostrádá klikový mechanismus Komerční jednotky s arním motorem Výrobce Lion Powerblock Jednotka Bison - Powerblock Holzellets Palivo dřevěné elety Sotřeba - Servis - Hlučnost 48 až 54 db Motor lineární arní motor El. výkon 0,3 až kw Te. výkon 3 až 6 kw - 4 -

25 Jiří Horák 03 Účinnost 9% Rozměry VxŠxH 600x54x760 Hmotnost 59 kg Cena 00 EUR Poznámky - Tab. 6 Kogenerační jednotky s arním motorem. [6] 4.5. Jednotky s alivovým článkem Kombinovaná výroba el. energie a tela omocí alivového článku je rinciielně odlišná od ředchozích řešení kogeneračních jednotek. Podstatou není hoření ale chemická reakce. El. energie je získávána římou řeměnou viz. Obr., lze tedy dosáhnout vyšší elektrické účinnosti. Síťová elektřina je získávána z elektrického měniče, který řevádí stejnosměrný roud na střídavý, rotože alivový článek na své katodě a anodě generuje stejnosměrný roud, který je výsledkem chemické reakce aliva a okysličovadla. Prostor mezi katodou a anodou vylňuje elektrolyt, který může být jak kaalný tak i evný. Obr. Schéma výroby elektřiny a tela omocí alivového článku ze zemního lynu. Obr. Schéma alivového článku a reakce robíhající na katodě a anodě. Aby byly jednotky s alivovým článkem v dnešní době alesoň částečně komerčně oužitelné, není možné oužít jako aliva čistého vodíku a kyslíku. V komerčních jednotkách se oužívá zemního lynu jako aliva neboli zdroje vodíku a vzduchu jako okysličovadla viz. Obr.. Vodík se získává ze zemního lynu reformingem, což je rozklad metanu na vodík a oxid uhličitý řehřátou árou. [7] - 5 -

26 Jiří Horák Komerční jednotky s alivovým článkem Výrobce Vaillant BlueGEN Baxi Innotech Jednotka Mikro-KWK mit BlueGEN MG.0 GAMMA.0 Brennstoffzelle Palivo zemní lyn zemní lyn zemní lyn Sotřeba 3,7 kw 3,5 kw 3 kg/h Servis Hlučnost - < 45 db 49 db Pal. článek SOFC SOFC nízkotelotní PEM El. výkon kw 0,5 až,5 kw 0,3 až kw Te. výkon kw 0,3 až kw až,7 kw Účinnost 80 až 85% až 85% 85% Rozměry VxŠxH 600x60x x660x x600x600 Hmotnost - 00 kg 00 kg Cena EUR - Poznámky SOFC (Solid SOFC (Solid Oxide integrované omocné Oxide Fuel Cell) Fuel Cell) řitáění 3,5 až 5 kw Tab. 7 Komerční jednotky s alivovým článkem. [7] 4.6. Výhody a nevýhody konkrétních kogeneračních jednotek V Tab. 8 jsou srovnány důležité vlastnosti uvedených tyů kogeneračních jednotek. Tyto vlastnosti jsou dány konkrétním rinciem řeměny energie v jednotce. Vlastnosti Pobyhlivé části Salovací motor íst, ventily, klikový mechanismus Stirlingův motor klikový mechanismus, min dva ísty Salování vnitřní externí Salovací mikroturbína ouze rotor externí / vnitřní Parní motor ouze jeden íst externí Pal. článek žádné externí (reforming) Telárenský modul 0,4 0, < 0, < 0, > 0,5 Možnost integrovaný integrovaný integrovaný externí kotel externí řitáění kotel kotel kotel Vibrace vibrace klik. vibrace klik. vratný ohyb bez vibrací mechanismu mechanismu ístu bez vibrací Hluk < 50 db < 50 db < 65 db < 60 db < 45 db Otáčky stovky stovky tísíce římočarý ohyb - Paivo evné, evné, lynné, kaalné, lynné kaalné kaalné lynné lynné lynné Tab. 8 Celkové zhodnocení uvedených komerčních kogeneračních jednotek

27 Jiří Horák Volba mikrokogeneračního systému ro modelový říklad Vzájemný vztah mezi sotřebou a výrobou elektrické energie je všeobecně znám. Protože skladování či akumulace elektrické energie je stále nevýhodné, otýká se jakákoliv řenosová soustava s roblémem regulace. S touto roblematikou se otýkají veškeré řenosové soustavy o celém světě. Co se týče teelné energie, situace je o něco říznivější, rotože akumulace teelné energie je běžnou záležitostí. Kogenerační jednotky se s těmito roblémy musí taktéž vyořádat. 5.. Vazba mezi sotřebou a výrobou Nejvhodnější říad oužití kogenerační jednotky je ten, že vyrobí souhrnně řesně takové množství energií, které se také sotřebuje bezezbytku či řebytku. Ve skutečnosti je tento stav rakticky nedosažitelný. Proto je zaotřebí výkon kogenerační jednotky regulovat sojitě či nesojitě. Protože kogenerační jednotka vyrábí aralelně dva druhy energie, regulace se tím komlikuje. Jedním z důležitých rvků systému, který naomáhá regulaci, je akumulace, kterou lze alikovat jak na teelnou tak i elektrickou energii: akumulaci elektrické energie - lze vyloučit, rotože skladování elektřiny je v dnešní době málo účinné. Pokud ale je mikrokogenerační jednotka řiojena do rozvodné sítě, rozdíl mezi výrobou a sotřebou se bere ze sítě nebo naoak vrací zět. akumulace teelné energie - je to v raxi běžná záležitost, ať už v domácnostech či velkých telárenských systémech. Realizovat ji lze omocí dobře teelně izolovaných zásobníků s vodou v časovém intervalu desítek hodin. Aby kogenerační jednotka dosahovala své maximální účinnosti, musí racovat ve stanoveném režimu a vyrobené energie musí být sotřebovány římo nebo akumulovány. Při ohledu na roční diagram sotřeby je jasné, že oměr elektrické a teelné energie, neboli telárenský modul, se v růběhu roku zásadně mění. Bohužel telárenský modul kogenerační jednotky je ři jejím standardním rovozu stále stejný. Jednou z možností jak lze otimalizovat rovoz kogeneračních jednotek je oužití elektrického ohřevu vody nebo komresorového chlazení ro zvýšení sotřeby elektrické energie. Pro zvýšení teelné energie lze oužít absorbčního chladícího okruhu, trigenerace viz. kaitola.. [] 5.. Předoklady rovozu mikrokogenerační jednotky Předoklady byly vyvozeny z obecně latných zásad rovozu jednotek. [] a) jednotka je naojena na rozvodnou síť, nejedná se o ostrovní systém, a se sítí by měla soluracovat jakožto jeden z možných zůsobů regulace b) jednotka souhrnně za zúčtovací období ( rok) by měla vyrobit takové množství el. energie jakou domácnost či bytový dům sotřebuje c) rozdíl elektrického výkonu je komenzován ze sítě d) jednotka sleduje teelný výkon, tedy ohřev TUV nebo TUV + vytáění, obecně lze říci, že mimo otoné období by byl nadbytek nebo nedostatek teelné energie, okud by jednotka sledovala el. sotřebu. e) ři nedostatku teelné energie je oužito řitáění - 7 -

28 Jiří Horák 03 f) jednotka by měla být navržena tak, aby v říadě otřeby fungovala jako záložní zdroj a byla schona okrýt aktuální otřeby domu za jakékoliv situace 5.3. Výběr kogenerační jednotky Rozbor ročního diagramu sotřeby Na základě sotřeby energií, Tab., lze vyočítat růměrný elektrický výkon za jeden rok P el.d P P [ J] [ s] 9 E el ,9 W 4,6 kw BD τ el.d [ J] [ s] 9 E el 5, ,9 W 0,5 kw RD τ el.d (5) a růměrný výkon ro ohřev telé užitkové vody P TUVD. P P [ J] [ s] 9 E TUV ,9 W 5,4 kw BD τ TUVD [ J] [ s] 9 E TUV, ,7 W 0,4 kw RB τ TUVD (6) Volba kogenerační jednotky V souladu s ředoklady v kaitole 5. byly vybrány jednotky od firmy TEDOM ro bytový dům a od firmy Viessmann ro rodinný dům, jejichž arametry jsou uvedeny v Tab. 9. současně s arametry nově navržených kogeneračních jednotek v rámci ráce označených jako PBS 7 ro bytový a PBS ro rodinný dům. Návrh jednotek PBS je roveden v kaitolách 6 až. Teelný a elektrický výkon jednotek musí být větší než jsou růměrné výkony na ohřev TUV a ro výrobu elektřiny. Je to z toho důvodu, aby jednotky byly schony vůbec vyrobit ožadované množství energie. Výrobce TEDOM a.s. Viessmann - - Jednotka Micro T7 Vitotwin 300-W PBS 7 kw PBS kw Palivo zemní lyn zemní lyn dřevo dřevo El. výkon 7 kw kw 7 kw kw Teelný výkon 7, kw 6 kw,9 kw 4,6 kw Tab. 9 Účinnost 9,7 % 97 % 65,4 % 64,7 % Hmotnost 645 kg 0 kg - - Cena Kč 000 EUR - - jednotka + jednotka + jednotka + Zařízení jednotka kondenzační kotel sal. zařízení sal. zařízení Životnost 50 tis. hodin 50 tis. hodin - - Provoz 0 Kč/hod? - - Parametry vybraných kogenerační jednotek a nově navržených jednotek na biomasu na bázi loatkového stroje viz. Tab. 3,4,

29 Jiří Horák 03 Pro otřeby řitáění v bytovém domě je uvažován lynový kondenzační kotel s výkonem 0 až 00 kw o účinnosti 95 % a odhadovanou cenou 50 tis. Kč Posouzení vybrané kogenerační jednotky Na diagram je stále nahlíženo v rámci celého roku. Při rozboru bude jako nejmenší časový úsek uvažován jeden den, tudíž rozbor se nebude zabývat změnou sotřeby během jednoho dne. V souladu s ředokladem d), že jednotka bude sledovat ředevším teelný výkon lze určit, kolik tela vyrobí za tu dobu, kterou bude schona okrývat sotřebu tela domu samostatně. Tato doba ředstavuje období, kdy výkon sotřeby tela neřesáhne maximální teelný výkon jednotky. Provoz kogenerační jednotky je tedy rozdělen na letní období, kdy jednotka samostatně okrývá sotřebu tela označené indexem L, a na zimní období, kdy jednotka nestačí dodávat telo označené indexem Z viz. Obr. 4. Bod, který rozděluje tato dvě období je určen z ročního diagramu sotřeby a tabulky v říloze č. a č.3 lineární interolací. Následující vztahy jsou uvedeny ro říad bytového domu a jednotky TEDOM Micro T7. Ostatní varianty jsou zracovány v Tab. 0. Pro známý teelný výkon jednotky jsou z tabulky v říloze č. a 3 interolovány hodnoty celkového vyrobeného tela E QZ ro obě období t Z. 7, kw 479, GJ 6, dnů E τ Z QZ 479, GJ 6, dnů (7) Množství tela E QL letního období se zjistí z celkového množství otřebného tela E Q. Analogicky taktéž očet dnů t L. E QL E QLj E Q E QZ , 0,9 τ L 366 τz 366 6, 03,8 dnů GJ (8) Jednotka ři lném zatížení dosahuje telárenského modulu Pel.J 7 e 0,4 [ ] (9) P 7, Q J Lze tedy stanovit, kolik elektrické energie E el.l jednotka vyrobila za dobu t L 03,8 dnů, kdy stačila okrývat sotřebu tela jak ro ohřev TUV tak i ro vytáění v méně chladných dnech odle ředokladu d). E e E 0,4 0,9 49, GJ (0) el.l QL Zbytek elektrické energie se tedy musí vyrobit v růběhu dnů t Z kdy jednotka může jet neustále na lný výkon odle ředokladu b). Tento zbytek lze stanovit z rozdílu celkového množství otřebné elektrické energie E el. a energie vyrobené v době, kdy jednotka okrývala sotřebu samostatně E el.l. E E E 4,0 49, 9,8 GJ () el.z el el L Celkové množství vyrobené el. energie jednotkou E el.j. E E + E 9,8 + 49, 4 GJ () el.j el.z el L - 9 -

30 Jiří Horák 03 Na vyrobení množství elektrické energie E el.z má jednotka zbytek dní, kdy nestačí dodávat teelnou energii, tedy t Z 6, dnů. Lze tedy stanovit růměrný elektrický výkon P el.z za toto období t Z. Pokud by růměrný el. výkon byl větší než nominální výkon jednotky, jednotka za celý rok vyrobí méně energie než je sotřeba. P [ J] [ s] 9 E el.z 9, ,6 W 6,6 kw (3) τ 6, el.z Z Podobným zůsobem lze určit i růměrný elektrický výkon P el.l za letní období t L, kdy jednotka stačí dodávat teelnou energii. P [ J] [ s] 9 E el.l 49, 0 794,0 W,8 kw (4) τ 03, el.l L Množství vyrobené elektrické energie jednotkou v zimním období E el.z odovídá dané množství vyrobeného tela E QZJ. E 9 E el.z 9,8 0 5,6 GJ (5) e 0,4 QZJ Celkové množství tela vyrobeného jednotkou E QJ. E E + E 5,6 + 0,9 346,5 GJ (6) Qj QZj QLj Množství tela dodaného cizím zdrojem E QZc. E E E ,5 53,5 GJ (7) Qc Q Qj Z vyočtených výkonů vylývá, že jednotka je schona lnit ředoklady rovozu s rocentuálním denním využitím z L a z Z oroti nominálnímu el. výkonu ro jednotlivá období. ς ς Z L P P P P el.z el.j el.l el.j 6,6 0, % 7,8 0, % Výsledky osouzení jsou uvedeny v následující tabulce. Tyto údaje slouží k ekonomickému osouzení kogeneračních jednotek v kaitole 4. U varianty bytového domu s nově navrženou kogenerační jednotkou na biomasu PBS 7 došlo k tomu, že jednotka odle ředokladů rovozu nebude schona vyrobit celoročně otřebné množství el. energie. Část elektrické energie se tedy bude muset nakuovat ze sítě. (8)

31 Jiří Horák 03 Veličina RD Varianta BD Jednotka Pois 300-V PBS T7 PBS 7 t Z 5,5 69,4 6, 34,4 [dny] očet dnů zimního období t L 3,5 96,6 03,8 3,6 [dny] očet dnů letního období E QZ 63,4 70, 479, 434,4 [GJ] sotřeba tela za zimní období E QL, 4,3 0,9 65,6 [GJ] sotřeba tela za letní období E Q 84,5 600 [GJ] sotřeba tela za celý rok (viz. model) E Qj 95 73,5 346,5 49,4 [GJ] množství tela vyrobeného jednotkou E Qc 89,5 53,5 80,6 [GJ] množství tela z cizího zdroje e 0,7 0, 0,4 0,3 [-] telárenský modul jednotky E el.z,3,7 9,8 8,3 [GJ] vyrobená el. energie za zimní období E el.l 3,5 3, 49, 53,0 [GJ] vyrobená el. energie za letní období E el 5,8 4 [GJ] sotřeba el. energie za celý rok (viz. model) E el.j 5,8 5,8 4 34,3 [GJ] množství el. energie vyrobené jednotkou E el.c ,7 [GJ] množství nakuované energie P el.z 0,93 0,87 6,55 7,00 [kw] růměrný el. výkon jednotky v Z období P el.l 0,9 0,8,79,65 [kw] růměrný el. výkon jednotky v L období z Z [%] časové využití jednotky v letním období z L [%] časové využití jednotky v zimním období Tab. 0 Výsledky osouzení kogeneračních komerčních i navržených jednotek ro bytový i rodinný dům. BD - bytový dům, RD - rodinný dům - 3 -

32 Jiří Horák Návrh oběhu kogenerační jednotky Cílem je navrhnout co možná nejjednodušší oběh s důrazem na co nejmenší očet komonent skutečného zařízení. Důležitá je komaktnost a rozměry kogenerační jednotky. Je to v souladu s ožadavkem, že kogenerační jednotka má sloužit ro rovoz v rodinných a bytových domech. To znamená, že je třeba zajistit bezečnost rovozu, jeho nenáročnost na údržbu a co možná nejmenší velikost zařízení. Navržena budou zařízení ro rodinný i bytový dům o elektrickém výkonu odovídajícím zvoleným jednotkám TEDOM Micro T-7 a Viessmann Vitotwin 300-V, tedy 7 kw a kw. Po konzultacích v První brněnské strojírně Velká Bítěš, a.s. byl navržen oběh systému zobrazený na Obr. 3. Obr. 3 Návrh teelného oběhu kogenerační jednotky. K - komresor, T - turbína, SZ - salovací zařízení, SV - salinový ventlátor, AC - střídavý roud, DC - stejnosměrný roud, I. - výměník saliny/vzduch, II. - salinový výměník, TUV+UT - telá voda ro otřeby vytáění a TUV Salovací zařízení bude navrženo ro salování kusového dřeva (biomasy) klasickým odhořívacím zůsobem. Toto zařízení je jednoduché, komaktní a bezečné. Lze ředokládat, že bude racovat s velkým řebytkem vzduchu. Zařízení rinciielně bude fungovat stejně jako salovací komora lynové turbíny ovšem v odtlakovém režimu. Za loatkový stroj je zvolena lynová turbína racující odle Braytonova otevřeného oběhu. Použitím otevřeného oběhu souvisí s volbou média, což může být rakticky ouze vzduch. PBS Velká Bíteš, a.s. má s výrobou těchto turbíny bohaté zkušenosti. Pracovním médiem turbíny je tedy vzduch. Ostatní média byla vyloučena, rotože jejich oužití sebou řináší jisté roblémy s těsněním zařízení a také s dolňováním uniknuvšího média do atmosféry. Navíc vzduch je všudyřítomný, netoxický a bezečný a jeho úniky z oběhu nezůsobují, mimo snížení účinnosti, žádné jiné komlikace. Použití regenerace tela je v říadě otevřeného oběhu namístě. Jelikož z otevřeného oběhu se telo odvádí solečně s médiem, je vhodné tuto energii oužít znovu. Jednou z dalších výhod volby vzduchu jako média oběhu turbíny je ta, že se dá médium oužít jako ředehřátý vzduch ro salovací zařízení. Tento horký vzduch hořením reaguje s alivem a vznikají saliny, které jsou zdrojem tela vstuujícího do Braytonova oběhu turbíny. Touto cestou je zajištěna regenerace tela v teelném oběhu jednotky

33 Jiří Horák 03 Výměník saliny/vzduch je místem v oběhu, kde dochází jak k ředávání tela salin do oběhu turbíny, tak současně i k regeneraci tela. Výměník je volen jako trubkový se salinami roudícími v trubkovém rostoru s ohledem na čištění výměníku. Telovodní výměník je stejné koncece jako výměník saliny/vzduch s tím rozdílem, že v mezitrubkovém rostoru roudí voda. Salinový ventilátor je v oběhu umístěn z toho důvodu, že salovací zařízení se ředokládá jako odtlakové. Jelikož výměníky mají určitou tlakovou ztrátu, salinový ventilátor má za úkol tyto tlakové ztráty výměníku komenzovat. 6.. Postu výočtu teelného oběhu kogenerační jednotky Pro výočet a návrh teelného oběhu a růtočných částí systému bylo oužito rogramového rostředí MATLAB. Výočet obsahuje několik interačních cyklů. Schéma ostuu je naznačeno na Obr. 4. Obr. 4 Schéma ostuu výočtu kogeneračního systému s horkovzdušnou turbínou. Vztahy a hodnoty arametrů uvedené v dalších kaitolách jsou výsledkem oslední interace. Odhadované ředběžné hodnoty nejsou uváděny. Detailní výočet je roveden ouze ro jednotku PBS o elektrickém výkonu kw. Pro jednotku PBS 7 o výkonu 7 kw jsou uváděny některé důležité volené a vyočtené arametry ouze tabulkově. Koncece výkonnější jednotky je analogická s méně výkonnou jednotkou

34 Jiří Horák Výočet oběhu horkovzdušné turbíny Procesy, odehrávající se uvnitř turbíny, jsou osány Braytonovým oběhem viz. Obr 5. V tomto oběhu jsou zahrnuty tlakové ztráty d a celkové účinnosti reálného komresoru a turbíny. Měrná teelná kaacita vzduchu není ovažována za konstantní, ale je závislá na telotě vzduchu viz. [34]. Stavové veličiny jako entroie a entalie vzduchu jsou určovány odle řílohy č. 4 a ro různé tlakové hladiny omocí orovnávací izobary viz. [4] a říloha č. 6. Samotný Braytonův oběh se skládá z komrese -3 (v ideálním říadě izoentroické -), následného řívodu tela 3-4 (v ideálním říadě za konstantního tlaku) a exanze 4-6, která je oět v ideálním říadě ovažována ze izoentroickou 4-5. Jelikož je oběh otevřený, odvod tela se děje rostřednictvím racovního média, které odchází mimo turbínu viz. Obr. 5.. Obr. 5 T - s diagram Braytonova oběhu lynové turbíny Při návrhu oběhu je třeba stanovit některé důležité arametry. Volba těchto arametrů je založena na zkušenostech z vývoje a rovozu reálných zařízení a také na materiálových možnostech. Zvolené arametry jsou uvedeny v Tab. a jejich hodnoty jsou stanoveny na základě dooručení PBS Velká Bíteš. Celkové účinnosti komresoru h K a turbíny h T jsou ři rvním řihlížení interačního výočtu odhadnuty a následně ověřeny viz. kaitola 8. Poměrná tlaková ztráta výměníku x je také nejrve odhadnuta a oté ověřena výočtem v kaitole.6.. Parametry v Tab. jsou tedy již konečné hodnoty

35 Jiří Horák 03 Komresní oměr P k Telota řed turbínou t 4 Poměrná tlaková ztráta sání x 0 Poměrná tlaková ztráta výměníku x Poměrná tlaková ztráta výstuu x Celková účinnost komresoru h K Celková účinnost turbíny h T [-] [ C] [%] [%] [%] [%] [%] Tab. Volené základní arametry lynové turbíny. Celkové účinnosti a celková tlaková ztráta výměníku jsou ověřeny výočtem. Tučně vyznačené hodnoty charakterizují jednotku o výkonu kw. 7.. Vzduchový turbokomresor Atmosférický vzduch nasávaný komresorem je stlačován a roudí dále do výměníku, kde se ohřívá. Komresor řitom sotřebovává ráci a K, kterou odebírá exanzní turbíně. T-s diagram navrhovaného komresoru je na Obr. 6. Obr. 6 T-s diagram komresoru Sání vzduchu na vstuu turbíny (bod 0) Stav vzduchu na vstuu je uvažován ři standardních odmínkách viz Tab.. Atmosférický tlak atm telota vzduchu t 0 vlhkost vzduchu x Plynová konstanta vzduchu r vz Plynová konstanta vodní áry r HO [Pa] [K] [kg/kg sv ] [J/kg K] [J/kg K] ,5 0, ,0 46,5 Tab. Standardní odmínky na sání turbíny. Podmínky jsou stejné ro obě výkonové varianty jednotky.

36 Jiří Horák 03 Plynová konstanta vlhkého vzduchu se určí z oměrného zastouení vodní áry v suchém vzduchu. r vz x 0,00634 J rsv + rho ,5 88, (9) + x + x + 0, ,0634 kg K Entroie na sání se určí odle řílohy č.4. kj s 0 entroie( t atm ; x) entroie( 035; 0,00634) 6,6876 (0) kg K 7... Sání vzduchu na vstuu do komresoru (bod ) Tlak vzduchu na vstuu do komresoru je menší o ztráty v sání oroti atmosférickému vzduchu. ( ξ ) 035 ( 0,03) 9885 Pa atm 0 () Telota vzduchu na vstuu do komresoru. t 0 t 88,5 K () Entroie vzduchu na vstuu do komresoru je určena omocí orovnávací izobary viz. říloha č. 6. s atm 035 kj s 0 + rvz ln 6, , ln 6,696 (3) 9885 kg K Entalie vzduchu na vstuu do komresoru. kj i entalie( t; x) entalie( 88,5; 0,00634) 89,9 (4) kg Izoentroický výstu komresoru (bod ) Entroie vzduchu v bodě je stejná jako v bodě (izoentroický děj). kj s s 6,696 (5) kg K Tlak vzduchu na výstuu z komresoru je dán komresním oměrem P k. Π Pa (6) 3 k Telota na výstuu z komresoru je vyočítána omocí inverzní funkce viz. říloha č.4. t inventroie(s + rvz ln ; x) atm (7) inventroie(6, , ln ; 0,00634) 393,88 K 035 Entalie na izoentroickém výstuu z komresoru. kj i entalie( t ; x) entalie( 393,88; 0,00634) 397,0 (8) kg

37 Jiří Horák Skutečný výstu z komresoru (bod 3) Entalie na výstuu z komresoru lze stanovit z celkové účinnosti komresoru h K. i ( i i ) ( 397,0 89,9) kj i + 89,9 + 44,9 (9) η 0,7 kg 3 K Telota na výstuu z komresoru je vyočítána omocí inverzní funkce viz, říloha č.4. inventalie(i ; x) inventalie(44,9; 0,00634) 438,8 K (30) t 3 3 Entroie na výstuu z komresoru. s 3 entroie entroie ( t ; x) 3 r vz ( 44,9; 0,00634) ln 3 atm 88, ln , Izoentroická a skutečná měrná ráce komresoru: a K iz i i 397,0 89,9 07, K a i3 i 44,9 89,9 53,0 kj kg kj kg kj kg K (3) (3) 7.. Exanzní vzduchová turbína Poté, co se stlačený vzduch ohřeje ve výměníku saliny/vzduch na ožadovanou telotu, vstuuje do exanzní radiálně-axiální turbíny a koná ráci a T. Část této ráce slouží ro ohon komresoru a část ro ohon elektrického generátoru. Obr. 7 T-s diagram návrhové exanze

Způsob určení množství elektřiny z kombinované výroby vázané na výrobu tepelné energie

Způsob určení množství elektřiny z kombinované výroby vázané na výrobu tepelné energie Příloha č. 2 k vyhlášce č. 439/2005 Sb. Zůsob určení množství elektřiny z kombinované výroby vázané na výrobu teelné energie Maximální množství elektřiny z kombinované výroby se stanoví zůsobem odle následujícího

Více

Cvičení z termomechaniky Cvičení 5.

Cvičení z termomechaniky Cvičení 5. Příklad V komresoru je kontinuálně stlačován objemový tok vzduchu *m 3.s- + o telotě 0 * C+ a tlaku 0, *MPa+ na tlak 0,7 *MPa+. Vyočtěte objemový tok vzduchu vystuujícího z komresoru, jeho telotu a říkon

Více

Teplovzdušné motory motory budoucnosti

Teplovzdušné motory motory budoucnosti Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní Katedra energetiky Telovzdušné motory motory budoucnosti Text byl vyracován s odorou rojektu CZ.1.07/1.1.00/08.0010 Inovace odborného vzdělávání

Více

7. VÝROBNÍ ČINNOST PODNIKU

7. VÝROBNÍ ČINNOST PODNIKU 7. Výrobní činnost odniku Ekonomika odniku - 2009 7. VÝROBNÍ ČINNOST PODNIKU 7.1. Produkční funkce teoretický základ ekonomiky výroby 7.2. Výrobní kaacita Výrobní činnost je tou činností odniku, která

Více

Základy teorie vozidel a vozidlových motorů

Základy teorie vozidel a vozidlových motorů Základy teorie vozidel a vozidlových motorů Předmět Základy teorie vozidel a vozidlových motorů (ZM) obsahuje dvě hlavní kaitoly: vozidlové motory a vozidla. Kaitoly o vozidlových motorech ukazují ředevším

Více

2. Cvi ení A. Výpo et množství vzduchu Zadání p íkladu: Množství p ivád ného vzduchu Vp :

2. Cvi ení A. Výpo et množství vzduchu Zadání p íkladu: Množství p ivád ného vzduchu Vp : 2. Cvčení Požadavky na větrání rostor - Výočet množství větracího vzduchu - Zůsob ohřevu a chlazení větracího vzduchu A. Výočet množství vzduchu výočet množství čerstvého větracího vzduchu ro obsluhovaný

Více

V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma :

V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma : Jednoduché vratné děje ideálního lynu ) Děj izoter mický ( = ) Za ředokladu konstantní teloty se stavová rovnice ro zadané množství lynu změní na známý zákon Boylův-Mariottův, která říká, že součin tlaku

Více

VLHKÝ VZDUCH STAVOVÉ VELIČINY

VLHKÝ VZDUCH STAVOVÉ VELIČINY VLHKÝ VZDUCH STAVOVÉ VELIČINY Vlhký vzduch - vlhký vzduch je směsí suchého vzduchu a vodní áry okuující solečný objem - homogenní směs nastává okud je voda ve směsi v lynném stavu - heterogenní směs ve

Více

Termodynamické základy ocelářských pochodů

Termodynamické základy ocelářských pochodů 29 3. Termodynamické základy ocelářských ochodů Termodynamika ůvodně vznikla jako vědní discilína zabývající se účinností teelných (arních) strojů. Později byly termodynamické zákony oužity ři studiu chemických

Více

Termodynamika pro +EE1 a PEE

Termodynamika pro +EE1 a PEE ermodynamika ro +EE a PEE Literatura: htt://home.zcu.cz/~nohac/vyuka.htm#ee [0] Zakladni omocny text rednasek Doc. Schejbala [] Pomocne texty ke cviceni [] Prednaska cislo 7 - Zaklady termodynamiky [3]

Více

PZP (2011/2012) 3/1 Stanislav Beroun

PZP (2011/2012) 3/1 Stanislav Beroun PZP (0/0) 3/ tanislav Beroun Výměna tela mezi nální válce a stěnami, telotní zatížení vybraných dílů PM elo, které se odvádí z nálně válce, se ředává stěnám ve válci řevážně řestuem, u vznětových motorů

Více

V následující tabulce jsou uvedeny jednotky pro objemový a hmotnostní průtok.

V následující tabulce jsou uvedeny jednotky pro objemový a hmotnostní průtok. 8. Měření růtoků V následující tabulce jsou uvedeny jednotky ro objemový a hmotnostní růtok. Základní vztahy ro stacionární růtok Q M V t S w M V QV ρ ρ S w ρ t t kde V [ m 3 ] - objem t ( s ] - čas, S

Více

OPTIMALIZACE PLÁŠTĚ BUDOV

OPTIMALIZACE PLÁŠTĚ BUDOV OPTIMALIZACE PLÁŠTĚ BUDOV Jindřiška Svobodová Úvod Otimalizace je ostu, jímž se snažíme dosět k co nejlešímu řešení uvažovaného konkrétního roblému. Mnohé raktické otimalizace vycházejí z tak jednoduché

Více

Fyzikální chemie. 1.2 Termodynamika

Fyzikální chemie. 1.2 Termodynamika Fyzikální chemie. ermodynamika Mgr. Sylvie Pavloková Letní semestr 07/08 děj izotermický izobarický izochorický konstantní V ermodynamika rvní termodynamický zákon (zákon zachování energie): U Q + W izotermický

Více

STRUKTURA A VLASTNOSTI PLYNŮ

STRUKTURA A VLASTNOSTI PLYNŮ I N E S I C E D O R O Z O J E Z D Ě L Á Á N Í SRUKURA A LASNOSI PLYNŮ. Ideální lyn ředstavuje model ideálního lynu, který často oužíváme k oisu různých dějů. Naříklad ozději ředokládáme, že všechny molekuly

Více

Aleš Lalík Septima A 2003/04 SPALOVACÍ MOTORY SEMINÁRNÍ PRÁCE FYZIKÁLNÍ SEMINÁŘ

Aleš Lalík Septima A 2003/04 SPALOVACÍ MOTORY SEMINÁRNÍ PRÁCE FYZIKÁLNÍ SEMINÁŘ Aleš Lalík Setima A 2003/04 SPALOVACÍ MOTORY SEMINÁRNÍ PRÁCE FYZIKÁLNÍ SEMINÁŘ Obsah. Úvod. Historie... 3 2. Základní ojmy 2. Zdvihový objem válce a zdvihový oměr... 5 2.2 Komresní oměr... 6 2.3 Střední

Více

Způsobilost. Data a parametry. Menu: QCExpert Způsobilost

Způsobilost. Data a parametry. Menu: QCExpert Způsobilost Zůsobilost Menu: QExert Zůsobilost Modul očítá na základě dat a zadaných secifikačních mezí hodnoty různých indexů zůsobilosti (caability index, ) a výkonnosti (erformance index, ). Dále jsou vyočítány

Více

Kruhový děj s plynem

Kruhový děj s plynem .. Kruhový děj s lynem Předoklady: 0 Chceme využít skutečnost, že lyn koná ři rozínání ráci, na konstrukci motoru. Nejjednodušší možnost: Pustíme nafouknutý balónek. Balónek se vyfukuje, vytlačuje vzduch

Více

Systémové struktury - základní formy spojování systémů

Systémové struktury - základní formy spojování systémů Systémové struktury - základní formy sojování systémů Základní informace Při řešení ať již analytických nebo syntetických úloh se zravidla setkáváme s komlikovanými systémovými strukturami. Tato lekce

Více

Oddělení technické elektrochemie, A037. LABORATORNÍ PRÁCE č.9 CYKLICKÁ VOLTAMETRIE

Oddělení technické elektrochemie, A037. LABORATORNÍ PRÁCE č.9 CYKLICKÁ VOLTAMETRIE ÚSTV NORGNIKÉ THNOLOGI Oddělení technické elektrochemie, 037 LBORTORNÍ PRÁ č.9 YKLIKÁ VOLTMTRI yklická voltametrie yklická voltametrie atří do skuiny otenciodynamických exerimentálních metod. Ty doznaly

Více

Obrázek1:Nevratnáexpanzeplynupřesporéznípřepážkudooblastisnižšímtlakem p 2 < p 1

Obrázek1:Nevratnáexpanzeplynupřesporéznípřepážkudooblastisnižšímtlakem p 2 < p 1 Joule-Thomsonův jev Fyzikální raktikum z molekulové fyziky a termodynamiky Teoretický rozbor Entalie lynu Při Joule-Thomsonově jevu dochází k nevratné exanzi lynů do rostředí s nižším tlakem. Pro ilustraci

Více

7. Měření dutých objemů pomocí komprese plynu a určení Poissonovy konstanty vzduchu Úkol 1: Určete objem skleněné láhve s kohoutem kompresí plynu.

7. Měření dutých objemů pomocí komprese plynu a určení Poissonovy konstanty vzduchu Úkol 1: Určete objem skleněné láhve s kohoutem kompresí plynu. 7. Měření dutých objemů omocí komrese lynu a určení Poissonovy konstanty vzduchu Úkol : Určete objem skleněné láhve s kohoutem komresí lynu. Pomůcky Měřený objem (láhev s kohoutem), seciální lynová byreta

Více

Pokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými

Pokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými 1 Pracovní úkoly 1. Změřte závislost indexu lomu vzduchu na tlaku n(). 2. Závislost n() zracujte graficky. Vyneste také závislost závislost vlnové délky sodíkové čáry na indexu lomu vzduchu λ(n). Proveďte

Více

Úloha č.1: Stanovení Jouleova-Thomsonova koeficientu reálného plynu - statistické zpracování dat

Úloha č.1: Stanovení Jouleova-Thomsonova koeficientu reálného plynu - statistické zpracování dat Úloha č.1: Stanovení Jouleova-Thomsonova koeficientu reálného lynu - statistické zracování dat Teorie Tam, kde se racuje se stlačenými lyny, je možné ozorovat zajímavý jev. Jestliže se do nádoby, kde je

Více

Numerické výpočty proudění v kanále stálého průřezu při ucpání kanálu válcovou sondou

Numerické výpočty proudění v kanále stálého průřezu při ucpání kanálu válcovou sondou Konference ANSYS 2009 Numerické výočty roudění v kanále stálého růřezu ři ucání kanálu válcovou sondou L. Tajč, B. Rudas, a M. Hoznedl ŠKODA POWER a.s., Tylova 1/57, Plzeň, 301 28 michal.hoznedl@skoda.cz

Více

03 Návrh pojistného a zabezpečovacího zařízení

03 Návrh pojistného a zabezpečovacího zařízení 03 Návrh ojistného a zabezečovacího zařízení Roman Vavřička ČVUT v raze, Fakulta strojní Ústav techniky rostředí 1/14 htt://ut.fs.cvut.cz Roman.Vavricka@fs.cvut.cz ojistné zařízení chrání zdroj tela roti

Více

Výpo ty Výpo et hmotnostní koncentrace zne ující látky ,

Výpo ty Výpo et hmotnostní koncentrace zne ující látky , "Zracováno odle Skácel F. - Tekáč.: Podklady ro Ministerstvo životního rostředí k rovádění Protokolu o PRTR - řehled etod ěření a identifikace látek sledovaných odle Protokolu o registrech úniků a řenosů

Více

Výpočet svislé únosnosti osamělé piloty

Výpočet svislé únosnosti osamělé piloty Inženýrský manuál č. 13 Aktualizace: 04/2016 Výočet svislé únosnosti osamělé iloty Program: Soubor: Pilota Demo_manual_13.gi Cílem tohoto inženýrského manuálu je vysvětlit oužití rogramu GEO 5 PILOTA ro

Více

Předpjatý beton Přednáška 6

Předpjatý beton Přednáška 6 Předjatý beton Přednáška 6 Obsah Změny ředětí Okamžitým ružným řetvořením betonu Relaxací ředínací výztuže Přetvořením oěrného zařízení Rozdílem telot ředínací výztuže a oěrného zařízení Otlačením betonu

Více

Výpočty za použití zákonů pro ideální plyn

Výpočty za použití zákonů pro ideální plyn ýočty za oužití zákonů ro ideální lyn Látka v lynné stavu je tvořena volnýi atoy(onoatoickýi olekulai), ionty nebo olekulai. Ideální lyn- olekuly na sebe neůsobí žádnýi silai, jejich obje je ve srovnání

Více

2.3.6 Práce plynu. Předpoklady: 2305

2.3.6 Práce plynu. Předpoklady: 2305 .3.6 Práce lynu Předoklady: 305 Děje v lynech nejčastěji zobrazujeme omocí diagramů grafů závislosti tlaku na objemu. Na x-ovou osu vynášíme objem a na y-ovou osu tlak. Př. : Na obrázku je nakreslen diagram

Více

NÁVRH A OVĚŘENÍ BETONOVÉ OPŘENÉ PILOTY ZATÍŽENÉ V HLAVĚ KOMBINACÍ SIL

NÁVRH A OVĚŘENÍ BETONOVÉ OPŘENÉ PILOTY ZATÍŽENÉ V HLAVĚ KOMBINACÍ SIL NÁVRH A OVĚŘENÍ BETONOVÉ OPŘENÉ PILOTY ZATÍŽENÉ V HLAVĚ KOMBINACÍ SIL 1. ZADÁNÍ Navrhněte růměr a výztuž vrtané iloty délky L neosuvně ořené o skalní odloží zatížené v hlavě zadanými vnitřními silami (viz

Více

CVIČENÍ 4 - PROVOZNÍ STAVY VZDUCHOTECHNICKÉ JEDNOTKY

CVIČENÍ 4 - PROVOZNÍ STAVY VZDUCHOTECHNICKÉ JEDNOTKY CVIČENÍ 4 - PROVOZNÍ STAVY VZDUCHOTECHNICKÉ JEDNOTKY - ři zracování tohoto cvičení studenti naváží na cvičení č.4 a č.5 - oužijí zejména vstuní údaje ze cvičení č.4, u kterých bude třeba sladit kombinaci

Více

Obsah. KVET _Mikrokogenerace. Technologie pro KVET. Vývoj pro zlepšení parametrů KVET. Využití KVET _ Mikrokogenerace

Obsah. KVET _Mikrokogenerace. Technologie pro KVET. Vývoj pro zlepšení parametrů KVET. Využití KVET _ Mikrokogenerace Upozornění: Tato prezentace slouží výhradně pro účely firmy TEDOM. Byla sestavena autorem s využitím citovaných zdrojů a veřejně dostupných internetových zdrojů. Využití této prezentace nebo jejich částí

Více

KRUHOVÝ DĚJ S IDEÁLNÍM PLYNEM. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Přemysl Šedivý. 1 Základní pojmy 2

KRUHOVÝ DĚJ S IDEÁLNÍM PLYNEM. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Přemysl Šedivý. 1 Základní pojmy 2 Obsah KRUHOÝ DĚJ S IDEÁLNÍM PLYNEM Studijní text ro řešitele FO a ostatní zájemce o fyziku Přemysl Šedivý Základní ojmy ztahy užívané ři oisu kruhových dějů s ideálním lynem Přehled základních dějů v ideálním

Více

Termodynamika ideálního plynu

Termodynamika ideálního plynu Přednáška 5 Termodynamika ideálního lynu 5.1 Základní vztahy ro ideální lyn 5.1.1 nitřní energie ideálního lynu Alikujme nyní oznatky získané v ředchozím textu na nejjednodužší termodynamickou soustavu

Více

Obecné informace. Oběhová čerpadla. Typový identifikační klíč. Výkonové křivky GRUNDFOS ALPHA+ GRUNDFOS ALPHA+ Oběhová čerpadla.

Obecné informace. Oběhová čerpadla. Typový identifikační klíč. Výkonové křivky GRUNDFOS ALPHA+ GRUNDFOS ALPHA+ Oběhová čerpadla. Čeradla ředstavují komletní konstrukční řadu oběhových čeradel s integrovaným systémem řízení odle diferenčního tlaku, který umožňuje řizůsobení výkonu čeradla aktuálním rovozním ožadavkům dané soustavy.

Více

VUT, FAST, Brno ústav Technických zařízení budov

VUT, FAST, Brno ústav Technických zařízení budov Termo realizaci inovovaných technicko-ekonomických VUT, FAST, Brno ústav Technických zařízen zení budov Vodní ára - VP Vaříme a dodáváme vodní áru VP: mokrou, suchou, sytou, řehřátou nízkotlakou, středotlakou

Více

Univerzita Pardubice FAKULTA CHEMICKO TECHNOLOGICKÁ

Univerzita Pardubice FAKULTA CHEMICKO TECHNOLOGICKÁ Univerzita Pardubice FAKULA CHEMICKO ECHNOLOGICKÁ MEODY S LAENNÍMI PROMĚNNÝMI A KLASIFIKAČNÍ MEODY SEMINÁRNÍ PRÁCE LICENČNÍHO SUDIA Statistické zracování dat ři kontrole jakosti Ing. Karel Dráela, CSc.

Více

PRŮTOK PLYNU OTVOREM

PRŮTOK PLYNU OTVOREM PRŮTOK PLYNU OTVOREM P. Škrabánek, F. Dušek Univerzita Pardubice, Fakulta chemicko technologická Katedra řízení rocesů a výočetní techniky Abstrakt Článek se zabývá ověřením oužitelnosti Saint Vénantovavy

Více

Obr. V1.1: Schéma přenosu výkonu hnacího vozidla.

Obr. V1.1: Schéma přenosu výkonu hnacího vozidla. říklad 1 ro dvounáravové hnací kolejové vozidlo motorové trakce s mechanickým řenosem výkonu určené následujícími arametry určete moment hnacích nárav, tažnou sílu na obvodu kol F O. a rychlost ři maximálním

Více

Větrání hromadných garáží

Větrání hromadných garáží ětrání hromadných garáží Domácí ředis: ČSN 73 6058 Hromadné garáže, základní ustanovení, latná od r. 1987 Zahraniční ředisy: ÖNORM H 6003 Lüftungstechnische Anlagen für Garagen. Grundlagen, Planung, Dimensionierung,

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 6

VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 6 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 6 Entalická bilance výměníků tela Hana Charvátová, Dagmar Janáčová Zlín 013 Tento studijní

Více

Národní informační středisko pro podporu jakosti

Národní informační středisko pro podporu jakosti Národní informační středisko ro odoru jakosti Konzultační středisko statistických metod ři NIS-PJ Analýza zůsobilosti Ing. Vratislav Horálek, DrSc. ředseda TNK 4: Alikace statistických metod Ing. Josef

Více

6. Vliv způsobu provozu uzlu transformátoru na zemní poruchy

6. Vliv způsobu provozu uzlu transformátoru na zemní poruchy 6. Vliv zůsobu rovozu uzlu transformátoru na zemní oruchy Zemní oruchou se rozumí sojení jedné nebo více fází se zemí. Zemní orucha může být zůsobena řeskokem na izolátoru, růrazem evné izolace, ádem řetrženého

Více

Výpočet svislé únosnosti osamělé piloty

Výpočet svislé únosnosti osamělé piloty Inženýrský manuál č. 13 Aktualizace: 06/2018 Výočet svislé únosnosti osamělé iloty Program: Soubor: Pilota Demo_manual_13.gi Cílem tohoto inženýrského manuálu je vysvětlit oužití rogramu GEO 5 PILOTA ro

Více

Základy elektrických pohonů, oteplování,ochlazování motorů

Základy elektrických pohonů, oteplování,ochlazování motorů Základy elektrických ohonů, otelování,ochlazování motorů Určeno ro studenty kombinované formy FS, ředmětu Elektrotechnika II an Dudek únor 2007 Elektrický ohon Definice (dle ČSN 34 5170): Elektrický ohon

Více

PŘEPLŇOVÁNÍ PÍSTOVÝCH SPALOVACÍCH MOTORŮ

PŘEPLŇOVÁNÍ PÍSTOVÝCH SPALOVACÍCH MOTORŮ PŘEŇOVÁNÍ PÍSOVÝCH SPALOVACÍCH MOORŮ Účinnou cestou ke zvyšování výkonů PSM je zvyšování středního efektivního tlaku oběhu e oocí řelňování. Současně se tí zravidla zvyšuje i celková účinnost otoru. Zvyšování

Více

Vysoké učení technické v Brně Fakulta strojního inženýrství Energetický ústav Odbor fluidního inženýrství Victora Kaplana

Vysoké učení technické v Brně Fakulta strojního inženýrství Energetický ústav Odbor fluidního inženýrství Victora Kaplana Vysoké učení technické v Brně Fakulta strojního inženýrství Energetický ústav Odbor fluidního inženýrství Victora Kalana Měření růtokové, účinnostní a říkonové charakteristiky onorného čeradla Vyracovali:

Více

Úvěr a úvěrové výpočty 1

Úvěr a úvěrové výpočty 1 Modely analýzy a syntézy lánů MAF/KIV) Přednáška 8 Úvěr a úvěrové výočty 1 1 Rovnice úvěru V minulých řednáškách byla ro stav dluhu oužívána rovnice 1), kde ředokládáme, že N > : d = a b + = k > N. d./

Více

Termodynamika pro +EE1

Termodynamika pro +EE1 ermodynamka ro +EE Možné zůsoby výroby elektrcké energe v současnost: termodynamcká řeměna energe jaderného alva a salování foslních alv v mechanckou energ a následně elektrckou - jaderné a klascké teelné

Více

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika)

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika) Kvantová a statistická fyzika 2 (ermodynamika a statistická fyzika) ermodynamika ermodynamika se zabývá zkoumáním obecných vlastností makroskoických systémů v rovnováze, zákonitostmi makroskoických rocesů,

Více

Propojení regulátorů RDG a Synco 700 do systému

Propojení regulátorů RDG a Synco 700 do systému Regulátory řady Synco Proojení regulátorů RDG a Synco 700 do systému Autor: René Kaemfer - ichal Bassy Verze: 0., 04-0-00 Dokument číslo: 53_VVS_RDG_HQ_CZ Coyright Siemens, s.r.o. 00 . Příklad: Regulace

Více

Stabilita prutu, desky a válce vzpěr (osová síla)

Stabilita prutu, desky a válce vzpěr (osová síla) Stabilita rutu, deky a válce vzěr (oová íla) Průběh ro ideálně římý rut (teoretický tav) F δ F KRIT Průběh ro reálně římý rut (reálný tav) 1 - menší očáteční zakřivení - větší očáteční zakřivení F Obr.1

Více

TECHNICKÝ KATALOG GRUNDFOS. UPS, UPSD série 200 2.2

TECHNICKÝ KATALOG GRUNDFOS. UPS, UPSD série 200 2.2 TECNICKÝ KATALOG GRUNDFOS UPS, UPSD série. Oběhová bezucávková čeradla (mokroběžná) ro toná zařízení Obsah UPS, UPSD série Obecné informace strana Výkonový rozsah Výrobní rogram Tyový klíč Použití 5 Otoné

Více

Experimentální identifikace tepelného výměníku. Bc. Michal Brázdil

Experimentální identifikace tepelného výměníku. Bc. Michal Brázdil Exerimentální identifikace teelného výměníku Bc Michal Brádil STOČ 9 UTB ve Zlíně, Fakulta alikované informatiky, 9 ABSTRAKT Cílem této ráce je senámení čtenáře s laboratorním aříením Armfield PCT 4 a

Více

Třetí Dušan Hložanka 16. 12. 2013. Název zpracovaného celku: Řetězové převody. Řetězové převody

Třetí Dušan Hložanka 16. 12. 2013. Název zpracovaného celku: Řetězové převody. Řetězové převody Předmět: Ročník: Vytvořil: Datum: Stavba a rovoz strojů Třetí Dušan Hložanka 6.. 03 Název zracovaného celku: Řetězové řevody Řetězové řevody A. Pois řevodů Převody jsou mechanismy s tuhými členy, které

Více

Porovnání dostupnosti různých konfigurací redundance pro napájení stojanů

Porovnání dostupnosti různých konfigurací redundance pro napájení stojanů Porovnán dostunosti různých konfigurac redundance ro naájen stojanů White Paer č. 48 Resumé K zvýšen dostunosti výočetnch systémů jsou ro zařzen IT oužvány řenače a duáln rozvody naájen. Statistické metody

Více

Řetězy Vysokovýkonné IWIS DIN 8187

Řetězy Vysokovýkonné IWIS DIN 8187 Vysokovýkonné válečkové řetězy IWIS Přednosti a výhody Všechny komonenty jsou vyrobeny z vysokojakostních ušlechtilých ocelí s maximální řesností. V souladu s ředokládaným namáháním komonentu jsou teelně

Více

Ekonomické a ekologické efekty kogenerace

Ekonomické a ekologické efekty kogenerace Ekonomické a ekologické efekty kogenerace Kogenerace (KVET) společná výroba elektřiny a dodávka tepla -zvyšuje využití paliva. Velká KVET teplárenství. Malá KVET - parní, plynová, paroplynová, palivové

Více

3.2 Metody s latentními proměnnými a klasifikační metody

3.2 Metody s latentními proměnnými a klasifikační metody 3. Metody s latentními roměnnými a klasifikační metody Otázka č. Vyočtěte algoritmem IPALS. latentní roměnnou z matice A[řádek,slouec]: A[,]=, A[,]=, A[3,]=3, A[,]=, A[,]=, A[3,]=0, A[,3]=6, A[,3]=4, A[3,3]=.

Více

ÚSTAV ORGANICKÉ TECHNOLOGIE

ÚSTAV ORGANICKÉ TECHNOLOGIE LABORATOŘ OBORU I ÚSTAV ORGANICKÉ TECHNOLOGIE (111) B Měření secifického ovrchu sorbentů Vedoucí ráce: Doc. Ing. Bohumír Dvořák, CSc. Umístění ráce: S31 1 MĚŘENÍ SPECIFICKÉHO POVRCHU SORBENTŮ 1. CÍL PRÁCE

Více

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ 10. týden doc. Ing. Renata WAGNEROVÁ, Ph.D. Ostrava 2013 doc. Ing. Renata WAGNEROVÁ, Ph.D. Vysoká škola báňská

Více

BH059 Tepelná technika budov Konzultace č. 2

BH059 Tepelná technika budov Konzultace č. 2 Vysoké učení technické v Brně Fakulta stavební Ústav ozemního stavitelství BH059 Teelná technika budov Konzultace č. 2 Zadání P6 zadáno na 2 konzultaci, P7 bude zadáno Průběh telot v konstrukci Kondenzace

Více

TEPELNÁ ČERPADLA VZUCH - VODA

TEPELNÁ ČERPADLA VZUCH - VODA TEPELNÁ ČERPADLA VZUCH - VODA www.hokkaido.cz Budoucnost patří ekologickému a ekonomickému vytápění Tepelné čerpadlo vzduch - voda Omezení emisí CO 2 Spotřeba energie Životní prostředí Principem každého

Více

II. MOLEKULOVÁ FYZIKA 1. Základy termodynamiky IV

II. MOLEKULOVÁ FYZIKA 1. Základy termodynamiky IV II. MOLEKLOÁ FYZIKA 1. Základy termodynamiky I 1 Obsah Princi maxima entroie. Minimum vnitřní energie. D otenciály vnitřní energie entalie volná energie a Gibbsova energie a jejich názorný význam ři některých

Více

Elektrárny A1M15ENY. přednáška č. 8. Jan Špetlík. Katedra elektroenergetiky, Fakulta elektrotechniky ČVUT, Technická 2, 166 27 Praha 6

Elektrárny A1M15ENY. přednáška č. 8. Jan Špetlík. Katedra elektroenergetiky, Fakulta elektrotechniky ČVUT, Technická 2, 166 27 Praha 6 Elektrárny A1M15ENY řednáška č. 8 Jan Šetlík setlij@fel.cvut.cz -v ředmětu emailu ENY Katedra elektroenergetiky, Fakulta elektrotechniky ČVUT, Technická, 166 7 Praha 6 První říad bez řihřívání: T = 1 MPa

Více

Hluk Nepříjemný nebo nežádoucí zvuk, nebo jiné rušení (ČSN ).

Hluk Nepříjemný nebo nežádoucí zvuk, nebo jiné rušení (ČSN ). 14SF3 00 Úvod do akustiky Zvuk Zvuk je mechanické vlnění ružného rostředí (lynného nebo kaalného), které je vnímatelné lidským sluchem. Jedná se o odélné vlnění, kdy částice rostředí kmitají v ásmu slyšitelných

Více

PROCESY V TECHNICE BUDOV cvičení 1, 2

PROCESY V TECHNICE BUDOV cvičení 1, 2 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ AKULTA APLIKOVANÉ INORMATIKY PROCESY V TECHNICE BUDOV cvičení, část Hana Charvátová, Dagmar Janáčová Zlín 03 Tento studijní materiál vznikl za finanční odory Evroského sociálního

Více

Obnovitelné zdroje energie

Obnovitelné zdroje energie ČVUT v Praze Fakulta stavební Katedra technických zařízení budov TBA1 Vytápění Zdroje tepla - obnovitelné zdroje 1 Obnovitelné zdroje energie Zákon 406/2000 Sb o hospodaření energií OZE=nefosilní přírodní

Více

ZKOUŠENÍ A DIMENZOVÁNÍ CHLADICÍCH STROPŮ

ZKOUŠENÍ A DIMENZOVÁNÍ CHLADICÍCH STROPŮ ZKOUŠENÍ A DIMENZOVÁNÍ CHLADICÍCH STROPŮ Ing. Vladimír Zmrhal, Ph.D. ČVUT v Praze, Fakulta ojní, Ústav techniky rostředí Technická 4, 166 07 Praha 6 Vladimir.Zmrhal@fs.cvut.cz ANOTACE Článek učně oisuje

Více

zadání: Je dán stejnosměrný motor s konstantním magnetickým tokem, napájen do kotvy, indukčnost zanedbáme.

zadání: Je dán stejnosměrný motor s konstantním magnetickým tokem, napájen do kotvy, indukčnost zanedbáme. Teorie řízení 004 str. / 30 PŘÍKLAD zadání: Je dán stejnosměrný motor s konstantním magnetickým tokem, naájen do kotvy, indukčnost zanedbáme. E ce ω a) Odvoďte řenosovou funkci F(): F( ) ω( )/ u( ) b)

Více

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Projekt realizoaný na SPŠ Noé Město nad Metují s finanční odorou Oeračním rogramu Vzděláání ro konkurenceschonost Králoéhradeckého kraje ermodynamika Ing. Jan Jemelík Ideální lyn: - ideálně stlačitelná

Více

Rovnice kontinuity V potrubí a vývěvou musí proudit vždy stejné množství plynu. Platí

Rovnice kontinuity V potrubí a vývěvou musí proudit vždy stejné množství plynu. Platí Rovnice kontinuity V otrubí a vývěvou musí roudit vždy stejné množství lynu. Platí n n n n n n S S S t V t V t V q q q q............... 2 2 1 1 2 2 2 1 1 1 3 2 1 = = = = = = = = = = Vacuum Technology J.Šandera,

Více

MĚŘENÍ VÝKONU V SOUSTAVĚ MĚNIČ - MOTOR. Petr BERNAT VŠB - TU Ostrava, katedra elektrických strojů a přístrojů

MĚŘENÍ VÝKONU V SOUSTAVĚ MĚNIČ - MOTOR. Petr BERNAT VŠB - TU Ostrava, katedra elektrických strojů a přístrojů MĚŘENÍ VÝKONU V SOUSAVĚ MĚNIČ - MOOR Petr BERNA VŠB - U Ostrava, katedra elektrických strojů a řístrojů Nástu regulovaných ohonů s asynchronními motory naájenými z měničů frekvence řináší kromě nesorných

Více

Analýza chování hybridních nosníků ze skla a oceli Ing. Tomáš FREMR doc. Ing. Martina ELIÁŠOVÁ, CSc. ČVUT v Praze Fakulta stavební

Analýza chování hybridních nosníků ze skla a oceli Ing. Tomáš FREMR doc. Ing. Martina ELIÁŠOVÁ, CSc. ČVUT v Praze Fakulta stavební stavební obzor 9 10/2014 115 Analýza chování hybridních nosníků ze skla a oceli Ing. Tomáš FRER doc. Ing. artina ELIÁŠOVÁ, CSc. ČVUT v Praze Fakulta stavební Článek oisuje exerimentální analýzu hybridních

Více

Kombinovaná výroba elektrické energie a tepla (KVET) Možnosti využití biomasy

Kombinovaná výroba elektrické energie a tepla (KVET) Možnosti využití biomasy Kombinovaná výroba elektrické energie a tepla (KVET) Možnosti využití biomasy Spotřeba PEZ svět 2004 Výroba el. energie svět 2004 Výroba el. energie ČR 2004 Využit ití tepla KVET Vytápění Ohřev TUV Technologie

Více

2.6.7 Fázový diagram. Předpoklady: Popiš děje zakreslené v diagramu křivky syté páry. Za jakých podmínek mohou proběhnout?

2.6.7 Fázový diagram. Předpoklady: Popiš děje zakreslené v diagramu křivky syté páry. Za jakých podmínek mohou proběhnout? 2.6.7 Fázový diagram Předoklady: 2606 Př. 1: Poiš děje zakreslené v diagramu křivky syté áry. Za jakých odmínek mohou roběhnout? 4 2 1 3 1) Sytá ára je za stálého tlaku zahřívána. Zvětšuje svůj objem a

Více

GEOMETRICKÉ PROJEKCE. Petra Surynková, Yulianna Tolkunova

GEOMETRICKÉ PROJEKCE. Petra Surynková, Yulianna Tolkunova GEOMETRICKÉ PROJEKCE S VYUŽITÍM 3D POČÍTAČOVÉHO MODELOVÁNÍ Petra Surynková, Yulianna Tolkunova Článek ojednává o realizovaných metodách inovace výuky deskritivní geometrie na Matematicko-fyzikální fakultě

Více

Součástí dodávky mikrokogenerační jednotky:

Součástí dodávky mikrokogenerační jednotky: 1 z 5 2013-02-22 16:21 Úvod (/home/) > CLEANERGY C9G (/cleanergy-9kwe/) > Kogenerační jednotka CLEANERGY C9G Součástí dodávky mikrokogenerační jednotky: mikrokogenerační jednotka CLEANERGY C9G elektroměr,

Více

K141 HY3V (VM) Neustálené proudění v potrubích

K141 HY3V (VM) Neustálené proudění v potrubích Neustálené roudění v tlakových otrubích K4 HY3 (M) Neustálené roudění v otrubích 0 ÚOD Ustálené roudění ouze rostorové změny Neustálené roudění nejen rostorové, ale i časové změny vznik ři jakýchkoliv

Více

ELEKTRICKÝ SILNOPROUDÝ ROZVOD V PRŮMYSLOVÝCH PROVOZOVNÁCH

ELEKTRICKÝ SILNOPROUDÝ ROZVOD V PRŮMYSLOVÝCH PROVOZOVNÁCH VŠB TU Ostrava Fakulta elektrotechniky a informatiky Katedra elektrotechniky ELEKTRCKÝ SLNOPROUDÝ ROZVOD V PRŮMYSLOVÝCH PROVOZOVNÁCH 1. ZÁKLADNÍ USTANOVENÍ, NÁZVOSLOVÍ 2. STUPNĚ DODÁVKY ELEKTRCKÉ ENERGE

Více

TEPELNÁ ČERPADLA VZUCH - VODA

TEPELNÁ ČERPADLA VZUCH - VODA TEPELNÁ ČERPDL VZUCH - VOD www.hokkaido.cz Budoucnost patří ekologickému a ekonomickému vytápění Tepelné čerpadlo vzduch - voda Principem každého tepelného čerpadla vzduch - voda je přenos tepla z venkovního

Více

MOŽNOSTI TERMOMECHANICKÉHO VÁLCOVÁNÍ DRÁTU NA SPOJITÉ DRÁTOTRATI V TŘINECKÝCH ŽELEZÁRNÁCH

MOŽNOSTI TERMOMECHANICKÉHO VÁLCOVÁNÍ DRÁTU NA SPOJITÉ DRÁTOTRATI V TŘINECKÝCH ŽELEZÁRNÁCH 15. 17. 5. 2001, Ostrava, Czech Reublic MOŽNOSTI TERMOMECHANICKÉHO VÁLCOVÁNÍ DRÁTU NA SPOJITÉ DRÁTOTRATI V TŘINECKÝCH ŽELEZÁRNÁCH Jiří Kliber a Karel Čmiel b a) Katedra tváření materiálu FMMI, VŠB-TU Ostrava,

Více

7.5.13 Rovnice paraboly

7.5.13 Rovnice paraboly 7.5.1 Rovnice arabol Předoklad: 751 Př. 1: Seiš všechn rovnice ro arabol a nakresli k nim odovídající obrázk. Na každém obrázku vznač vzdálenost. = = = = Pedagogická oznámka: Sesání arabol je důležité,

Více

Předpjatý beton Přednáška 12

Předpjatý beton Přednáška 12 Předjatý beton Přednáška 12 Obsah Mezní stavy oužitelnosti - omezení řetvoření Deformace ředjatých konstrukcí Předoklady, analýza, Stanovení řetvoření. Všeobecně - u ředjatých konstrukcí nejen růhyb od

Více

Spojitá náhodná veličina

Spojitá náhodná veličina Lekce 3 Sojitá náhodná veličina Příad sojité náhodné veličiny je komlikovanější, než je tomu u veličiny diskrétní Je to dáno ředevším tím, že jednotková ravděodobnost jistého jevu se rozkládá mezi nekonečně

Více

ných ehřátých kapalin zásobníky zkapalněných plynů havarijní scénáře a jejich rozbor

ných ehřátých kapalin zásobníky zkapalněných plynů havarijní scénáře a jejich rozbor Procesy s účastí stlačených a zkaalněných ných lynů a řeh ehřátých kaalin zásobníky zkaalněných lynů havarijní scénáře a jejich rozbor Havarijní scénář Nebezečný otenciál zádrž nebezečných látek uvolnitelná

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV VODNÍCH STAVEB FACULTY OF CIVIL ENGINEERING INSTITUTE OF WATER STRUCTURES VYUŽITÍ INTEGRAČNÍ METODY PRO MĚŘENÍ PRŮTOKU

Více

Aproximativní analytické řešení jednorozměrného proudění newtonské kapaliny

Aproximativní analytické řešení jednorozměrného proudění newtonské kapaliny U8 Ústav rocesní a zracovatelské techniky F ČVUT v Praze Aroximativní analytické řešení jednorozměrného roudění newtonské kaaliny Některé říady jednorozměrného roudění newtonské kaaliny lze řešit řibližně

Více

Nelineární model pneumatického pohonu

Nelineární model pneumatického pohonu XXVI. SR '1 Seminar, Instruments and Control, Ostrava, ril 6-7, 1 Paer 48 Nelineární model neumatického ohonu NOSKIEVIČ, Petr Doc.,Ing., CSc., Katedra TŘ-35, VŠ-TU Ostrava, 17. listoadu, Ostrava - Poruba,

Více

Dynamické programování

Dynamické programování ALG Dynamické rogramování Nejdelší rostoucí odoslounost Otimální ořadí násobení matic Nejdelší rostoucí odoslounost Z dané oslounosti vyberte co nejdelší rostoucí odoslounost. 5 4 9 5 8 6 7 Řešení: 4 5

Více

ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec

ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec SŠT Mělník Číslo rojektu Označení materiálu ázev školy Autor Tematická oblast Ročník Anotace CZ..07/.5.00/34.006 VY_3_OVACE_H..05 ntegrovaná střední škola technická Mělník, K učilišti 566, 76 0 Mělník

Více

ZÁKLADNÍ POJMY V OBLASTI ZÁSOBOVÁNÍ TEPLEM

ZÁKLADNÍ POJMY V OBLASTI ZÁSOBOVÁNÍ TEPLEM ZÁKLADNÍ POJMY V OBLASTI ZÁSOBOVÁNÍ TEPLEM ZÁKLADNÍ POJMY Zásobování teplem energetické odvětví, jehož účelem je výroba, dodávka a rozvod tepla. Centralizované zásobování teplem (CZT) výroba, rozvod a

Více

Reproduktor elektroakustický měnič převádějící elektrický signál na akustický signál, převážně zvukový

Reproduktor elektroakustický měnič převádějící elektrický signál na akustický signál, převážně zvukový Měření reroduktorů Reroduktor elektroakustický měnič řevádějící elektrický signál na akustický signál, řevážně zvukový i w u Reroduktor reroduktor jako dvoubran y( t) h( t)* x( t) Y ( ω ) H ( ω ). X X

Více

TERMODYNAMIKA 1. AXIOMATICKÁ VÝSTAVBA KLASICKÉ TD Základní pojmy

TERMODYNAMIKA 1. AXIOMATICKÁ VÝSTAVBA KLASICKÉ TD Základní pojmy ERMODYNAMIKA. AXIOMAICKÁ ÝSABA KLASICKÉ D.. Základní ojmy Soustava (systém) je část rostoru od okolí oddělený stěnou uzavřená - stěna brání výměně hmoty mezi soustavou a okolím vers. otevřená (uzavřená

Více

TERMODYNAMIKA 1. AXIOMATICKÁ VÝSTAVBA KLASICKÉ TD Základní pojmy

TERMODYNAMIKA 1. AXIOMATICKÁ VÝSTAVBA KLASICKÉ TD Základní pojmy ERMODYNAMIKA. AXIOMAICKÁ ÝSABA KLASICKÉ D.. Základní ojmy Soustava (systém) je část rostoru od okolí oddělený stěnou uzavřená - stěna brání výměně hmoty mezi soustavou a okolím vers. otevřená (uzavřená

Více

ZÁKLADNÍ POJMY V OBLASTI ZÁSOBOVÁNÍ TEPLEM

ZÁKLADNÍ POJMY V OBLASTI ZÁSOBOVÁNÍ TEPLEM ZÁKLADNÍ POJMY V OBLASTI ZÁSOBOVÁNÍ TEPLEM ZÁKLADNÍ POJMY Zásobování teplem energetické odvětví, jehož účelem je výroba, dodávka a rozvod tepla. Soustava zásobování tepelnou energií (SZTE) soubor zařízení

Více

Kombinovaná výroba elektřiny a tepla v roce 2008

Kombinovaná výroba elektřiny a tepla v roce 2008 Energetická statistika Kombinovaná výroba a tepla v roce 2008 Výsledky statistického zjišťování duben 2010 Oddělení surovinové a energetické statistiky Impressum oddělení surovinové a energetické statistiky

Více

SHANNONOVY VĚTY A JEJICH DŮKAZ

SHANNONOVY VĚTY A JEJICH DŮKAZ SHANNONOVY VĚTY A JEJICH DŮKAZ JAN ŠŤOVÍČEK Abstrakt. Důkaz Shannonových vět ro binární symetrický kanál tak, jak měl být robrán na řednášce. Číslování vět odovídá řednášce. 1. Značení a obecné ředoklady

Více