3 Neparametrické odhady

Rozměr: px
Začít zobrazení ze stránky:

Download "3 Neparametrické odhady"

Transkript

1 3 Neparametrcké ohay Přepokláané výstupy z výuky: 1. Stuent zná výhoy a nevýhoy neparametrckých ohaů funkce přežtí. Stuent e schopen sestrot Kaplanův-Meerův oha funkce přežtí 3. Stuent e schopen sestrot oha funkce přežtí pomocí metoy úmrtnostních tabulek 4. Stuent e schopen sestrot Nelsonův-Aalenův oha kumulatvní rzkové funkce 5. Stuent okáže uveené neparametrcké ohay oplnt 100(1-α)% ntervalem spolehlvost Neparametrcké metoy v analýze přežtí přestavuí v současné obě nepoužívaněší nástroe pro honocení at o přežtí. Tato kaptola prezentue hlavní neparametrcké metoy pro oha klíčových funkcí v analýze přežtí funkce přežtí a kumulatvní rzkové funkce a hlavních číselných charakterstk meánu přežtí a průměrné élky přežtí. Prezentovány sou metoy pro konstrukc ntervalů spolehlvost. 3.1 Parametrcké a neparametrcké ohay Statstcké metoy lze obecně rozělt na záklaě ech přepoklau o charakteru pozorovaných at na parametrcké a neparametrcké. Parametrcké metoy (parametrc survval analyss) vyžauí specfkac konkrétního rozělení náhoné velčny T, zatímco neparametrcké metoy (nonparametrc survval analyss) žáné zvláštní přepoklay ohleně rozělení pravěpoobnost náhoné velčny T nevyžauí. V přípaě mecínských aplkací e znalost konkrétního rozělení velčny T velm omezená, což společně s enouchostí použtí ční neparametrcké metoy šroce používaným v analýze přežtí. Na ruhou stranu znalost rozělení pravěpoobnost náhoné velčny T e vžy výhoná, neboť použtí parametrckých meto e většnou enoušší a př korektně specfkovaném rozělení přesněší. Pomínka korektní specfkace rozělení pravěpoobnost e však nesmírně ůležtá. Poku totž přepoklááme pravěpoobnostní chování stuované cílové populace le určtého rozělení, ale ve skutečnost tento přepokla splněn není, e špatně specfkace celého statstckého moelu, což vee k zaváěícím výslekům a nenterpretovatelným závěrům. V analýze přežtí efnueme eště alší skupnu meto označovanou ako semparametrcké (semparametrc survval analyss). Jená se o moelovací přístupy, které nesou plně parametrcké, protože nevyžauí přepokla o znalost rozělení velčny T, ncméně akožto moely s parametry, respektve regresním koefcenty pracuí. Neznáměší semparametrckou metoou e tzv. Coxův regresní moel proporconálních rzk, který e blíže vysvětlen v kaptole Kaplanův-Meerův oha funkce přežtí Neznáměším a nepoužívaněším neparametrckým ohaem funkce přežtí, který se stal stanarem pro honocení přežtí v klnckých stuích e Kaplanův-Meerův oha funkce 1

2 přežtí (Kaplan-Meer estmator) [1]. Myšlenka výpočtu e enouchá, aby byl subekt v čase t bez sleované uálost (aby se např. pacent s náorovým onemocněním ožl času, nesmí se u ně uálost vyskytnout v žáném čase t * takovém, pro něž platí, že t * < t. Abychom tey mohl ohanout pravěpoobnost, že u aného subektu se o času t nevyskytne sleovaná uálost, musíme ohanout opovíaící pravěpoobnost také pro všechny časy t *, které času t přecházeí. Přepokláeme n různých časů přežtí takových, že t 1 < t < < t n < t. Pak pravěpoobnost přežtí bez výskytu sleované uálost až o času t, S(, lze vyářt pomocí vztahu (3.1) Abychom získal oha S(, e třeba specfkovat enotlvé komponenty rovnce (3.1). Vzhleem k tomu, že nemáme k spozc nou vstupní nformac než pozorované honoty, můžeme pravěpoobnost přežtí aného času vyářt pouze s pomocí úaů o úmrtí v aném čase. Obecně lze tey psát 1, (3.) ke e počet sleovaných uálostí zaznamenaných v čase t a e počet subektů v rzku výskytu sleované uálost v čase t, což e počet subektů, kteří bez sleované uálost přečkal čas t 1. Funkc přežtí pak můžeme ohanout pomocí vztahu. (3.3) Př ohau pravěpoobností přežtí enotlvých časů t e třeba aekvátně zohlent cenzorování. Cenzorované časy přežtí totž nelze honott steně ako kompletní pozorování, neboť nepřspívaí k, ale zároveň e nelze z honocení vyřat. Kaplanův-Meerův oha pracue s cenzorováním tak, že tato pozorování vypaávaí ze skupny subektů v rzku hne po zaznamenaném čase cenzorování. Je-l tey čas t cenzorovaný a platí, že t < t < t +1, pak aný subekt e v čase t započítán o skupny subektů v rzku ( ), ale v násleuícím pozorovaném čase výskytu sleované uálost t +1 ho ž o skupny v rzku ( +1 ) nezahrnueme. Výslený vzorec pro Kaplanův-Meerův oha funkce přežtí lze tey enouchou úpravou vztahu (3.3) zapsat ako 1. (3.4) Praktcky počítáme výše uveený součn pouze přes kompletní časy přežtí, ncméně teoretcky ho lze efnovat přes všechny pozorované časy přežtí s tím, že cenzorované časy přežtí k ohau přspívaí pouze prostřenctvím, neboť pro cenzorované časy e = 0.

3 3..1 Greenwooův vzorec Pro konstrukc 100(1 α)% ntervalu spolehlvost pro oha potřebueme získat eho rozptyl, tey var. Vzhleem k tomu, že oha e án ako součn, e vhoněší ho neříve zlogartmovat a převést tak na součet enotlvých ohaů. Dále lze ukázat, že korelace enotlvých ohaů a e nulová, což nám umožňue použít enouché pravlo pro počítání s rozptylem náhoné velčny. Výše uveené vee ke vztahu var ( ln Sˆ( ) = var ( ) ln = var ln = var( ln( )). (3.5) t t t K ovození rozptylu logartmu lze využít fakt, že maxmálně věrohoným ohaem pravěpoobnost p e číslo 1 / a tzv. elta metou (elta metho) []. Dostáváme tak oha rozptylu logartmu ve tvaru var ( ln( p )) ˆ 1 = p ˆ 1 var( ) = = ( ). (3.6) Dosaíme-l tento vztah zpět o (3.5) a použeme-l znovu elta metou, získáme výslený oha rozptylu S ˆ(, který e označován ako tzv. Greenwooův vzorec (Greenwoo s formula) [3], ve tvaru ( Sˆ( ) = ( Sˆ( ) var. (3.7) t ( ) Greenwooův vzorec e stanarem pro oha varablty Kaplanova-Meerova ohau funkce přežtí a e mplementován ve většně ostupných softwarů, které umožňuí analýzu přežtí. Exstuí však alternatvní ohay, se kterým se můžeme v lteratuře softwarech setkat, příklaem e oha le autorů Peto a kol. [4], kteří navrhl oha rozptylu Sˆ ( ve tvaru var 1, (3.8) ke n t e počet subektů v rzku v čase t. Tento oha byl navržen pro časy, ky se S ˆ( blíží honotám 1 nebo 0 a př nchž by oha pomocí Greenwooova vzorce mohl skutečnou varabltu pohonocovat [5]. 3

4 (1 α)% nterval spolehlvost pro Kaplanův-Meerův oha Nepoužívaněším postupem pro konstrukc 100(1 α)% ntervalu spolehlvost pro oha S ˆ( e využtí aproxmace normálním rozělením, kterou nám umožňue platnost centrální lmtní věty. Za přepoklau, že aproxmace normálním rozělením e korektní (pomínky obré aproxmace souvsí přeevším s ostatečným množstvím subektů zahrnutých o analýzy), můžeme zkonstruovat 100(1 α)% nterval spolehlvost pro Kaplanův-Meerův oha pravěpoobnost přežtí v čase t násleuícím způsobem ( S( z var( Sˆ( ); Sˆ( z var( Sˆ( ))) ˆ 1 α / + 1 α / t, (3.9) ke z (1 α ) označue 100(1 α )% kvantl stanarzovaného normálního rozělení. Výhoou tohoto vyáření e eho výpočetní enouchost a ostupnost, nevýhoou e eho symetre. V blízkost honot 1 a 0 e totž symetrcký nterval spolehlvost pro oha funkce přežtí nevhoný, neboť přpouští honoty přežtí větší než 1 nebo naopak honoty záporné. Z praktckých ůvoů se tak častě používá konstrukce 100(1 α)% ntervalu spolehlvost s využtím transformace ohau S ˆ( na honoty z ntervalu (-, ). Ta nám totž umožní se vyhnout výše uveeným komplkacím. Příklaem e použtí komplementární logartmcké transformace, př níž transformueme oha funkce přežtí ako lnln, (3.10) což s využtím elta metoy pro ovození rozptylu výrazu (3.10), varlnln, a po aplkac pravel pro počítání s mocnnam vee na výslený tvar 100(1 α)% ntervalu spolehlvost pro S ˆ( ve tvaru 1/, 1/. (3.11) 3. Oha funkce přežtí metoou úmrtnostních tabulek Záklaní myšlenka ohau funkce přežtí pomocí metoy úmrtnostních tabulek e stená ako v přípaě Kaplanova-Meerova ohau, opět vyařueme oha S ˆ( ako součn pomíněných pravěpoobností opovíaících určtým časovým ntervalům. Na rozíl o Kaplanova-Meerova ohau, ke byly časové ntervaly určeny pozorovaným honotam časů přežtí, v přípaě metoy úmrtnostních tabulek pracueme s přeem efnovanou saou J časových ntervalů. Ty mohou být stanoveny lbovolně, ncméně většnou logcky vycházeí z pomínek aných expermentem nebo stuí. V populační analýze přežtí onkologckých pacentů se napříkla nečastě používaí enoleté ntervaly a zaímá nás většnou pětleté (5 ntervalů) nebo esetleté (10 ntervalů) přežtí. Vzhleem k tomu, že pracueme s elším časovým ntervaly, nám pro oha S ˆ( stačí pouze agregovaná ata, tey souhrnné úae pro enotlvé časové ntervaly. Označme počet sleovaných uálostí v tém ntervalu, ke = 1,, J, ále označme počet subektů v rzku výskytu sleované uálost na začátku ntervalu a nakonec c označme počet 4

5 subektů s časem přežtí cenzorovaným v průběhu tého ntervalu. Pravěpoobnost přežtí tého časového ntervalu pak můžeme ohanout pomocí výrazu = 1, (3.1) c což vee k ohau pravěpoobnost přežtí bez sleované uálost až o konce ntervalu J, S ˆ( J ), ve tvaru Sˆ ( J ) =. (3.13) J J = 1 c = 1 = 1 Z uveeného vztahu e vět, že cenzorované časy přežtí přímo ovlvňuí výpočet ohau funkce přežtí a to tak, že v kažém ntervalu oečítáme o počtu vstupuících subektů polovnu počtu cenzorovaných subektů. Tento postup přepokláá rovnoměrné cenzorování v průběhu celého ntervalu, polovna z c subektů e cenzorovaná v první polovně ntervalu a polovna z c subektů e cenzorovaná v ruhé polovně ntervalu. Počet subektů s uálostí tak vztahueme k počtu subektů v rzku uprostře ntervalu. 3.3 Nelsonův-Aalenův oha kumulatvní rzkové funkce Nelsonův-Aalenův oha e záklaní neparametrckou metoou ohau kumulatvní rzkové funkce [6], která steně ako Kaplanův-Meerův oha pracue pouze se souborem n pozorovaných honot časů přežtí takových, že t 1 < t < < t n < t. Pak Nelsonův-Aalenův oha kumulatvní rzkové funkce v čase t má tvar H ˆ ( =, (3.14) t ke steně ako v přípaě Kaplanova-Meerova ohau funkce přežtí značí počet sleovaných uálostí zaznamenaných v čase t a e počet subektů v rzku výskytu sleované uálost v čase t. Opět tey platí, že suma e počítána přes všechny pozorované časy přežtí, cenzorované časy ale k výslenému ohau přspívaí pouze prostřenctvím, neboť pro cenzorované časy přežtí e rovno nule. Aalen v roce 1978 [7] ále ovol rozptyl Nelsonova-Aalenova ohau kumulatvní rzkové funkce ve tvaru var, (3.15) který můžeme použít pro konstrukc ntervalu spolehlvost pro Nelsonův-Aalenův oha kumulatvní rzkové funkce. Označíme-l z (1 α ) honotu 100(1 α )% kvantlu 5

6 stanarzovaného normálního rozělení, pak lze 100(1 α)% nterval spolehlvost vyářt ako nterval var, var. (3.16) 3.4 Breslowův oha funkce přežtí V kaptole sme kromě efnce záklaních charakterstk náhoné velčny T ukázal ech vzáemné vazby. Hlavní z nch e vztah (.11) efnuící výpočet funkce přežtí pomocí kumulatvní rzkové funkce, S( = exp[h(]. Právě tohoto vztahu využívá Breslowův oha funkce přežtí, který využívá neparametrckého Nelsonova-Aalenova ohau kumulatvní rzkové funkce pro oha funkce přežtí. Breslowův oha funkce přežtí e tey án vztahem expexp, (3.17) ke a sou opět počet uálostí a počet subektů v rzku sleované uálost v čase t. Pro konstrukc ntervalu spolehlvost Breslowova ohau funkce přežtí opět potřebueme eho rozptyl, který e v tomto přípaě án vztahem var. (3.18) Problémy k řešení: 1. Jak vypaá Kaplanův-Meerův oha funkce přežtí v přípaě, že žáný z časů přežtí není cenzorován? [Výsleek: ]. Zkuste ovot rozptyl logartmu pomocí elta metoy. [Výsleek: varln ] Použtá lteratura: 1. Kaplan EL, Meer P. Nonparametrc estmaton from ncomplete observatons. Journal of Amercan Statstcal Assocaton, 1958; 58, oríguez, G. Lecture Notes on Generalze Lnear Moels Avalable at 3. Greenwoo M. The Errors of Samplng of the Survvorshp Table, vol. 33 of eports on Publc Health an Mecal Subects, 196. Lonon: Her Maesty's Statonery Offce. 6

7 4. Peto, Pke MC, Armtage P, Breslow NE, Cox D, Howar SV, Mantel N, McPherson K, Peto J, Smth PG. Desgn an analyss of ranomze clncal trals requrng prolonge observaton of each patent. II. Analyss an examples. Brtsh Journal of Cancer, 1977; 35(1): Collet D. Moellng Survval Data n Mecal esearch. 003, Chapman & Hall/CC, Lonon. 6. Nelson W. Theory an applcatons of hazar plottng for censore falure ata. Technometrcs, 197; 14: Aalen O. Nonparametrc nference for a famly of countng processes. Ann. Statst, 1978; 6: Doporučená lteratura: 1. Marubn E, Vasecch MG. Analysng Survval Data from Clncal Trals an Observatonal Stues. 1995, John Wley & Sons, Chchester, Unte Kngom.. Klen JP, Moeschberger ML. Survval Analyss: Technques for Censore an Truncate Data. 003, Sprnger, New York. 7

Předpokládáme vlny, které jsou časově nestabilní z hlediska fáze. Jako model zvolíme vlnu kdy se fáze mění skokem, ale je konstantní během doby

Předpokládáme vlny, které jsou časově nestabilní z hlediska fáze. Jako model zvolíme vlnu kdy se fáze mění skokem, ale je konstantní během doby . Koherence.. Časová koherence.. Souvslost časově proměnného sgnálu se spektrální závslostí.3. nterference nemonochromatckého záření.4. Fourerova spektroskope.5. Prostorová koherence. Koherence Koherence

Více

Neparametrické metody

Neparametrické metody Neparametrcké metody Přestože parametrcké metody zaujímají klíčovou úlohu ve statstcké analýze dat, je možné některé problémy řešt př neparametrckém přístupu. V této přednášce uvedeme neparametrcké odhady

Více

Přijímací zkouška na navazující magisterské studium 2015

Přijímací zkouška na navazující magisterské studium 2015 Přijímací zkouška na navazující magisterské stuium 05 Stuijní program: Stuijní obor: Řešení příklaů pečlivě oůvoněte. Příkla (5 boů) Spočtěte ke M {(y, x) R ; x 0, x + y a}. Příkla (5 boů) Nalezněte supremum

Více

Pružnost a plasticita II

Pružnost a plasticita II Pružnost a plastcta II 3. ročník bakalářského stua oc. Ing. Martn Kresa Ph.D. Katera stavební mechank Řešení nosných stěn metoou sítí 3 Řešení stěn metoou sítí metoa sítí (metoa konečných ferencí) těnová

Více

MATEMATICKÁ STATISTIKA 1, CVIČENÍ (NMSA331) Poslední úprava dokumentu: 17. listopadu 2016

MATEMATICKÁ STATISTIKA 1, CVIČENÍ (NMSA331) Poslední úprava dokumentu: 17. listopadu 2016 MATEMATICKÁ STATISTIKA, CVIČENÍ NMSA33 Příklay nejen pro přípravu na písemnou zápočtovou práci Poslení úprava okumentu: 7. listopau 206 Poslení úprava okumentu: 7. listopau 206 Mnohorozměrné normální rozěleni

Více

8 Coxův model proporcionálních rizik I

8 Coxův model proporcionálních rizik I 8 Coxův model proporcionálních rizik I Předpokládané výstupy z výuky: 1. Student umí formulovat Coxův model proporcionálních rizik 2. Student rozumí významu regresních koeficientů modelu 3. Student zná

Více

UNIVERZITA KARLOVA V PRAZE Přírodovědecká fakulta

UNIVERZITA KARLOVA V PRAZE Přírodovědecká fakulta Chromatografie Zroj: http://www.scifun.org/homeexpts/homeexpts.html [34] Diaktický záměr: Vysvětlení pojmu chromatografie. Popis: Žáci si vyzkouší velmi jenouché ělení látek pomocí papírové chromatografie.

Více

2 Hlavní charakteristiky v analýze přežití

2 Hlavní charakteristiky v analýze přežití 2 Hlavní charakteristiky v analýze přežití Předpokládané výstupy z výuky: 1. Student umí definovat funkci přežití, rizikovou funkci a kumulativní rizikovou funkci a zná funkční vazby mezi nimi 2. Student

Více

PRAVDĚPODOBNOSTNÍ PŘÍSTUP K HODNOCENÍ DRÁTKOBETONOVÝCH SMĚSÍ. Petr Janas 1 a Martin Krejsa 2

PRAVDĚPODOBNOSTNÍ PŘÍSTUP K HODNOCENÍ DRÁTKOBETONOVÝCH SMĚSÍ. Petr Janas 1 a Martin Krejsa 2 PAVDĚPODOBNOSTNÍ PŘÍSTUP K HODNOCENÍ DÁTKOBETONOVÝCH SMĚSÍ Petr Janas 1 a Martin Krejsa 2 Abstract The paper reviews briefly one of the propose probabilistic assessment concepts. The potential of the propose

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ BAKALÁŘSKÁ PRÁCE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ BAKALÁŘSKÁ PRÁCE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ BAKALÁŘSKÁ PRÁCE PRAHA 14 Jaroslav PYŠEK ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ PROGRAM GEODÉZIE A KARTOGRAFIE OBOR GEODÉZIE, KARTOGRAFIE

Více

Pružnost a plasticita II

Pružnost a plasticita II Pružnost a plastcta II 3. ročník bakalářského stua oc. Ing. Martn Krejsa, Ph.D. Katera stavební mechanky Moely položí Záklaové konstrukce Záklaové konstrukce zajšťují: přenesení tíhy vrchní stavby o položí

Více

Téma 5: Parametrická rozdělení pravděpodobnosti spojité náhodné veličiny

Téma 5: Parametrická rozdělení pravděpodobnosti spojité náhodné veličiny 0.05 0.0 0.05 0.0 0.005 Nomnální napětí v pásnc Std Mean 40 60 80 00 0 40 60 Std Téma 5: Parametrcká rozdělení pravděpodobnost spojté náhodné velčn Přednáška z předmětu: Pravděpodobnostní posuzování konstrukcí

Více

Využití logistické regrese pro hodnocení omaku

Využití logistické regrese pro hodnocení omaku Využtí logstcké regrese pro hodnocení omaku Vladmír Bazík Úvod Jedním z prmárních proevů textlí e omak. Jedná se o poct který vyvolá textle př kontaktu s pokožkou. Je to ntegrální psychofyzkální vlastnost

Více

4.5.5 Magnetické působení rovnoběžných vodičů s proudem

4.5.5 Magnetické působení rovnoběžných vodičů s proudem 4.5.5 Magnetické působení rovnoběžných voičů s prouem Přepoklay: 4502, 4503, 4504 Př. 1: Dvěma velmi louhými svislými voiči prochází elektrický prou. Rozhoni pomocí rozboru magnetických inukčních čar polí

Více

Jednokriteriální rozhodování za rizika a nejistoty

Jednokriteriální rozhodování za rizika a nejistoty Jeokrterálí rozoováí za rzka a estoty U eokrterálíc úlo e vžy pouze eo krtérum optmalty, a to buď maxmalzačí ebo mmalzačí. araty rozoováí sou zaáy mplctě - pomíkam, které musí být splěy (vz úloy leárío

Více

Postup při měření rychlosti přenosu dat v mobilních sítích dle standardu LTE (Metodický postup)

Postup při měření rychlosti přenosu dat v mobilních sítích dle standardu LTE (Metodický postup) Praha 15. srpna 2013 Postup při měření rchlosti přenosu at v mobilních sítích le stanaru LTE (Metoický postup Zveřejněno v souvislosti s vhlášením výběrového řízení za účelem uělení práv k vužívání ráiových

Více

Téma 7, modely podloží

Téma 7, modely podloží Pružnost a plastcta II.,.ročník bakalářského stua, přenášky Janas, Téma 7, moely položí Úvo Wnklerův moel položí Pasternakův moel položí Pružný poloprostor Nosník na pružném Wnklerově položí, řešení ODM

Více

Průřezové charakteristiky základních profilů.

Průřezové charakteristiky základních profilů. Stření průmyslová škola a Vyšší oborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřenictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Průřezové

Více

Teoretické modely diskrétních náhodných veličin

Teoretické modely diskrétních náhodných veličin Teoretcké modely dskrétních náhodných velčn Velčny, kterým se zabýváme, bývají nejrůznější povahy. Přesto však estují skupny náhodných velčn, které mají podobně rozloženou pravděpodobnostní funkc a lze

Více

Metoda konečných prvků 3 - nelineární úlohy

Metoda konečných prvků 3 - nelineární úlohy Nelineárn rní analýza materiálů a konstrukcí (V-132YNAK) Metoa konečných prvků 3 - nelineární úlohy Petr Kabele petr.kabele@sv.cvut.cz people.sv.cvut.cz/~pkabele 1 MKP metoy řešení nelineárních úloh Diskretizovaný

Více

Vypracoval Datum Hodnocení. V celé úloze jsme používali He-Ne laser s vlnovou délkou λ = 632, 8 nm. Paprsek jsme nasměrovali

Vypracoval Datum Hodnocení. V celé úloze jsme používali He-Ne laser s vlnovou délkou λ = 632, 8 nm. Paprsek jsme nasměrovali Název a číslo úlohy - Difrakce světelného záření Datum měření 3.. 011 Měření proveli Tomáš Zikmun, Jakub Kákona Vypracoval Tomáš Zikmun Datum. 3. 011 Honocení 1 Difrakční obrazce V celé úloze jsme používali

Více

Inovace v predikci tržeb podle Porterových vlivů odvětví

Inovace v predikci tržeb podle Porterových vlivů odvětví Inovace v preikci tržeb pole Porterových vlivů ovětví Tomáš Macák Příznivé okolnosti pro zaveení inovace Nový nápa, ehož opa přesahue oblast, v které vzniknul, potřebue pro svou (alespoň pokusnou) realizaci

Více

REGRESNÍ ANALÝZA. 13. cvičení

REGRESNÍ ANALÝZA. 13. cvičení REGRESNÍ ANALÝZA 13. cvčení Závslost náhodných velčn Závslost mez kvanttatvním proměnným X a Y: Funkční závslost hodnotam nezávsle proměnných je jednoznačně dána hodnota závslé proměnné. Y=f(X) Stochastcká

Více

STACIONÁRNÍ MAGNETICKÉ POLE

STACIONÁRNÍ MAGNETICKÉ POLE Příklay: 1. Přímý voič o élce 0,40 m, kterým prochází prou 21 A, leží v homogenním magnetickém poli kolmo k inukčním čarám. Velikost vektoru magnetické inukce je 1,2 T. Vypočtěte práci, kterou musíme vykonat

Více

1. POLOVODIČOVÉ TEPLOMĚRY

1. POLOVODIČOVÉ TEPLOMĚRY Úkol měření 1. POLOVODČOVÉ EPLOMĚY 1. entfkujte neznámý perlčkový termstor. Navrhněte zapojení pro jeho lnearzac.. rčete teplotní závslost napětí na oě protékané konstantním prouem a charakterstku teplotního

Více

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Ampérův zákon

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Ampérův zákon ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Ampérův zákon Peter Dourmashkin MIT 26, překla: Jan Pacák (27) Obsah 5 AMPÉRŮV ZÁKON 3 51 ÚKOLY 3 52 ALGORITMUS PRO ŘEŠENÍ PROBLÉMŮ 3 ÚLOHA 1: VÁLCOVÝ PLÁŠŤ

Více

ANALÝZA VLIVU DEMOGRAFICKÝCH FAKTORŮ NA SPOKOJENOST ZÁKAZNÍKŮ VE VYBRANÉ LÉKÁRNĚ S VYUŽITÍM LOGISTICKÉ REGRESE

ANALÝZA VLIVU DEMOGRAFICKÝCH FAKTORŮ NA SPOKOJENOST ZÁKAZNÍKŮ VE VYBRANÉ LÉKÁRNĚ S VYUŽITÍM LOGISTICKÉ REGRESE ANALÝZA VLIVU DEMOGRAFICKÝCH FAKTORŮ NA SPOKOJENOST ZÁKAZNÍKŮ VE VYBRANÉ LÉKÁRNĚ S VYUŽITÍM LOGISTICKÉ REGRESE Jana Valečková 1 1 Vysoká škola báňská-techncká unverzta Ostrava, Ekonomcká fakulta, Sokolská

Více

ENÁ ŽELEZOBETONOVÁ DESKA S VELKÝM UŽITNÝM ZATÍŽENÍM

ENÁ ŽELEZOBETONOVÁ DESKA S VELKÝM UŽITNÝM ZATÍŽENÍM P Ř Í K L A D Č. 6 LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ DESKA S VELKÝM UŽITNÝM ZATÍŽENÍM Projekt : FRVŠ 011 - Analýza meto výpočtu železobetonovýh lokálně poepřenýh esek Řešitelský kolektiv : Ing. Martin Tipka

Více

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky. Bakalářská práce. Zpracování výsledků vstupních testů z matematiky

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky. Bakalářská práce. Zpracování výsledků vstupních testů z matematiky Západočeská unverzta v Plzn Fakulta aplkovaných věd Katedra matematky Bakalářská práce Zpracování výsledků vstupních testů z matematky Plzeň, 13 Tereza Pazderníková Prohlášení Prohlašuj, že jsem bakalářskou

Více

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu 6. Demonstrační smulační projekt generátory vstupních proudů smulačního modelu Studjní cíl Na příkladu smulačního projektu představeného v mnulém bloku je dále lustrována metodka pro stanovování typů a

Více

VŠB - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra aplikované matematiky. Diplomová práce. 2014 Michal Běloch

VŠB - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra aplikované matematiky. Diplomová práce. 2014 Michal Běloch VŠB - Techncká unverzta Ostrava Fakulta elektrotechnky a nformatky Katedra aplkované matematky Dplomová práce 204 Mchal Běloch VŠB - Techncká unverzta Ostrava Fakulta elektrotechnky a nformatky Katedra

Více

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou)

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou) Náhodná velčna na Výsledek náhodného pokusu, daný reálným číslem je hodnotou náhodné velčny. Náhodná velčna je lbovolná reálná funkce defnovaná na množně elementárních E pravděpodobnostního prostoru S.

Více

Metodika pro vyjádření cílové hodnoty obsahu hotově balených výrobků deklarovaných dle objemu

Metodika pro vyjádření cílové hodnoty obsahu hotově balených výrobků deklarovaných dle objemu Metoika pro vyjáření cílové honoty obsahu hotově balených výrobků eklarovaných le objemu Číslo úkolu: VII/1/17 Název úkolu: Zpracování metoiky pro určení cílové honoty obsahu při výrobě hotově balených

Více

STATICKY NEURČITÉ RÁMOVÉ KONSTRUKCE S PODDAJNOU PODPOROU SILOVÁ METODA

STATICKY NEURČITÉ RÁMOVÉ KONSTRUKCE S PODDAJNOU PODPOROU SILOVÁ METODA Zaání STATICKY NEURČITÉ RÁOVÉ KONSTRUKCE S PODDAJNOU PODPOROU SILOVÁ ETODA Příkla č. Vykreslete průěhy vnitřníh sil na konstruki zorazené na Or.. Voorovná část konstruke (příčle) je složena z průřezu a

Více

Transformace dat a počítačově intenzivní metody

Transformace dat a počítačově intenzivní metody Transformace dat a počítačově ntenzvní metody Jří Mltký Katedra textlních materálů, Textlní fakulta, Techncká unversta v Lberc, Lberec, e- mal jr.mltky@vslb.cz Mlan Meloun, Katedra analytcké cheme, Unversta

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Závslost příčnná (kauzální). Závslostí pevnou se označuje případ, kdy výskytu jednoho jevu nutně odpovídá výskyt druhé jevu (a často naopak). Z pravděpodobnostního hledska

Více

Iterační výpočty. Dokumentace k projektu pro předměty IZP a IUS. 22. listopadu projekt č. 2

Iterační výpočty. Dokumentace k projektu pro předměty IZP a IUS. 22. listopadu projekt č. 2 Dokumentace k projektu pro předměty IZP a IUS Iterační výpočty projekt č.. lstopadu 1 Autor: Mlan Setler, setl1@stud.ft.vutbr.cz Fakulta Informačních Technologí Vysoké Učení Techncké v Brně Obsah 1 Úvod...

Více

F (x, h(x)) T (g)(x) = g(x)

F (x, h(x)) T (g)(x) = g(x) 11 Implicitní funkce Definice 111 (implicitní funkce) Nechť F : R 2 R je funkce a [x 0, y 0 ] R 2 je takový bo, že F (x 0, y 0 ) = 0 Řekneme, že funkce y = f(x) je v okolí bou [x 0, y 0 ] zaána implicitně

Více

PRAVDĚPODOBNOSTNÍ POSUDEK OCELOVÉHO RÁMU METODOU IMPORTANCE SAMPLING

PRAVDĚPODOBNOSTNÍ POSUDEK OCELOVÉHO RÁMU METODOU IMPORTANCE SAMPLING I. ročník celostátní konference POLEHLIVOT KONTRUKCÍ Téma: Rozvoj koncepcí posuku spolehlivosti stavebních konstrukcí 15.3.2000 Dům techniky Ostrava IBN 80-02-01344-1 73 PRAVDĚPODOBNOTNÍ POUDEK OCELOVÉHO

Více

Teoretické modely diskrétních náhodných veličin

Teoretické modely diskrétních náhodných veličin Teoretcké modely dskrétních náhodných velčn Velčny, kterým se zabýváme, bývají nejrůznější povahy. Přesto však estují skupny náhodných velčn, které mají podobně rozloženou pravděpodobnostní funkc a lze

Více

Úloha II.E... čočkování

Úloha II.E... čočkování Úloha II.E... čočkování 8 boů; průměr 5,46; řešilo 65 stuentů V obálce jste spolu se zaáním ostali i vě čočky. Vaším úkolem je změřit jejich parametry ruh a ohniskovou vzálenost. Poznámka Poku nejste stávající

Více

Vedení vvn a vyšší parametry vedení

Vedení vvn a vyšší parametry vedení Veení vvn a vyšší parametry veení Při řešení těchto veení je třeba vzhleem k jejich élce uvažovat nejenom opor veení R a inukčnost veení L, ale také kapacitu veení C. Svo veení G se obvykle zanebává. Tyto

Více

1. Určení vlnové délka světla pomocí difrakční mřížky

1. Určení vlnové délka světla pomocí difrakční mřížky FAKULTA STAVEBÍ KATEDRA FYZIKY 10FY1G Fzka G 1. Určení vlnové délka světla pomocí dfrakční mřížk Petr Pokorný Pavel Klmon Flp Šmejkal LS 016/17 skpna 1 datm měření: 19.. 017 Zadání Pomocí dfrakční mřížk

Více

Metody teorie spolehlivosti

Metody teorie spolehlivosti Metoy teorie spolehlivosti Historické metoy mpirické metoy Kalibrace Pravěpoobnostní metoy FOM úroveň II AKTNÍ úroveň III Kalibrace MTOD NÁVH. BODŮ Kalibrace MTODA DÍLČÍCH SOUČINITLŮ úroveň I Nejistoty

Více

Porovnání GUM a metody Monte Carlo

Porovnání GUM a metody Monte Carlo Porovnání GUM a metody Monte Carlo Ing. Tomáš Hajduk Nejstota měření Parametr přřazený k výsledku měření Vymezuje nterval, o němž se s určtou úrovní pravděpodobnost předpokládá, že v něm leží skutečná

Více

Aplikace Li-Ma metody na scintigrafické vyšetření příštítných tělísek. P. Karhan, P. Fiala, J. Ptáček

Aplikace Li-Ma metody na scintigrafické vyšetření příštítných tělísek. P. Karhan, P. Fiala, J. Ptáček Aplkace L-Ma metody na scntgrafcké vyšetření příštítných tělísek P. Karhan, P. Fala, J. Ptáček Vyšetření příštítných tělísek dagnostka hyperparatyreózy: lokalzace tkáně příštítných tělísek neexstence radofarmaka

Více

ANALÝZA ROZPTYLU (Analysis of Variance ANOVA)

ANALÝZA ROZPTYLU (Analysis of Variance ANOVA) NLÝZ OZPYLU (nalyss of Varance NOV) Používá se buď ako samostatná technka, nebo ako postup, umožňuící analýzu zdroů varablty v lneární regres. Př. použtí: k porovnání středních hodnot (průměrů) více než

Více

Jiří Militky Škály měření Nepřímá měření Teorie měření Kalibrace

Jiří Militky Škály měření Nepřímá měření Teorie měření Kalibrace Tetlní zkušebnctv ebnctví II Jří Mltky Škály měření epřímá měření Teore měření Kalbrace Základní pojmy I PRAVDĚPODOBOST Jev A, byl sledován v m pokusech. astal celkem m a krát. Relatvní četnost výskytu

Více

Gibbsova a Helmholtzova energie. Def. Gibbsovy energie G. Def. Helmholtzovy energie A

Gibbsova a Helmholtzova energie. Def. Gibbsovy energie G. Def. Helmholtzovy energie A ibbsova a Helmholtzova energie Def. ibbsovy energie H Def. Helmholtzovy energie U, jsou efinovány omocí stavových funkcí jená se o stavové funkce. ibbsova energie charakterizuje rovnovážný stav (erzibilní

Více

3 VYBRANÉ MODELY NÁHODNÝCH VELIČIN. 3.1 Náhodná veličina

3 VYBRANÉ MODELY NÁHODNÝCH VELIČIN. 3.1 Náhodná veličina 3 VBRANÉ MODEL NÁHODNÝCH VELIČIN 3. Náhodná velčna Tato kaptola uvádí stručný pops vybraných pravděpodobnostních modelů spojtých náhodných velčn s důrazem na jejch uplatnění př rozboru spolehlvost stavebních

Více

7. STATISTICKÝ SOUBOR S JEDNÍM ARGUMENTEM

7. STATISTICKÝ SOUBOR S JEDNÍM ARGUMENTEM 7. STATISTICKÝ SOUBOR S JEDNÍM ARGUMENTEM Průvodce studem Předchozí kaptoly byly věnovány pravděpodobnost a tomu, co s tímto pojmem souvsí. Nyní znalost z počtu pravděpodobnost aplkujeme ve statstce. Předpokládané

Více

ANALÝZA RIZIKA A CITLIVOSTI JAKO SOUČÁST STUDIE PROVEDITELNOSTI 1. ČÁST

ANALÝZA RIZIKA A CITLIVOSTI JAKO SOUČÁST STUDIE PROVEDITELNOSTI 1. ČÁST Abstrakt ANALÝZA ZKA A CTLOST JAKO SOUČÁST STUDE POVEDTELNOST 1. ČÁST Jří Marek Úspěšnost nvestce závsí na tom, jaké nejstoty ovlvní její předpokládaný žvotní cyklus. Pomocí managementu rzka a analýzy

Více

SHIFT-SHARE ANALÝZA PRODUKTIVITY PRÁCE # Úvod

SHIFT-SHARE ANALÝZA PRODUKTIVITY PRÁCE # Úvod SHIFT-SHARE ANALÝZA PRODUKTIVITY PRÁCE # Frantšek Střeleček, Radek Zdeněk, Jana Lososová Úvod Vedle konkurenceschopnost podnků a ednotlvých odvětví národního hospodářství své významné místo zauímá konkurenceschopnost

Více

Solventnost II. Standardní vzorec pro výpočet solventnostního kapitálového požadavku. Iva Justová

Solventnost II. Standardní vzorec pro výpočet solventnostního kapitálového požadavku. Iva Justová 2. část Solventnost II Standardní vzorec pro výpočet solventnostního kaptálového požadavku Iva Justová Osnova Úvod Standardní vzorec Rzko selhání protstrany Závěr Vstupní údaje Vašíčkovo portfolo Alternatvní

Více

POROVNÁNÍ MEZI SKUPINAMI

POROVNÁNÍ MEZI SKUPINAMI POROVNÁNÍ MEZI SKUPINAMI Potřeba porovnání počtů mez určtým skupnam jednců např. porovnání počtů onemocnění mez kraj nebo okresy v prax se obvykle pracuje s porovnáním na 100.000 osob. Stuace ale nebývá

Více

Obsah. Příloha (celkový počet stran přílohy 13) Závěrečná zpráva o výsledcích experimentu shodnosti ZČB 2013/2

Obsah. Příloha (celkový počet stran přílohy 13) Závěrečná zpráva o výsledcích experimentu shodnosti ZČB 2013/2 Závěrečná zpráva o výsledcích expermentu shodnost ZČB 2013/2 Obsah Úvod a důležté kontakty... 2 Postupy statstcké analýzy expermentu shodnost... 4 2.1 Numercký postup zjšťování odlehlých hodnot... 4 2.1.1

Více

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d Korelační energe Referenční stavy Energ molekul a atomů lze vyjádřt vzhledem k různým referenčním stavům. V kvantové mechance za referenční stav s nulovou energí bereme stav odpovídající nenteragujícím

Více

ANOVA. Analýza rozptylu při jednoduchém třídění. Jana Vránová, 3.lékařská fakulta UK, Praha

ANOVA. Analýza rozptylu při jednoduchém třídění. Jana Vránová, 3.lékařská fakulta UK, Praha ANOVA Analýza rozptylu př jednoduchém třídění Jana Vránová, 3.léařsá faulta UK, Praha Teore Máme nezávslých výběrů, > Mají rozsahy n, teré obecně nemusí být stejné V aždém z nch známe průměr a rozptyl

Více

STATISTIKA PRO NELÉKAŘSKÉ ZDRAVOTNICKÉ OBORY

STATISTIKA PRO NELÉKAŘSKÉ ZDRAVOTNICKÉ OBORY STATISTIKA PRO NELÉKAŘSKÉ ZDRAVOTNICKÉ OBORY Eva Reterová Olomouc 06 Fakulta zdravotnckých věd Unverzta Palackého v Olomouc Statstka pro nelékařské zdravotncké obory Eva Reterová Olomouc 06 Oponent: PhDr.

Více

Zlomky závěrečné opakování

Zlomky závěrečné opakování 2.2. Zlomky závěrečné opkování Přepokly: 02022 Př. : Vypočti. ) + b) 8 2 4 0 c) 2 4 2 : : 4 24 ) 2 22 4 2 2 9 + 0 9 ) + = + = = 8 2 8 2 2 24 24 8 = 4 2 2 = 4 4 2 4 2 b) 0 = = = 2 4 8 2 4 4 c) 4 2 4 24

Více

Aplikace simulačních metod ve spolehlivosti

Aplikace simulačních metod ve spolehlivosti XXVI. ASR '2001 Semnar, Instruments and Control, Ostrava, Aprl 26-27, 2001 Paper 40 Aplkace smulačních metod ve spolehlvost MARTINEK, Vlastml Ing., Ústav automatzace a nformatky, FSI VUT v Brně, Techncká

Více

Vícekriteriální rozhodování. Typy kritérií

Vícekriteriální rozhodování. Typy kritérií Vícekrterální rozhodování Zabývá se hodnocením varant podle několka krtérí, přčemž varanta hodnocená podle ednoho krtéra zpravdla nebývá nelépe hodnocená podle krtéra ného. Metody vícekrterálního rozhodování

Více

Zpráva o průběhu přijímacího řízení pro akademický rok

Zpráva o průběhu přijímacího řízení pro akademický rok Zpráva o průběhu přijímacího řízení pro akaemický rok 2011/2012 na ČVUT v Praze Masarykově ústavu vyšších stuií le Vyhlášky MŠMT č. 343/202 Sb. o průběhu přijímacího řízení na vysokých školách a její novely

Více

Monte Carlo metody Josef Pelikán CGG MFF UK Praha.

Monte Carlo metody Josef Pelikán CGG MFF UK Praha. Monte Carlo metody 996-7 Josef Pelkán CGG MFF UK Praha pepca@cgg.mff.cun.cz http://cgg.mff.cun.cz/~pepca/ Monte Carlo 7 Josef Pelkán, http://cgg.ms.mff.cun.cz/~pepca / 44 Monte Carlo ntegrace Odhadovaný

Více

Zakřivený nosník. Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly. Stavební statika, 1.ročník bakalářského studia

Zakřivený nosník. Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly. Stavební statika, 1.ročník bakalářského studia Stavební statika, 1.ročník bakalářského stuia Zakřivený nosník Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly Katera stavební mechaniky Fakulta stavební, VŠB - Technická univerzita

Více

Statistická šetření a zpracování dat.

Statistická šetření a zpracování dat. Statstcká šetření a zpracování dat. Vyjadřovací prostředky ve statstce STATISTICKÉ TABULKY Typckým vyjadřovacím prostředkem statstky je číslo formalzovaným nástrojem číselného vyjádření je statstcká tabulka.

Více

Předpokládáme ideální chování, neuvažujeme autoprotolýzu vody ve smyslu nutnosti číselného řešení simultánních rovnováh. CH3COO

Předpokládáme ideální chování, neuvažujeme autoprotolýzu vody ve smyslu nutnosti číselného řešení simultánních rovnováh. CH3COO Pufr ze slabé kyseliny a její soli se silnou zásaou např CHCOOH + CHCOONa Násleujíí rozbor bue vyházet z počátečního stavu, ky konentrae obou látek jsou srovnatelné (největší pufrační kapaita je pro ekvimolární

Více

Experimentální identifikace regulovaných soustav

Experimentální identifikace regulovaných soustav Expermetálí etfkace reglovaých sostav Cílem je zhotoveí matematckého moel a záklaě formací získaých měřeím. Požívá se možství meto. Výběr metoy je ůležtý, protože a ěm závsí přesost áhraího moel. Záklaím

Více

MODELOVÁNÍ A SIMULACE

MODELOVÁNÍ A SIMULACE MODELOVÁNÍ A SIMULACE základní pojmy a postupy vytváření matematckých modelů na základě blancí prncp numerckého řešení dferencálních rovnc základy práce se smulačním jazykem PSI Základní pojmy matematcký

Více

POUŽITÍ METODY PERT PŘI ŘÍZENÍ PROJEKTŮ

POUŽITÍ METODY PERT PŘI ŘÍZENÍ PROJEKTŮ 5. Odborná konference doktorského studa s meznárodní účastí Brno 003 POUŽITÍ METODY PERT PŘI ŘÍZEÍ PROJEKTŮ A USAGE OF PERT METHOD I PROJECT MAAGEMET Vladslav Grycz 1 Abstract PERT Method and Graph theory

Více

Úloha č. 1 pomůcky Šíření tepla v ustáleném stavu základní vztahy

Úloha č. 1 pomůcky Šíření tepla v ustáleném stavu základní vztahy Úloha č. pomůcky Šíření tepla v ustáleném stavu záklaní vztahy Veení Fourriérův zákon veení tepla, D: Hustota tepelného toku je úměrná změně teploty ve směru šíření tepla, konstantou úměrnosti je součinitel

Více

Validation of the selected factors impact on the insured accident

Validation of the selected factors impact on the insured accident 6 th Internatonal Scentfc Conference Managng and Modellng of Fnancal Rsks Ostrava VŠB-TU Ostrava, Faculty of Economcs,Fnance Department 0 th th September 202 Valdaton of the selected factors mpact on the

Více

POHYB SPLAVENIN. 8 Přednáška

POHYB SPLAVENIN. 8 Přednáška POHYB SPLAVENIN 8 Přenáška Obsah: 1. Úvo 2. Vlastnosti splavenin 2.1. Hustota splavenin a relativní hustota 2.2. Zrnitost 2.3. Efektivní zrno 3. Tangenciální napětí a třecí rychlost 4. Počátek eroze 5.

Více

PŘÍSPĚVEK K NEJISTOTÁM VÝSLEDKŮ MĚŘENÍ

PŘÍSPĚVEK K NEJISTOTÁM VÝSLEDKŮ MĚŘENÍ PŘÍSPĚVEK K NEJISTOTÁM VÝSLEDKŮ MĚŘENÍ JIŘÍ MILITKÝ, Katedra textlních materálů, Techncká unversta v Lberc, MILAN MELOUN, Katedra analytcké cheme, Unversta Pardubce, Pardubce. Úvod Je známo, že měření

Více

SÍŤOVÁ ANALÝZA. Základní pojmy síťové analýzy. u,. Sjednocením množin { u, u,..., 2. nazýváme grafem G.

SÍŤOVÁ ANALÝZA. Základní pojmy síťové analýzy. u,. Sjednocením množin { u, u,..., 2. nazýváme grafem G. SÍŤOVÁ ANALÝZA Využívá grafcko-analytcké metody pro plánování, řízení a kontrolu složtých návazných procesů. yto procesy se daí rozložt na dílčí a organzačně spolu souvseící čnnost. yto procesy se nazývaí

Více

Klasifikace a predikce. Roman LUKÁŠ

Klasifikace a predikce. Roman LUKÁŠ 1/28 Klasfkace a predkce Roman LUKÁŠ 2/28 Základní pomy Klasfkace = zařazení daného obektu do sté skupny na základě eho vlastností Dvě fáze klasfkace: I. Na základě trénovacích vzorů (u nchž víme, do aké

Více

Statistická energetická analýza (SEA)

Statistická energetická analýza (SEA) Hladna akustckého tlaku buzení harmonckou slou [db] Statstcká energetcká analýza (SA) V současné době exstue řada způsobů, ak řešt vbroakustcké problémy. odobně ako v ných odvětvích nženýrství, také ve

Více

Grafické řešení úloh LP se dvěma neznámými

Grafické řešení úloh LP se dvěma neznámými . přenáška Grafické řešení úloh LP se věma nenámými Moel úlohy lineárního programování, který obsahuje poue vě nenámé, le řešit graficky v rovině pravoúhlých souřaných os. V této rovině se nejprve obraí

Více

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové.

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové. Příprava na cvčení č.1 Čísla a artmetka Číselné soustavy Obraz čísla A v soustavě o základu z: m A ( Z ) a z (1) n kde: a je symbol (číslce) z je základ m je počet řádových míst, na kterých má základ kladný

Více

2 TESTOVÁNÍ HYPOTÉZ. RYCHLÝ NÁHLED KAPITOLY Neříkej: Objevil jsem pravdu! ale raději: Objevil jsem jednu z pravd! Chalil Gibran

2 TESTOVÁNÍ HYPOTÉZ. RYCHLÝ NÁHLED KAPITOLY Neříkej: Objevil jsem pravdu! ale raději: Objevil jsem jednu z pravd! Chalil Gibran Elena Melcová, Radmla Stoklasová a Jaroslav Ramík; Statstcké programy TESTOVÁNÍ HYPOTÉZ RYCHLÝ NÁHLED KAPITOLY Neříkej: Objevl jsem pravdu! ale raděj: Objevl jsem jednu z pravd! Chall Gbran Testování hypotéz

Více

Energie elektrického pole

Energie elektrického pole Energe elektrckého pole Jž v úvodní kaptole jsme poznal, že nehybný (centrální elektrcký náboj vytváří v celém nekonečném prostoru slové elektrcké pole, které je konzervatvní, to znamená, že jakýkolv jný

Více

Testy statistických hypotéz

Testy statistických hypotéz Úvod Testy statstckých hypotéz Václav Adamec vadamec@medelu.cz Testováí: kvalfkovaá procedura vedoucí v zamítutí ebo ezamítutí ulové hypotézy v podmíkách ejstoty Testy jsou vázáy a rozděleí áhodých velč

Více

6. ZÁSOBOVÁNÍ 6.1. BILANCE MATERIÁLU 6.2. PROPOČTY SPOTŘEBY MATERIÁLU

6. ZÁSOBOVÁNÍ 6.1. BILANCE MATERIÁLU 6.2. PROPOČTY SPOTŘEBY MATERIÁLU 6. ZÁSOBOVÁÍ 6.1. Bilance materiálu 6.2. Propočty potřeby materiálu 6.3. Řízení záob (plánování záob) Záobování patří mezi velmi ůležité ponikové aktivity. Při řízení záob e jená v potatě o řešení tří

Více

STATISTIKA (pro navazující magisterské studium)

STATISTIKA (pro navazující magisterské studium) Slezská unverzta v Opavě Obchodně podnkatelská fakulta v Karvné STATISTIKA (pro navazující magsterské studum) Jaroslav Ramík Karvná 007 Jaroslav Ramík, Statstka Jaroslav Ramík, Statstka 3 OBSAH MODULU

Více

Modely pro přežití s možností vyléčení

Modely pro přežití s možností vyléčení Unverzta Karlova v Praze Matematcko-fyzkální fakulta DIPLOMOVÁ PRÁCE Adéla Drabnová Modely pro přežtí s možností vyléčení Katedra pravděpodobnost a matematcké statstky Vedoucí dplomové práce: Studjní program:

Více

M ATERIÁLOVÉ MODELY PRO ČASOVĚ ZÁVISLOU ANALÝZU

M ATERIÁLOVÉ MODELY PRO ČASOVĚ ZÁVISLOU ANALÝZU M ATERIÁLOVÉ MODELY PRO ČASOVĚ ZÁVISLOU ANALÝZU B E T O N O V Ý C H K O N S T R U K C Í MATERIAL MODELS F O R T I M E- D E P E N D E N T ANALYSIS OF CONCRETE S T R U C T U R E S O MAR RODRIGO BACARREZA,

Více

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně 9. Měření knetky dohasínání fluorescence ve frekvenční doméně Gavolův experment (194) zdroj vzorek synchronní otáčení fázový posun detektor Měření dob žvota lumnscence Frekvenční doména - exctace harmoncky

Více

5.2.11 Lupa, mikroskop

5.2.11 Lupa, mikroskop 5.2.11 Lupa, mikroskop Přepokla: 5210 Rozlišovací schopnost oka (schopnost rozlišit va bo): závisí na velikosti obrazu přemětu na oční sítnici, poku chceme rozlišit va tmavé bo, nesmí jejich obraz opanout

Více

( ) ( ) ( ) Vzdálenost bodu od přímky II. Předpoklady: 7312

( ) ( ) ( ) Vzdálenost bodu od přímky II. Předpoklady: 7312 .. Vzálenost bou o přímk II Přepokl: Pegogiká poznámk: Průběh hoin honě závisí n tom, jk oolní jsou stuenti v oszování o vzorů, které je nejtěžší částí hoin. Dlším problémem pk mohou být rovnie s bsolutní

Více

C Charakteristiky silničních motorových vozidel

C Charakteristiky silničních motorových vozidel C Chaaktetky lnčních otoových vozel Toto téa e zabývá záklaní etoa tanovení někteých povozních chaaktetk lnčních otoových vozel, kteé pak náleně louží k pouzování užtných vlatnotí těchto vozel. Stanovení

Více

VY_42_Inovace_24_MA_2.04_Množiny ve slovních úlohách pracovní list

VY_42_Inovace_24_MA_2.04_Množiny ve slovních úlohách pracovní list Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0394 VY_42_Inovace_24_MA_2.04_Množiny ve slovních úlohách pracovní list Název školy Stření oborná škola a Stření oborné učiliště, Hustopeče, Masarykovo

Více

Využití nástrojů GIS při analýze vztahů socio-ekonomických faktorů a úrovně sociální péče

Využití nástrojů GIS při analýze vztahů socio-ekonomických faktorů a úrovně sociální péče Využtí nástrojů GIS př analýze vztahů soco-ekonomckých faktorů a úrovně socální péče Renata Klufová Katedra aplkované matematky a nformatky, Ekonomcká fakulta JU, Studentská 13 370 05 České Budějovce,

Více

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY BAKALÁŘSKÁ PRÁCE. 2013 Radka Luštincová

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY BAKALÁŘSKÁ PRÁCE. 2013 Radka Luštincová VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY BAKALÁŘSKÁ PRÁCE 2013 Radka Luštncová VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Název bakalářské práce: Aplkace řezných

Více

Přemysl Žiška, Pravoslav Martinek. Katedra teorie obvodů, ČVUT Praha, Česká republika. Abstrakt

Přemysl Žiška, Pravoslav Martinek. Katedra teorie obvodů, ČVUT Praha, Česká republika. Abstrakt ALGORITMUS DIFERENCIÁLNÍ EVOLUCE A JEHO UŽITÍ PRO IDENTIFIKACI NUL A PÓLŮ PŘE- NOSOVÉ FUNKCE FILTRU Přemysl Žška, Pravoslav Martnek Katedra teore obvodů, ČVUT Praha, Česká republka Abstrakt V příspěvku

Více

MODELOVÁNÍ TLAKOVÝCH ZTRÁT KAPILÁRNÍCH ROHOŽÍ

MODELOVÁNÍ TLAKOVÝCH ZTRÁT KAPILÁRNÍCH ROHOŽÍ Simulace buov a techniky prostřeí 21 6. konference IBPSA-CZ Praha, 8. a 9. 11. 21 MODELOVÁNÍ TLAKOVÝCH ZTRÁT KAPILÁRNÍCH ROHOŽÍ Vlaimír Zmrhal, Tomáš Matuška, Jan Schwarzer Ústav techniky prostřeí, Fakulta

Více

NELINEÁRNÍ DYNAMICKÁ ANALÝZA KONSTRUKCE ZATÍŽENA SEISMICKÝMI ÚČINKY NONLINEAR DYNAMIC ANALYSIS OF STRUCTURES WITH SEISMIC LOADS

NELINEÁRNÍ DYNAMICKÁ ANALÝZA KONSTRUKCE ZATÍŽENA SEISMICKÝMI ÚČINKY NONLINEAR DYNAMIC ANALYSIS OF STRUCTURES WITH SEISMIC LOADS VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV STAVEBNÍ MECHANIKY FACULTY OF CIVIL ENGINEERING INSTITUTE OF STRUCTURAL MECHANICS NELINEÁRNÍ DYNAMICKÁ ANALÝZA KONSTRUKCE

Více

Vlastnosti konstrukcí. Součinitel prostupu tepla

Vlastnosti konstrukcí. Součinitel prostupu tepla Vlastnosti konstrukcí Součinitel prostupu tepla U = 1 si se = Požaavky ČSN 730540-2: závisí na vnitřní H a na převažující vnitřní návrhové teplotě: o 60 % na 60 % o 18 o 22 C jiný rozsah teplot U U N Požaavky

Více

FORANA. 1. Úvod. 2 Vznik akustického signálu řeči v mluvidlech. Pavel GRILL 1, Jana TUČKOVÁ 2

FORANA. 1. Úvod. 2 Vznik akustického signálu řeči v mluvidlech. Pavel GRILL 1, Jana TUČKOVÁ 2 FORANA Pavel GRILL 1, Jana TUČKOVÁ 2 České vysoké učení techncké v Praze, Fakulta elektrotechncká, Katedra teore obvodů Abstrakt Jedním z příznaků vývojové dysfáze je částečná porucha tvorby a porozumění

Více

Varianta A. Příklad 1 (25 bodů) Funkce f je dána předpisem

Varianta A. Příklad 1 (25 bodů) Funkce f je dána předpisem Příkla 1 (5 boů) Funkce f je ána přepise Přijíací zkouška na navazující agisterské stuiu 14 Stuijní progra Fyzika obor Učitelství fyziky ateatiky pro stření školy Stuijní progra Učitelství pro záklaní

Více

Stavový model a Kalmanův filtr

Stavový model a Kalmanův filtr Stavový model a Kalmanův filtr 2 prosince 23 Stav je veličina, kterou neznáme, ale chtěli bychom znát Dozvídáme se o ní zprostředkovaně prostřednictvím výstupů Příkladem může býapř nějaký zašuměný signál,

Více