Pohyb v poli centrální síly
|
|
- Romana Moravcová
- před 8 lety
- Počet zobrazení:
Transkript
1 K přenášce NUFY8 Teoetická echanika pozatíní čební text, veze 5. Pohyb v poi centání síy Leoš Dvořák, MFF UK Paha, 4 Pohyb v poi centání síy Pohyb hotného bo v poi centání síy se řeší již v úvoní kz kasické echaniky. (Tento pobé bývá označován jako Kepeova úoha.) Vychází se přito ze zákonů zachování oent hybnosti a enegie; řešení vee na integá, jehož výpočet chvíi tvá. Ze si kážee, jak poocí Lagangeových ovnic ospět k tzv. Binetov vzoci, jehož řešení ž be vei jenoché. Znaost pohyb hotného bo v poi centání síy ožňje vyřešit i pohyb vo hotných boů, kteé se přitahjí (nebo opzjí), tey tzv. pobé vo těes. I ten ž znáe z úvoního kz. To, že pohyb vo hotných boů ze převést na pohyb jenoho bo v poi centání síy, však jasně pyne i z Lagangeových ovnic. h. A pávě tí začnee. Pobé vo těes Uvažje va hotné boy o hotnostech,, kteé se navzáje přitahjí nebo opzjí centáníi siai. Poohy těchto boů jso čeny poohovýi vektoy,, viz obázek. Po aší ovození bee potřebovat pooh hotného stře těchto boů + R = + (5.) a pooh vekto, kteý oba boy spojje, =. (5.) Z (5.) a (5.) ůžee zpětně vypočítat = R, = R+. (5.3) + + Zeivjee-i (5.3) poe čas, ostanee anaogické vztahy po ychosti obo boů: = R, = R+. (5.4) + + Kinetická enegie naší sostavy je T = +, (5.5) což po osazení (5.4) a úpavách á T = ( + ) R +. (5.6) + Bývá zvyke označit Napříka se přitahjí gavitačně. Může jít třeba o vojhvěz nebo o sostav Zeě Měsíc (kyž zanebáe působení všech ostatních těes). Nebo ůže jít o eektostatické síy, třeba ezi věa nabitýi kičkai. (V násející kapitoe bee řešit pohyb jáa héia naétajícího na jáo zata, tey tzv. Rthefoův ozpty.) Z (5.4) pyne = = RR + R + ( + ) a = = RR + + R + ( + ), čeny obsahjící R v sočt vypano, pak ž je úpava snaná.
2 K přenášce NUFY8 Teoetická echanika pozatíní čební text, veze 5. Pohyb v poi centání síy Leoš Dvořák, MFF UK Paha, 4 + = M, = µ. (5.7) + M je ceková hotnost sostavy, μ je ekovaná hotnost 3. Výsený vztah po kineticko enegii, T= MR + µ, (5.8) vypaá, jako by šo o pohyb vo jiných hotných boů: jenoho s hotností M, jehož pooh čje vekto R a hého s hotností μ, jehož pooh čje vekto. Potenciání enegie je závisá jen na vzáenosti obo boů =, V = V( ). Lagangián je tey L= T V = M R + µ. (5.9) V( ) Viíe, že agangián se ozpaá na vě nezávisé části opav jako by šo o pohyb vo zcea nezávisých boů o hotnostech M, a μ. R= XYZ,,, je pvní část agangián Označíe-i sožky vekto hotného stře ( ) ( ) ( S ) L = M X + Y + Z a přísšné Lagangeovy ovnice. h ají X = konst., Y = konst., Je tey o pohyb ovnoěný příočaý a ůžee psát: R= R + v t, (5.) ke R a v jso čeny počátečníi poínkai. Rozysete si, jaký á tento výseek fyzikání význa. 4 Poovin pobé áe tey vyřešeno! 5 Spočtee-i, jak se s čase vyvíjí vekto = ( t) pohyb půvoních vo hotných boů ž jenoše číe ze vztahů (5.3). Pobé pohyb sostavy vo hotných boů (tey pobé vo těes) jse převei na pobé pohyb hotného stře (a ten je jenoše án vztahe (5.)) a pohyb hotného bo o hotnosti μ, kteý je chaakteizován agangiáne (viz (5.9)) L = µ V. (5.) Tento agangián popisje pohyb hotného bo o hotnosti μ v poi centání síy (ky siové cent je nehybné), přito V( ) je potenciání enegie tohoto bo v ané poi. ( ), pak Poznaeneje, že v přípaě gavitačního přitahování je (viz (5.7)) Mµ V = κ = κ. 6 (5.) V přípaě vo nabitých boů s náboji q a Q je qq V = 4πε. (5.3) 3 Stejně bya zaveena v úvoní kz kasické echaniky. 4 Je o pohyb hotného stře izoované sostavy hotných boů. Hotný stře takové sostavy se sí pohybovat ovnoěně příočaře v ůsek zákona zachování hybnosti. 5 T ehčí 6 Opav to tey vypaá, jako by se jeen hotný bo o hotnosti μ pohybova v gavitační poi nehybného centa o hotnosti M.
3 K přenášce NUFY8 Teoetická echanika pozatíní čební text, veze 5. Pohyb v poi centání síy Leoš Dvořák, MFF UK Paha, 4 Hotný bo v poi centání síy: agangián ve sféických sořanicích Lagangeovy ovnice po agangián (5.) bee zapisovat ve sféických sořanicích, θ ϕ. Postatné je ozepsat ychost hotného bo poocí zobecněných ychostí, θ a ϕ. Nejjenošší je ozožit vekto ychosti v = o koých sěů poé sořanicových ča 8, v = e + θe + sin( θ) ϕe ϕ. (5.4) θ a 7 = + ( θ) + ( sin( θ) ϕ) Veikost ychosti na ho o je 9 Po osazení o (5.) ostáváe agangián ve tva v. (5.5) ( sin ) ( ) L= µ + θ + θϕ V (5.6) Lagangeovy ovnice a jejich řešení Pohyb hotného bo je án sostavo tří Lagangeových ovnic L L = L L = θ θ L L = ϕ ϕ Po osazení přísšných eivací ostanee konkétní poob ovnic: 7 Mohi bycho je saozřejě zapsat i v katézských sořanicích, ae pak bycho s jejich řešení zcea jistě nehni. Šo by totiž o sostav tří povázaných ifeenciáních ovnic; stačí si věoit, že v kažé z ovnic ( ) ( ) by se objeviy eivace čen V = V x + y + z. Sféické sořanice ná sitaci výazně zjenoší. V Lagangeových ovnicích hého h jse ostatně zvykí pacovat se zobecněnýi sořanicei teď postě za zobecněné sořanice vezee, θ a ϕ. 8 Dobře se to á přestavit na zeěkoi nebo na gobs: e je jenotkový vekto koý k povch Zeě (tj. vekto v aiání sě), e θ jenotkový vekto ve sě poeník, e ϕ jenotkový vekto ve sě ovnoběžky. Rychost v aiání sě je (je ovna časové zěně sořanice ), ychost ve sě poeník je θ (je o pohyb po kžnici pooě, úhová ychost je θ ), ychost ve sě ovnoběžky je sin( θ) ϕ (opět je o pohyb po kžnici, tentokát pooě sinθ, úhová ychost je ϕ ). 9 Stejný výseek bycho ostai, kybycho eivovai poe čas vztahy po přepočet sféických sořanic na katézské ( x = sinθ cosϕ apo.) a sečeti x + y + z. Jeno za život by si čověk ě tento výpočet zksit, je to ae poněk zohavé Rozka o sěů, v nichž osto sořanice, θ a ϕ je opav postatně jenošší a kyž si ho čověk ozysí, á se ěat v postatě z havy. Sybo vnky na L, kteý jse psai v (5.), si ž opstíe. Z (5.6) je L =µ L ϕ = µ sin θϕ a L ϕ =. L = + V, L θ = µ, θ L θ = µ sin θ cos θϕ,, µ ( θ sin θϕ ) 3
4 K přenášce NUFY8 Teoetická echanika pozatíní čební text, veze 5. Pohyb v poi centání síy Leoš Dvořák, MFF UK Paha, 4 V µ µ θ µ θϕ + =, (5.7) ( ) sin ( ) sin cos µ θ µ θ θϕ =, (5.8) Nejjenošší je posení ovnice, (5.9). Z ní okažitě pyne ( sin ) µ θϕ =. (5.9) čii ozn. µ sin θϕ= konst. =, (5.) ϕ µ sin θ = (5.) Poznaeneje, že (5.) á i jasný fyzikání význa zkste si ozyset, jaký. Co s ovnicí (5.8)? Vypaá sožitě a sožité by zřejě byo i její obecné řešení. Naštěstí ovnici není ntno řešit ve zcea obecné přípaě. Je jasné, že pohyb be ovinný. 3 A tto ovin si ůžee zvoit. V naše přípaě be nejjenošší říci, že bo obíhá v ovníkové ovině, tey v ovině 4 π θ =. (5.) V toto přípaě je sin θ =, cos θ = a θ =, takže ovnice (5.8) je spněna ienticky. 5 Zbývá ná vyřešit ž jen ovnici (5.7). Po osazení (5.) a (5.) z ní ostáváe V ( µ ) µ + = µ. (5.3) Je ž o obyčejno ifeenciání ovnici, nezávise poěnno je čas. 6 Kybycho tto ovnici ěi vyřešit, osaii bycho výsené (t) o (5.) a integací čii ϕ ( t). Bohže, ovnici (5.3) jenoše anayticky řešit neíe. Můžee ae něco jiného: spočítat tva tajektoie. Pok jso a θ konstantní, je o pohyb po kžnici s pooěe sin θ, ychost pohyb je sinθϕ. Z toho je viět, že je ovno oent hybnosti (ozysete si, že to je pava) a z úvoního kz kasické echaniky ž víe, že v centání siové poi se oent hybnosti zachovává. Obecně je z-ovo sožko oent hybnosti. 3 Pyne to ze sféické syetie pobé. (Jenoše řečeno, obíhající hotný bo neá žáný ůvo, aby hn z oviny oběh.) Tento výseek také znáe z úvoního kz kasické echaniky, ke se okazje ze zákona zachování oent hybnosti. 4 Můžee to říci i obáceně: Sostav sořanic natočíe tak, aby ovina θ = π spývaa s ovino oběh. Z tohoto vyjáření je viět, že naše voba je bez újy na obecnosti. 5 Há! 6 Deivaci V v konkétních přípaech pře řešení ovnice postě vypočtee z V= V ( ), např. z (5.) nebo (5.3). 4
5 K přenášce NUFY8 Teoetická echanika pozatíní čební text, veze 5. Pohyb v poi centání síy Leoš Dvořák, MFF UK Paha, 4 O časové závisosti k tva tajektoie Tva tajektoie je án závisostí ( ϕ ) vyjáříe eivaci poe čas poocí eivace poe ϕ. Patí (5.): Rovnici (5.3) nejpve pavíe na =. Abycho z (5.3) ostai ovnici po tva tajektoie, ϕ =, tey s vyžití (5.) a ϕ = ϕ =. (5.4) ϕ µ ϕ V µ =. 3 µ Kyž nyní o evé stany osaíe za časové eivace (5.4), ostanee ovnici po tva tajektoie: V 3 = µ ϕ ϕ µ. 7 (5.5) Binetův vzoec Teď ná poůže překvapivý obat: Místo závise poěnné bee žívat poěnno =. (5.6) Je tey =, o V V V = = = ϕ ϕ. Navíc = = ϕ ϕ. Po osazení o (5.5) ostáváe a o po úpavě konečně Tento vztah se nazývá Binetův vzoec. 8 Požití Binetova vzoce v přípaě V = k/ V + = µ ϕ ϕ µ V ϕ + =. (5.7) Ve vei ůežité přípaě, ky potenciání enegie je nepřío úěná vzáenosti 9, k V =, (5.8) V k = k k = =, takže (5.7) á je řešení (5.7) překvapivě jenoché. Je totiž ( ) 7 Tohe vypaá sna ještě sožitěji než (5.3), že? Neěste se, za ao chvíi se to výazně zjenoší. 8 Něky se též při jeho zápis požívá čáka jako sybo eivace poe φ, takže Binetův vzoec á pak tva µ V + =. 9 Viz vztahy (5.) a (5.3) po gavitační přitahování a eektostaticko inteakci. 5
6 K přenášce NUFY8 Teoetická echanika pozatíní čební text, veze 5. Pohyb v poi centání síy Leoš Dvořák, MFF UK Paha, 4 µ k ϕ + =. (5.9) Konkétně po přípa gavitačního přitahování, viz (5.), je κ Mµ ϕ + = (5.3) Jak tto ovnici řešit? Vei jenoše! Je o ineání ifeenciání ovnici hého řá s konstantníi koeficienty. Její obecné řešení ostanee jako sočet ovnice s novo pavo stano, tey ovnice ϕ + = (5.3) a patikáního řešení. To ae ůžee vei jenoše vzít ve tva = κ Mµ. Navíc, ovnice (5.3) ná jistě něco připoíná. Má tva ovnice po ineání haonický osciáto! Její řešení ůžee ovno psát ve tva = Acos( ϕ ϕ ). Obecné řešení ovnice (5.3) je tey κ Mµ = + Acosϕ. (5.3) Tento vztah ž fakticky čje tva tajektoie. Dosaíe-i o něj = a označíe a navíc A = 3 p ε, pyne z (5.3) Toto je již ovnice kžeosečky v poání tva, jak ji znáe z geoetie a také z úvoního kz kasické echaniky. 4 κ Mµ = p p =. (5.33) + ε cos ϕ Závěečná poznáka Binetův vzoec ze požít i v přípaě, že se potenciá iší o závisosti /. 5 Ze o sožitějších pobéů nepůjee ae v příští kapitoe bee získané výseky apikovat na histoicky ůežitý Rthefoův expeient. x + x =, jen ísto čas t ze áe jako nezávise poěnno φ a ísto x áe. Bez újy na obecnosti bee áe bát ϕ =. Voba této konstanty znaená jen vob natočení koe osy z. Konstanta A ůže být ibovoná. Zkste si ho o (5.3) osait a přesvěčit se, že je opav řešení. 3 A bya ibovoná konstanta, takže ná nic nebání vyjářit ji jako sočin /p a jiné ibovoné konstanty ε. 4 Po ε < je o eips (po ε = speciáně o kžnici), po ε = je tajektoií paaboa, po ε > hypeboa. 5 Napříka v obecné teoii eativity vyje po pohyb panety v gavitační poi Snce vztah anaogický Binetov vzoci; z něj ze spočíst posv peihéia Meka. 6
Posuvný a rotační pohyb tělesa.
Posuvný a otační pohyb těesa. Zákady echaniky, 4. přednáška Obsah přednášky : typy pohybů těesa posuvný pohyb otační pohyb geoetie hot Doba studia : asi,5 hodiny Cí přednášky : seznáit studenty se zákadníi
seznámit studenty se základními typy pohybu tělesa, s kinematikou a dynamikou posuvného a rotačního pohybu
Dynaika, 5. přednáška Obsah přednášky : typy pohybů těesa posuvný pohyb otační pohyb geoetie hot Doba studia : asi,5 hodiny Cí přednášky : seznáit studenty se zákadníi typy pohybu těesa, s kineatikou a
Pohyb tělesa. rovinný pohyb : Všechny body tělesa se pohybují v navzájem rovnoběžných rovinách. prostorový pohyb. posuvný pohyb. rotační.
Pohyb těesa posuvný pohyb otační pohyb obecný ovinný pohyb posuvný pohyb ovinný pohyb : Všechny body těesa se pohybují v navzáje ovnoběžných ovinách. postoový pohyb sféický pohyb šoubový pohyb obecný postoový
11. cvičení z Matematiky 2
11. cvičení z Mateatiky. - 6. května 16 11.1 Vypočtěte 1 x + y + z dv, kde : x + y + z 1. Věta o substituci á analogický tva a podínky pouze zanedbatelné nožiny nyní zahnují i plochy, oviny atd.: f dv
Gravitační pole. a nepřímo úměrná čtverci vzdáleností r. r r
Newtonův avitační zákon: Gavitační pole ezi dvěa tělesy o hotnostech 1 a, kteé jsou od sebe vzdáleny o, působí stejně velké síly vzájené přitažlivosti, jejichž velikost je přío úěná součinu hotností 1
Pohyb tělesa, základní typy pohybů, pohyb posuvný a rotační. Obsah přednášky : typy pohybů tělesa posuvný pohyb rotační pohyb geometrie hmot
Pohyb tělesa, základní typy pohybů, pohyb posuvný a otační Obsah přednášky : typy pohybů tělesa posuvný pohyb otační pohyb geoetie hot Pohyb tělesa, základní typy pohybů, pohyb posuvný a otační posuvný
Řešení úloh 1. kola 59. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů
Řešení úo. koa 59. ročníku fyzikání oympiáy. Kategorie D Autor úoh: J. Jírů Obr. 1 1.a) Označme v veikost rychosti pavce vzheem k voě a v 0 veikost rychosti toku řeky. Pak patí Číseně vychází α = 38. b)
F9 SOUSTAVA HMOTNÝCH BODŮ
F9 SOUSTAVA HMOTNÝCH BODŮ Evopský sociální fon Ph & EU: Investujee o vší buoucnosti F9 SOUSTAVA HMOTNÝCH BODŮ Nyní se nučíe popisovt soustvu hotných boů Přepokláeje, že áe N hotných boů 1,,, N N násleující
6. Rozptyl Leoš Dvořák, MFF UK Praha, Rozptyl
K přednášce NUFY8 Teoretická mechanika 6. Rozpty Leoš Dvořák, MFF UK Praha, 14 Rozpty Z předchozí kapitoy umíme spočítat pohyb částice v poi centrání síy. Nyní toho využijeme pro případ ehké částice (napříkad
Vyzařovací(směrová) charakteristika F(θ,ϕ), výkonová směrová charakteristika F 2 (θ,ϕ), hustota vyzářeného výkonu S r
Vyzařovací(sěová chaakteistika F(θ,, výkonová sěová chaakteistika F (θ,, hustota vyzářeného výkonu konst hustota vyzářeného výkonu výkon co poje jenotkou pochy v ané ístě, je to stření honota oyntingova
Dynamika mechanismů. dynamika mechanismů - metoda uvolňování, dynamika mechanismů - metoda redukce. asi 1,5 hodiny
Dynaika echanisů Dynaika I, 0. přednáška Obsah přednášky : dynaika echanisů - etoda uvolňování, dynaika echanisů - etoda edukce Doba studia : asi,5 hodiny Cíl přednášky : seznáit studenty se dvěa základníi
2.1.6 Relativní atomová a relativní molekulová hmotnost
.1. Relativní atoová a elativní oleklová hotnost Předpoklady: Pedagogická poznáka: Tato a následjící dvě hodiny jso pokse a toch jiné podání pobleatiky. Standadní přístp znaená několik ne zcela půhledných
Keplerova úloha. Abstrakt: Článek řeší problém pohybu planety (Země) kolem Slunce.
Kepleova úloha Keple-2c.TEX jan.obzalek@mff.cuni.cz Abstakt: Článek řeší poblém pohybu planety (Země) kolem Slunce. Úplná úloha: co zanebáme Chceme vyšetřit pohyb planety, např. Země, v naší sluneční soustavě.
Práce vykonaná v elektrickém poli, napětí, potenciál Vzájemná souvislost mezi intenzitou elektrického pole, napětím a potenciálem Práce vykonaná v
Páce vykonaná v eektickém poi, napětí, potenciá Vzájemná souvisost mezi intenzitou eektického poe, napětím a potenciáem Páce vykonaná v eektostatickém poi po uzavřené dáze Gadient skaání funkce Skaání
Učební text k přednášce UFY102
Učební text k přenášce UFY vou ovinných světených vn V této kpitoe si ukážeme, jk vznikjí intefeenční použky, jestiže se vě ovinné světené vny setkávjí v nějkém postou. Mějme vě ovinné vny popsné náseujícími
3.9. Energie magnetického pole
3.9. nergie agnetického poe 1. Uět odvodit energii agnetického poe cívky tak, aby bya vyjádřena poocí paraetrů obvodu (I a L).. Znát vztah pro energii agnetického poe cívky jako funkci veičin charakterizujících
Dynamika tuhého tělesa. Petr Šidlof
Dnaika tuhého tělesa Pet Šidlof Dnaika tuhého tělesa Pvní věta ipulsová F dp dt a t Zchlení těžiště Výslednice vnějších sil F A F B F C Celková hbnost soustav p p i Hotnost soustav i těžiště soustav se
K přednášce NUFY080 Fyzika I prozatímní učební materiál, verze 01 Keplerova úloha Leoš Dvořák, MFF UK Praha, Keplerova úloha
K řednášce NUFY080 Fyzika I ozatímní učební mateiál, veze 01 Keleova úloha eoš Dvořák, MFF UK Paha, 014 Keleova úloha Chceme sočítat, jak se ohybuje hmotný bod gavitačně řitahovaný nehybným silovým centem.
F5 JEDNODUCHÁ KONZERVATIVNÍ POLE
F5 JEDNODUCHÁ KONZERVATIVNÍ POLE Evopský sociální fond Paha & EU: Investujeme do vaší budoucnosti F5 JEDNODUCHÁ KONZERVATIVNÍ POLE Asi nejznámějším konzevativním polem je gavitační silové pole Ke gavitační
Učební text k přednášce UFY102
Matematický popis vlnění vlna - ozuch šířící se postředím zachovávající svůj tva (pofil) Po jednoduchost začneme s jednodimenzionální vlnou potože ozuch se pohybuje ychlostí v, musí být funkcí jak polohy
1. Pohyby nabitých částic
1. Pohyby nabitých částic 16 Pohyby nabitých částic V celé první kapitole budee počítat pohyby částic ve vnějších přede znáých (zadaných) polích. Předpokládáe že 1. částice vzájeně neinteragují. vlastní
Hlavní body. Teplotní závislosti fyzikálních veličin. Teplota, měření
e r i k a Havní body epota, ěření epotní závisosti fyzikáních veičin Kinetická teorie pynů Maxweova rozděovací funkce epo, ěrné tepo, kaorietrie epota Je zákadní veičinou, kterou neze odvodit? Čověk ji
Hlavní body. Úvod do dynamiky. Dynamika translačních pohybů Dynamika rotačních pohybů
Mechanka dynaka Hlavní body Úvod do dynaky. Dynaka tanslačních pohybů Dynaka otačních pohybů Úvod do dynaky Mechanka by byla neúplná, kdyby se nezabývala, důvody poč se tělesa dávají do pohybu, zychlují,
Stacionární magnetické pole
Stacionání magnetické poe Vzájemné siové působení vodičů s poudem a pemanentních magnetů Magnetické jevy - známy od středověku, přesnější poznatky 19. stoetí. Stacionání magnetické poe: zdojem je nepohybující
Elastické deformace těles
Eastické eformace těes 15 Na oceový rát ék L 15 m a průměru 1 mm zavěsíme závaží o hmotnosti m 110 kg přičemž Youngův mou pružnosti ocei v tahu E 16 GPa a mez pružnosti ocei σ P 0 Pa Určete reativní prooužení
Příklad 33 : Energie elektrického pole deskového kondenzátoru. Ověření vztahu mezi energií, kapacitou a veličinami pole.
Přík 33 : Energie eektrického poe eskového konenzátoru. Ověření vzthu mezi energií, kpcitou veičinmi poe. Přepokáné znosti: Eektrické poe kpcit eskového konenzátoru Přík V eskovém konenzátoru je eektrické
5. Světlo jako elektromagnetické vlnění
Tivium z optiky 9 5 Světlo jako elektomagnetické vlnění Ve třetí kapitole jsme se dozvěděli že na světlo můžeme nahlížet jako na elektomagnetické vlnění Dříve než tak učiníme si ale musíme alespoň v základech
POLOVODIČOVÉ USMĚRŇOVAČE
POLOVODČOVÉ SMĚŇOVAČE rčeno pro poslchače bakalářských stijních prograů FS Obsah: Úvo Neřízené polovoičové sěrňovače v jenocestné (zlové) zapojení Jenofázové jenoplsní jenocestné (zlové) sěrňovače sěrňovač
NMAF063 Matematika pro fyziky III Zápočtová písemná práce A Termín pro odevzdání 7. prosinec 2018
Jméno: Příkla 4 5 Celkem boů Boů 0 0 0 0 0 00 Získáno Zápočtová písemná páce učená k omácímu vypacování. Nutnou pomínkou po získání zápočtu je zisk více jak 50 boů. Pavila jsou násleující:. Příklay řešte
KMITÁNÍ MECHANICKÉHO OSCILÁTORU
KMITÁNÍ MECHANICKÉHO OSCILÁTORU V echanice jse se zabývai příočarý a křivočarý pohybe, nyní rozeberee třetí zákadní typ pohybu, pohyb kitavý, tedy echanické kitání. Kitající těeso (osciátor) se pohybuje
1. Hmotnost a látkové množství
. Hotnost a látkové nožství Hotnost stavební jednotky látky (například ato, olekly, vzorcové jednotky, eleentární částice atd.) označjee sybole a, na rozdíl od celkové hotnosti látky. Při požití základní
ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Spojité rozložení náboje
EEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Spojité ozložení náboje Pete Doumashkin MIT 006, překlad: Jan Pacák (007) Obsah. SPOJITÉ OZOŽENÍ NÁBOJE.1 ÚKOY. AGOITMY PO ŘEŠENÍ POBÉMU ÚOHA 1: SPOJITÉ OZOŽENÍ
Pružnost a plasticita II
Pružnost a pasticita II 3. ročník bakaářského studia doc. Ing. artin Krejsa, Ph.D. Katedra stavební echaniky Neineární chování ateriáů, podínky pasticity, ezní pastická únosnost Úvod, zákadní pojy Teorie
SMR 2. Pavel Padevět
SR Pve Pevět PRICIP VIRTUÁLÍCH PRACÍ jenošená eformční meto, esiové vivy, Sčítání účinků ztížení ezi nesiové vivy vžjeme v D: viv posntí popor, viv tepoty. ESILOVÉ VLIVY Popštění popory vyvoává v sttiky
Obsah KINEMATIKA A DYNAMIKA TUHÉHO TĚLESA. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Bohumil Vybíral. Úvod 3
KINEMTIK DYNMIK TUHÉH TĚLES Studjní tet po řeštee F a ostatní zájece o fzku ohu Vbía bsah Úvod 3 Kneatka tuhého těesa 4. Pooha tuhého těesa př pohbu................. 4. Tansační pohb tuhého těesa..................
je dána vzdáleností od pólu pohybu πb
7_kpta Tyč tvaru le obrázku se pohybuje v rohu svislé stěny tak, že bo A se o rohu (poloha A 0 ) vzaluje s konstantním zrychlením a A 1. m s. Počáteční rychlost bou A byla nulová. Bo B klesá svisle olů.
1.7 Magnetické pole stacionárního proudu
1.7 Magnetické poe stacionárního proudu Pohybující se e. náboje (e. proud) vytvářejí magnetické poe. Naopak poe působí siou na pohybující se e. náboje. 1.7.1 E. proud, Ohmův zákon v diferenciáním tvaru
DVĚ METODY ŘEŠENÍ PROBLEMATIKY ŠÍŘENÍ ELEKTROMAGNETICKÝCH VLN
DVĚ TODY ŘŠNÍ ROBLTIKY ŠÍŘNÍ LKTROGNTICKÝCH VLN. ikš J. Novák. Novák České vsoké učení technické v ae Fakulta stavební Kateda fik bstakt V páci jsou uveden dvě etod řešení šíření elektoagnetického pole
5.4.6 Objemy a povrchy rotačních těles I
5.4.6 Objey a povchy otačních těle I Předpoklady: 050405 Pedagogická poznáka: Stejně jako u nohotěnů i u otačních těle e vzoce po objey a obahy e neodvozují, žáci ohou využívat tabulky a cíle hodin je,
Dynamika soustavy hmotných bodů. Posuvný a rotační pohyb tělesa.
ynaka soustavy hotných bodů. Posuvný a otační pohyb těesa. ynaka,. přednáška ynaka soustavy hotných bodů, -střed hotnost, - zákadní věty dynaky soustavy hotných bodů. Posuvný pohyb - kneatka a dynaka.
Skládání (interference) vlnění
Skládání (interference) vlnění Protože vlnění je ve své podstatě kitání (sostavy) hotných bodů, neůže nás překvapit, že existje jev skládání vlnění od (několika) různých zdrojů - který neznaená nic jiného,
L2 Dynamika atmosféry I. Oddělení numerické předpovědi počasí ČHMÚ 2007
L2 Dynamika atmosféy I Oddělení nmeické předpovědi počasí ČHMÚ 2007 Plán přednášky Dynamika atmosféy Sostava ovnic Zákony zachování Vlny v atmosféře, příklady oscilací Příklady instabilit Rotjící sořadný
Z toho se η využije na zajištění funkcí automobilu a na překonání odporu vzduchu. l 100 km. 2 body b) Hledáme minimum funkce θ = 1.
Řešení úoh. koa 59. ročníku fyzikání oympiády. Kategorie A Autor úoh: J. Thomas.a) Na dráze vt bude zapotřebí objem paiva V θ θv t. Při jeho spáení se získá tepo Q mh ρv H ρθvh t. Z toho se η využije na
4. konference o matematice a fyzice na VŠT Brno, Fraktály ve fyzice. Oldřich Zmeškal
4. konfeence o matematice a fyzice na VŠT Bno, 15. 9. 25 Faktály ve fyzice Oldřich Zmeškal Ústav fyzikální a spotřební chemie, Fakulta chemická, Vysoké učení technické, Pukyňova 118, 612 Bno, Česká epublika
Jev elektromagnetické indukce
Jev eektromagnetické indukce V minuých kapitoách jsme si jistě uvědomii, že pojmy kid a pohyb, které byy vemi významné u mechanických dějů, při zkoumání eektrických a magnetických jevů nabyy přímo zásadní
MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU. r je vyjádřen vztahem
MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU udeme se zabývat výpočtem magnetického pole vytvořeného danou konfiguací elektických poudů (podobně jako učení elektického pole vytvořeného daným ozložením elektických
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
F8 KEPLEOVY ZÁKONY Evopský sociální fond Paha & EU: Investujeme do vaší udoucnosti F8 KEPLEOVY ZÁKONY Kepleovy zákony po planetání pohy zfomuloval Johannes Keple (1571 1630) na základě měření Tychona Baheho
ZÁKLADY ROBOTIKY Transformace souřadnic
ÁKLD OOIK ansfomace souřadnic Ing. Josef Čenohoský, h.d. ECHNICKÁ UNIVEI V LIECI Fakulta mechatoniky, infomatiky a mezioboových studií ento mateiál vznikl v ámci pojektu ESF C..7/2.2./7.247, kteý je spolufinancován
Kinematika. Hmotný bod. Poloha bodu
Kinematika Pohyb objektů (kámen, automobil, střela) je samozřejmou součástí každodenního života. Pojem pohybu byl poto známý už ve staověku. Modení studium pohybu začalo v 16. století a je spojeno se jmény
Řešení: Odmocninu lze vždy vyjádřit jako mocninu se zlomkovým exponentem. A pro práci s mocninami = = = 2 0 = 1.
Varianta A Př.. Zloek 3 3 je roven číslu: a), b) 3, c), d), e) žádná z předchozích odpovědí není Řešení: Odocninu lze vždy vyjádřit jako ocninu se zlokový exponente. A pro práci s ocninai již áe jednoduchá
3.1.2 Harmonický pohyb
3.1.2 Haronický pohyb Předpoklady: 3101 Graf závislosti výchylky koštěte na čase: Poloha na čase 200 10 100 poloha [c] 0 0 0 10 20 30 40 0 60 70 80 90 100-0 -100-10 -200 čas [s] U některých periodických
Dynamika tuhého tělesa
Dnaika tuhého tělesa Pet Šidlof ECHNCKÁ UNVERZA V LBERC Fakulta echatonik, infoatik a eioboových studií ento ateiál vnikl v áci pojektu ESF CZ..7/../7.47 Reflexe požadavků půslu na výuku v oblasti autoatického
1.5. Gravitační pole Newtonův gravitační zákon
.5. Gavitační pole Není třeba na úvod této kapitoly uvádět paktický příklad působení avitace na hotná tělesa. Každý jse již upadli, nebo ná něco spadlo na ze. Této pobleatiky jse se již dotkli v dynaice,
7 Kvantová částice v centrálně symetrickém potenciálu.
7 Kvantová částice v centráně symetrickém potenciáu. Představte si, že hodíte kámen do vody a chcete popsat vny, které vzniknou. Protože hadina je D, můžete vny popsat funkcí f x, y. Ae pokud jste chytří,
dynamika hmotného bodu, pohybová rovnice, d Alembertůvprincip, dva druhy úloh v dynamice, zákony o zachování / změně
Dnaika I,. přednáška Oba přednášk : dnaika otnéo bodu, pobová ovnice, d lebetůvpincip, dva du úlo v dnaice, zákon o zacování / zěně Doba tudia : ai odina Cíl přednášk : eznáit tudent e základníi zákonitoti
FYZIKA I. Mechanická energie. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Mechanická enegie Pof. RND. Vilém Mád, CSc. Pof. Ing. Libo Hlaváč, Ph.D. Doc. Ing. Iena Hlaváčová, Ph.D. Mg. At. Dagma Mádová Ostava
Fyzikální korespondenční seminář UK MFF 18. II. P
18. ročník, úoha II. P... nečekaná překážka (5 boů; průměr 1,63; řešio 51 stuentů) Řiič automobiu jeoucí rychostí v náhe spatří, že jeho vůz směřuje oprostře betonové zi šířky 2 ve vzáenosti. Součinite
C Charakteristiky silničních motorových vozidel
C Chaaktetky lnčních otoových vozel Toto téa e zabývá záklaní etoa tanovení někteých povozních chaaktetk lnčních otoových vozel, kteé pak náleně louží k pouzování užtných vlatnotí těchto vozel. Stanovení
Kolmost rovin a přímek
Kolmost rovin a přímek 1.Napište obecnou rovnici roviny, která prochází boem A[ 7; ;3] a je kolmá k přímce s parametrickým vyjářením x = + 3 t, y = t, z = 7 t, t R. Řešení: Hleanou rovinu si označíme α:
do strukturní rentgenografie e I
Úvod do stuktuní entgenogafie e I Difakce tg záření na kystalu Metody chaakteizace nanomateiálů I RND. Věa Vodičková, PhD. Studium kystalové stavby Difakce elektonů, neutonů, tg fotonů Kystal ideální mřížka
I. MECHANIKA 3. Energie a silové pole II
I. MECHANIKA. Enegie a silové pole II ákladní typy konzevativních polí hoogenní pole pole centální síly Hoogenní pole vektoové pole F á ve všech odech stejnou hodnotu F (,, g) intenzita pole I (,, g) naísto
Jaroslav Reichl. Střední průmyslová škola sdělovací techniky Panská 3 Praha 1
Střední půslová šola sdělovací techni Pansá Paha 1 Jaoslav Reichl, 017 učená studentů 4 očníu technicého lcea jao doplně e studiu apliované ateati Jaoslav Reichl Sbía úloh z apliované ateati, J Reichl,
6 Diferenciální operátory
- 84 - Difeenciální opeátoy 6 Difeenciální opeátoy 61 Skalání a vektoové pole (skalání pole) u u x x x Funkci 1 n definovanou v učité oblasti Skalání pole přiřazuje každému bodu oblasti učitou číselnou
Hlavní body. Keplerovy zákony Newtonův gravitační zákon. Konzervativní pole. Gravitační pole v blízkosti Země Planetární pohyby
Úvod do gavitace Hlavní body Kepleovy zákony Newtonův gavitační zákon Gavitační pole v blízkosti Země Planetání pohyby Konzevativní pole Potenciál a potenciální enegie Vztah intenzity a potenciálu Úvod
Pohyb soustavy hmotných bodů
Pohyb soustavy hotných bodů Tato kapitola se zabývá úlohai, kdy není ožné těleso nahradit jední hotný bode, předevší při otáčení tělesa. Těžiště soustavy hotných bodů a tělesa Při hodu nějaký složitější
MG - Stacionární a kvazistacionární magnetické pole
Stcionání kzistcionání g. poe MG- Mgnetická indukce, iot-stů zákon V MG - Stcionání kzistcionání gnetické poe Mgnetické poe síy gnetické poi jsou yoné půsoení poyujícíc se eektickýc náojů. Těito náoji
DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ TUHÉ TĚLESO
DOPLŇKOÉ TXTY BB0 PAL SCHAUR INTRNÍ MATRIÁL FAST UT BRNĚ TUHÉ TĚLSO Tuhé těleso je těleso, o teé latí, že libovolná síla ůsobící na těleso nezůsobí jeho defoaci, ale ůže ít ouze ohybový účine. Libovolná
3.1.7 Kyvadlo. Předpoklady: 3106
37 Kyvado ředpokady: 306 edaoická poznámka: Ceý obsah hodiny není možné stihnout za 45 minut Je třeba se ozhodnout, co je podstatné: testování vzoce paktickým sestojováním kyvade, povídání o kyvadových
1.7.5 Rovnováha na páce II
75 Rovnováha na áce II Přeokay: 70 Peaoická oznámka: Hoinu je možné obře reuovat tím, koika zůsoby necháme některé říkay žáky očítat Peaoická oznámka: V náseujícím říkau nechám žáky nakresit obrázek a
MECHANIKA GRAVITA NÍ POLE Implementace ŠVP ivo Výstupy Klí ové pojmy Strategie rozvíjející klí ové kompetence I. Kompetence k u ení:
Pojekt Efektivní Učení Refoou oblastí gynaziálního vzdělávání je spolufinancován Evopský sociální fonde a státní ozpočte České epubliky. MECHANIKA GRAVITAČNÍ POLE Ipleentace ŠVP Učivo - Newtonův gavitační
Varianta A. Příklad 1 (25 bodů) Funkce f je dána předpisem
Příkla 1 (5 boů) Funkce f je ána přepise Přijíací zkouška na navazující agisterské stuiu 14 Stuijní progra Fyzika obor Učitelství fyziky ateatiky pro stření školy Stuijní progra Učitelství pro záklaní
Obecná a anorganická chemie II.semestr program přednášek
Obecná a anoganická chemie II.semest pogam přednášek Stuktua atomů a iontů, částečně zapněné podsupky, ionty v igandovém poi Symetie moeku, hybidizované obitay Moekuové obitay MO LCAO Acidobazické vastnosti
Cvičení z termomechaniky Cvičení 6.
Příklad 1: Pacovní látkou v poovnávacím smíšeném oběhu spalovacího motou je vzduch o hmotnosti 1 [kg]. Počáteční tlak je 0,981.10 5 [Pa] při teplotě 30 [ C]. Kompesní pomě je 7, stupeň zvýšení tlaku 2
Kinematika tuhého tělesa
Kinematika tuhého tělesa Pet Šidlof TECHNICKÁ UNIVERZITA V LIERCI Fakulta mechatoniky, infomatiky a mezioboových studií Tento mateiál vznikl v ámci pojektu ESF CZ.1.07/2.2.00/07.0247 Reflexe požadavků
1.7.2 Moment síly vzhledem k ose otáčení
.7. oment síly vzhledem k ose otáčení Předpoklady 70 Pedagogická poznámka Situaci tochu komplikuje skutečnost, že žáci si ze základní školy pamatují součin a mají pocit, že se pouze opakuje notoicky známá
2.1 Stáčivost v závislosti na koncentraci opticky aktivní látky
1 Pracovní úkoy 1. Změřte závisost stočení poarizační roviny na koncentraci vodního roztoku gukozy v rozmezí 0 500 g/. Pro jednu zvoenou koncentraci proveďte 5 měření úhu stočení poarizační roviny. Jednu
Pružnost a plasticita II
Pužnost a plasticita II. očník bakalářského stuia oc. Ing. Matin Kejsa, Ph.D. Katea stavební mechanik Rovinný poblém, stěnová ovnice Rovinné úloh Řešené úloh teoie pužnosti se postatně jenouší, poku v
Sommerfeld-Wilsonova kvantová mechanika
Kapitola 3-1 - Kapitola 3 Sommefeld-Wilsonova kvantová mechanika Obsah: 3 Sommefeld-Wilsonova kvantovací podmínka 3. Hamonický osciláto 3.3 Atom vodíku - neelativistická teoie 3.4 Pincip koespondence Liteatua:
PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úlohač.19 Název: Měření s torzním magnetometrem
Odděení fyzikáních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II. úohač.19 Název: Měření s torzním magnetometrem Pracova: Lukáš Ledvina stud.skup.14 dne:16.10.2009 Odevzdadne: Možný počet
3.2.2 Rovnice postupného vlnění
3.. Rovnice postupného vlnění Předpoklady: 310, 301 Chcee najít rovnici, která bude udávat výšku vlny v libovolné okažiku i libovolné bodě (v jedno okažiku je v různých ístech různá výška vlny). Veličiny
ELEKTŘINA A MAGNETIZMUS
ELEKTŘIN MGNETIZMUS III Elektický potenciál Obsah 3 ELEKTRICKÝ POTENCIÁL 31 POTENCIÁL POTENCIÁLNÍ ENERGIE 3 ELEKTRICKÝ POTENCIÁL V HOMOGENNÍM POLI 4 33 ELEKTRICKÝ POTENCIÁL ZPŮSOENÝ ODOVÝMI NÁOJI 5 331
5 Poměr rychlostí autobusu a chodce je stejný jako poměr drah uražených za 1 hodinu: v 1 = s 1
Řešení úloh 1 kola 7 ročníku fyzikální olympiáy Kategorie C Autoři úloh: J Thomas (1,, 3), J Jírů (4, ), J Šlégr (6) a T Táborský (7) 1a) Označme stranu čtverce na mapě Autobus za 1 hoinu urazí ráhu s
Elektrická vodivost kovů. Pro pohyb částice ve vnějším silovém potenciálním poli platí Schrodingerova rovnice:
Elektická vodivost kovů Vodiče Vodiče Po pohyb částice ve vnější silové potenciální poli platí Schodingeova ovnice: h Ψ x Ψ + y + Ψ + W z p Ψ WΨ Tato ovnice popisuje pohyb elektonu a ářešení pouze po učité
Proudění plynu vakuovým potrubím
Poudění pynu vakuovým potubím - ozdí taků - poud pynu - vodivost, (odpo) potubí Jaká je anaogie s eektickými veičinami? Vacuum Technoogy J.Šandea, FEE, TU Bno Poudění pynu vakuovým potubím Je třeba znát
Newtonův gravitační zákon
Gavitační pole FyzikaII základní definice Gavitační pole je posto, ve kteém působí gavitační síly. Zdojem gavitačního pole jsou všechny hmotné objekty. Každá dvě tělesa jsou k sobě přitahována gavitační
č í úř é č úň ž č ň ř č é ř í š ň é č č čí ó ř á é é ů á č é ň é ň á í š ě č áš č ý ř ó š á á á č íó á ň á Ř Á í ří ů á ý á č í í řú ů ě í ě š ř ú á á
í úř úň ž ň ř ř í š ň í ó ř á ů á ň ň á í š ě áš ý ř ó š á á á íó á ň á Ř Á í ří ů á ý á í í řú ů ě í ě š ř ú á á ž ň í í í á á ň ř á í ú á Č ó Čá Ó í Č É řžňá ř ž ň ý á ň ó á ž ó ř ú ň á á ť ú á ěí ú
Řešení úloh 1. kola 49. ročníku fyzikální olympiády. Kategorie D. Dosazením do rovnice(1) a úpravou dostaneme délku vlaku
Řešení úoh koa 49 ročníku fyzikání oympiády Kategorie D Autořiúoh:JJírů(,3,4,5,6,),TDenkstein(), a) Všechny uvažované časy jsou měřené od začátku rovnoměrně zrychené pohybu vaku a spňují rovnice = at,
F (x, h(x)) T (g)(x) = g(x)
11 Implicitní funkce Definice 111 (implicitní funkce) Nechť F : R 2 R je funkce a [x 0, y 0 ] R 2 je takový bo, že F (x 0, y 0 ) = 0 Řekneme, že funkce y = f(x) je v okolí bou [x 0, y 0 ] zaána implicitně
FYZIKA I. Kyvadlový pohyb. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STRONÍ FYZIKA I Kyvadový pohyb Prof. RNDr. Viém Mádr, CSc. Prof. Ing. Libor Haváč, Ph.D. Doc. Ing. Irena Haváčová, Ph.D. Mgr. Art. Dagmar Mádrová
Základy elektrotechniky
Základy elektotechniky 8. přednáška Elektoagnetisus Elektoagnetisus Elektoagnetisus - agnetické účinky el. poudu Biot - Savatův zákon (zákon celkového poudu) Magnetická indukce Magnetický tok Apéův zákon
Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie B Autoři úloh: J. Thomas (1, 2, 3, 4, 5, 7), M. Jarešová (6)
Řešení úoh 1. koa 60. ročníku fyzikání oympiády. Kategorie B Autoři úoh: J. Thomas (1, 2, 3, 4, 5, 7), M. Jarešová (6) h 1.a) Protože vzdáenost bodů K a O je cos α, je doba etu kuičky z bodu K do bodu
ě ě í ý ě á ý ů é á í ů á č š í ř í ó ě é á ž ý í ě ýč ář ř š ě ý ář ý á é á í š ě é í ř áž á á ě í ě á í í í á ý ří ě ý ě ší é á á í í ř ř á á í Í áž
Á á í ý á í č é é á í í čí í ý á ů í é á í ř ů ý č é é ř í á é é ě ě í ý ě í é ý á í í í ý á í ž í č ý ý á ů ů řá é é á ý á ý ě í ý ě á ř á ř é š í ží í ě é ě é á á í á á ů ě ší ů á í í ů ě í é é ý š š
Diferenciální operátory vektorové analýzy verze 1.1
Úvod Difeenciální opeátoy vektoové analýzy veze. Následující text popisuje difeenciální opeátoy vektoové analýzy. Měl by sloužit především studentům předmětu MATEMAT na Univezitě Hadec Kálové k přípavě
Příklady elektrostatických jevů - náboj
lektostatika Hlavní body Příklady elektostatických jevů. lektický náboj, elementání a jednotkový náboj Silové působení náboje - Coulombův zákon lektické pole a elektická intenzita, Páce v elektostatickém
Vnitřní energie ideálního plynu podle kinetické teorie
Vnitřní energie ideálního plynu podle kinetické teorie Kinetická teorie plynu, která prní poloině 9.století dokázala úspěšně spojit klasickou fenoenologickou terodynaiku s echanikou, poažuje plyn za soustau
Žeezniční přechodnice Kubicá paaboa Největšího ozšíření jao přechodnice dosáha ubicá paaboa, navžená němecým geodetem a matematiem F. Hemetem ). Jsou-
Označování použitých matematicých veičin c n d - integační onstanty - déa subtangenty - vzepětí užnice - řivost ovinné řivy - déa přechodnice po tečně - déa přechodnice v ose m - odsun osuační užnice v
Řešení úloh 1. kola 54. ročníku fyzikální olympiády. Kategorie C. s=v 0 t 1 2 at2. (1)
Řešení úoh 1. koa 54. ročníku fyzikání oympiády. Kategorie C Autořiúoh:J.Jírů(1),J.Thomas(,3,5),M.Jarešová(4,7),P.Šedivý(6). 1.a) Během brzdění roste dráha s časem pode vzorce s=v 0 t 1 at. (1) Zevzorcepyne
1.3.8 Rovnoměrně zrychlený pohyb po kružnici I
1.3.8 Rovnoměně zychlený pohyb po kužnici I Předpoklady: 137 Opakování: K veličinám popisujícím posuvný pohyb existují analogické veličiny popisující pohyb po kužnici: ovnoměný pohyb pojítko ovnoměný pohyb
Cavendishův pokus: Určení gravitační konstanty,,vážení Země
Cavendishův pokus: Učení gavitační konstanty,,vážení Země Jiří Kist - Mendlovo gymnázium, Opava, SO@seznam.cz Teeza Steinhatová - gymnázium J. K. Tyla Hadec Kálové, SteinT@seznam.cz 1. Úvod Abstakt: Cílem