5. Limita funkce a spojitost strana 1/5 2018/KMA/MA1/přednášky. Definice 5.1. Mějme funkci f : D R a bod x 0 R.
|
|
- Dominika Horáková
- před 5 lety
- Počet zobrazení:
Transkript
1 5. Limita funkce a spojitost strana 1/5 2018/KMA/MA1/přednášky Definice 5.1. Mějme funkci f : D R a bod 0 R. a) Číslo c R je částečná ita funkce f v bodě 0, pokud eistuje posloupnost ( n ) taková, že platí n N : n D n 0 n = 0 f( n) = c. b) Dolní (horní) ita funkce f v bodě 0 je infimum (supremum) množiny M = { c R : c je částečná ita funkce f v bodě 0 } f() = inf M, f() = sup M. Definice 5.2 (Heineho inice ity). Mějme funkci f : D R a bod 0 R, který je hromadným bodem D. Řekneme, že funkce f má itu b R v bodě 0, jestliže pro každou posloupnost ( n ) platí n N : n D n 0 n = 0 f( n) = b Poznámka. Pro 0 R a b R platí f() = b právě tehdy, když f() = Definice 5.3 (Cauchyova inice ity). Mějme funkci f : D R a bod 0 R, který je hromadným bodem D. Řekneme, že funkce f má (vlastní) itu b R ve (vlastním) bodě 0 R, jestliže ε > 0 δ > 0 D : 0 < 0 < δ f() b < ε Dále pro b R inujme a) f() = b b) f() = b c) f() = + d) f() = + e) f() = + f) f() = g) f() = h) f() = ( ε > 0 h > 0 D : h < f() b < ε ), ( ε > 0 d < 0 D : < d f() b < ε ), ( ε > 0 δ > 0 D : 0 < 0 < δ 1/ε < f() ), ( ε > 0 h > 0 D : h < 1/ε < f() ), ( ε > 0 d < 0 D : < d 1/ε < f() ), ( ε > 0 δ > 0 D : 0 < 0 < δ f() < 1/ε ), ( ε > 0 h > 0 D : h < f() < 1/ε ), ( ε > 0 d < 0 D : < d f() < 1/ε ).
2 5. Limita funkce a spojitost strana 2/5 2018/KMA/MA1/přednášky Poznámka. Pro 0 R a b R platí ( f() = b ε > 0 δ > 0 D(f) : P ( 0, δ) f() U(b, ε) ), kde jsme pro δ > 0 a ε > 0 označili ( 0 δ; 0 ) ( 0 ; 0 + δ) pro 0 R, P ( 0, δ) = (1/δ; + ) pro 0 = +, ( ; 1/δ) pro 0 =, (b ε; b + ε) pro b R, U(b, ε) = (1/ε; + pro b = +, ; 1/ε) pro b =. Věta 5.1 (jednoznačnost ity). Každá funkce má v bodě nejvýše jednu itu. Věta 5.2 (algebra it). itu Potom platí Mějme funkce f a g, které mají stejný iniční obror D a mají v bodě 0 R f() = a R, g() = b R. a) (f() + g()) = a + b, b) (f() g()) = a b, pokud je pravá strana inována, pokud je pravá strana inována, f() c) g() = a, pokud D : g() 0 a pokud je pravá strana inována. b Věta 5.3 (o sevření). Mějme funkce f, g, h se stejným iničním oborem D a bod 0 R. Dále předpokládejme, že platí a) δ > 0 D P ( 0, δ) : f() g() h(), b) f() = h() = b R. Potom sevřená funkce g má také itu v bodě 0 a platí g() = b.
3 5. Limita funkce a spojitost strana 3/5 2018/KMA/MA1/přednášky Definice 5.4. Mějme funkci f : D R a bod 0 R, který je hromadným bodem D. Řekneme, že a) funkce f má itu zprava b R v bodě 0, jestliže pro každou posloupnost ( n ) platí n N : n D n > 0 n = 0 f( n) = b f() = b nebo f( 0+) = b, + b) funkce f má itu zleva b R v bodě 0, jestliže pro každou posloupnost ( n ) platí n N : n D n < 0 n = 0 f( n) = b f() = b nebo f( 0 ) = b. Věta 5.4. Pro 0 R a b R platí f() = b právě tehdy, když f() = + Věta 5.5. Mějme dvě funkce f a g tak, že H(g) D(f) a bod 0 R takový, že platí a) g() = a R, b) y a f(y) = b R, c) f(a) = b nebo δ > 0 D(g) P ( 0, δ) : g() a. Potom f(g()) = b. Poznámka (ity některých funkcí). a) sin arcsin b) c) tg = 1, ( 1 + a sinh = 1, = 1, tgh arctg argsinh = 1, = 1, ) ( = e a a 1 + a ) = e a pro a R. = 1, e 1 = 1, argtgh = 1, = 1, ln(1 + ) = 1,
4 5. Limita funkce a spojitost strana 4/5 2018/KMA/MA1/přednášky Definice 5.5. Mějme funkci f : D R, bod 0 D, který je hromadným bodem D. Řekneme, že a) funkce f je spojitá v bodě 0, pokud f() = f( 0 ), b) funkce f je spojitá zleva v bodě 0, pokud f() = f( 0), c) funkce f je spojitá zprava v bodě 0, pokud + f() = f( 0). Pokud 0 D je izolovaným bodem D, potom funkce f je spojitá v bodě 0. Poznámka. Funkce f je spojitá v bodě 0 D(f) právě tehdy, když ε > 0 δ > 0 D(f) : 0 < δ f() f( 0 ) < ε. Věta 5.6. Každá z následujících funkcí je spojitá funkce v každém bodě svého iničního oboru: a) y = n pro n Z, y = n pro n N, n 2, y = a pro a R, b) y = a a y = log a pro a > 0, a 1, c) y = sin, y = cos, y = tg, y = cotg, d) y = sinh, y = cosh, y = tgh, y = cotgh, e) y = arcsin, y = arccos, y = arctg, y = arccotg, f) y = argsinh, y = argcosh, y = argtgh, y = argcotgh. Věta 5.7. Mějme funkce f a g, které mají stejný iniční obor D a které jsou spojité v bodě 0 D. Potom jsou v bodě 0 spojité funkce f + g, f g a f g (pokud D : g() 0). Věta 5.8. Mějme funkci g, která je spojitá v bodě 0. Dále mějme funkci f, která je spojitá v bodě y 0 = g( 0 ). Potom složená funkce h = f g je spojitá v bodě 0. Definice 5.6. Mějme funkci f : D R a bod 0 R, pro který δ > 0 : P ( 0, δ) D. Bod 0 je bod nespojitosti funkce f, pokud funkce f v bodě 0 není spojitá. Dále řekneme, že a) 0 je bodem odstranitelné nespojitosti funkce f, pokud eistuje vlastní ita funkce f v bodě 0 a f() f( 0 ) ( včetně případu, kdy 0 D ), b) 0 je bodem nespojitosti I. druhu funkce f, pokud eistují vlastní jednostranné ity funkce f v 0 a f() f() ( rozdíl f() f() je tzv. skok funkce f v bodě 0 ), + + c) 0 je bodem nespojitosti II. druhu funkce f, pokud neeistuje vlastní ita zleva nebo vlastní ita zprava funkce f v bodě 0.
5 5. Limita funkce a spojitost strana 5/5 2018/KMA/MA1/přednášky Definice 5.7. Mějme funkci f : D R a interval I D. Řekneme, že funkce f je spojitá na intervalu I, jestliže je spojitá v každém vnitřním bodě intervalu I a patří-li levý (pravý) koncový bod tohoto intervalu do I, je v něm spojitá zprava (zleva). Věta 5.9 (Cauchyova věta). Mějme funkci f, která je spojitá na uzavřeném intervalu a; b a pro kterou platí f(a) f(b) < 0. Potom eistuje ξ (a; b) tak, že f(ξ) = 0. Věta 5.10 (Weierstrassova věta). Mějme funkci f, která je spojitá na uzavřeném intervalu. Potom funkce f je na tomto intervalu omezená a nabývá na něm své nejmenší a největší funkční hodnoty. Věta 5.11 (Bolzanova věta). Mějme funkci f, která je spojitá na uzavřeném intervalu. Potom funkce f na tomto intervalu nabývá všech mezihodnot mezi svou nejmenší a největší funkční hodnotou.
Limita posloupnosti, limita funkce, spojitost. May 26, 2018
Limita posloupnosti, limita funkce, spojitost May 26, 2018 Definice (Okolí bodu) Okolím bodu a R (také ε- okolím) rozumíme množinu U(a, ε) = {x R; x a < ε} = (a ε, a + ε), bod a se nazývá střed okolí a
VíceLimita a spojitost LDF MENDELU
Limita a spojitost Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu
VíceText může být postupně upravován a doplňován. Datum poslední úpravy najdete u odkazu na stažení souboru. Veronika Sobotíková
Tento text není samostatným studijním materiálem. Jde jen o prezentaci promítanou na přednáškách, kde k ní přidávám slovní komentář. Některé důležité části látky píšu pouze na tabuli a nejsou zde obsaženy.
VíceLimita a spojitost funkce
Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu
VíceDerivace úvod. Jak zjistit míru změny?
Derivace úvod P ČEZ Jak zjistit míru změny? Derivace nám dá odpověď jestli je funkce: rostoucí/klesající konkávní/konvení jak moc je strmá jak moc roste kde má maimum/minimum 1000 700 P ČEZ P ČEZ 3% 4%
Více1 Množiny, výroky a číselné obory
1 Množiny, výroky a číselné obory 1.1 Množiny a množinové operace Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Definice. Dvě množiny jsou
VíceNejčastějšími funkcemi, s kterými se setkáváme v matematice i v jejích aplikacích, jsou
4 Cíle Nejčastějšími funkcemi, s kterými se setkáváme v matematice i v jejích aplikacích, jsou funkce, jejichž ita v bodě 0 je rovna funkční hodnotě v tomto bodě Seznámíme se s vlastnostmi takových funkcí
VíceSpojitost a limita funkce
Spojitost a ita funkce Okolí bodu Značení: a R ε > 0 označujeme O ε (a) = (a ε, a + ε) ε-ové okolí bodu a O + ε (a) = a, a + ε) pravé okolí, O ε (a) = (a ε, a levé okolí P ε (a) = O ε (a) \ {a} x a ε-ové
VíceMATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel
MATEMATIKA Příklady pro 1. ročník bakalářského studia II. část II.1. Posloupnosti reálných čísel Rozhodněte, zda posloupnost a n (n = 1, 2, 3,...) je omezená (omezená shora, omezená zdola) resp. monotónní
VíceLimita a spojitost funkce. 3.1 Úvod. Definice: [MA1-18:P3.1]
KAPITOLA 3: Limita a spojitost funkce [MA-8:P3.] 3. Úvod Necht je funkce f definována alespoň na nějakém prstencovém okolí bodu 0 R. Číslo a R je itou funkce f v bodě 0, jestliže pro každé okolí Ua) bodu
Více30. listopadu Derivace. VŠB-TU Ostrava. Dostupné: s1a64/cd/index.htm.
KMA/MAT1 Přednáška a cvičení č. 11 30. listopadu 2017 [KS] Jaromír Kuben Petra Šarmanová: Diferenciální počet funkcí jedné proměnné. VŠB-TU Ostrava. Dostupné: http://homel.vsb.cz/ s1a64/cd/inde.htm. 1
VíceMatematika 1. 1 Derivace. 2 Vlastnosti a použití. 3. přednáška ( ) Matematika 1 1 / 16
Matematika 1 3. přednáška 1 Derivace 2 Vlastnosti a použití 3. přednáška 6.10.2009) Matematika 1 1 / 16 1. zápočtový test již během 2 týdnů. Je nutné se něj registrovat přes webové rozhraní na https://amos.fsv.cvut.cz.
VíceLIMITA FUNKCE, SPOJITOST FUNKCE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA LIMITA FUNKCE, SPOJITOST FUNKCE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin
VíceFunkce a limita. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
Funkce a limita Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu
VíceLimita a spojitost funkce a zobrazení jedné reálné proměnné
Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé
VíceMatematická analýza I
Matematická analýza I Cvičení 1 (4. 10. 2016) Definice absolutní hodnoty. Řešení nerovnic s absolutními hodnotami. Geometrická interpretace řešení nerovnice x + 1 < 3. Komplexní čísla a operace s nimi,
Více2. LIMITA A SPOJITOST FUNKCE
. LIMITA A SPOJITOST FUNKCE Průvodce studiem Funkce y = je definována pro ( ) (>. Z grafu funkce (obr. 3) a z tabulky (a) je vidět že čím více se hodnoty blíží k -3 tím více se funkční hodnoty blíží ke
Více8. Elementární funkce. I. Exponenciální funkce Definice: Pro komplexní hodnoty z definujeme exponenciální funkci předpisem ( ) e z z k k!.
8. Elementární funkce I. Exponenciální funkce Definice: Pro komplexní hodnoty z definujeme exponenciální funkci předpisem ( ) e z z k = k!. Vlastnosti exponenciální funkce: a) řada ( ) konverguje absolutně
Více1. Posloupnosti čísel
1. Posloupnosti čísel 1.1. Posloupnosti a operace s nimi Definice 1.1 Posloupnost reálných čísel ( = reálná posloupnost ) je zobrazení, jehož definičním oborem je množina N a oborem hodnot je nějaká podmnožina
VíceLimita a spojitost funkce
Přednáška 5 Limita a spojitost funkce V této přednášce se konečně dostaneme k diferenciálnímu počtu funkce jedné reálné proměnné. Diferenciální počet se v podstatě zabývá lokálním chováním funkce v daném
Vícef(c) = 0. cn pro f(c n ) > 0 b n pro f(c n ) < 0
KAPITOLA 5: Spojitost a derivace na intervalu [MA-8:P5] 5 Funkce spojité na intervalu Věta 5 o nulách spojité funkce: Je-li f spojitá na uzavřeném intervalu a, b a fa fb < 0, pak eistuje c a, b tak, že
VíceZáklady matematiky pro FEK
Základ matematik pro FEK 7. přednáška Blanka Šedivá KMA zimní semestr 06/07 Blanka Šedivá (KMA) Základ matematik pro FEK zimní semestr 06/07 / 5 Jednostranné limit Definice: Vlastní limita ve vlastním
Více2 Fyzikální aplikace. Předpokládejme, že f (x 0 ) existuje. Je-li f (x 0 ) vlastní, pak rovnice tečny ke grafu funkce f v bodě [x 0, f(x 0 )] je
Derivace funkce a jej geometrický význam Je dána funkce f) 3 6 + 9 + a naším úkolem je určit směrnici tečny v bodě [; f)] Pro libovolné lze směrnici sečny danou body [; f)] a [; f)] spočítat jako f) f)
VíceDiferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.
Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin
VíceVII. Limita a spojitost funkce
VII. Limita a spojitost funkce VII.1. Limita funkce Úvodní poznámky: Limita funkce f v bodě c R hodnota a R, k níž se přibližují hodnoty f(x), jestliže x se blíží k hodnotě c; funkce f nemusí být definovaná
VíceDerivace funkce. Obsah. Aplikovaná matematika I. Isaac Newton. Mendelu Brno. 2 Derivace a její geometrický význam. 3 Definice derivace
Derivace funkce Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Směrnice přímk Derivace a její geometrický význam 3 Definice derivace 4 Pravidla a vzorce pro derivování 5 Tečna a normála 6 Derivace
VíceI. Úvod. I.1. Množiny. I.2. Výrokový a predikátový počet
I. Úvod I.1. Množiny Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Značení. Symbol x A značí, že element x je prvkem množiny A. Značení x
Více8 Limita. Derivace. 8.1 Okolí bodu. 8.2 Limita funkce
8 Limita Derivace 81 Okolí bodu Okolím bodu a nazveme otevřený interval (a r, a + r), kde a, r jsou reálná čísla Číslo r je poloměr okolí, a jeho střed Okolí bodu a lze zapsat a
VíceMatematika vzorce. Ing. Petr Šídlo. verze
Matematika vzorce Ing. Petr Šídlo verze 0050409 Obsah Jazyk matematiky 3. Výrokový počet.......................... 3.. Logické spojky...................... 3.. Tautologie výrokového počtu...............
VíceKapitola 2: Spojitost a limita funkce 1/20
Kapitola 2: Spojitost a limita funkce 1/20 Okolí bodu 2/20 Značení: a R, ε > 0 O ε (a) = (a ε, a + ε) ε-ové okolí bodu a O + ε (a) = a, a + ε) pravé okolí, O ε (a) = (a ε, a levé okolí P ε (a) = O ε (a)
VíceLimita posloupnosti a funkce
Limita posloupnosti a funkce Petr Hasil Přednáška z Matematické analýzy I c Petr Hasil (MUNI) Limita posloupnosti a funkce MA I (M1101) 1 / 90 Obsah 1 Posloupnosti reálných čísel Úvod Limita posloupnosti
Více5. Limita a spojitost
5. Limita a spojitost 5. Limita posloupnosti 5. Limita a spojitost Verze 16. prosince 2016 Diferenciální počet a integrální počet tvoří klasický základ Matematické analýzy. Diferenciální počet zkoumá lokální
Více(,b)={x IR;x < b} (otevřenýinterval) a,b ={x IR;a x b} (uzavřenýinterval)
A definice a tvrzení 1 c phabala 2010 Definice a tvrzení Reálná osa Značení(populární číselné množiny. IN přirozenáčísla1,2,3,4,... IN 0 = IN {0}={0,1,2,3,4,...} Z celáčísla0,1,-1,2,-2,3,-3,... IQ racionální
Více3. Derivace funkce Definice 3.1. Nechť f : R R je definována na nějakém okolí U(a) bodu a R. Pokud existuje limita f(a + h) f(a) lim
3 a b s = (a + b) 2 f(s) 3,46 4,680 3,93-2,9422 3,93 4,680 4,2962-2,034 4,2962 4,680 4,4886-0,0954 4,4886 4,680 4,5848 3,2095 4,4886 4,5848 4,5367,0963 4,4886 4,5367 4,526 0,427 4,4886 4,526 4,5006 0,508
VíceCvičení 1 Elementární funkce
Cvičení Elementární funkce Příklad. Najděte definiční obor funkce f = +. + = + =, = D f =,. Příklad. Najděte definiční obor funkce f = 3. 3 3 = > 3 3 + =, 3, 3 = D f =, 3, 3. ± 3 = Příklad 3. Nalezněte
Vícef( x) x x 4.3. Asymptoty funkce Definice lim f( x) =, lim f( x) =, Jestliže nastane alespoň jeden z případů
3 Výklad Definice 3 Jestliže nastane alespoň jeden z případů lim =, lim =, + + lim =, lim =, kde ( D ), pak říkáme, že přímka = je asymptotou funkce f() v bodě f Jestliže lim ( k q) =, resp lim ( k q)
Více1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x.
1 LIMITA FUNKCE 1. 1 Definice funkce Pravidlo f, které každému z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné. Píšeme y f ( ) Někdy používáme i jiná písmena argument (nezávisle
Více2.6. Limita funkce. Nechť c R jevnitřnínebokrajníbodintervaludefiničníhooborufunkce
2.6. Limita funkce Nechť c R jevnitřnínebokrajníbod intervalu definičního oboru funkce f.(funkce v něm může, ale nemusí být definovaná.) Jestliže vzorům x blízkým bodu c, ale různýmod c, (tedy x (c d,
Více0.1 Úvod do matematické analýzy
Matematika I (KMI/PMATE) 1 0.1 Úvod do matematické analýzy 0.1.1 Limita a spojitost funkce Lineární funkce Lineární funkce je jedna z nejjednodušších a možná i nejpoužívanějších funkcí. f(x) = kx + q D(f)
VíceObsah. Derivace funkce. Petr Hasil. L Hospitalovo pravidlo. Konvexnost, konkávnost a inflexní body Asymptoty
Petr Hasil Přednáška z Matematické analýzy I c Petr Hasil (MUNI) MA I (M0) / 46 Obsah Základní vlastnosti derivace Geometrický význam derivace Věty o střední hodnotě L Hospitalovo pravidlo 2 Etrémy Konvenost,
Více1. Úvod Výroková logika Množiny a množinové operace
1. Úvod 1.1. Výroková logika Výrok je tvrzení, o kterém má smysl říci, že platí (je pravdivé) nebo že neplatí (je nepravdivé). Definice. Negací A výroku A rozumíme výrok: Není pravda, že platí A. Konjukcí
VíceV této kapitole si zobecníme dříve probraný pojem limita posloupnosti pro libovolné funkce.
Kapitola 7 Limita funkce V této kapitole budeme studovat pojem ita funkce, který lze zařadit mezi základní pojmy matematiky, speciálně pak matematické analýzy Využití ity funkce je široké Pomocí ity lze
VíceMATEMATIKA I DIFERENCIÁLNÍ POČET I FAKULTA STAVEBNÍ MODUL BA01 M06, GA01 M05 DERIVACE FUNKCE
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA I MODUL BA0 M06, GA0 M05 DIFERENCIÁLNÍ POČET I DERIVACE FUNKCE STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 0 Typeset by L
Více1. sin(x + y) = sin(x) cos(y) + cos(x) sin(y) pro x, y R, cos(x + y) = cos(x) cos(y) sin(x) sin(y) pro x, y R;
3. Elementární funkce. Věta C. Existují funkce sin(x) a cos(x) z R do R a číslo π (0, ) tak, že platí: 1. sin(x + y) = sin(x) cos(y) + cos(x) sin(y) pro x, y R, cos(x + y) = cos(x) cos(y) sin(x) sin(y)
VíceDerivace funkce. Přednáška MATEMATIKA č Jiří Neubauer
Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady
Vícearcsin x 2 dx. x dx 4 x 2 ln 2 x + 24 x ln 2 x + 9x dx.
Neurčitý integrál arcsin. Integrál najdeme integrací per partes. Pomocí této metody dostaneme arcsin = arcsin 4 = arcsin + 4 + C, (,. ln + 4 ln + 9. Tento integrál lze převést substitucí ln = y na integrál
VíceMatematická analýza ve Vesmíru. Jiří Bouchala
Matematická analýza ve Vesmíru Jiří Bouchala Katedra aplikované matematiky jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala - p. /8 3. Elementární funkce. 3. Elementární funkce. Matematická analýza ve Vesmíru.
VíceI. 4. l Hospitalovo pravidlo
I. 4. l Hospitalovo pravidlo 235 I. 4. l Hospitalovo pravidlo Věta (l Hospitalovo pravidlo). Buď 0 R. Nechť je splněna jedna z podmínek 0 f() 0 g() 0, 0 g() +. Eistuje-li (vlastní nebo nevlastní) 0 0 f
VíceText m ºe být postupn upravován a dopl ován. Datum poslední úpravy najdete u odkazu na staºení souboru. Veronika Sobotíková
Tento text není samostatným studijním materiálem. Jde jen o prezentaci promítanou na p edná²kách, kde k ní p idávám slovní komentá. N které d leºité ásti látky pí²u pouze na tabuli a nejsou zde obsaºeny.
VíceZS 2018/19 Po 10:40 T5
Cvičeí - Matematická aalýza ZS 08/9 Po 0:40 T5 Cvičeí 008 Řešte erovice v R: 8, log 3 ( 3+3 0 Částečý součet geometrické řady: pro každé q C, q, a N platí 3 Důsledek: +q +q + +q = q+ q si+si+ +si = si
VíceDefinice derivace v bodě
Definice derivace v bodě tgϕ = f ( ) f () f () : = tgϕ = lim f f () tgϕ = f f () Obecně: f f f ( ) ( ) : = lim f ( + h) f f : = lim h h Derivace zleva (zprava): f ( ) : = lim f f ( ) f ( ) : = lim + +
Více3. LIMITA A SPOJITOST FUNKCE
3. LIMITA A SPOJITOST FUNKCE Okolí reálného čísla a 3.1. Deinice Okolím reálného čísla a nazýváme otevřený interval a, a, kde je libovolné kladné číslo. Je to tedy množina reálných čísel x, která vyhovují
VícePojem limity funkce charakterizuje chování funkce v blízkém okolí libovolného bodu, tedy i těch bodů, ve kterých funkce není definovaná. platí. < ε.
LIMITA FUNKCE Pojem ity unkce charakterizuje chování unkce v blízkém okolí libovolného bodu, tedy i těch bodů, ve kterých unkce není deinovaná Zápis ( ) L Přesněji to vyjadřuje deinice: znamená, že pro
VíceKatedra aplikované matematiky, VŠB TU Ostrava.
SBÍRKA PŘÍKLADŮ Z MATEMATICKÉ ANALÝZY JIŘÍ BOUCHALA Katedra aplikované matematiky, VŠB TU Ostrava jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala 3 Předmluva Cílem této sbírky je poskytnout studentům vhodné
VíceIV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel
Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:
VíceSpojitost funkce. Spojitost je nejdůležitější obecná vlastnost funkcí. Umožňuje aproximace různých řešení.
funkce je nejdůležitější obecná vlastnost funkcí. Umožňuje aproximace různých řešení. Je důležité vědět, kdy se malá změna nějakého měření projeví málo na konečném výsledku. Zpřesňuje-li se měření, měl
VícePřehled základních vzorců pro Matematiku 2 1
Přehled zákldních vzorců pro Mtemtiku 1 1. Limity funkcí definice Vlstní it v bodě = : f() = ɛ > 0, δ > 0 tk, že pro : ( δ, δ), pltí f() ( ɛ, ɛ) Vlstní it v bodě = : f() = ɛ > 0, c > 0 tk, že pro : > c,
Více9. Limita a spojitost
OKOLÍ BODU, VNITŘNÍ A HRANIČNÍ BOD Okolí bodu a je libovolný interval (a r, a + r), kde r > 0; značí se O(a, r), případně jen O(a) (obr. 9..). Číslo r se nazývá poloměr okolí. O(a, r) 0 a r a a + r Obrázek
Více3 Limita funkce Limitafunkcevbodě Jednostrannélimity Vlastnostilimitfunkcí Výpočetlimitfunkcí...
Obsah 3 Limita funkce 2 3.1 Limitafunkcevbodě... 2 3.2 Jednostrannéity... 3 3.3 Vlastnostiitfunkcí..... 4 3.4 Výpočetitfunkcí... 5 4 Spojitost funkce 6 4.1 Spojitostfunkcevbodě.... 6 4.2 Vlastnostifunkcíspojitýchvbodě.....
VíceV této chvíli je obtížné exponenciální funkci přesně definovat. Můžeme však říci, že
.5. Cíle Uvedeme nní několik unkcí, z nichž většinu studenti znají již ze střední škol. Nazveme je základní elementární unkce. Konečným počtem sčítání, odčítání, násobení, dělení, skládání a případně invertování
VíceLIMITA A SPOJITOST FUNKCE
PŘEDNÁŠKA 5 LIMITA A SPOJITOST FUNKCE 5.1 Spojitost funkce 2 Řekneme, že funkce f(x) je spojitá v bodě a D f, jestliže ke každému ε > 0 existuje δ > 0 takové, že pro každé x (a δ, a + δ) D f platí nerovnost:
VíceF (x) = f(x). Je-li funkce f spojitá na intervalu I, pak existuje k funkci f primitivní funkce na intervalu I.
KAPITOLA 7: 7. Úvod Primitivní funkce [MA-6:P7.] Definice: Funkce F je primitivní funkcí k funkci f na intervalu I, jestliže pro každé I eistuje F a platí F f. Poznámky: Obsahuje-li I některý z krajních
VíceDoporučená literatura 1. Jako doplněk k přednáškám: V. Hájková, M. Johanis, O. John, O.F.K. Kalenda a M. Zelený: Matematika (kapitoly I IV)
Přednáška Matematika I v prvním semestru 2013-2014 Spojení na přednášejícího a konzultace Petr Holický, Matematicko fyzikální fakulta Katedra matematické analýzy Sokolovská 83, 2. patro e-mail: holicky@karlin.mff.cuni.cz
VíceMatematika 1. Matematika 1
5. přednáška Elementární funkce 24. října 2012 Logaritmus a exponenciální funkce Věta 5.1 Existuje právě jedna funkce (značíme ji ln a nazýváme ji přirozeným logaritmem), s následujícími vlastnostmi: D(ln)
VíceSpojitost funkce. Kapitola 8. ale kromě toho zajímá, jestli daný experiment probíhal kontinuálně, nebo nastaly. Intuitivní představy o pojmu spojitost
Kapitola 8 Spojitost funkce V následující kapitole se budeme zabývat tzv. spojitostí funkce a to, jak spojitostí v bodě, tak spojitostí na množině. S pojmem spojitosti se dále váží pojmy jako je okolí
VíceFUNKCE A JEJICH VLASTNOSTI
PŘEDNÁŠKA 3 FUNKCE A JEJICH VLASTNOSTI Pojem zobrazení a funkce Uvažujme libovolné neprázdné množiny A, B. Přiřadíme-li každému prvku x A právě jeden prvek y B, dostáváme množinu F uspořádaných dvojic
Více6. Bez použití funkcí min a max zapište formulí predikátového počtu tvrzení, že každá množina
Instrukce: Příklady řešte výhradně elementárně, bez použití nástrojů z diferenciálního a integrálního počtu. Je-li součástí řešení úlohy podmnožina reálných čísel, vyjádřete ji jako disjunktní sjednocení
Více1. Písemka skupina A...
. Písemka skupina A.... jméno a příjmení Načrtněte grafy funkcí (v grafu označte všechny průsečíky funkce s osami a asymptoty). y y sin 4 y y arccos ) Určete, jestli je funkce y ln prostá? ) Je funkce
VíceMatematická analýza pro informatiky I. Spojitost funkce
Matematická analýza pro informatiky I. 6. přednáška Spojitost funkce Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 18. března 2011 Jan Tomeček, tomecek@inf.upol.cz
Více1 L Hospitalovo pravidlo
L Hospitalovo pravidlo Věta.. Bud R R R {± }). Necht je splněna jedna z podmínek i) ii) f) g), g). Eistuje-li vlastní nebo nevlastní) f ) g ) Obdobné tvrzení platí i pro jednostranné ity., pak eistuje
VíceWikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 2017
Matematika I - Sbírka příkladů WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 7 Obsah Limity a spojitost. l Hôpitalovo pravidlo zakázáno............................ 4. l Hôpitalovo pravidlo povoleno............................
VícePro jakou hodnotu parametru α jsou zadané vektory kolmé? (Návod: Vektory jsou kolmé, je-li jejich skalární součin roven nule.)
Vybrané příklady ze skript J. Neustupa, S. Kračmar: Sbírka příkladů z Matematiky I I. LINEÁRNÍ ALGEBRA I.. Vektory, vektorové prostory Jsou zadány vektory u, v, w a reálná čísla α, β, γ. Vypočítejte vektor
VíceMATEMATICKÁ ANALÝZA 1 - ZIMNÍ SEMESTR PŘEDNÁŠKA
MATEMATICKÁ ANALÝZA 1 - ZIMNÍ SEMESTR 2018 2019 PŘEDNÁŠKA LUBOŠ PICK 1. Logika, množiny a základní číselné obory 1.1. Logika. Logika je věda o formální správnosti myšlení. Formálně logická správnost spočívá
VíceP ˇ REDNÁŠKA 3 FUNKCE
PŘEDNÁŠKA 3 FUNKCE 3.1 Pojem zobrazení a funkce 2 3 Uvažujme libovolné neprázdné množiny A, B. Přiřadíme-li každému prvku x A právě jeden prvek y B, dostáváme množinu F uspořádaných dvojic (x, y) A B,
VíceLimita ve vlastním bodě
Výpočty it Definice (a případné věty) jsou z knihy [] příklady z [] [] a []. Počítám u zkoušky dvacátou itu hlavu mám dávno už do čista vymytu papír se značkami skvěje z čela mi pot v proudech leje než
VíceJe založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y =
0.1 Diferenciální počet Je částí infinitezimálního počtu, což je souhrnný název pro diferenciální a integrální počet. Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si
Více7.1 Úvod. Definice: [MA1-18:P7.1a]
KAPITOLA 7: 7. Úvod Primitivní funkce [MA-8:P7.a] Definice: Funkce F je primitivní funkcí k funkci f na intervalu I, jestliže pro každé I eistuje F a platí F f. Poznámky: Obsahuje-li I některý z krajních
Vícei=1 Přímka a úsečka. Body, které leží na přímce procházející body a a b můžeme zapsat pomocí parametrické rovnice
I. Funkce dvou a více reálných proměnných 1. Úvod Značení: V textu budeme používat označení: N pro množinu všech přirozených čísel; R pro množinu všech reálných čísel; R n pro množinu všech uspořádaných
VíceAplikovaná matematika I (NMAF071) ZS 2013/14
Aplikovaná matematika I (NMAF071) Mirko Rokyta (KMA MFF UK) ZS 013/14 1 Úvod, čísla, zobrazení, posloupnosti 1.1 Výroky a množiny 1. Zobrazení 4 1.3 Reálná čísla 5 1.4 Komplexní čísla 8 1.5 Mohutnost množin
Více7. Integrální počet Primitivní funkce, Neurčitý integrál
7. Integrální počet 7.. Primitivní funkce, Neurčitý integrál Definice 7. Říkáme, že F (x) je v intervlu (, b) (přitom může být tké =, b = + ) primitivní funkcí k finkci f(x), jestliže pro všechn x (, b)
VíceDERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem
Více. 1 x. Najděte rovnice tečen k hyperbole 7x 2 2y 2 = 14, které jsou kolmé k přímce 2x+4y 3 = 0. 2x y 1 = 0 nebo 2x y + 1 = 0.
Diferenciální počet příklad s výsledky ( Najděte definiční obor funkce f() = ln arcsin + ) D f = (, 0 Najděte rovnici tečny ke grafu funkce f() = 3 +, která je rovnoběžná s přímkou y = 4 4 y 4 = 0 nebo
VíceReálné posloupnosti 1. Reálné posloupnosti
Reálné posloupnosti Reálné posloupnosti Intervaly otevřený interval (a, b) = {x R, a < x < b}; polouzavřený interval (a, b = {x R, a < x b}; uzavřený interval a, b = {x R, a x b}; otevřený neomezený interval
VíceDiferencovatelné funkce
Přednáška 5 Diferencovatelné funkce Jak jsme se zmínili v minulé přednášce, je lavní myšlenkou diferenciálnío počtu naradit danou funkci y = f) v okolí bodu a polynomem V této přednášce se budeme podrobně
VíceMATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy
MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy 1 Matematika I. I. Lineární algebra II. Základy matematické analýzy III. Diferenciální počet IV. Integrální počet 2 Matematika
VícePřednáška z MA. Michal Tuláček 16. prosince 2004. 1 IV.7 Průběhy funkce 3. 2 Vyšetřování průběhu funkce- KUCHAŘKA 4
Přednáška z MA Michal Tuláček 6. prosince 004 Obsah IV.7 Průběhy funkce 3 Vyšetřování průběhu funkce- KUCHAŘKA 4 3 Vzorový příklad na průběh funkce ze cvičení 4 4 Příkladynadobumezikapremahusou 7 Definice:
VícePřednáška 9, 28. listopadu 2014 Část 4: limita funkce v bodě a spojitost funkce
Přednáška 9, 28. listopadu 2014 Část 4: limita funkce v bodě a spojitost funkce Zápisem f : M R rozumíme, že je dána funkce definovaná na neprázdné množině M R reálných čísel, což je množina dvojic f =
Více1 Topologie roviny a prostoru
1 Topologie roviny a prostoru 1.1 Základní pojmy množin Intervaly a okolí Intervaly v rovině nebo prostoru jsou obdélníky nebo hranoly se stranami rovnoběžnými s osami souřadnic. Podmnožiny intervalů se
Více1. Funkce dvou a více proměnných. Úvod, limita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu
22- a3b2/df.te. Funkce dvou a více proměnných. Úvod, ita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu. Určete definiční obor funkce a proveďte klasifikaci bodů z R 2 vzhledem k a rozhodněte
VícePožadavky k ústní části zkoušky Matematická analýza 1 ZS 2014/15
Požadavky k ústní části zkoušky Matematická analýza 1 ZS 2014/15 Klíčové pojmy Neznalost některého z klíčových pojmů bude mít za následek ukončení zkoušky se známkou neprospěl(a). supremum infimum limita
VíceMatematika 1 pro PEF PaE
Derivace funkcí jedné proměnné / 9 Matematika pro PEF PaE 4. Derivace funkcí jedné proměnné Přemysl Jedlička Katedra matematiky, TF ČZU Derivace funkcí jedné proměnné Nejjednodušší derivace 2 / 9 Derivace
VíceManagement rekreace a sportu. 10. Derivace
Derivace Derivace Před mnoha lety se matematici snažily o obecné vyřešení úlohy, jak sestrojit tečnu k dané křivce a také yzici zápolili s problémem určení rychlosti nerovnoměrného pohybu K zásadnímu obratu
VíceSpojitost a limita funkce, limita posloupnosti
Spojitost a ita funkce, ita posloupnosti Spojitost funkce Limita funkcí Limita posloupností. p.1/14 Spojitost funkce Příklad 2.1.1 Vyšetřete spojitost funkce x sin 1 pro x 0, f(x) = x 1 pro x =0. Příklad
Více9. Limita a spojitost funkce
Moderní technologie ve studiu aplikované fyziky CZ..07/..00/07.008 9. Limita a spojitost funkce OKOLÍ BODU, VNITŘNÍ A HRANIČNÍ BOD Okolí bodu a je libovolný interval (a r, a r), kde r > 0; značí se O (a,
VícePříklady ke cvičením z matematické analýzy- ZS 2008/2009- Série I.
Příklady ke cvičením z matematické analýzy- ZS 008/009- Série I. Jako slunce zastiňuje hvězdy svým jasem, tak i vzdělaný člověk může zastínit slávu druhých lidí ze společnosti, bude-li předkládat matematické
VícePřednáška 3: Limita a spojitost
3 / 1 / 17, 1:38 Přednáška 3: Limita a spojitost Limita funkce Nejdříve je potřeba upřesnit pojmy, které přesněji popisují (topologickou) strukturu množiny reálných čísel, a to zejména pojem okolí 31 Definice
VíceCvičení 1 Elementární funkce
Cvičení Elementární funkce Příklad. Najděte definiční obor funkce f = +. + = + =, = D f =,. Příklad. Najděte definiční obor funkce f = 3. 3 3 = > 3 3 + =, 3, 3 = D f =, 3, 3. ± 3 = Příklad 3. Nalezněte
VíceMatematika I Reálná funkce jedné promìnné
Matematika I Reálná funkce jedné promìnné RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Reálná funkce Def. Zobrazení f nazveme
VíceI. Exponenciální funkce Definice: Pro komplexní hodnoty z definujeme exponenciální funkci předpisem. z k k!. ( ) e z = k=0
8. Elemetárí fukce I. Expoeciálí fukce Defiice: Pro komplexí hodoty z defiujeme expoeciálí fukci předpisem ) e z = z k k!. Vlastosti expoeciálí fukce: a) řada ) koverguje absolutě v C; b) pro z = x + jy
VíceFunkce základní pojmy a vlastnosti
Funkce základní pojm a vlastnosti Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Pojem funkce Vlastnosti funkcí Inverzní funkce 4 Základní elementární funkce Mocninné Eponenciální Logaritmické
Více