9. Limita a spojitost
|
|
- Rostislav Kříž
- před 6 lety
- Počet zobrazení:
Transkript
1 OKOLÍ BODU, VNITŘNÍ A HRANIČNÍ BOD Okolí bodu a je libovolný interval (a r, a + r), kde r > 0; značí se O(a, r), případně jen O(a) (obr. 9..). Číslo r se nazývá poloměr okolí. O(a, r) 0 a r a a + r Obrázek 9.. Okolí bodu Uvažujme libovolnou množinu M R. Bod a je vnitřní bod množiny M, jestliže eistuje O(a) takové, že platí O(a) M. Bod a je hraniční bod množiny M, jestliže v každém O(a) eistují body, které patří do M a současně body, které do M nepatří. Je zřejmé, že každý vnitřní bod patří do M, kdežto hraniční bod množiny M může, ale nemusí patřit do M. K význačným množinám na reálné ose patří intervaly. Pokud hraniční bod intervalu patří do intervalu, nazývá se též krajní bod. Polouzavřený interval ( p, q má hraniční body p, q, z nichž p M, q M; každý bod ( p, q) je jeho bodem vnitřním. Bod q můžeme též nazvat bodem krajním. POJEM LIMITY FUNKCE V BODĚ V matematické analýze má pojem ity základní význam. V běžném jazyce se ale slovo "ita" nevyskytuje. Používají se však jemu příbuzná slova (například it rychlosti, itující faktor) ve smyslu jisté "hranice" mající kritický význam. S takovou intuitivní představou lze přistupovat k pochopení matematického pojmu ita. Motivační úvaha: Ještě než uvedeme definici pojmu ita funkce v bodě je užitečné provést tuto motivační úvahu: Uvažujme funkci f ( ), zřejmě D( f ) R {}. Jistě vyvstane otázka, co lze očekávat v bodě, ve kterém není funkce definována. Přirozený důvod má myšlenka přiblížit se co nejvíc bodu a z příslušných vypočtených hodnot funkce usuzovat na situaci v bodě. Bodu se lze libovolně přiblížit zleva i zprava například pro 0,9 je f (0,9),9, pro, je f (,),, dále f (0,99),99, f (,0),0 atd. Lze vyslovit hypotézu, že při přibližování z obou stran k bodu se hodnoty funkce přibližují k číslu. Tuto hypotézu podporuje i graf funkce
2 f na obrázku 9.. Přesně formulováno, k libovolně zvolenému ε > 0 eistuje δ > 0 tak, že pro ( δ, + δ ), platí f () ( ε, + ε). V takovém případě se prohlásí číslo za itu funkce f ( ) v bodě. Důležitý je fakt, že pro tuto úvahu není podstatné, zda je f v bodě definována či ne. y f () + ε ε f ( ) 0 δ + δ Obrázek 9.. Graf f( ) Definujme nyní itu funkce v bodě: Předpokládejme, že funkce f je definována na nějakém okolí O(c) bodu c s případnou výjimkou bodu c. Funkce f má v bodě c itu a, jestliže ke každému ε > 0 eistuje δ > 0 tak, že pro (c δ, c + δ ), c platí f () (a ε, a + ε). Zapisuje se "ita funkce f pro jdoucí (blížící se) k c je rovna a". ( ) a f a čte se c Poznámka: Volně řečeno, funkce f má v bodě c itu a, jestliže pro hodnoty blízké okolí bodu c (ale různé od c) je hodnota f () blízká hodnotě a. Geometricky to znamená, že při libovolném ε > 0 leží graf funkce pro c, c δ < < c + δ v pásu mezi přímkami y a ε a y a + ε (obr. 9.). Obrázek 9.. Limita funkce v bodě
3 Závažná je skutečnost, že eistence ity nezávisí na tom, zda je funkce f v bodě definována či ne. To znamená, že je-li f v bodě c definována, její hodnota f (c) neovlivní hodnotu ity v bodě c. Důležitý případ nastane, jestliže ita eistuje a navíc se rovná funkční hodnotě pak se f prohlásí za spojitou v bodě (viz dále). Na obrázku 9.4. je příklad funkce, která je v bodě c definována, avšak v bodě c ita neeistuje (pro hodnoty blízké c jsou zleva funkční hodnoty rovny číslu, zprava číslu, tedy žádné společné předem pevně zadané hodnotě). y f (c) 0 c f Obrázek 9.4. Neeistence ity Je zřejmé, že definice ity nedává návod, jak ji "vypočítat". Užitím definice lze pouze potvrdit, zda předem zadané číslo itou skutečně je. Potvrzení je však snadné pouze v jednoduchých případech, jinak vyžaduje obvykle zvláštní postup s vhodně volenými matematickými obraty. V každém případě je však velmi důležité stanovení hypotézy o eistenci ity, případně její hodnotě, založené na pochopení pojmu ita. To umožní i řešení úloh typu "určete f( ) c ", jak jsou tradičně úlohy o itách zadávány. Při stanovení hypotézy se postupuje tak, jak je uvedeno v motivační úloze o itě vyšetříme hodnoty funkce v bodech blízkých zleva i zprava bodu, ve kterém se ita hledá. (a) Stanovíme hypotézu o sin. Vychází f (0,) f ( 0,) 0,998, f (0,05) f ( 0,05) 0,9995, 0 sin f (0,0) f ( 0,0) 0,9998. Lze stanovit hypotézu, že. Její pravdivost můžeme potvrdit 0 výpočtem při užití L Hospitalova pravidla (viz další kapitola o derivaci funkce). (b) Stanovíme hypotézu o. Platí f (0,) 0, f ( 0,) 0, f (0,0) 00, f ( 0,0) 00, 0 f (0,00) 000, f ( 0,00) 000. Zřejmě ita neeistuje, neboť pro > 0, je blízké 0, jsou
4 hodnoty f () dosti velká kladná čísla, kdežto pro < 0, blízké 0, jsou hodnoty f () dosti malá záporná čísla. Důležité je rovněž umět stanovit hypotézu o itě z grafu funkce. Na následujícím obrázku 9.5. jsou zachyceny základní alternativy (tečkou je vyznačena definovaná funkční hodnota). Obrázek 9.5. Alternativy (ne)eistence ity DŮLEŽITÉ LIMITY K důležitým základním itám patří: k k, kde k je konstanta, (plyne z definice) c c, c sin, 0 cos 0, 0 e. 0 (plyne z definice) (užitím L Hospitalova pravidla) (užitím L Hospitalova pravidla) (užitím L Hospitalova pravidla) VLASTNOSTI LIMIT Limita funkce v bodě může, ale nemusí eistovat. Nemůže se však stát, aby v daném bodě eistovalo více it: 4
5 Funkce f má v daném bodě nejvýše jednu itu. Limita respektuje operace sčítání, odčítání, násobení a dělení s funkcemi: Nechť f( ) a, g( ) b c c c ( f( ) ± g( ) ) a± b. Pak platí:. (9.) c ( f( ) g( ) ) ab. (9.) Je-li b 0, pak ( ) a ( ) b f. (9.) c g n n Je-li n 0 celé číslo, pak [ f ( ) ] a. (9.4) c (a) Je-li k konstanta a f( ) a, pak kf( ) ka c. c (neboť podle (9.) platí kf( ) k f( ) ka ) c c c (b) n n c c, kde n 0 je celé číslo. (plyne aplikací (9.4) pro f () ) (c) (protože podle (9.) platí ( + ) + + a s využitím (9.4) také ( + ) přičemž konečně užitím (9.4) dostáváme ( ) + + ; a tedy podle (9.) lze psát ) ( ) 0, Pro praktické výpočty má zásadní význam následující tvrzení, které říká, že ity elementárních funkcí ve vnitřních bodech jejich definičních oborů (intervalů) se určí prostým dosazením: Pro každou elementární funkci f a vnitřní bod c jejího definičního oboru platí ( ) f( c) f. (9.5) c 5
6 sin π π sin π π π sin, neboť je vnitřní bod definičního oboru funkce. VÝPOČET LIMIT Nyní uvedeme shrnující fakta k technice výpočtu it. Jednoduchý je postup, kdy lze itu určit přímým dosazením (9.5), případně využít znalostí základních it a aplikace vět o vlastnostech ity (9.) (9.4). Pokud nelze itu tímto způsobem určit, zbývá (kromě užití L Hospitalova pravidla viz následující kapitola o derivacích) upravit funkci na tvar, který již umožňuje shora uvedený způsob. Nejčastějším je případ ity podílu funkcí kdy g() 0 (někdy i navíc f () 0). Pak nelze použít přímé dosazení, respektive vlastnost (9.); častou hrubou chybou je v případě g() f () 0 učinit závěr, že ( ) ( ) f 0 g 0. Umět řešit takové úlohy je do značné míry záležitostí dostatečné početní prae a cviku. V dané chvíli je proto spíše účelné počkat s výpočtem obtížnějších it až na L Hospitalovo pravidlo s využitím derivací. f g ( ), ( ) Určeme Platí ( 6) + 0 vlastnosti ity podílu (9.). Úpravou dostaneme, ( + ) 0 ( + )( ) +. Nelze použít přímé dosazení, či ; nyní lze členem ( + ) krátit, neboť pro určení ity přicházejí v úvahu hodnoty různé od. Pak vychází ( + )( ) + ( ) 5. Pokud při výpočtu it výraz upravujeme, je výhodné před výpočtem, případně až po výpočtu otestovat hypotézu o itě, abychom vyloučili náhodnou chybu při provádění úprav. NEVLASTNÍ LIMITA V tomto odstavci se budeme zabývat studiem veličin, jejichž chování je charakteristické tím, že jejich hodnoty rostou nade všechny meze. Nejde zdánlivě o umělou abstrakci, vyšetřování takových veličin má své reálné opodstatnění, například, při studiu útlumových dějů, stability fyzikálních procesů apod. K tomu se jeví účelné nejprve rozšířit 6
7 množinu reálných čísel R o prvky +,, pro něž platí < a < + pro každé a R; nazývají se nevlastní body. Množina R { -, } R se nazývá rozšířená množina reálných čísel. Pozor, + nemají charakter čísel, proto s nimi nelze zacházet (počítat) jako s čísly. Symbol + se u + někdy vynechává. Jestliže nyní definici ity funkce modifikujeme tak, že c, a mohou být nevlastní body (obě, případně jedno z nich) a příslušným způsobem nahradíme podmínku v definici ity analogickými podmínkami pro nevlastní body, dostaneme definici nevlastní ity (souhrně řečeno) v těchto alternativách:. c, případně c, a R ita v nevlastním bodě;. c R, a, případně a nevlastní ita v bodě;. a c, případně a c nevlastní ita v nevlastním bodě. Zápis nevlastní ity se provede analogicky, například pro alternativu. f( ) a, případně f( ) a. Modifikaci podmínek v definici pro jednotlivé alternativy není na tomto místě nutné, z hlediska praktického výpočtu nevlastních it, detailně rozepisovat. K základní orientaci nám budou stačit geometrické interpretace alternativ na obrázcích (9.6) (9.0) (nezahrnují ale všechny varianty alternativ). Obrázek 9.6. Limita v nevlastním bodě f( ) a, f( ) a Obrázek 9.7. Nevlastní ita v bodě f c ( ) 7
8 Obrázek 9.8. Nevlastní ita v bodě f c ( ) Obrázek 9.9. Nevlastní ita v bodě c neeistuje Obrázek 9.0. Nevlastní ita v nevlastním bodě f( ), f( ) Důležité nevlastní ity jsou uvedeny v následujícím přehledu:, ; 0, 0 ; a, a 0, a > ; a 0, a, 0 < a < ; π arctg, π arctg ; arccotg 0, arccotg π ; 8
9 + e,788 (iracionální číslo). Hypotézy o právě uvedených itách se snadno stanoví užitím kalkulačky, či načrtnutím grafu. Vlastnosti nevlastních it jsou uvedeny souhrnně v symbolickém tvaru: a +, 0, ± a +,, a, ( ),, ( ) ( ). Tímto symbolickým zápisem, například a + rozumíme: je-li pro ( ) a c R f, c g( ), pak ( f( ) + g( ) ) c apod. c. Pozor!!! Nelze používat, například, pro 0, Platí ( + 5), neboť (postupnou aplikací ), 5 5. Pak užitím a + dostáváme výsledek. POJEM SPOJITOSTI FUNKCE Pojem spojitosti slouží k popisu toho, co se v běžném životě nazývá, například, nepřetržitostí. Je-li takový děj vyjádřen funkcí, pak je její graf "souvislá čára"; v grafu nejsou žádné "skoky", "mezery" apod. Nabízí se tedy definovat spojitost prostřednictvím ity. V případě spojitosti by totiž měla funkční hodnota souhlasit s itou. Definice: Funkce f je spojitá v bodě c, jestliže platí f( ) f( c) c. Jinak řečeno, f je spojitá v bodě c, je-li f v bodě c definována a její ita v bodě c je rovna funkční hodnotě v bodě c. Funkce f, jejíž graf je na obrázku 9.., je z vyznačených bodů spojitá pouze v bodě g, v ostatních nikoliv (v a, c není definována, v m, d, h, b neeistuje ita, v e není ita rovna funkční hodnotě). 9
10 y f 0 a m c d e h g b Obrázek 9.. Funkce f je spojitá na intervalu (a, b), je-li spojitá v každém jeho vnitřním bodě. Funkce spojitá na celém svém definičním oboru se nazývá spojitá funkce. VLASTNOSTI SPOJITÝCH FUNKCÍ Spojité funkce mají řadu významných vlastností. Nejdůležitější jsou obsaženy v následujících tvrzeních (větách). Všechny elementární funkce jsou spojité ve všech vnitřních bodech svých definičních oborů. Je-li funkce f spojitá na nějakém otevřeném intervalu I a mají-li pro a, b I, a < b funkční hodnoty f(a), f(b) opačná znaménka, pak eistuje c (a, b) tak, že platí f(c) 0. Lze tedy volně formulovat spojitá funkce nemůže měnit znaménko, aniž přejde přes reálnou osu. Tato věta má zásadní důležitost při hledání nulových bodů spojitých funkcí. Zaručuje, že najdeme-li hodnoty a, b tak, že f (a), f (b) jsou opačných znamének, pak v (a, b) eistuje alespoň jeden nulový bod funkce f. Na obrázku 9. má funkce f tři nulové body c, c, c patřící do (a, b). Z této vlastnosti rovněž vyplývá, že je-li f spojitá na (a, b) a f () 0 pro všechna (a, b), pak je f na (a, b) buď stále kladná, nebo stále záporná. Obrázek 9.. 0
11 Cílové znalosti. Formulace pojmu ity funkce v bodě.. Stanovení hypotézy o itě z grafu nebo numericky.. Výpočet jednoduchých it užitím základních vět o itách a znalosti důležitých it. 4. Vysvětlení modifikace pojmu ity ve variantě nevlastní. 5. Výpočet jednoduchých nevlastních it. 6. Rozhodnout v jednoduchých případech o spojitosti funkce podle jejího grafu. 7. Vlastnosti spojitých funkcí.
12 IX. Limita a spojitost_cvičení LIMITA, VĚTY O LIMITÁCH. Stanovte hypotézu o itě: a) 0 e. b) cos. 0. Stanovte hypotézu o itě funkce f v bodě c: a) obrázek (viz seminář). b) obrázek (viz seminář).. Vypočtěte: a) cos. b) log ( ) + 9. c). d) 0 e Vypočtěte: a). b). c) tg. d) sin. e). 0 tg 5 NEVLASTNÍ LIMITA 5. Stanovte hypotézu o itách a). b). 6. Vypočtěte: a). b). c) sin. d) SPOJITOST FUNKCE 7. Rozhodněte o spojitosti funkce f znázorněné na obrázku (viz seminář) v bodech a, 0, b, c, d. 8. Vyšetřete spojitost funkce f ( ) ; ; R- 0. { 0},
13 VÝSLEDKY CVIČENÍ. a) ; b) 0.. a) viz seminář; b) viz seminář.. a) ; b) ; c) ; d). 4. a) ; b) ; c) ; d) ; e) a) 0 ; b) a) ; b) ; c) 0 ; d). 7. viz seminář. 8. Spojitá na { 0} R, nespojitá v 0.
9. Limita a spojitost funkce
Moderní technologie ve studiu aplikované fyziky CZ..07/..00/07.008 9. Limita a spojitost funkce OKOLÍ BODU, VNITŘNÍ A HRANIČNÍ BOD Okolí bodu a je libovolný interval (a r, a r), kde r > 0; značí se O (a,
VíceLimita a spojitost LDF MENDELU
Limita a spojitost Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu
VíceLimita a spojitost funkce
Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu
VíceNejčastějšími funkcemi, s kterými se setkáváme v matematice i v jejích aplikacích, jsou
4 Cíle Nejčastějšími funkcemi, s kterými se setkáváme v matematice i v jejích aplikacích, jsou funkce, jejichž ita v bodě 0 je rovna funkční hodnotě v tomto bodě Seznámíme se s vlastnostmi takových funkcí
VíceManagement rekreace a sportu. 10. Derivace
Derivace Derivace Před mnoha lety se matematici snažily o obecné vyřešení úlohy, jak sestrojit tečnu k dané křivce a také yzici zápolili s problémem určení rychlosti nerovnoměrného pohybu K zásadnímu obratu
VíceLIMITA FUNKCE, SPOJITOST FUNKCE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA LIMITA FUNKCE, SPOJITOST FUNKCE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin
Více1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x.
1 LIMITA FUNKCE 1. 1 Definice funkce Pravidlo f, které každému z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné. Píšeme y f ( ) Někdy používáme i jiná písmena argument (nezávisle
Více0.1 Úvod do matematické analýzy
Matematika I (KMI/PMATE) 1 0.1 Úvod do matematické analýzy 0.1.1 Limita a spojitost funkce Lineární funkce Lineární funkce je jedna z nejjednodušších a možná i nejpoužívanějších funkcí. f(x) = kx + q D(f)
VícePojem limity funkce charakterizuje chování funkce v blízkém okolí libovolného bodu, tedy i těch bodů, ve kterých funkce není definovaná. platí. < ε.
LIMITA FUNKCE Pojem ity unkce charakterizuje chování unkce v blízkém okolí libovolného bodu, tedy i těch bodů, ve kterých unkce není deinovaná Zápis ( ) L Přesněji to vyjadřuje deinice: znamená, že pro
VíceOznačení derivace čárkami, resp. římskými číslicemi, volíme při nižším řádu derivace, jinak užíváme horní index v závorce f (5), f (6),... x c g (x).
9 Využití derivace 9.1 Derivace vyšších řádů Definice 1. Nechť funkce má derivaci v nějakém okolí bodu c D(f). Nechť funkce ϕ() =f () máderivacivboděc. Pak hodnotu ϕ (c) nazýváme derivací 2. řádu (2. derivací)
Více2. LIMITA A SPOJITOST FUNKCE
. LIMITA A SPOJITOST FUNKCE Průvodce studiem Funkce y = je definována pro ( ) (>. Z grafu funkce (obr. 3) a z tabulky (a) je vidět že čím více se hodnoty blíží k -3 tím více se funkční hodnoty blíží ke
VícePřednáška 3: Limita a spojitost
3 / 1 / 17, 1:38 Přednáška 3: Limita a spojitost Limita funkce Nejdříve je potřeba upřesnit pojmy, které přesněji popisují (topologickou) strukturu množiny reálných čísel, a to zejména pojem okolí 31 Definice
VíceLimita a spojitost funkce. 3.1 Úvod. Definice: [MA1-18:P3.1]
KAPITOLA 3: Limita a spojitost funkce [MA-8:P3.] 3. Úvod Necht je funkce f definována alespoň na nějakém prstencovém okolí bodu 0 R. Číslo a R je itou funkce f v bodě 0, jestliže pro každé okolí Ua) bodu
Vícef( x) x x 4.3. Asymptoty funkce Definice lim f( x) =, lim f( x) =, Jestliže nastane alespoň jeden z případů
3 Výklad Definice 3 Jestliže nastane alespoň jeden z případů lim =, lim =, + + lim =, lim =, kde ( D ), pak říkáme, že přímka = je asymptotou funkce f() v bodě f Jestliže lim ( k q) =, resp lim ( k q)
VíceLimita a spojitost funkce
Přednáška 5 Limita a spojitost funkce V této přednášce se konečně dostaneme k diferenciálnímu počtu funkce jedné reálné proměnné. Diferenciální počet se v podstatě zabývá lokálním chováním funkce v daném
Více30. listopadu Derivace. VŠB-TU Ostrava. Dostupné: s1a64/cd/index.htm.
KMA/MAT1 Přednáška a cvičení č. 11 30. listopadu 2017 [KS] Jaromír Kuben Petra Šarmanová: Diferenciální počet funkcí jedné proměnné. VŠB-TU Ostrava. Dostupné: http://homel.vsb.cz/ s1a64/cd/inde.htm. 1
VíceAsymptoty funkce. 5,8 5,98 5,998 5,9998 nelze 6,0002 6,002 6,02 6, nelze
Asymptoty funkce 1 Asymptota bez směrnice 6 Máme dvě funkce f 1 : y a 3 f : y 3 Člověk nemusí být matematický génius, aby pochopil, že do předpisu obou funkcí lze dosadit za libovolné reálné číslo kromě
VíceDerivace funkce. Obsah. Aplikovaná matematika I. Isaac Newton. Mendelu Brno. 2 Derivace a její geometrický význam. 3 Definice derivace
Derivace funkce Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Směrnice přímk Derivace a její geometrický význam 3 Definice derivace 4 Pravidla a vzorce pro derivování 5 Tečna a normála 6 Derivace
VíceV této kapitole si zobecníme dříve probraný pojem limita posloupnosti pro libovolné funkce.
Kapitola 7 Limita funkce V této kapitole budeme studovat pojem ita funkce, který lze zařadit mezi základní pojmy matematiky, speciálně pak matematické analýzy Využití ity funkce je široké Pomocí ity lze
Více7. Funkce jedné reálné proměnné, základní pojmy
, základní pojmy POJEM FUNKCE JEDNÉ PROMĚNNÉ Reálná funkce f jedné reálné proměnné je funkce (zobrazení) f: X Y, kde X, Y R. Jde o zvláštní případ obecného pojmu funkce definovaného v přednášce. Poznámka:
VíceLimita a spojitost funkce a zobrazení jedné reálné proměnné
Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé
VíceMatematika (KMI/PMATE)
Matematika (KMI/PMATE) Přednáška druhá aneb Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) 1 / 30 Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam
VíceDerivace úvod. Jak zjistit míru změny?
Derivace úvod P ČEZ Jak zjistit míru změny? Derivace nám dá odpověď jestli je funkce: rostoucí/klesající konkávní/konvení jak moc je strmá jak moc roste kde má maimum/minimum 1000 700 P ČEZ P ČEZ 3% 4%
VíceMonotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné
66 I. Diferenciální počet funkcí jedné proměnné I. 5. Vyšetřování průběhu funkce Monotonie a lokální etrémy Důsledek. Nechť má funkce f) konečnou derivaci na intervalu I. Je-li f ) > 0 pro každé I, pak
VícePosloupnosti a jejich limity
KMA/MAT Přednáška č. 7, Posloupnosti a jejich ity 5. listopadu 203 Motivační příklady Prozkoumejme, zatím laicky, následující posloupnosti: Posloupnost, 4, 9,..., n 2,... : Hodnoty rostou nade všechny
VíceDiferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.
Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin
VíceIV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel
Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:
VíceDerivace funkce. Přednáška MATEMATIKA č Jiří Neubauer
Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady
VíceFunkce a limita. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
Funkce a limita Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu
VíceJe založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y =
0.1 Diferenciální počet Je částí infinitezimálního počtu, což je souhrnný název pro diferenciální a integrální počet. Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si
Více7B. Výpočet limit L Hospitalovo pravidlo
7B. Výpočet it L Hospitalovo pravidlo V prai často potřebujeme určit itu výrazů, které vzniknou operacemi nebo složením několika spojitých funkcí. Většinou pomohou pravidla typu ita součtu násobku, součinu,
VíceSpojitost a limita funkce
Spojitost a ita funkce Okolí bodu Značení: a R ε > 0 označujeme O ε (a) = (a ε, a + ε) ε-ové okolí bodu a O + ε (a) = a, a + ε) pravé okolí, O ε (a) = (a ε, a levé okolí P ε (a) = O ε (a) \ {a} x a ε-ové
VíceSpojitost funkce. Kapitola 8. ale kromě toho zajímá, jestli daný experiment probíhal kontinuálně, nebo nastaly. Intuitivní představy o pojmu spojitost
Kapitola 8 Spojitost funkce V následující kapitole se budeme zabývat tzv. spojitostí funkce a to, jak spojitostí v bodě, tak spojitostí na množině. S pojmem spojitosti se dále váží pojmy jako je okolí
Více2 Fyzikální aplikace. Předpokládejme, že f (x 0 ) existuje. Je-li f (x 0 ) vlastní, pak rovnice tečny ke grafu funkce f v bodě [x 0, f(x 0 )] je
Derivace funkce a jej geometrický význam Je dána funkce f) 3 6 + 9 + a naším úkolem je určit směrnici tečny v bodě [; f)] Pro libovolné lze směrnici sečny danou body [; f)] a [; f)] spočítat jako f) f)
VíceMetody výpočtu limit funkcí a posloupností
Metody výpočtu limit funkcí a posloupností Martina Šimůnková, 6. listopadu 205 Učební tet k předmětu Matematická analýza pro studenty FP TUL Značení a terminologie R značí množinu reálných čísel, rozšířenou
Vícedx se nazývá diferenciál funkce f ( x )
6 Výklad Definice 6 Nechť je 0 vnitřním bodem definičního oboru D f funkce f ( ) Funkce proměnné d = 0 definovaná vztahem df ( 0) = f ( 0) d se nazývá diferenciál funkce f ( ) v bodě 0, jestliže platí
Více( + ) ( ) f x x f x. x bude zmenšovat nekonečně přesný. = derivace funkce f v bodě x. nazýváme ji derivací funkce f v bodě x. - náš základní zápis
1.. Derivace elementárních funkcí I Předpoklad: 1 Shrnutí z minulé hodin: Chceme znát jakým způsobem se mění hodnot funkce f ( f ( + f ( přibližná hodnota změn = přesnost výpočtu se bude zvětšovat, kdž
Více1. Funkce dvou a více proměnných. Úvod, limita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu
22- a3b2/df.te. Funkce dvou a více proměnných. Úvod, ita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu. Určete definiční obor funkce a proveďte klasifikaci bodů z R 2 vzhledem k a rozhodněte
VícePříklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6
Příklad 1 Vyšetřete průběh funkce: a) = b) = c) = d) =ln1+ e) =ln f) = Poznámka K vyšetřování průběhu funkce použijeme postup uvedený v zadání. Některé kroky nejsou již tak detailní, všechny by ale měly
VíceDiferenciální počet funkcí jedné proměnné
Diferenciální počet funkcí jedné proměnné 1 4. Derivace funkce 4.3. Průběh funkce 2 Pro přesné určení průběhu grafu funkce je třeba určit bližší vlastnosti funkce. Monotónnost funkce Funkce monotónní =
Více( ) ( ) ( ) ( ) ( ) ( ) Užití derivací. x, x a, b : x x f x f x MATA P12. Funkce rostoucí a klesající: Definice rostoucí a klesající funkce
MATA P1 Užití derivací Funkce rostoucí a klesající: Deinice rostoucí a klesající unkce Funkce je rostoucí v intervalu (a,b), právě když platí: ( ) ( ) ( ), a, b : 1 1 1 Funkce je klesající v intervalu
Vícei=1 Přímka a úsečka. Body, které leží na přímce procházející body a a b můžeme zapsat pomocí parametrické rovnice
I. Funkce dvou a více reálných proměnných 1. Úvod Značení: V textu budeme používat označení: N pro množinu všech přirozených čísel; R pro množinu všech reálných čísel; R n pro množinu všech uspořádaných
VíceNMAF 051, ZS Zkoušková písemná práce 16. ledna 2009
Jednotlivé kroky při výpočtech stručně, ale co nejpřesněji odůvodněte. Pokud používáte nějaké tvrzení, nezapomeňte ověřit splnění předpokladů. Jméno a příjmení: Skupina: Příklad 3 5 Celkem bodů Bodů 8
VíceEuklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a
VíceKapitola 2: Spojitost a limita funkce 1/20
Kapitola 2: Spojitost a limita funkce 1/20 Okolí bodu 2/20 Značení: a R, ε > 0 O ε (a) = (a ε, a + ε) ε-ové okolí bodu a O + ε (a) = a, a + ε) pravé okolí, O ε (a) = (a ε, a levé okolí P ε (a) = O ε (a)
VíceZáklady matematické analýzy
Základy matematické analýzy Spojitost funkce Ing. Tomáš Kalvoda, Ph.D. 1, Ing. Daniel Vašata 2 1 tomas.kalvoda@fit.cvut.cz 2 daniel.vasata@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
Více5. Limita funkce a spojitost strana 1/5 2018/KMA/MA1/přednášky. Definice 5.1. Mějme funkci f : D R a bod x 0 R.
5. Limita funkce a spojitost strana 1/5 2018/KMA/MA1/přednášky Definice 5.1. Mějme funkci f : D R a bod 0 R. a) Číslo c R je částečná ita funkce f v bodě 0, pokud eistuje posloupnost ( n ) taková, že platí
VíceMatematika 1. 1 Derivace. 2 Vlastnosti a použití. 3. přednáška ( ) Matematika 1 1 / 16
Matematika 1 3. přednáška 1 Derivace 2 Vlastnosti a použití 3. přednáška 6.10.2009) Matematika 1 1 / 16 1. zápočtový test již během 2 týdnů. Je nutné se něj registrovat přes webové rozhraní na https://amos.fsv.cvut.cz.
VíceŘešení 1a Budeme provádět úpravu rozšířením směřující k odstranění odmocniny v čitateli. =lim = 0
Příklad Vypočítejte ity funkcí: a) b) c) d) Poznámka Po dosazení do všech těchto úloh dostaneme nedefinovaný výraz. Proto je třeba provést úpravy vedoucí k vykrácení a následně k výsledku. Řešení a Budeme
VícePoznámka. Je-li f zobrazení, ve kterém potřebujeme zdůraznit proměnnou, píšeme f(x) (resp. f(y), resp. f(t)) je zobrazení místo f je zobrazení.
2. ZOBRAZENÍ A FUNKCE 2.1 Zobrazení 2. 1. 1 Definice: Nechť A a B jsou množiny. Řekneme že f je zobrazení množiny A do množiny B jestliže (i) f A B (ii) ke každému z množiny A eistuje právě jedno y z množiny
Vícef(c) = 0. cn pro f(c n ) > 0 b n pro f(c n ) < 0
KAPITOLA 5: Spojitost a derivace na intervalu [MA-8:P5] 5 Funkce spojité na intervalu Věta 5 o nulách spojité funkce: Je-li f spojitá na uzavřeném intervalu a, b a fa fb < 0, pak eistuje c a, b tak, že
Více2.7. Průběh funkce. Vyšetřit průběh funkce znamená určit (ne nutně v tomto pořadí): 1) Definiční obor; sudost, lichost; periodičnost
.7. Průběh unkce Všetřit průběh unkce znamená určit ne nutně v tomto pořadí: deiniční obor; sudost, lichost; periodičnost, interval spojitosti a bod nespojitosti, průsečík grau unkce s osami, interval,
Více22. & 23. & 24. Vlastnosti funkcí a jejich limita a derivace
22. & 23. & 24. Vlastnosti funkcí a jejich ita a derivace Základní vlastnosti Definiční obor Definiční obor je množina neznámých, pro něž je funkce definována. Obor hodnot Obor hodnot je množina všech
VíceLimita funkce. FIT ČVUT v Praze. (FIT) Limita funkce 3.týden 1 / 39
Limita funkce FIT ČVUT v Praze 3.týden (FIT) Limita funkce 3.týden 1 / 39 Definice funkce. Zobrazení (f, D f ), jehož definiční obor D f i obor hodnot H f je podmnožinou množiny reálných čísel, se nazývá
VíceVybrané kapitoly z matematiky
Vybrané kapitoly z matematiky VŠB-TU Ostrava 8-9 Vybrané kapitoly z matematiky 8-9 / 6 Funkce více proměnných Vybrané kapitoly z matematiky 8-9 / 6 Definice Necht M R n, M. Funkcí n proměnných je zobrazení
Více{ } Ox ( 0) 4.2. Konvexnost, konkávnost, inflexe. Definice Obr. 52. Poznámka. nad tečnou
Konvenost, konkávnost, inflee 4.. Konvenost, konkávnost, inflee Definice 4... Nechť eistuje f ( ), D f. Řekneme, že funkce f ( ) je v bodě konkávní, jestliže eistuje { } O ( ) tak, že platí D : O( )\ f(
VíceLimita posloupnosti a funkce
Limita posloupnosti a funkce Petr Hasil Přednáška z Matematické analýzy I c Petr Hasil (MUNI) Limita posloupnosti a funkce MA I (M1101) 1 / 90 Obsah 1 Posloupnosti reálných čísel Úvod Limita posloupnosti
Více2.6. Limita funkce. Nechť c R jevnitřnínebokrajníbodintervaludefiničníhooborufunkce
2.6. Limita funkce Nechť c R jevnitřnínebokrajníbod intervalu definičního oboru funkce f.(funkce v něm může, ale nemusí být definovaná.) Jestliže vzorům x blízkým bodu c, ale různýmod c, (tedy x (c d,
Více3. LIMITA A SPOJITOST FUNKCE
3. LIMITA A SPOJITOST FUNKCE Okolí reálného čísla a 3.1. Deinice Okolím reálného čísla a nazýváme otevřený interval a, a, kde je libovolné kladné číslo. Je to tedy množina reálných čísel x, která vyhovují
VíceDefinice derivace v bodě
Definice derivace v bodě tgϕ = f ( ) f () f () : = tgϕ = lim f f () tgϕ = f f () Obecně: f f f ( ) ( ) : = lim f ( + h) f f : = lim h h Derivace zleva (zprava): f ( ) : = lim f f ( ) f ( ) : = lim + +
VícePředmět: Ročník: Vytvořil: Datum: MATEMATIKA ČTVRTÝ VĚRA JÜTTNEROVÁ Název zpracovaného celku: DERIVACE ZÁKLADNÍ A SLOŽENÉ FUNKCE
Předmět: Ročník: Vtvořil: Datum: MATEMATIKA ČTVRTÝ VĚRA JÜTTNEROVÁ.. Název zpracovaného celku: DERIVACE ZÁKLADNÍ A SLOŽENÉ FUNKCE DIFERENCIÁLNÍ POČET Deinice: Okolí O bodu nazývané poloměr okolí O. LIMITA
Více5. Limita a spojitost
5. Limita a spojitost 5. Limita posloupnosti 5. Limita a spojitost Verze 16. prosince 2016 Diferenciální počet a integrální počet tvoří klasický základ Matematické analýzy. Diferenciální počet zkoumá lokální
VícePříklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3
Příklad 1 Zjistěte, zda jsou dané funkce sudé nebo liché, případně ani sudé ani liché: a) =ln b) = c) = d) =4 +1 e) =sin cos f) =sin3+ cos+ Poznámka Všechny tyto úlohy řešíme tak, že argument funkce nahradíme
VíceTexty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech
Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení
VícePŘEDNÁŠKA 2 POSLOUPNOSTI
PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému
Více7. Funkce jedné reálné proměnné, základní pojmy
Moderní technologie ve studiu aplikované fyziky CZ.1.07/..00/07.0018 7. Funkce jedné reálné proměnné, základní pojmy V této chvíli jsme již ve výkladu přikročili ke kapitole, kterou můžeme považovat za
VíceMatematická analýza pro informatiky I. Limita funkce
Matematická analýza pro informatiky I. 5. přednáška Limita funkce Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 18. března 2011 Jan Tomeček, tomecek@inf.upol.cz
VíceSeznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné.
INTEGRÁLNÍ POČET FUNKCÍ JEDNÉ PROMĚNNÉ NEURČITÝ INTEGRÁL NEURČITÝ INTEGRÁL Průvodce studiem V kapitole Diferenciální počet funkcí jedné proměnné jste se seznámili s derivováním funkcí Jestliže znáte derivace
VíceLIMITA A SPOJITOST FUNKCE
PŘEDNÁŠKA 5 LIMITA A SPOJITOST FUNKCE 5.1 Spojitost funkce 2 Řekneme, že funkce f(x) je spojitá v bodě a D f, jestliže ke každému ε > 0 existuje δ > 0 takové, že pro každé x (a δ, a + δ) D f platí nerovnost:
VíceDERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem
Více7.1 Extrémy a monotonie
KAPITOLA 7: Průběh funkce [ZMA13-P38] 7.1 Extrémy a monotonie Řekneme, že funkce f nabývá na množině M Df svého globálního maxima globálního minima A v bodě x 0, jestliže x 0 M, fx 0 = A a pro každé x
Více3. Derivace funkce Definice 3.1. Nechť f : R R je definována na nějakém okolí U(a) bodu a R. Pokud existuje limita f(a + h) f(a) lim
3 a b s = (a + b) 2 f(s) 3,46 4,680 3,93-2,9422 3,93 4,680 4,2962-2,034 4,2962 4,680 4,4886-0,0954 4,4886 4,680 4,5848 3,2095 4,4886 4,5848 4,5367,0963 4,4886 4,5367 4,526 0,427 4,4886 4,526 4,5006 0,508
VícePetr Hasil. Prvákoviny c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57
Úvod do infinitezimálního počtu Petr Hasil Prvákoviny 2015 c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny 2015 1 / 57 Obsah 1 Úvod Funkce Reálná čísla a posloupnosti Limita a spojitost
VíceLimita posloupnosti, limita funkce, spojitost. May 26, 2018
Limita posloupnosti, limita funkce, spojitost May 26, 2018 Definice (Okolí bodu) Okolím bodu a R (také ε- okolím) rozumíme množinu U(a, ε) = {x R; x a < ε} = (a ε, a + ε), bod a se nazývá střed okolí a
Více1 Množiny, výroky a číselné obory
1 Množiny, výroky a číselné obory 1.1 Množiny a množinové operace Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Definice. Dvě množiny jsou
VícePřednáška 11, 12. prosince Část 5: derivace funkce
Přednáška 11, 12. prosince 2014 Závěrem pasáže o spojitých funkcích zmíníme jejich podtřídu, lipschitzovské funkce, nazvané podle německého matematika Rudolfa Lipschitze (1832 1903). Fukce f : M R je lipschitzovská,
VíceI. 4. l Hospitalovo pravidlo
I. 4. l Hospitalovo pravidlo 235 I. 4. l Hospitalovo pravidlo Věta (l Hospitalovo pravidlo). Buď 0 R. Nechť je splněna jedna z podmínek 0 f() 0 g() 0, 0 g() +. Eistuje-li (vlastní nebo nevlastní) 0 0 f
VíceFunkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015
Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární
Více1) Spočítejte limitu pomocí l Hospitalova pravidla, pokud selˇze, spočítejte ji klasicky:
Příklady k desátému cvičení ) Spočítejte itu pomocí l Hospitalova pravidla pokud selˇze spočítejte ji klasicky:. 2. 3.. 5 + 3 2 8 π π sin 2 + ln(cos(3)) 3 2) Upravte na zlomek a pouˇzijte l Hospitalovo
VíceFUNKCE, ZÁKLADNÍ POJMY
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA FUNKCE, ZÁKLADNÍ POJMY Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného
Více1 L Hospitalovo pravidlo
L Hospitalovo pravidlo Věta.. Bud R R R {± }). Necht je splněna jedna z podmínek i) ii) f) g), g). Eistuje-li vlastní nebo nevlastní) f ) g ) Obdobné tvrzení platí i pro jednostranné ity., pak eistuje
VíceDigitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/4.080 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/ Inovace a zkvalitnění výuky prostřednictvím
Více( ) ( ) ( ) x Užití derivace. Předpoklady: 10202, 10209
.. Užití derivace Předpoklad:, 9 Pedagogická poznámka: Hodinu dělíme na dvě polovin jednu na tečn a normál, druhou na L Hospitalova pravidla. Už při zavádění derivace, jsme si ukázali, že hodnota derivace
VíceVII. Limita a spojitost funkce
VII. Limita a spojitost funkce VII.1. Limita funkce Úvodní poznámky: Limita funkce f v bodě c R hodnota a R, k níž se přibližují hodnoty f(x), jestliže x se blíží k hodnotě c; funkce f nemusí být definovaná
VíceFUNKCE, ZÁKLADNÍ POJMY
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA FUNKCE, ZÁKLADNÍ POJMY Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného
VíceDerivace funkce Otázky
funkce je jedním z hlavních nástrojů matematické analýzy. V příští části ukážeme, jak mnoho různorodých aplikací derivace má. Geometricky lze derivaci funkce v nějakém bodě chápat jako směrnici tečny grafu
Více1 Topologie roviny a prostoru
1 Topologie roviny a prostoru 1.1 Základní pojmy množin Intervaly a okolí Intervaly v rovině nebo prostoru jsou obdélníky nebo hranoly se stranami rovnoběžnými s osami souřadnic. Podmnožiny intervalů se
VícePoužití derivací L HOSPITALOVO PRAVIDLO POČÍTÁNÍ LIMIT. Monotónie. Konvexita. V této části budou uvedena některá použití derivací.
V této části budou uvedena některá použití derivací. Použití derivací L HOSPITALOVO PRAVIDLO POČÍTÁNÍ LIMIT Tvrzení je uvedeno pro jednostrannou itu zprava. Samozřejmě obdobné tvrzení platí pro itu zleva
VíceDiferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy
Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy funkcí, průběh funkce) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 5. přednáška z AMA1 Michal Fusek (fusekmi@feec.vutbr.cz)
Víceverze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu
Úvod Diferenciální počet více proměnných verze.3 Následující text popisuje základy diferenciálního počtu více proměnných. Měl by sloužit především studentům předmětu MATEMAT na Univerzitě Hradec Králové
VíceFunkce základní pojmy a vlastnosti
Funkce základní pojm a vlastnosti Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Pojem funkce Vlastnosti funkcí Inverzní funkce 4 Základní elementární funkce Mocninné Eponenciální Logaritmické
VíceZimní semestr akademického roku 2014/ prosince 2014
Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 2. prosince 2014 Předmluva
VíceZáklady matematiky pro FEK
Základy matematiky pro FEK 4. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 27 Množiny Zavedení pojmu množina je velice
VíceDiferenciální počet funkcí jedné proměnné
Diferenciální počet funkcí jedné proměnné 1 2. Spojitost funkce 2.2. Spojitost funkce v intervalu 2 Spojitost funkce v intervalu Od spojitosti funkce v bodě přejdeme ke spojitosti funkce v intervalu. Nejprve
VíceDerivace funkce DERIVACE A SPOJITOST DERIVACE A KONSTRUKCE FUNKCÍ. Aritmetické operace
Derivace funkce Derivace je jedním z hlavních nástrojů matematické analýzy. V příští části ukážeme, jak mnoho různorodých aplikací derivace má. Geometricky lze derivaci funkce v nějakém bodě chápat jako
VíceOtázku, kterými body prochází větev implicitní funkce řeší následující věta.
1 Implicitní funkce Implicitní funkce nejsou funkce ve smyslu definice, že funkce bodu z definičního oboru D přiřadí právě jednu hodnotu z oboru hodnot H. Přesnější termín je funkce zadaná implicitně.
Více1.3. Číselné množiny. Cíle. Průvodce studiem. Výklad
1.3. Cíle Cílem kapitoly je seznámení čtenáře s axiomy číselných oborů a jejich podmnožin (intervalů) a zavedení nových pojmů, které nejsou náplní středoškolských osnov. Průvodce studiem Vývoj matematiky
Více5. Lokální, vázané a globální extrémy
5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,
Více6. DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH
Funkce více proměnných 6 DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH Ve čtvrté kapitole jsme studovali vlastnosti funkcí jedné nezávisle proměnné K popisu mnoha reálných situací však s jednou nezávisle
Více3. Reálná čísla. většinou racionálních čísel. V analytických úvahách, které praktickým výpočtům
RACIONÁLNÍ A IRACIONÁLNÍ ČÍSLA Význačnými množinami jsou číselné množiny K nejvýznamnějším patří množina reálných čísel, obsahující jako podmnožiny množiny přirozených, celých, racionálních a iracionálních
Více