1. Krivky. krivky zadane parametrickymi rovnicemi. Primka rovnobezna s osou y. Primka rovnobezna s osou x
|
|
- Anežka Sedláková
- před 6 lety
- Počet zobrazení:
Transkript
1 1. Krivky krivky zadane parametrickymi rovnicemi krivka K: x = f(t), y = g(t), t 2interval <a,b obrazek dostanu pomoci: plot([f(t),g(t),t = a..b]) Primka rovnobezna s osou y plot([1, y, y = ], thickness = 3, linestyle = dash); Primka rovnobezna s osou x plot([x, 1, x = ], thickness = 3, linestyle = dashdot);
2 Elipsa plot([3*cos(t), sin(t), t = 0.. 2*Pi], scaling = constrained);
3 Asymptoty plot([[x, 1/(x-1), x = ], [1, y, y = ]], discont = true, linestyle = [solid, dash]);
4 a := plot([x, 1/(x-1), x = ], discont = true, linestyle = solid, view = [-4.. 4, ]): b := plot([1, y, y = ], discont = true, linestyle = dash, color = grey): plots[display](a, b);
5 krivky popsane rovnici krivka K: F(x,y)=0 obrazek dostanu pomoci prikazu z balicku plots: implicitplot( F(x,y) = 0, x = min.. max, y = min.. max ) a := plots[implicitplot](x = 1, x = , y = , linestyle = dash, color = grey); b := plot(1/(x-1), x = , discont = true); plots[display](a, b, view = [-2.. 3, ]); (1.2.1) (1.2.2)
6 plots[implicitplot](x^2+4*(y+1)^2 = 1, x = , y = , scaling = constrained, numpoints = 5000);
7 obrazek v souradnem systemu, kde meritka na jednotlivych osach jsou stejne, t.j. v pomeru 1:1 (scaling = constrained) aby se obrazek "vyhladil" - vice bodu, ve kterych Maple vyhodnocuje predpis krivky (numpoints = 5000 (napriklad)) 2. Uzitecne poznamky kresleni geometrickych utvaru Bod: plot([[1, 2]], style = point, symbol = diamond, symbolsize = 20);
8 Mnozina bodu: plot([[1, 2], [1, 3], [2, 0]], style = point, symbol = solidcircle, symbolsize = 20);
9 Body lezici na grafu funkce: plot(x^2, x = 0.. 2, style = point, symbolsize = 30, numpoints = 5, adaptive = false);
10 Usecka: plot([[1, 1], [2, 3]], thickness = 3, view = [0.. 3, 0.. 4]);
11 Jiny zpusob - pouziti balicku plottools with(plottools); with(plots); (2.1.1) display(line([1, 1], [2, 3]), view = [0.. 3, 0.. 4]);
12 display(point([1, 1], symbol = cross, symbolsize = 25));
13 display(curve([[1, 2], [2, 0], [3, 1], [4, 2], [0, 0]]));
14 titulek s matematickym vyrazem plot(exp(x), x = , title = typeset("graf funkce ", exp(x), " na intervalu ", [-5, 0]), titlefont = ["Helvetica", 16]);
15 plot(exp(x), x = , title = typeset("graf funkce ", exp(x), " na intervalu ", [-5, 0]), titlefont = ["Helvetica", 16]);
16 plot(exp(x), x = , title = typeset("graf funkce ", exp(x), " na intervalu ", [-5, 0]), titlefont = ["Helvetica", 16]);
17 plot(exp(x), x = , title = typeset("graf funkce ", exp(x), " na intervalu ", [-5, 0]), titlefont = ["Helvetica", 16]);
18 gridlines plot([[1.4, 3], [2.5, 4], [.7, 1.9]], style = point, symbol = solidcircle, symbolsize = 20, view = [0.. 3, 0.. 5], gridlines = true);
19 plot([[1.4, 3.6], [2.5, 2.3], [.7, 1.9]], style = point, symbol = solidcircle, symbolsize = 20, view = [0.. 3, 0.. 5], axis = [gridlines = [color = "grey", linestyle = dash]], tickmarks = [[.7, 1.4, 2.5], default]);
20 plot([[1.4, 3.6], [2.5, 2.3], [.7, 1.9]], style = point, symbol = solidcircle, symbolsize = 20, view = [0.. 3, 0.. 5], axis = [gridlines = [color = "grey", linestyle = dash]], tickmarks = [[.7, 1.4, 2.5], [3.6, 2.3, 1.9]]);
21 plot([[1.4, 3.6], [2.5, 2.3], [.7, 1.9]], style = point, symbol = solidcircle, symbolsize = 20, view = [0.. 3, 0.. 5], axis[1] = [gridlines = [color = "grey", linestyle = dash]], tickmarks = [[.7, 1.4, 2.5], [3.6, 2.3, 1.9]]);
22 3. Grafy funkci dvou promennych plot3d - options - color, style, tickmarks, title, view... - transparency = 0 default (0 - netransparentni, 1 - transparentni) - grid = [25,25] default - y = f(x).. g(x) - definicni obor nemusi byt jenom kartezsky soucin intervalu plot3d(x^2+y^2, x = , y = , axes = boxed, grid = [20, 10]);
23 plot3d(x^2+y^2, x = 0.. 2, y = *x, transparency = 1/3, axes = normal, axis[1] = [color = blue], axis[2] = [color = red], style = polygonoutline);
24 vic grafu v jednom obrazku pouzitim seznamu plot3d([sin(x+y), cos(x+y)], x = , y = , color = [red, blue], axes = boxed, lightmodel = light1, style = surface);
25 Poznamka: A list of three algebraic expressions or procedures is always interpreted as a parametric plot. To specify a list of three distinct plots, the option plotlist=true (or simply plotlist) must be provided. plot3d([x, y, x+y], x = , y = , axes = framed);
26 plot3d([x, y, x+y], x = , y = , axes = framed, plotlist = true);
27 pouzitim prikazu display a := plot3d(x^2+y^2, x = , y = , transparency = 1/2, axes = framed, color = blue); ( ) b := plot3d(-x^2-y^2+20, x = , y = , transparency = 1/2, axes = framed, color = red); ( ) plots[display](a, b, view = [-5.. 5, , ]) ;
28 vrstevnice plots[contourplot](sin(x)*sin(y), x = -Pi.. Pi, y = -Pi.. Pi);
29 plots[contourplot](sin(x)*sin(y), x = -Pi.. Pi, y = -Pi.. Pi, contours = [-1/2, 1/4, 1/2]);
30 plots[contourplot](sin(x)*sin(y), x = -Pi.. Pi, y = -Pi.. Pi, contours = 20);
31 nastavenim hodnoty parametru style v prikazu plot3d plot3d(sin(x)*sin(y), x = -Pi.. Pi, y = -Pi.. Pi, style = surfacecontour, contours = [-2/3, -1/2, 0, 1/2, 2/3]);
32 plot3d(sin(x)*sin(y), x = -Pi.. Pi, y = -Pi.. Pi, style = contour, filledregion = true, linestyle = solid, color = black);
33 prikazem contourplot3d z balicku plots plots[contourplot3d](sin(x)*sin(y), x = -Pi.. Pi, y = -Pi.. Pi, contours = 20, filledregion = true, coloring = [violet, black], transparency = 2/3);
34 a jejich prumetu do roviny z = konst (vrstevnice pro z = 0) do jedneho obrazku with(plottools); ( ) with(plots); ( )
35 p := plot3d(1/(x^2+y^2+1), x = , y = , style = contour, contours = 8, filledregion = true, color = pink); [Length of output exceeds limit of ] ( ) q := contourplot(1/(x^2+y^2+1), x = , y = ); ( ) f:=transform((x,y)-[x, y, 0]): display({p, f(q)}, axes = boxed); 4. Plochy plochy zadane parametrickymi rovnicemi plocha: x = f (t,s)
36 h(t,s)], t = a..b, s = c..d) z = h (t,s), t 2 <a,b, s 2 <c,d plochy popsane rovnici plocha: [implicitplot3d]( F(x,y,z) = 0, x = min..max, y = min..max, z = min..max ) plots[implicitplot3d](x^2+y^2+z^2 = 10, x = , y = , z = , axes = frame, style = surface, grid = [50, 50, 50]);
37 vic ploch v jednom obrazku pomoci prikazu display a := plots[implicitplot3d](x^2+y^2+z^2 = 2, x = , y = , z = , style = surfacecontour, color = black, grid = [50, 50, 50], transparency =.5); [Length of output exceeds limit of ] ( ) b := plot3d([sin(t)*cos(s), cos(t)*sin(s), cos(t)], t = 0.. 2*Pi, s = 0.. 2*Pi, transparency =.5); plots[display](b, a, axes = boxed); ( )
38 pomoci seznamu plots[implicitplot3d]([x = 1/2, y = 1, z = 1.5], x = 0.. 2, y = 0.. 2, z = 0.. 2, axes = boxed, color = [pink, violet, grey]);
39
3.2 3DgrafyvMaple 106 KAPITOLA 3. UŽITÍ MAPLE PŘI ŘEŠENÍ KVADRIK
106 KAPITOLA 3. UŽITÍ MAPLE PŘI ŘEŠENÍ KVADRIK > A2:=augment(submatrix(A,1..3,[1]),b,submatrix(A,1..3,[3])); Potom vypočítáme hodnotu x 2 : > x2:=det(a2)/det(a); Zadání matice. Matici M typu (2, 3) zadáme
Cvičení z matematické analýzy na FIT VUT s podporou Maple
Cvičení z matematické analýzy na FIT VUT s podporou Maple Vlasta Krupková Vysoké Učení Technické Brno, Fakulta Elektrotechniky a komunikačních Technologií, Ústav matematiky, Technická 8,616 00 Brno e-mail:
2. přednáška (grafika a maplovský programovací jazyk)
2. přednáška (grafika a maplovský programovací jazyk) Grafika v Maplu Mnoho možností nám poskytují balíky plots a plottools. restart; with(plots); [ animate, animate3d, animatecurve, arrow, changecoords,
Úvod do programu MAPLE
Úvod do programu MAPLE MAPLE V Release 9 (11) M. Jahoda Ústav chemického inženýrství VŠCHT Praha http://www.vscht.cz/uchi/maple http://www.maplesoft.com 2007 MAPLE pracovní plocha 2 MAPLE - nastavení fontů
Internetová adresa osobní stránky:
3 MAPLEOVSKÁ CVIČENÍ PRO DRUHÝ SEMESTR RNDr. Jiří Klaška, Dr. Internetová adresa osobní stránky: http://www.mat.fme.vutbr.cz/home/klaska E-mail: klaska@um.fme.vutbr.cz Úvod V rámci tří cvičení u počítače
Urci parametricke vyjadreni primky zadane body A[2;1] B[3;3] Urci, zda bod P [-3;5] lezi na primce AB, kde A[1;1] B[5;-3]
1 Parametricke vyjadreni primky Priklad 16 Priklad 17 Priklad 18 jestlize Urci parametricke vyjadreni primky zadane body A[2;1] B[3;3] Urci, zda bod P [-3;5] lezi na primce AB, kde A[1;1] B[5;-3] Urci,
Geometrie v R n. student. Poznamenejme, že vlastně počítáme délku úsečky, která oba body spojuje. (b d)2 + (c a) 2
Geometrie v R n Začněme nejjednodušší úlohou: Vypočtěme vzdálenost dvou bodů v rovině. Použijeme příkaz distance z balíku student. Poznamenejme, že vlastně počítáme délku úsečky, která oba body spojuje.
Geometrie v R n. z balíku student. Poznamenejme, že vlastně počítáme délku úsečky, která oba body spojuje. (b d)2 + (c a) 2
Geometrie v R n Začněme nejjednodušší úlohou: Vypočtěme vzdálenost dvou bodů v rovině. Použijeme příkaz distance z balíku student. Poznamenejme, že vlastně počítáme délku úsečky, která oba body spojuje.
10. přednáška (slovní úlohy vedoucí na extrémy - pokračování)
10. přednáška (slovní úlohy vedoucí na extrémy - pokračování) Extremální úlohy Krabice Ze čtvercového kartónu o straně 60 cm odřízneme v rozích 4 menší čtverce. Ze zbytku poskládáme krabici bez víka (viz
Lineární algebra s Matlabem cvičení 3
Lineární algebra s Matlabem cvičení 3 Grafika v Matlabu Základní příkazy figure o vytvoří prázdné okno grafu hold on/hold off o zapne/vypne možnost kreslení více funkcí do jednoho grafu ezplot o slouží
I. Diferenciální rovnice. 3. Rovnici y = x+y+1. převeďte vhodnou transformací na rovnici homogenní (vzniklou
Typy příkladů pro I. část písemky ke zkoušce z MA II I. Diferenciální rovnice. 1. Určete obecné řešení rovnice y = y sin x.. Určete řešení rovnice y = y x splňující počáteční podmínku y(1) = 0. 3. Rovnici
1. Definiční obor funkce dvou proměnných
Definiční obor funkce dvou proměnných Řešené příklady 1. Definiční obor funkce dvou proměnných Vyšetřete a v kartézském souřadném systému (O, x, y) zakreslete definiční obory následujících funkcí dvou
1 LC - numerické řešení integrálu - rozšíření
Pomůcka pro cvičení: 2. semestr Bc studia Numerické řešení integrálu-funkce daná tabelovanými hodnotami, funkce daná analyticky 1 LC - numerické řešení integrálu - rozšíření Pro numerický výpočet určitého
1. Kombinatorika 1.1. Faktoriál výrazy a rovnice
1. Kombinatorika 1.1. Faktoriál výrazy a rovnice 1.A) 210; B) 990; C) 29260; D) 1/5; E) 1/240; F) 157; G) 81/712; H) 1/100; I) 3,98*10 11 ; J) 86296950; K) 65824; L) 195878760; 2. A) x 3 +3x 2 +2x; x Z,
9. přednáška (extrémy, slovní úlohy vedoucí na extrémy)
9. přednáška (extrémy, slovní úlohy vedoucí na extrémy) Lokální extrémy V Maplu lze lokální extrémy dané funkce najít pomocí příkazu extrema. Příklad: Najděte lokální extrémy funkce f( x ) = x 3 1 x 1.
1.6 Singulární kvadriky
1.6 Singulární kvadriky > restart; > with(linearalgebra): > X:=Vector[row]([x,y,z,1]); X := [ x, y, z, 1] Matice kvadriky: > K:=Matrix(a,1..4,1..4,shape=symmetric); K := a ( 4, Determinant matice kvadriky
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a
Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Funkce RNDR. Yvetta Bartáková Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Derivace funkce VY INOVACE_05 0_M Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Definice Mějme funkci f definovanou v okolí bodu 0. Eistuje-li
FAKULTA STAVEBNÍ MATEMATIKA. Cvičení z matematiky s využitím systému MAPLE DOPLŇKOVÝ STUDIJNÍ MATERIÁL
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JIŘÍ NOVOTNÝ MATEMATIKA Cvičení z matematiky s využitím systému MAPLE DOPLŇKOVÝ STUDIJNÍ MATERIÁL c Jiří Novotný, Brno 2015 Obsah Úvod 5 1 Funkce v MAPLE
Funkce a její vlastnosti
funkce-vp.nb 1 Funkce a její vlastnosti Zadávání funkce a její obory Zadávání funkcí více proměnných je stejné jako u jedné proměnné In[1]:= f@x_, y_d := Sqrt@xyD In[2]:= f@3, 8D Out[2]= 2 6 In[3]:= f@2,
10. Analytická geometrie kuželoseček 1 bod
10. Analytická geometrie kuželoseček 1 bod 10.1. Kružnice opsaná obdélníku ABCD, kde A[2, 3], C[8, 3], má rovnici a) x 2 10x + y 2 + 7 = 0, b) (x 3) 2 + (y 3) 2 = 36, c) x 2 + 10x + y 2 18 = 0, d) (x 10)
f( x) x x 4.3. Asymptoty funkce Definice lim f( x) =, lim f( x) =, Jestliže nastane alespoň jeden z případů
3 Výklad Definice 3 Jestliže nastane alespoň jeden z případů lim =, lim =, + + lim =, lim =, kde ( D ), pak říkáme, že přímka = je asymptotou funkce f() v bodě f Jestliže lim ( k q) =, resp lim ( k q)
y = 2x2 + 10xy + 5. (a) = 7. y Úloha 2.: Určete rovnici tečné roviny a normály ke grafu funkce f = f(x, y) v bodě (a, f(a)). f(x, y) = x, a = (1, 1).
III Diferenciál funkce a tečná rovina Úloha 1: Určete rovnici tečné roviny ke grafu funkce f = f(x, y) v bodě (a, f(a)) f(x, y) = 3x 3 x y + 5xy 6x + 5y + 10, a = (1, 1) Řešení Definičním oborem funkce
Maple. Petr Kundrát. Ústav matematiky, FSI VUT v Brně. Maple a základní znalosti z oblasti obyčejných diferenciálních rovnic.
Obyčejné diferenciální rovnice s počítačovou podporou - Maple Petr Kundrát Ústav matematiky, FSI VUT v Brně Tento soubor vznikl za účelem ilustrace použití prostředí Maple k řešení a vizualizaci řešení
2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl:
KVINTA úlohy k opakování 1. Jsou dány množiny: = {xr; x - 9 5} B = {xr; 1 - x } a) zapište dané množiny pomocí intervalů b) stanovte A B, A B, A - B, B A. Zapište daná racionální čísla ve tvaru zlomku
Laboratorní cvičení - Integrální počet v R
Laboratorní cvičení - Integrální počet v R POZOR! Maple neuvádí ve výsledcích neurčitých integrálů integrační konstantu. Maple počítá integrály v oboru komplexních čísel. Neurčitý integrál Neurčitý integrál
vysledek = ((1:1:50).*(100-(1:1:50))) *ones(50,1) vysledek = ((1:1:75)./2).*sqrt(1:1:75) *ones(75,1)
ZKOUŠKA ČÍSLO 1 x=linspace(0,100,20); y=sqrt(x); A=[x;y]'; save('data.txt','a','-ascii'); polyn = polyfit(x,y,3); polyv = polyval(polyn,x); plot(x,y,'r*') plot(x,polyv,'b') p1=[1 0 0 0 0 0 0-1]; k=roots(p1);
Úvodní informace. 17. února 2018
Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní
3. ÚVOD DO ANALYTICKÉ GEOMETRIE 3.1. ANALYTICKÁ GEOMETRIE PŘÍMKY
3. ÚVOD DO ANALYTICKÉ GEOMETRIE 3.1. ANALYTICKÁ GEOMETRIE PŘÍMKY V této kapitole se dozvíte: jak popsat bod v rovině a v prostoru; vzorec na výpočet vzdálenosti dvou bodů; základní tvary rovnice přímky
MATEMATIKA II - vybrané úlohy ze zkoušek (2015)
MATEMATIKA II - vybrané úlohy ze zkoušek (2015) doplněné o další úlohy 24. 2. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi (e-mail: Frantisek.Mraz@fs.cvut.cz
Občas se používá značení f x (x 0, y 0 ), resp. f y (x 0, y 0 ). Parciální derivace f. rovnoběžného s osou y a z:
PARCIÁLNÍ DERIVACE Jak derivovat reálné funkce více proměnných aby bylo možné tyto derivace použít podobně jako derivace funkcí jedné proměnné? Jestliže se okopíruje definice z jedné proměnné dostane se
Úvod do programu MAXIMA
Jedná se o rozpracovaný návod k programu wxmaxima pro naprosté začátečníky. Návod lze libovolně kopírovat a používat ke komerčním i osobním účelům. Momentálně chybí mnoho důležitých kapitol které budou
Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál
Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál Jan Slovák Masarykova univerzita Fakulta informatiky 16. 9. 2008 Obsah přednášky 1 Literatura 2 Funkce a
Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné
. Definiční obor a hladiny funkce více proměnných Nalezněte a graficky znázorněte definiční obor D funkce f = f(x, y), kde a) f(x, y) = x y, b) f(x, y) = log(xy + ), c) f(x, y) = xy, d) f(x, y) = log(x
Interpolace a aproximace dat.
Numerické metody Interpolace a aproximace dat. Interpolace dat křivkou (funkcí) - křivka (graf funkce) prochází daty (body) přesně. Aproximace dat křivkou (funkcí) - křivka (graf funkce) prochází daty
1. Funkce dvou a více proměnných. Úvod, limita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu
22- a3b2/df.te. Funkce dvou a více proměnných. Úvod, ita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu. Určete definiční obor funkce a proveďte klasifikaci bodů z R 2 vzhledem k a rozhodněte
. 1 x. Najděte rovnice tečen k hyperbole 7x 2 2y 2 = 14, které jsou kolmé k přímce 2x+4y 3 = 0. 2x y 1 = 0 nebo 2x y + 1 = 0.
Diferenciální počet příklad s výsledky ( Najděte definiční obor funkce f() = ln arcsin + ) D f = (, 0 Najděte rovnici tečny ke grafu funkce f() = 3 +, která je rovnoběžná s přímkou y = 4 4 y 4 = 0 nebo
A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz
1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině
MASARYKOVA UNIVERZITA. Funkce dvou proměnných: definiční obor, hledání extrémů, grafické znázornění
MASARYKOVA UNIVERZITA PEDAGOGICKÁ FAKULTA Katedra matematiky Funkce dvou proměnných: definiční obor, hledání extrémů, grafické znázornění Bakalářská práce Brno 2016 Vedoucí práce: Mgr. Irena Budínová,
Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 2. Určete a načrtněte definiční obory funkcí více proměnných: a) (, ) = b) (, ) = 3. c) (, ) = d) (, ) =
Příklad 1 Určete a načrtněte definiční obory funkcí více proměnných: a) (, ) = b) (, ) = 3 c) (, ) = d) (, ) = e) (, ) = ln f) (, ) = 1 +1 g) (, ) = arcsin( + ) Poznámka V těchto úlohách máme nalézt největší
Základy matematiky pracovní listy
Dagmar Dlouhá, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny pro předmět Základy matematiky vyučovaný Katedrou matematiky
Základy algoritmizace a programování
Základy algoritmizace a programování Práce se symbolickými proměnnými Práce s grafikou Přednáška 11 7. prosince 2009 Symbolické proměnné Zjednodušení aritmetických výrazů simplify (s) Příklady: >>syms
CVIČNÝ TEST 27. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 27 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Karel povídá: Myslím si celé číslo. Je záporné. Nyní
Analytická geometrie přímky, roviny (opakování středoškolské látky) = 0. Napište obecnou rovnici. 8. Jsou dány body A [ 2,3,
Analytická geometrie přímky roviny opakování středoškolské látk Jsou dány body A [ ] B [ 5] a C [ 6] a) přímky AB b) osy úsečky AB c) přímky na které leží výška vc trojúhelníka ABC d) přímky na které leží
Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce.
KŘIVKY Křivka = dráha pohybujícího se bodu = = množina nekonečného počtu bodů, které závisí na parametru (čase). Proto můžeme křivku také nazvat jednoparametrickou množinou bodů. Zavedeme-li souřadnicový
4 Přesné modelování. Modelování pomocí souřadnic. Jednotky a tolerance nastavte před začátkem modelování.
Jednotky a tolerance nastavte před začátkem modelování. 4 Přesné modelování Sice můžete změnit toleranci až během práce, ale objekty, vytvořené před touto změnou, nebudou změnou tolerance dotčeny. Cvičení
FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK
FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 00 007 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-M-00-0. tg x + cot gx a) sinx cos x b) sin x + cos x c) d) sin x e) +. sin x cos
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Rovinné křivky v programu Maple Vedoucí diplomové práce: RNDr. Miloslav Závodný
Rovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R
Rovnice přímky Přímka p je určená dvěma různými body (A, B)(axiom) směrový vektor nenulový rovnoběžný (kolineární) s vektorem s = AB = B A pro libovolný bod X na přímce platí: X A = t s tj. Vektorová rovnice
5.3. Implicitní funkce a její derivace
Výklad Podívejme se na následující problém. Uvažujme množinu M bodů [x,y] R 2, které splňují rovnici F(x, y) = 0, M = {[x,y] D F F(x,y) = 0}, kde z = F(x,y) je nějaká funkce dvou proměnných. Je-li F(x,y)
OBECNOSTI KONVERGENCE V R N
FUNKCE VÍCE PROMĚNNÝCH V reálných situacích závisejí děje obvykle na více proměnných než jen na jedné (např. na teplotě i na tlaku), závislost na jedné proměnné je spíše výjimkou. OBECNOSTI Reálná funkce
9 Kapitola POJEM FUNKCE VÍCE PROMÌNNÝCH Zde se vu ití poèítaèe p ímo nabíí. Tato èást matematické anal se probírá v dobì, kd nejsou probrán odpovídající partie geometrie (imní semestr v. roèníku uèitelského
GRAF FUNKCE NEPŘÍMÁ ÚMĚRNOST
GRAF FUNKCE NEPŘÍMÁ ÚMĚRNOST Úloha: Sestrojte graf funkce nepřímé úměrnosti a zjistěte její vlastnosti. Popis funkcí modelu: Sestrojit graf funkce nepřímá úměrnost Najít průsečíky grafu se souřadnými osami
Definice: Kružnice je množina bodů v rovině, které mají od daného bodu (střed S) stejnou vzdálenost
Kuželosečky Kružnice Definice: Kružnice je množina bodů v rovině, které mají od daného bodu (střed S) stejnou vzdálenost (poloměr r).?! Co získáme, když v definici výraz stejnou nahradíme stejnou nebo
17 Kuželosečky a přímky
17 Kuželosečky a přímky 17.1 Poznámka: Polára bodu M ke kuželosečce Nechť X = [x 0,y 0 ] je bod. Zavedeme následující úpravy: x x 0 x y y 0 y xy (x 0 y + xy 0 )/ x (x 0 + x)/ y (y 0 + y)/ (x m) (x 0 m)(x
1 Topologie roviny a prostoru
1 Topologie roviny a prostoru 1.1 Základní pojmy množin Intervaly a okolí Intervaly v rovině nebo prostoru jsou obdélníky nebo hranoly se stranami rovnoběžnými s osami souřadnic. Podmnožiny intervalů se
Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f
Výklad Globální extrémy mají stejný význam jako u funkcí jedné proměnné. Hledáme je bud na celém definičním oboru dané funkce, nebo na předem zadané podmnožině definičního oboru. Definice 6..1. Řekneme,
1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v
. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z xy 8 = v bodě A =, ]. b) e grafu funkce f najděte tečnou rovinu, která je rovnoběžná s rovinou ϱ. f(x, y) = x + y x, ϱ : x
Základní topologické pojmy:
Křivky Marie Ennemond Camille Jordan (88 9): Křivka je množina bodů, která je surjektivním obrazem nějakého intervalu Giuseppe Peano (858 9): Zobrazení intervalu na čtverec Wacław Franciszek Sierpiński
Matematika I pracovní listy
Matematika I pracovní listy Dagmar Dlouhá, Radka Hamříková, Zuzana Morávková, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny
Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y].
Konzultace č. 6: Rovnice kružnice, poloha přímky a kružnice Literatura: Matematika pro gymnázia: Analytická geometrie, kap. 5.1 a 5. Sbírka úloh z matematiky pro SOŠ a studijní obory SOU. část, kap. 6.1
Definice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k),
Definice 5.2.1. Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo má v tomto bodě totální diferenciál, jestliže je možné její přírůstek z na nějakém okolí bodu A vyjádřit jako
Matematická funkce. Kartézský součin. Zobrazení. Uspořádanou dvojici prvků x, y označujeme [x, y] Uspořádané dvojice jsou si rovny, pokud platí:
Matematická funkce Kartézský součin Uspořádanou dvojici prvků x, y označujeme [x, y] Uspořádané dvojice jsou si rovny, pokud platí: [x, y] = [u, v] x = u y = v Pokud K, L jsou libovolné množiny, pak množinu
1 Základy práce s programem Maple
1 ZÁKLADY PRÁCE S PROGRAMEM MAPLE 1 Základy práce s programem Maple Počítačový algebraický systém Maple TM je produktem kanadské společnosti Maplesoft, Waterloo Maple Inc. Jedná se o špičkový produkt v
Matematická analýza III.
1. - limita, spojitost Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Co bychom měli znát limity posloupností v R základní vlastnosti funkcí jedné proměnné (definiční obor, monotónnost, omezenost,... )
Kapitola 1: Reálné funkce 1/20
Kapitola 1: Reálné funkce 1/20 Funkce jedné proměnné 2/20 Definice: Necht M R. Jestliže každému x M je přiřazeno jistým předpisem f právě jedno y R, říkáme, že y je funkcí x. x... nezávisle proměnná (neboli
Matematická analýza III.
2. Parciální derivace Miroslav Hušek, Lucie Loukotová UJEP 2010 Parciální derivace jsou zobecněním derivace funkce jedné proměnné. V této kapitole poznáme jejich základní vlastnosti a využití. Co bychom
8 Plochy - vytvoření, rozdělení, tečná rovina a normála. Šroubové plochy - přímkové, cyklické. Literatura:
8 Plochy - vytvoření, rozdělení, tečná rovina a normála. Šroubové plochy - přímkové, cyklické. Literatura: (1)Poláček, J., Doležal, M.: Základy deskriptivní a konstruktivní geometrie, díl 5, Křivky a plochy
Průběh funkce jedné proměnné
Průběh funkce jedné proměnné Průběh funkce Newtonova metoda. p.1/8 Průběh funkce Příklad 4.1.1 Vyšetřete průběh funkce f(x) =ln 3 x. Příklad 4.1.2 Vyšetřete průběh funkce f(x) =arctg 1 x. Příklad 4.1.3
Extrémy funkce dvou proměnných
Extrémy funkce dvou proměnných 1. Stanovte rozměry pravoúhlé vodní nádrže o objemu 32 m 3 tak, aby dno a stěny měly nejmenší povrch. Označme rozměry pravoúhlé nádrže x, y, z (viz obr.). ak objem této nádrže
Význam a výpočet derivace funkce a její užití
OPAKOVÁNÍ ZÁKLADŮ MATEMATIKY Metodický list č. 1 Význam a výpočet derivace funkce a její užití 1. dílčí téma: Výpočet derivace přímo z definice a pomocí základních vzorců. K tomuto tématu je třeba zopakovat
Parametrické rovnice křivek
Parametrické rovnice křivek Kreslení křivek a tečný vektor Parametrizace křivek, tečna ke křivce. p.1/8 Kreslení křivek a tečný vektor Příklad 6.1.1 Máme křivku K zadanou parametrickými rovnicemi K : x
11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ
11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ Dovednosti: 1. Chápat pojmy orientovaná úsečka a vektor a geometrický význam součtu, rozdílu a reálného násobku orientovaných úseček a vektorů..
Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y =
0.1 Diferenciální počet Je částí infinitezimálního počtu, což je souhrnný název pro diferenciální a integrální počet. Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si
1. Je dána funkce f(x, y) a g(x, y, z). Vypište symbolicky všechny 1., 2. a 3. parciální derivace funkce f a funkce g.
. Je dána funkce f(x, y) a g(x, y, z). Vypište symbolicky všechny.,. a 3. parciální derivace funkce f a funkce g.. Spočtěte všechny první parciální derivace funkcí: a) f(x, y) = x 4 + y 4 4x y, b) f(x,
9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b
008 verze 0A. Řešeními nerovnice x + 4 0 jsou právě všechna x R, pro která je x ( 4, 4) b) x = 4 c) x R x < 4 e) nerovnice nemá řešení b. Rovnice x + y x = je rovnicí přímky b) dvojice přímek c) paraboly
MATEMATICKÁ ANALÝZA A LINEÁRNÍ ALGEBRA PŘÍPRAVA NA ZKOUŠKU PRO SAMOUKY
MATEMATICKÁ ANALÝZA A LINEÁRNÍ ALGEBRA PŘÍPRAVA NA ZKOUŠKU PRO SAMOUKY POMNĚNKA prase Pomni, abys nezapomněl na Pomněnku MSc. Catherine Morris POMNĚNKA Verze ze dne: 14. října 01 Materiál je v aktuální
FAKULTA STAVEBNÍ MATEMATIKA II MODUL 2 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA II MODUL KŘIVKOVÉ INTEGRÁLY STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Typeset by L A TEX ε c Josef Daněček, Oldřich Dlouhý,
METODA PŮLENÍ INTERVALU (METODA BISEKCE) METODA PROSTÉ ITERACE NEWTONOVA METODA
2-3. Metoda bisekce, met. prosté iterace, Newtonova metoda pro řešení f(x) = 0. Kateřina Konečná/ 1 ITERAČNÍ METODY ŘEŠENÍ NELINEÁRNÍCH ROVNIC - řešení nelineární rovnice f(x) = 0, - separace kořenů =
Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které
Kapitola 5 Kuželosečky Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které společně s kružnicí jsou známy pod společným názvem kuželosečky. Říká se jim tak proto, že každou z nich
MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel
MATEMATIKA Příklady pro 1. ročník bakalářského studia II. část II.1. Posloupnosti reálných čísel Rozhodněte, zda posloupnost a n (n = 1, 2, 3,...) je omezená (omezená shora, omezená zdola) resp. monotónní
1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem
Analytická geometrie - kružnice Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A = ; 5 [ ] Napište středový i obecný tvar rovnice kružnice, která má střed
Diferenciální rovnice I
Diferenciální rovnice I V kurzu Diferenciální rovnice I se naučíme pomocí počítačového algebraického systému Maple hledat obecná a partikulární řešení obyčejných diferenciálních rovnic 1. řádu. Pro případ,
Matematika vzorce. Ing. Petr Šídlo. verze
Matematika vzorce Ing. Petr Šídlo verze 0050409 Obsah Jazyk matematiky 3. Výrokový počet.......................... 3.. Logické spojky...................... 3.. Tautologie výrokového počtu...............
Test M1-ZS12-2 M1-ZS12-2/1. Příklad 1 Najděte tečnu grafu funkce f x 2 x 6 3 x 2, která je kolmá na přímku p :2x y 3 0.
Test M-ZS- M-ZS-/ Příklad Najděte tečnu grafu funkce f x x 6 3 x, která je kolmá na přímku p :x y 3 0. Zřejmě D f R. Přímka p má směrnici, tečna na ní kolmá má proto směrnici. Protože směrnice tečny ke
Zkouška ze Základů vyšší matematiky ZVMTA (LDF, ) 60 minut. Součet Koeficient Body
Zkouška ze Základů vyšší matematiky ZVTA (LDF, 8.2.202) 60 minut 2 3 4 5 6 7 Jméno:................................. Součet Koeficient Body. [6 bodů] a) Definujte pojem primitivní funkce. Co musí platit,
[obrázek γ nepotřebujeme, interval t, zřejmý, integrací polynomu a per partes vyjde: (e2 + e) + 2 ln 2. (e ln t = t) ] + y2
4.1 Křivkový integrál ve vektrovém poli přímým výpočtem 4.1 Spočítejte práci síly F = y i + z j + x k při pohybu hmotného bodu po orientované křivce, která je dána jako oblouk ABC na průnikové křivce ploch
Matematika 1 pro PEF PaE
Tečny a tečné roviny 1 / 16 Matematika 1 pro PEF PaE 7. Tečny a tečné roviny Přemysl Jedlička Katedra matematiky, TF ČZU Tečny a tečné roviny Tečny a normály grafů funkcí jedné proměnné / 16 Tečny a normály
22. & 23. & 24. Vlastnosti funkcí a jejich limita a derivace
22. & 23. & 24. Vlastnosti funkcí a jejich ita a derivace Základní vlastnosti Definiční obor Definiční obor je množina neznámých, pro něž je funkce definována. Obor hodnot Obor hodnot je množina všech
Parametrická rovnice přímky v rovině
Parametrická rovnice přímky v rovině Nechť je v kartézské soustavě souřadnic dána přímka AB. Nechť vektor u = B - A. Pak libovolný bod X[x; y] leží na přímce AB právě tehdy, když vektory u a X - A jsou
Kreslení grafů v Matlabu
Kreslení grafů v Matlabu Pavel Provinský 3. října 2013 Instrukce: Projděte si všechny příklady. Každý příklad se snažte pochopit. Pak vymyslete a naprogramujte příklad podobný. Tím se ujistíte, že příkladu
s p nazýváme směrový vektor přímky p, t je parametr bodu
MATE ZS 2013 KONZ 3A Analytická geometrie lineárních útvarů v rovině a v rostoru Přímka v rovině 1 Parametrická rovnice římky v rovině: t R s o : X = A + t s, kde, Vektor s nazýváme směrový vektor římky,
5. cvičení z Matematiky 2
5. cvičení z Matematiky 2 21.-25. března 2016 5.1 Nalezněte úhel, který v bodě 1, 0, 0 svírají grafy funkcí fx, y ln x 2 + y 2 a gx, y sinxy. Úhel, který svírají grafy funkcí je dán jako úhel mezi jednotlivými
Gymnázium, Brno, Elgartova 3
Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma: Analytická geometrie
CZ 1.07/1.1.32/02.0006
PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI
KMA/G2 Geometrie 2 9. až 11. cvičení
KMA/G2 Geometrie 2 9. až 11. cvičení 1. Rozhodněte, zda kuželosečka k je regulární nebo singulární: a) k : x 2 0 + 2x 0x 1 x 0 x 2 + x 2 1 2x 1x 2 + x 2 2 = 0; b) k : x 2 0 + x2 1 + x2 2 + 2x 0x 1 = 0;
obecná rovnice kružnice a x 2 b y 2 c x d y e=0 1. Napište rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A[-3;2].
Kružnice množina bodů, které mají od středu stejnou vzdálenost pojmy: bod na kružnici X [x, y]; poloměr kružnice r pro střed S[0; 0]: SX =r x 0 2 y 0 2 =r x 2 y 2 =r 2 pro střed S[m; n]: SX =r x m 2 y
Průběh funkce pomocí systému MAPLE.
Průběh funkce pomocí systému MAPLE. Vyšetřování průběhu funkce je komplení a někdy velmi obtížná úloha. V konkrétních aplikacích nás většinou zajímají jen některé otázky týkající se průběhu dané funkce.
Obsah a průběh zkoušky 1PG
Obsah a průběh zkoušky PG Zkouška se skládá z písemné a ústní části. Písemná část (cca 6 minut) dvě konstrukční úlohy dle části po. bodech a jedna úloha výpočetní úloha dle části za bodů. Ústní část jedna
Petr Hasil
Základy Vyšší Matematiky Petr Hasil hasil@mendelu.cz Poznámka 1. Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny