10. přednáška (slovní úlohy vedoucí na extrémy - pokračování)

Rozměr: px
Začít zobrazení ze stránky:

Download "10. přednáška (slovní úlohy vedoucí na extrémy - pokračování)"

Transkript

1 10. přednáška (slovní úlohy vedoucí na extrémy - pokračování) Extremální úlohy Krabice Ze čtvercového kartónu o straně 60 cm odřízneme v rozích 4 menší čtverce. Ze zbytku poskládáme krabici bez víka (viz obrázek). Jak velké čtverce musíme v rozích odstřihnout, abychom dostali krabici o maximálním objemu. Jak velký bude onen maximální objem? Označme x délku stran čtverců, které v rozích odřízneme. Pak objem krabice je popsán funkcí V( x ) = ( 60 x ) x. Proměnná x přitom může probíhat interval < 0, 30. Úlohu jsme tedy převedli na výpočet globálního maxima dané funkce na daném intervalu. V:=x-(60-*x)*x; V := x ( 60 x) x maximize(v(x),x=0..30,location); 16000, {[ { x = 10}, ] } Vidíme, že musíme v rozích odstřihnout čtverce o straně 10 cm. Maximální objem krabice pak bude krychlových centimetrů, tj. 16 litrů. Poznámka:

2 Kdybychom úlohu chtěli zobecnit a uvažovat čtvercový kartón o straně a, funkce V by měla předpis V( x ) = ( a x ) x a proměnná x by mohla být v intervalu < 0, a. Funkce V je na tomto (uzavřeném) intervalu spojitá, a proto (podle Weierstrassovy věty) globální extrémy existují. V:=x-(a-*x)*x; V := x ( a x) x maximize(v(x),x=0..a/,location); Zde už má Maple zase problémy. extrema(v(x),{},x,'bod'); bod; Máme jediný stacionární bod x = maximize ( a x ) a x, x = 0..,, location { } { max 0, a3, min 0, a3 } 7 7 a a {{ x = }, { x = } } 6 a 6 ležící uvnitř intervalu < 0, a. Dále jsou a samozřejmě "podezřelé" krajní body, tzn. x = 0 a x =. Nyní už jen musíme porovnat funkční hodnoty v podezřelých bodech. V(0); V(a/); V(a/6); 0 0 a 3 7 Vzhledem k tomu, že a byl kladný parametr, globální maximum nastává v bodě a 6. Musíme tedy v rozích odstřihnout menší čtverce o straně a, kde a byla strana 6 původního čtverce.

3 Válec Ze všech válců o daném objemu V najděte ten, který má minimální povrch. Jaké budou rozměry hledaného válce? Poloměr válce si označme r a výšku v. V=Pi*r*v; v:=solve(%,v); V = π r v V v := π r S:=unapply(*Pi*r*Pi*r*v,r); S := r π r V r Dostali jsme funkci, kterou je třeba minimalizovat. Zde hledáme globální minimum funkce S na intervalu ( 0, nekonečno). Stacionární bod(y) funkce S: extrema(s(r),{},r,'stac'); stac; Derivace funkce S: { 3 π V ( / 3 ) } 4 ( V π ) {{ r = } } π D(S)(r); 4 π r V r Vidíme, že nalevo od stacionárního bodu je derivace funkce S záporná, zatímco napravo je kladná, tzn., že ve stacionárním bodě nastává lokální, ale i globální minimum. assign(stac); r:=simplify(r);

4 v:=simplify(v); testeq(v=*r); r := v := ( / 3 ) V π ( / 3 ) V π true Optimální válec má tedy výšku rovnou průměru. Parabola Na parabole p( x ) = x najděte bod, který je nejblíže bodu ( 1, 0). Obecný bod na parabole je ( x, x ), kde x může být libovolné reálné číslo. Vzdálenost takového bodu od bodu ( 1, 0) je: vzdalenost:=sqrt((x-1)(x-0)); vzdalenost := x x 1 x 4 reseni:=minimize(vzdalenost,location); ( ( ) ( / 3 ) 6 ) ( ) ( / 3 ) 6 (( ) ( / reseni := 1 36 ( ) ( / 3 ) 3 ( ) 196 ( ( ) ( / 3 ) 6 (( ) ( / 3 ) 6 ) ( , x =, 1 6 ( ) 36 ( ) ( / 3 ) 3 ( reseni[,1,1]; ( ) ( / 3 ) 6 x = 6 ( ) assign(reseni[,1,1]); x;

5 bod:=[x,x]; bod := evalf(bod); Grafické znázornění: ( ) ( / ) ( ) ( ) ( / 3 ) 6 ( ( ) ( / 3 ) 6 ), 6 ( ) 36 ( ) ( / 3 ) [ , ] with(plots):with(plottools): p1:=plot(x-x,-1..1,color=red,thickness=5): p:=pointplot([bod,[1,0]],symbolsize=0,symbol=solidcircle,color=black): p3:=line(bod,[1,0],color=black,thickness=5): display([p1,p,p3],scaling=constrained); Odlitek z betonu Z 1 krychlového metru betonu máme odlít co nejvyšší těleso buď ve tvaru krychle, nebo koule, nebo koule postavené na krychli. Jak vysoké bude toto těleso? Označme x hranu krychle, kterou z betonu odlijeme. Je jasné, že x patří do intervalu < 0, 1. V_krychle:=x3;

6 V_koule:=1-x3; V_krychle := x 3 V_koule := 1 x 3 solve(4/3*pi*r3=v_koule,r); 1 ( ( 6 6 x 3 ) π ) (( 6 6 x 3 ) π ) 4 I 3 (( 6 6 x3 ) π ),, π 4 π π 1 (( 6 6 x 3 ) π ) 4 I 3 ( ( 6 6 x3 ) π ) 4 π π r:=%[1]; vyska:=x*r; ( ( 6 6 x 3 ) π ) r := π vyska := x maximize(vyska,x=0..1); (( 6 6 x 3 ) π ) (( 6 6 x 3 ) π ) maximize x, π π 0 1 x =.. Maple má s maximalizací problémy. Mohli bychom použít příkaz Maximize z balíku Optimization a spočítat maximum alespoň numericky. Optimization[Maximize](vyska,{x=0,x<=1},initialpoint={x=1 /}); [ , [ x = ] ] assign(%[]); x; evalf(r); Vidíme, že je potřeba odlít krychli o hraně a kouli s poloměrem Vznikne těleso s výškou Animace: with(plots): with(plottools):

7 kresli:=proc(x) local p1,p,r; p1:=hexahedron([0,0,x/],x/,color=grey); r:=evalf(surd((1-x3)*3/(4*pi),3)); p:=sphere([0,0,rx],r,color=grey); display([p1,p],axes=framed,scaling=constrained,orientatio n=[-135,75,0]); end; kresli := proc( x) local p1, p, r; p1 := plottools:-hexahedron ([ 0, 0, 1 / x ], 1 / x, color = grey ); r := evalf ( surd ( 3 / 4 ( 1 x3 ) / π, 3 ) ); p := plottools:-sphere ([ 0, 0, r x ], r, color = grey ); plots:-display ([ p1, p ], axes = framed, scaling = constrained, orientation = [ -135, 75, 0 ] ) end proc animate(kresli,[t],t=0..1,scaling=constrained,frames=50); x; kresli(x);

8 Dokázali bychom Maple popostrčit, aby maximalizaci spočítal (aniž bychom museli přistupovat k numerickému řešení)? Dvě chodby a žebřík Dvě chodby široké a a b metrů se křižují v pravém úhlu. Zjistěte maximální délku žebříku, který lze ve vodorovné poloze přenést z jedné chodby do druhé.

9 Není těžké si uvědomit, že maximální délka žebříku je rovna minimu délek všech možných červených úseček (viz obrázek výše). Funkce, která délku červené úsečky a b popisuje, má tvar d( t ) =, kde t je úhel, který svírá úsečka s osou x. sin( t ) cos( t) Úhel t přitom probíhá otevřený interval ( 0, π ). assume(a0,b0); d:=t-a/sin(t)b/cos(t); derivace:=d(d)(t); d := a t sin( t) b cos( t ) a~ cos( t ) b~ sin( t ) derivace := sin( t ) cos( t ) solve(derivace,t); 1 arctan ( a~ b~ ) ( a~ b~ ) I 3 ( ) ( a~ 1 / 3 ) b~, arctan, b~ b~ b~ 1 ( a~ b~ ) I 3 ( ) ( a~ 1 / 3 ) b~ arctan b~ b~ stac_bod:=%[1]; stac_bod := arctan ( ) ( a~ 1 / 3 ) b~ b~

10 Funkce d má tedy jediný stacionární bod v intervalu ( 0, π ). Zároveň je jasné, že v tomto otevřeném intervalu je funkce d diferencovatelná. Dále platí: Limit(d(x),x=0,right)=limit(d(x),x=0,right); a~ b~ lim = x 0 sin( x ) cos( x ) Limit(d(x),x=Pi/,left)=limit(d(x),x=Pi/,left); lim π x - a~ sin( x ) b~ cos( x ) = Na základě toho není těžké si uvědomit, že funkce d má ve vypočteném stacionárním bodě globální minimum. Promyslete si to! Hledaná délka: d(stac_bod); ( a~ b~ ) ( / 3 ) a~ b~ 1 b~ ( ) b~ 1 ( a~ b~ ) b~ delka:=simplify(%); b~ ( / 3 ) a~ ( / ) a~ b~ ( / 3 ) 3 ( a~ b~ ( / 3 ) a~ ) delka := a~ delka:=subs({a='a',b='b'},simplify(%)); delka := b ( / 3 ) a ( / ) 3 ( a b ( / 3 ) a ) a Hledaná maximální délka žebříku je a 3 b 3 3. Skutečně: delka_upravena:=(a(/3)b(/3))(3/); b~ ( / 3 ) a~ ( / 3 ) ( 3 / ) delka_upravena := ( )

11 simplify(delka-delka_upravena); 0 Bod v trojúhelníku Uvnitř trojúhelníku s vrcholy A = ( 0, 0 ), B = ( 4, 0 ) a C = ( 3, ) najděte bod X takový, aby součet vzdáleností AX BX CX byl minimální. Předpokládejme, že X = ( x, y ). Součet vzdáleností od jednotlivých vrcholů lze popsat následující funkcí: v:=(x,y)-sqrt(xy)sqrt((x-4)y)sqrt((x-3)(y- )); v := ( x, y ) x y ( x 4 ) y ( x 3 ) ( y ) bod:=minimize(v(x,y),location); bod := RootOf ( 9409 _Z _Z _Z _Z 56731, ) RootOf ( 9409 _Z _Z _Z _Z 56731, ) RootOf ( 9409 _Z _Z _Z _Z 56731, ) RootOf ( 9409 _Z _Z _Z _Z 56731, ) RootOf ( 9409 _Z _Z _Z _Z 56731, ) RootOf ( 9409 _Z _Z _Z _Z 56731, ) ( 1 / ) RootOf ( 9409 _Z _Z _Z _Z 56731, )

12 RootOf ( 9409 _Z _Z _Z _Z 56731, ) RootOf ( 9409 _Z _Z _Z _Z 56731, ) RootOf ( 9409 _Z _Z _Z _Z 56731, ) RootOf ( 9409 _Z _Z _Z _Z 56731, ) RootOf ( 9409 _Z _Z _Z _Z 56731, ) RootOf ( 9409 _Z _Z _Z _Z 56731, ) RootOf ( 9409 _Z _Z _Z _Z 56731, ) RootOf ( 9409 _Z _Z _Z _Z 56731, ) ( 1 / ) RootOf ( 9409 _Z _Z _Z _Z 56731, ) RootOf ( 9409 _Z _Z _Z _Z 56731, ) RootOf ( 9409 _Z _Z _Z _Z 56731, ) RootOf ( 9409 _Z _Z _Z _Z 56731, )

13 RootOf ( 9409 _Z _Z _Z _Z 56731, ) RootOf ( 9409 _Z _Z _Z _Z 56731, ) RootOf ( 9409 _Z _Z _Z _Z 56731, ) RootOf ( 9409 _Z _Z _Z _Z 56731, ) RootOf ( 9409 _Z _Z _Z _Z 56731, ) ( 1 / ) , { { x = RootOf ( 9409 _Z _Z _Z _Z 56731, ) RootOf ( 9409 _Z _Z _Z _Z 56731, ) RootOf ( 9409 _Z _Z _Z _Z 56731, ) , y = RootOf ( 9409 _Z _Z _Z _Z 56731, ) RootOf ( 9409 _Z _Z _Z _Z 56731, ) RootOf ( 9409 _Z _Z _Z _Z 56731, ) }, RootOf ( 9409 _Z _Z _Z _Z 56731, )

14 RootOf ( 9409 _Z _Z _Z _Z 56731, ) RootOf ( 9409 _Z _Z _Z _Z 56731, ) RootOf ( 9409 _Z _Z _Z _Z 56731, ) RootOf ( 9409 _Z _Z _Z _Z 56731, ) RootOf ( 9409 _Z _Z _Z _Z 56731, ) ( 1 / ) RootOf ( 9409 _Z _Z _Z _Z 56731, ) RootOf ( 9409 _Z _Z _Z _Z 56731, ) RootOf ( 9409 _Z _Z _Z _Z 56731, ) RootOf ( 9409 _Z _Z _Z _Z 56731, ) RootOf ( 9409 _Z _Z _Z _Z 56731, ) RootOf ( 9409 _Z _Z _Z _Z 56731, ) RootOf ( 9409 _Z _Z _Z _Z 56731, )

15 RootOf ( 9409 _Z _Z _Z _Z 56731, ) RootOf ( 9409 _Z _Z _Z _Z 56731, ) ( 1 / ) RootOf ( 9409 _Z _Z _Z _Z 56731, ) RootOf ( 9409 _Z _Z _Z _Z 56731, ) RootOf ( 9409 _Z _Z _Z _Z 56731, ) RootOf ( 9409 _Z _Z _Z _Z 56731, ) RootOf ( 9409 _Z _Z _Z _Z 56731, ) RootOf ( 9409 _Z _Z _Z _Z 56731, ) RootOf ( 9409 _Z _Z _Z _Z 56731, ) RootOf ( 9409 _Z _Z _Z _Z 56731, ) RootOf ( 9409 _Z _Z _Z _Z 56731, ) ( 1 / ) } allvalues(bod[]);

16 x = , y = , ( 1 / )

17 ( 1 / ) ( 1 / ) bod:=simplify(%); bod := { { x =, y = },

18 evalf(bod); {[ { x = , y = }, ] } bod[1,1]; assign(%); [x,y]; { x =, y = } , } Obrázek: with(plots): with(plottools): p1:=polygonplot([[0,0],[4,0],[3,]],thickness=5): p:=pointplot([x,y],symbol=solidcircle,symbolsize=0,color =red): p3:=line([x,y],[0,0],color=red,thickness=3): p4:=line([x,y],[4,0],color=red,thickness=3): p5:=line([x,y],[3,],color=red,thickness=3): p6:=contourplot(v(r,s),r=3/*s..4-s/,s=0..,contours=[seq (5i/10,i=0..5)],color=blue): display([p1,p,p3,p4,p5,p6],scaling=constrained,labels=[``,``]); Poznámka: Bod, jehož souřadnice jsme právě vypočetli, se nazývá Torricelliho bod. Obraz Na zdi je zavěšen obraz. Jeho spodní okraj A se nachází a délkových jednotek nad úrovní očí a jeho horní okraj B se nachází b délkových jednotek nad úrovní očí (viz obrázek). Určete, z jaké vzdálenosti je obraz vidět pod největším zorným úhlem.

19 Označme x vzdálenost od zdi (x je z intervalu ( 0, nekonečno)). Zorný úhel, pod kterým je obraz vidět, lze spočíst následovně: assume(a0,b0,a<b); uhel:=x-arctan(b/x)-arctan(a/x); Stacionární bod(y): uhel := x arctan b x extrema(uhel(x),{},x,'stac'); stac; arctan a x b~ a~ b~ a~ { arctan, arctan } a~ b~ a~ b~ {{ x = a~ b~ }, { x = a~ b~ } } Vidíme, že v oboru kladných čísel se nachází jeden stacionární bod x = a b. Dále platí: Limit(uhel(x),x=0,right)=limit(uhel(x),x=0,right); lim arctan b~ arctan a~ = 0 x 0 x x Limit(uhel(x),x=infinity)=limit(uhel(x),x=infinity); lim x arctan b~ x Funkční hodnota ve stacionárním bodě: arctan a~ x = 0

20 hodnota:=uhel(sqrt(a*b)); b~ hodnota := arctan arctan a~ b~ simplify(hodnota); b~ a~ arctan a~ b~ a~ a~ b~ Není těžké si rozmyslet, že hodnota v (jediném) stacionárním bodě je kladná. Vzhledem k tomu, že funkce uhel je diferencovatelná na intervalu ( 0, nekonečno) a limity v krajních bodech jsou nulové to znamená, že ve stacionárním bodě nastává globální maximum. Promyslete si to! Abychom obraz viděli pod největším zorným úhlem, musíme se postavit do vzdálenosti a b od zdi. Úlohy lineárního programování Řešit úlohu lineárního programování znamená hledat globální extrémy lineární funkce (více proměnných) na jisté množině, která je popsána pomocí lineárních omezení. K řešení úloh lineárního programování slouží v Maplu příkazy maximize a minimize z balíku simplex. Po načtení balíku simplex se mění význam (i syntaxe) příkazů maximize a minimize, jak ukazuje následující série příkazů. maximize(1-x); with(simplex); [ basis, convexhull, cterm, define_zero, display, dual, feasible, maximize, minimize, pivot, pivoteqn, pivotvar, ratio, setup, standardize] maximize(1-x); Error, (in maximize) non-linear objective function. Syntaxe: maximize(xy, {4*x3*y<=5, 3*x4*y<=4}); 1

21 8 1 { x =, y = } 7 7 Nutriční problém Krmná směs musí obsahovat alespoň 60 jednotek látky L 1, 160 jednotek látky L a 180 jednotek látky L 3. Směs lze vyrábět ze dvou surovin S 1 a S, přičemž - 1 kg suroviny S 1 obsahuje 3 jednotky látky L 1, 4 jednotky látky L a jednotky látky L 3, - 1 kg suroviny S obsahuje 1 jednotku látky L 1, 3 jednotky látky L a 4 jednotky látky L 3, - 1 kg suroviny S 1 stojí 14 Kč, - 1 kg suroviny S stojí 13 Kč. Je třeba určit množství surovin S 1 a S, jejichž smícháním dostaneme krmnou směs s požadovaným obsahem látek L 1, L a L 3 tak, aby celkové náklady na použité suroviny byly co nejnižší. Označme x množství suroviny S 1 a y množství suroviny S. with(simplex); [ basis, convexhull, cterm, define_zero, display, dual, feasible, maximize, minimize, pivot, pivoteqn, pivotvar, ratio, setup, standardize ] naklady:=14*x13*y; naklady := 14 x 13 y minimize(naklady,{3*xy=60,4*x3*y=160,*x4*y=180},non NEGATIVE); assign(%); naklady; { x = 10, y = 40 } 660 Je třeba použít 10 kg suroviny S 1 a 40 kg suroviny S. Celkové (minimální) náklady pak budou 660 Kč. Grafické znázornění: with(plots):

22 p1:=inequal({3*xy=60,4*x3*y=160,*x4*y=180}, x=0..100,y=0..70,optionsexcluded=[color=white]): p:=implicitplot(14*x13*y=660,x=0..100,y=0..70,thickness= 5,color=red): p3:=pointplot([10,40],symbol=solidcircle,symbolsize=0,col or=red): display([p1,p,p3],scaling=constrained); Optimalizace počtu pracovníků Služby pracovníků na daném nádraží jsou osmihodinové s nástupem po 4 hodinách počínaje půlnocí. K tomu, aby byl udržen hladký provoz, musí být ve službě alespoň tolik pracovníků, kolik je uvedeno v tabulce níže. Je třeba určit, kolik pracovníků má nastoupit do služby v každou nástupní dobu, aby nutné služby byly zajištěny s celkově minimálním počtem osob. 00:00-04:00 (min. 3 pracovnící) 04:00-08:00 (min. 8 pracovníků) 08:00-1:00 (min. 10 pracovníků) 1:00-16:00 (min. 8 pracovníků) 16:00-0:00 (min. 14 pracovníků) 0:00-4:00 (min. 5 pracovníků) Počty pracovníků, kteří v danou nástupní dobu nastoupí do práce označme po řadě x 1, x, x 3, x 4, x 5, x 6. with(simplex); [ basis, convexhull, cterm, define_zero, display, dual, feasible, maximize, minimize, pivot, pivoteqn, pivotvar, ratio, setup, standardize ] celkovy_pocet:=add(x[i],i=1..6); celkovy_pocet := x 1 x x 3 x 4 x 5 x 6 omezeni:=x[6]x[1]=3,x[1]x[]=8,x[]x[3]=10,x[3]x[4] =8,x[4]x[5]=14,x[5]x[6]=5; omezeni := 3 x 6 x 1, 8 x 1 x, 10 x x 3, 8 x 3 x 4, 14 x 4 x 5, 5 x 5 x 6 minimize(celkovy_pocet,{omezeni},nonnegative); { x 1 = 3, x = 10, x 3 = 0, x 4 = 9, x 5 = 5, x 6 = 0 } assign(%); celkovy_pocet; 7

23 V 00:00 nastoupí 3 pracovníci, ve 04:00 nastoupí 10 pracovníků, v 08:00 nenastoupí nikdo, ve 1:00 nastoupí 9 pracovníků, v 16:00 nastoupí 5 pracovníků, ve 0:00 nenastoupí nikdo. Od 00:00 do 04:00 budou přítomni 3 pracovnící, od 04:00 do 08:00 bude přítomno 13 pracovníků, od 08:00 do 1:00 bude přítomno 10 pracovníků, od 1:00 do 16:00 bude přítomno 9 pracovníků, od 16:00 do 0:00 bude přítomno 14 pracovníků, od 0:00 do 4:00 bude přítomno 5 pracovníků. Celkový (minimální) počet pracovníků potřebných pro nepřetržitý provoz nádraží je 7. Řezný plán Strojírenský závod potřebuje pro svoji výrobu 3 druhy kovových tyčí T 1, T, T 3, přičemž tyče T 1 mají délku 80 cm, tyče T mají délku 70 cm a tyče T 3 mají délku 40 cm. K dispozici jsou tyče délky 00 cm, které je třeba rozřezat. Přípustné jsou pouze takové způsoby řezání výchozích tyčí, při kterých nebude odpad větší než 30 cm. Předpokládáme, že odpad ze samotného řezu je zanedbatelný. Přitom se požaduje alespoň 500 tyčí T 1, 150 tyčí T a 300 tyčí T 3. Máme určit takový plán řezání výchozích tyčí, při kterém budou splněny požadavky při použití co nejmenšího počtu kusů těchto tyčí. Přípustné jsou následující způsoby řezání: 1) (odpad 0) ) (odpad 10) 3) (odpad 0) 4) (odpad 0) 5) (odpad 10) 6) (odpad 0) Dále označme x 1 počet tyčí, které rozřežeme způsobem 1), x počet tyčí, které rozřežeme způsobem ), x 3 počet tyčí, které rozřežeme způsobem 3), x 4 počet tyčí, které rozřežeme způsobem 4), x 5 počet tyčí, které rozřežeme způsobem 5) a x 6 počet tyčí, které rozřežeme způsobem 6).

24 with(simplex); [ basis, convexhull, cterm, define_zero, display, dual, feasible, maximize, minimize, pivot, pivoteqn, pivotvar, ratio, setup, standardize ] pocet:=add(x[i],i=1..6); pocet := x 1 x x 3 x 4 x 5 x 6 podminky:=*x[1]x[]x[4]=500, x[]*x[3]x[5]=150, x[1]x[]x[3]3*x[4]3*x[5]5*x[6]=300; podminky := 500 x 1 x x 4, 150 x x 3 x 5, 300 x 1 x x 3 3 x 4 3 x 5 5 x 6 minimize(pocet,{podminky},nonnegative); assign(%); pocet; { x 1 = 175, x = 150, x 3 = 0, x 4 = 0, x 5 = 0, x 6 = 0 } Musíme použít 35 tyčí, přičemž 175 tyčí nařežeme způsobem 1) a 150 tyčí nařežeme způsobem ). Způsobem 3) - 6) neřežeme žádnou tyč. Tímto nařezáním dostaneme 500 tyčí T 1, 150 tyčí T a 35 tyčí T a ještě jedna podobná úloha na závěr Ze tří složek je třeba namíchat 0 kg směsi. První složka stojí 10 Kč/kg, druhá 0 Kč/kg a třetí 30 Kč/kg. Přitom směs musí obsahovat minimálně 50% a maximálně 60% druhé složky a minimálně 15% třetí složky. Určete, jak máme směs namíchat, aby náklady na suroviny byly minimální. Označme x množství první složky, y množství druhé složky a z množství třetí složky. with(simplex): cena:=10*x0*y30*z; cena := 10 x 0 y 30 z omezeni:=xyz=0, y=10, y<=1, z=3; omezeni := x y z = 0, 10 y, y 1, 3 z minimize(cena,{omezeni},nonnegative); assign(%); cena; { x = 7, y = 10, z = 3 } 360

25 Směs je třeba namíchat ze 7 kg první složky, 10 kg druhé složky a 3 kg třetí složky. Náklady na výrobu budou 360 Kč.

9. přednáška (extrémy, slovní úlohy vedoucí na extrémy)

9. přednáška (extrémy, slovní úlohy vedoucí na extrémy) 9. přednáška (extrémy, slovní úlohy vedoucí na extrémy) Lokální extrémy V Maplu lze lokální extrémy dané funkce najít pomocí příkazu extrema. Příklad: Najděte lokální extrémy funkce f( x ) = x 3 1 x 1.

Více

Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky

Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky 6. Vázané a absolutní extrémy. 01-a3b/6abs.tex Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky jednoduché, vyřešíme

Více

Extrémy funkce dvou proměnných

Extrémy funkce dvou proměnných Extrémy funkce dvou proměnných 1. Stanovte rozměry pravoúhlé vodní nádrže o objemu 32 m 3 tak, aby dno a stěny měly nejmenší povrch. Označme rozměry pravoúhlé nádrže x, y, z (viz obr.). ak objem této nádrže

Více

1 Extrémy funkcí - slovní úlohy

1 Extrémy funkcí - slovní úlohy 1 Extrémy funkcí - slovní úlohy Příklad 1.1. Součet dvou kladných reálných čísel je a. Určete 1. Minimální hodnotu součtu jejich n-tých mocnin.. Maximální hodnotu součinu jejich n-tých mocnin. Řešení.

Více

Extremální úlohy v geometrii

Extremální úlohy v geometrii Extremální úlohy v geometrii Petr Vodstrčil petr.vodstrcil@vsb.cz Katedra aplikované matematiky, Fakulta elektrotechniky a informatiky, Vysoká škola báňská Technická univerzita Ostrava 30.4. 2013 Petr

Více

Příklady modelů lineárního programování

Příklady modelů lineárního programování Příklady modelů lineárního programování Příklad 1 Optimalizace výroby konzerv. Podnik vyrábí nějaký výrobek, který prodává v 1 kg a 2 kg konzervách, přičemž se řídí podle následujících velmi zjednodušených

Více

Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f

Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f Výklad Globální extrémy mají stejný význam jako u funkcí jedné proměnné. Hledáme je bud na celém definičním oboru dané funkce, nebo na předem zadané podmnožině definičního oboru. Definice 6..1. Řekneme,

Více

Globální extrémy. c ÚM FSI VUT v Brně. 10. ledna 2008

Globální extrémy. c ÚM FSI VUT v Brně. 10. ledna 2008 10. ledna 2008 Příklad. Určete globální extrémy funkce f(x, y) = x 2 + 2xy + 2y 2 3x 5y na množině M. Množina M je trojúhelník určený body A[0, 2], B[3, 0], C[0, 1]. Protože množina M je kompaktní (uzavřená,

Více

Příklady pro předmět Aplikovaná matematika (AMA) část 1

Příklady pro předmět Aplikovaná matematika (AMA) část 1 Příklady pro předmět plikovaná matematika (M) část 1 1. Lokální extrémy funkcí dvou a tří proměnných Nalezněte lokální extrémy funkcí: (a) f 1 : f 1 (x, y) = x 3 3x + y 2 + 2y (b) f 2 : f 2 (x, y) = 1

Více

Kvadratickou funkcí se nazývá každá funkce, která je daná rovnicí. Definičním oborem kvadratické funkce je množina reálných čísel.

Kvadratickou funkcí se nazývá každá funkce, která je daná rovnicí. Definičním oborem kvadratické funkce je množina reálných čísel. Kvadratická funkce Kvadratickou funkcí se nazývá každá funkce, která je daná rovnicí y = ax 2 + bx + c Číslo a je různé od nuly, b,c jsou libovolná reálná čísla. Definičním oborem kvadratické funkce je

Více

Obsah. Metodický list Metodický list Metodický list Metodický list

Obsah. Metodický list Metodický list Metodický list Metodický list METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro gymnázia Vzdělávací oblast: Matematika a její aplikace Tematický okruh: Závislosti

Více

Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy

Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy funkcí, průběh funkce) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 5. přednáška z AMA1 Michal Fusek (fusekmi@feec.vutbr.cz)

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Úloha 1 1. a = s : 45 = 9.10180 45 = 9.101+179 45 = 9.10.10179

Více

Derivace a monotónnost funkce

Derivace a monotónnost funkce Derivace a monotónnost funkce Věta : Uvažujme funkci f (x), která má na intervalu I derivaci f (x). Pak platí: je-li f (x) > 0 x I, funkce f je na intervalu I rostoucí. je-li f (x) < 0 x I, funkce f je

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

1 Funkce dvou a tří proměnných

1 Funkce dvou a tří proměnných 1 Funkce dvou a tří proměnných 1.1 Pojem funkce více proměnných Definice Funkce dvou proměnných je předpis, který každému bodu z R 2 (tj. z roviny) přiřazuje jediné reálné číslo. z = f(x, y), D(f) R 2

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28. Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu   (reg. č. CZ.1.07/2.2.00/28. Extrémy Vyšší matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz

Více

Derivace. 1. Užitím definice derivace vypočtěte derivaci funkce v daném bodě x 0.

Derivace. 1. Užitím definice derivace vypočtěte derivaci funkce v daném bodě x 0. Derivace 1. Užitím definice derivace vypočtěte derivaci funkce v daném bodě x 0. a) f(x) = 2x 2 x + 5, x 0 = 3 b) f(x) = x 2 4x, x 0 = 1 c) f(x) = sin x, x 0 = 0 d) f(x) = cos x, x 0 = π 6 e) f(x) = 1

Více

Řešení 1b Máme najít body, v nichž má funkce (, ) vázané extrémy, případně vázané lokální extrémy s podmínkou (, )=0, je-li: (, )= +,

Řešení 1b Máme najít body, v nichž má funkce (, ) vázané extrémy, případně vázané lokální extrémy s podmínkou (, )=0, je-li: (, )= +, Příklad 1 Najděte body, v nichž má funkce (,) vázané extrémy, případně vázané lokální extrémy s podmínkou (,)=0, je-li: a) (,)= + 1, (,)=+ 1 lok.max.v 1 2,3 2 b) (,)=+, (,)= 1 +1 1 c) (,)=, (,)=+ 1 lok.max.v

Více

Zimní semestr akademického roku 2014/ prosince 2014

Zimní semestr akademického roku 2014/ prosince 2014 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 24/25 2. prosince 24 Předmluva iii

Více

12. Lineární programování

12. Lineární programování . Lineární programování. Lineární programování Úloha lineárního programování (lineární optimalizace) je jedním ze základních problémů teorie optimalizace. Našim cílem je nalézt maximum (resp. minimum)

Více

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat 6. Extrémy funkcí více proměnných Průvodce studiem Hledání extrémů je v praxi často řešená úloha. Např. při cestě z bodu A do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25 Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Příklady na konvexnost a inflexní body. Funkce f (x) = x 3 9x. Derivace jsou f (x) = 3x 2 9 a f (x) = 6x. Funkce f je konvexní na intervalu (0, )

Příklady na konvexnost a inflexní body. Funkce f (x) = x 3 9x. Derivace jsou f (x) = 3x 2 9 a f (x) = 6x. Funkce f je konvexní na intervalu (0, ) Příklady na konvexnost a inflexní body. Funkce = x 3 9x. Derivace jsou f (x) = 3x 9 a f (x) = 6x. Funkce f je konvexní na intervalu (, ) a konkávní na intervalu (, ). Inflexní bod c =. 3 1 1 y = x 3 9x

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................

Více

prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. BI-ZMA ZS 2009/2010

prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. BI-ZMA ZS 2009/2010 Věty o přírustku funkce prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické

Více

LOKÁLNÍ A GLOBÁLNÍ EXTRÉMY FUNKCÍ A JEJICH UŽITÍ

LOKÁLNÍ A GLOBÁLNÍ EXTRÉMY FUNKCÍ A JEJICH UŽITÍ Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/3.098 IV- Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol LOKÁLNÍ

Více

Numerické metody a programování. Lekce 8

Numerické metody a programování. Lekce 8 Numerické metody a programování Lekce 8 Optimalizace hledáme bod x, ve kterém funkce jedné nebo více proměnných f x má minimum (maximum) maximalizace f x je totéž jako minimalizace f x Minimum funkce lokální:

Více

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel. 5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 00 007 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-M-00-0. tg x + cot gx a) sinx cos x b) sin x + cos x c) d) sin x e) +. sin x cos

Více

CVIČNÝ TEST 22. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 22. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 CVIČNÝ TEST 22 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Kontroloři Státní zemědělské a potravinářské inspekce

Více

Matematika pro informatiky

Matematika pro informatiky (FIT ČVUT v Praze) Konvexní analýza 13.týden 1 / 1 Matematika pro informatiky Jaroslav Milota Fakulta informačních technologíı České vysoké učení technické v Praze Letní semestr 2010/11 Extrémy funkce

Více

8.4. Shrnutí ke kapitolám 7 a 8

8.4. Shrnutí ke kapitolám 7 a 8 8.4. Shrnutí ke kapitolám 7 a 8 Shrnutí lekce Úvodní 7. kapitola přinesla informace o druzích řešení diferenciálních rovnic prvního řádu a stručné teoretické poznatky o podmínkách existence a jednoznačnosti

Více

verze 1.3 x j (a) g k 2. Platí-li vztahy v předchozím bodu a mají-li f, g 1,..., g s v a diferenciál K = f + j=1

verze 1.3 x j (a) g k 2. Platí-li vztahy v předchozím bodu a mají-li f, g 1,..., g s v a diferenciál K = f + j=1 1 Úvod Vázané extrémy funkcí více proměnných verze 1. Následující text popisuje hledání vázaných extrémů funkcí více proměnných. Měl by sloužit především studentům předmětu MATEMAT1 na Univerzitě Hradec

Více

Funkce více proměnných. April 29, 2016

Funkce více proměnných. April 29, 2016 Funkce více proměnných April 29, 2016 Příklad (Derivace vyšších řádů) Daná je funkce f (x, y) = x 2 y + y 3 x 4, určte její parc. derivace podle x a podle y prvního i druhého řádu, i smíšené. f x = 2xy

Více

Diferenciální počet funkcí více proměnných

Diferenciální počet funkcí více proměnných Vysoké učení technické v Brně Fakulta strojního inženýrství Diferenciální počet funkcí více proměnných Doc RNDr Miroslav Doupovec, CSc Neřešené příklady Matematika II OBSAH Obsah I Diferenciální počet

Více

4EK213 LINEÁRNÍ MODELY

4EK213 LINEÁRNÍ MODELY 4EK213 LINEÁRNÍ MODELY Úterý 11:00 12:30 hod. učebna SB 324 3. přednáška SIMPLEXOVÁ METODA I. OSNOVA PŘEDNÁŠKY Standardní tvar MM Základní věta LP Princip simplexové metody Výchozí řešení SM Zlepšení řešení

Více

CVIČNÝ TEST 13. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 13. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 13 Mgr. Zdeňka Strnadová OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V trojúhelníku ABC na obrázku dělí úsečka

Více

Stručný přehled učiva

Stručný přehled učiva Stručný přehled učiva TU1M2 Matematika 2 pro LP17, LP18 4. Aplikace diferenciálního počtu 4.1 Rovnice tečny a normály Má-li funkce v bodě vlastní derivaci, pak je to směrnice tečny grafu funkce v tečném

Více

Funkce v ıce promˇ enn ych Extr emy Pˇredn aˇska p at a 12.bˇrezna 2018

Funkce v ıce promˇ enn ych Extr emy Pˇredn aˇska p at a 12.bˇrezna 2018 Funkce více proměnných Extrémy Přednáška pátá 12.března 2018 Zdroje informací Diferenciální počet http://homen.vsb.cz/~kre40/esfmat2/fceviceprom.html http://www.studopory.vsb.cz/studijnimaterialy/sbirka_uloh/pdf/7.pdf

Více

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0 Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud

Více

APLIKACE. Poznámky Otázky

APLIKACE. Poznámky Otázky APLIKACE Následující úlohy lze zhruba rozdělit na geometrické, algebraické a úlohy popisující různé stavy v některých oblastech jiných věd, např. fyziky nebo ekonomie. GEOMETRICKÉ ÚLOHY Mezi typické úlohy

Více

Konvexní množiny Formulace úloh lineárního programování. Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Konvexní množiny Formulace úloh lineárního programování. Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 2 Katedra ekonometrie FEM UO Brno Euklidovský prostor E n Pod pojmem n-rozměrný euklidovský prostor budeme rozumnět prostor, jehož prvky jsou uspořádané n-tice reálných čísel X = (x 1, x 2,...,

Více

x 2(A), x y (A) y x (A), 2 f

x 2(A), x y (A) y x (A), 2 f II.10. Etrém funkcí Věta (nutná podmínka pro lokální etrém). Necht funkce f(, ) je diferencovatelná v bodě A. Má-li funkce f v bodě A lokální etrém, pak gradf(a) = 0. Onačme hlavní minor matice druhých

Více

EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH

EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH ÚLOHY ŘEŠITELNÉ BEZ VĚTY O MULTIPLIKÁTORECH Nalezněte absolutní extrémy funkce f na množině M. 1. f(x y) = x + y; M = {x y R 2 ; x 2 + y 2 1} 2. f(x y) = e x ; M = {x y R

Více

Pavlína Matysová. 5. listopadu 2018

Pavlína Matysová. 5. listopadu 2018 Soubor řešených úloh Vyšetřování průběhu funkce Pavlína Matysová 5. listopadu 018 1 Soubor řešených úloh Tento text obsahuje 7 úloh na téma vyšetřování průběhu funkce. Každé úloha je řešena dvěma způsoby

Více

Diferenciální počet funkcí jedné reálné proměnné LOKÁLNÍ A GLOBÁLNÍ EXTRÉMY FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ LOKÁLNÍ EXTRÉMY

Diferenciální počet funkcí jedné reálné proměnné LOKÁLNÍ A GLOBÁLNÍ EXTRÉMY FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ LOKÁLNÍ EXTRÉMY Diferenciální počet funkcí jedné reálné proměnné - 4.1 - LOKÁLNÍ A GLOBÁLNÍ EXTRÉMY FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ LOKÁLNÍ EXTRÉMY Při hledání lokálních etrémů postupujeme podle následujícího programu Nalezneme

Více

14. Monotonnost, lokální extrémy, globální extrémy a asymptoty funkce

14. Monotonnost, lokální extrémy, globální extrémy a asymptoty funkce . Monotonnost, lokální extrém, globální extrém a asmptot funkce Studijní text. Monotonnost, lokální extrém, globální extrém a asmptot funkce A. Rostoucí a klesající funkce Pojm rostoucí, klesající a konstantní

Více

4EK213 LINEÁRNÍ MODELY

4EK213 LINEÁRNÍ MODELY 4EK213 LINEÁRNÍ MODELY Úterý 11:00 12:30 hod. učebna SB 324 Mgr. Sekničková Jana, Ph.D. 2. PŘEDNÁŠKA MATEMATICKÝ MODEL ÚLOHY LP Mgr. Sekničková Jana, Ph.D. 2 OSNOVA PŘEDNÁŠKY Obecná formulace MM Množina

Více

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 1 bod 1 Určete průsečík P[x, y] grafů funkcí f: y = x + 2 a g: y = x 1 2, které jsou definovány na množině reálných

Více

9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b

9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b 008 verze 0A. Řešeními nerovnice x + 4 0 jsou právě všechna x R, pro která je x ( 4, 4) b) x = 4 c) x R x < 4 e) nerovnice nemá řešení b. Rovnice x + y x = je rovnicí přímky b) dvojice přímek c) paraboly

Více

Příklad 1. a) lim. b) lim. c) lim. d) lim. e) lim. f) lim. g) lim. h) lim. i) lim. j) lim. k) lim. l) lim ŘEŠENÉ PŘÍKLADY Z M1 ČÁST 7

Příklad 1. a) lim. b) lim. c) lim. d) lim. e) lim. f) lim. g) lim. h) lim. i) lim. j) lim. k) lim. l) lim ŘEŠENÉ PŘÍKLADY Z M1 ČÁST 7 Příklad 1 Pomocí l Hôpitalova pravidla spočtěte následující limity. Poznámka a) lim b) lim c) lim d) lim e) lim f) lim g) lim h) lim i) lim j) lim k) lim l) lim cotg Všechny limity uvedené v zadání vedou

Více

Obecná úloha lineárního programování. Úloha LP a konvexní množiny Grafická metoda. Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Obecná úloha lineárního programování. Úloha LP a konvexní množiny Grafická metoda. Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 3 Katedra ekonometrie FEM UO Brno Optimalizace portfolia Investor se s pomocí makléře rozhoduje mezi následujícími investicemi: akcie A, akcie B, státní pokladniční poukázky, dluhopis A, dluhopis

Více

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a Matematika I A ukázkový test 1 pro 2011/2012 1. Je dána soustava rovnic s parametrem a R x y + z = 1 a) Napište Frobeniovu větu. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a b) Vyšetřete počet řešení soustavy

Více

. (x + 1) 2 rostoucí v intervalech (, 1) a. ) a ( 2, + ) ; rostoucí v intervalu ( 7, 2) ; rostoucí v intervalu,

. (x + 1) 2 rostoucí v intervalech (, 1) a. ) a ( 2, + ) ; rostoucí v intervalu ( 7, 2) ; rostoucí v intervalu, Příklad Najděte intervaly monotonie a lokální etrémy funkce f() = +. ( + ) ( rostoucí v intervalech (, ) a 7, + ) klesající v intervalu ( ), 7 5 5 v bodě = 7 5 je lokální minimum 4. Najděte intervaly monotonie

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Matematika 5 FSV UK, ZS Miroslav Zelený

Matematika 5 FSV UK, ZS Miroslav Zelený Matematika 5 FSV UK, ZS 2018-19 Miroslav Zelený 1. Stabilita řešení soustav diferenciálních rovnic 2. Úvod do variačního počtu 3. Globální extrémy 4. Teorie optimálního řízení 5. Různé 1. Stabilita řešení

Více

CVIČNÝ TEST 40. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 40. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 CVIČNÝ TEST 40 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 Vypočtěte pro a 1; 3 hodnotu výrazu 4 + a 3 + a 3 ( 2). 1 bod VÝCHOZÍ TEXT

Více

8.1. Určete všechny lokální extrémy funkce f(x, y) = x 2 + arctg 2 x + y 3 + y, x, y R.

8.1. Určete všechny lokální extrémy funkce f(x, y) = x 2 + arctg 2 x + y 3 + y, x, y R. Řešené příklady k extrémům funkcí více proměnných 8 Určete všechny lokální extrémy funkce fx y x + arctg x + y + y x y R Řešení Funkci f si vyjádříme jako součet f + f kde f x x + arctg x x R f y y + y

Více

15. Soustava lineárních nerovnic - optimalizace

15. Soustava lineárních nerovnic - optimalizace @173 15. Soustava lineárních nerovnic - optimalizace Jak jsme se dozvěděli v 3. lekci tohoto kurzu, je obrazem rovnice ax + by + c = 0, a,b,c R (a; b) (0; 0) přímka a obrazem nerovnic ax + by + c 0, a,b,c

Více

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1 9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/.080 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/ Inovace a zkvalitnění výuky prostřednictvím

Více

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Funkce RNDR. Yvetta Bartáková Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Derivace funkce VY INOVACE_05 0_M Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Definice Mějme funkci f definovanou v okolí bodu 0. Eistuje-li

Více

Petr Hasil. Prvákoviny c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

Petr Hasil. Prvákoviny c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57 Úvod do infinitezimálního počtu Petr Hasil Prvákoviny 2015 c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny 2015 1 / 57 Obsah 1 Úvod Funkce Reálná čísla a posloupnosti Limita a spojitost

Více

8. Slovní úlohy na extrémy

8. Slovní úlohy na extrémy 8. Slovní úlohy na extrémy Vtétokapitolenaznačíme,jakřešitněkteré praktické (většinougeometrické) úlohy související s extrémy funkcí jedné proměnné. Novým prvkem bude nutnost slovně zadanou úlohu nejdříve

Více

4EK311 Operační výzkum. 2. Lineární programování

4EK311 Operační výzkum. 2. Lineární programování 4EK311 Operační výzkum 2. Lineární programování 2.2 Matematický model úlohy LP Nalézt extrém účelové funkce z = c 1 x 1 + c 2 x 2 + + c n x n na soustavě vlastních omezení a 11 x 1 + a 12 x 2 + a 13 x

Více

Internetová matematická olympiáda listopadu 2008

Internetová matematická olympiáda listopadu 2008 Internetová matematická olympiáda - 5. listopadu 008 ŘEŠENÍ ÚLOH 1. Obrazec na Obrázku 1 je složen z 44 čtverců o straně 6 mm. Bodem A veďte jedinou přímku, která daný obrazec rozdělí na dva obrazce o

Více

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které Kapitola 5 Kuželosečky Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které společně s kružnicí jsou známy pod společným názvem kuželosečky. Říká se jim tak proto, že každou z nich

Více

PŘÍKLADY K MATEMATICE 2

PŘÍKLADY K MATEMATICE 2 PŘÍKLADY K MATEMATICE ZDENĚK ŠIBRAVA. Funkce více proměnných.. Základní pojmy funkce více proměnných. Příklad.. Určeme definiční obor funkce tří proměnných f(x, y, z) = x y + x z. Řešení: Definičním oborem

Více

Petr Hasil

Petr Hasil Základy Vyšší Matematiky Petr Hasil hasil@mendelu.cz Poznámka 1. Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny

Více

Ekonomická formulace. Matematický model

Ekonomická formulace. Matematický model Ekonomická formulace Firma balící bonboniéry má k dispozici 60 čokoládových, 60 oříškových a 85 karamelových bonbónů. Může vyrábět dva druhy bonboniér. Do první bonboniéry se dávají dva čokoládové, šest

Více

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Optimální výrobní program Radka Zahradníková e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Obsah 1 Lineární programování 2 Simplexová metoda 3 Grafická metoda 4 Optimální výrobní program Řešení

Více

Limita a spojitost funkce a zobrazení jedné reálné proměnné

Limita a spojitost funkce a zobrazení jedné reálné proměnné Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé

Více

Přijímací zkouška na navazující magisterské studium 2015

Přijímací zkouška na navazující magisterské studium 2015 Přijímací zkouška na navazující magisterské studium 205 Studijní program: Studijní obory: Fyzika FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Pro funkci f(x) := e x 2. Určete definiční

Více

Přijímací zkouška na navazující magisterské studium 2014

Přijímací zkouška na navazující magisterské studium 2014 Přijímací zkouška na navazující magisterské studium 4 Studijní program: Studijní obory: Příklad (5 bodů) Spočtěte Matematika MA, MMIB, MMFT, MSTR, NVM, PMSE, MDU Varianta A M xy dxdy, kde M = {(x, y) R

Více

Kapitola 10: Diferenciální rovnice 1/14

Kapitola 10: Diferenciální rovnice 1/14 Kapitola 10: Diferenciální rovnice 1/14 Co je to diferenciální rovnice? Definice: Diferenciální rovnice je vztah mezi hledanou funkcí y(x), jejími derivacemi y (x), y (x), y (x),... a nezávisle proměnnou

Více

CVIČNÝ TEST 10. OBSAH I. Cvičný test 2. Mgr. Renáta Koubková. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 10. OBSAH I. Cvičný test 2. Mgr. Renáta Koubková. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 CVIČNÝ TEST 10 Mgr. Renáta Koubková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Pro x R řešte rovnici: 5 x 1 + 5 x + 5 x + 3 = 3 155. 2 Za předpokladu

Více

Matematická analýza 1, příklady na procvičení (Josef Tkadlec, )

Matematická analýza 1, příklady na procvičení (Josef Tkadlec, ) Matematická analýza, příklady na procvičení (Josef Tkadlec, 6.. 7) Reálná čísla. Určete maximum, minimum, supremum a infimum následujících množin: Z; b) M = (, ), 5 ; c) M =, Q; d) M = { + n : n N}; e)

Více

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32 Matematika 1 12. přednáška MA1 1 Analytická geometrie v prostoru - základní pojmy 2 Skalární, vektorový a smíšený součin, projekce vektoru 3 Přímky a roviny 4 Vzdálenosti 5 Příčky mimoběžek 6 Zkouška;

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: Kvadratická funkce Autor: Kubešová

Více

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0 Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie A Autoři úloh: J. Thomas, 5, 6, 7), J. Jírů 2,, 4).a) Napíšeme si pohybové rovnice, ze kterých vyjádříme dobu jízdy a zrychlení automobilu A:

Více

Matematika I A ukázkový test 1 pro 2014/2015

Matematika I A ukázkový test 1 pro 2014/2015 Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)

Více

WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 2017

WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 2017 Matematika I - Sbírka příkladů WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 7 Obsah Limity a spojitost. l Hôpitalovo pravidlo zakázáno............................ 4. l Hôpitalovo pravidlo povoleno............................

Více

Přijímací zkouška na navazující magisterské studium 2015

Přijímací zkouška na navazující magisterské studium 2015 Přijímací zkouška na navazující magisterské studium 2015 Studijní program: Studijní obory: Matematika MMUI Varianta A Řešení příkladů pečlivě odůvodněte. Příklad 1 (25 bodů Navrhněte deterministický konečný

Více

Definice Tečna paraboly je přímka, která má s parabolou jediný společný bod,

Definice Tečna paraboly je přímka, která má s parabolou jediný společný bod, 5.4 Parabola Parabola je křivka, která vznikne řezem rotační kuželové plochy rovinou, jestliže odchylka roviny řezu od osy kuželové plochy je stejná jako odchylka povrchových přímek plochy a rovina řezu

Více

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a

Více

Funkce - pro třídu 1EB

Funkce - pro třídu 1EB Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému

Více

( ) ( ) ( ) ( ) ( ) ( ) Užití derivací. x, x a, b : x x f x f x MATA P12. Funkce rostoucí a klesající: Definice rostoucí a klesající funkce

( ) ( ) ( ) ( ) ( ) ( ) Užití derivací. x, x a, b : x x f x f x MATA P12. Funkce rostoucí a klesající: Definice rostoucí a klesající funkce MATA P1 Užití derivací Funkce rostoucí a klesající: Deinice rostoucí a klesající unkce Funkce je rostoucí v intervalu (a,b), právě když platí: ( ) ( ) ( ), a, b : 1 1 1 Funkce je klesající v intervalu

Více

10. cvičení - LS 2017

10. cvičení - LS 2017 10. cvičení - LS 2017 Michal Outrata Příklad 1 Spočtěte následující itu daných posloupností: (a) (b) (c) n 3 +5n 2 n 3 6n 2 +3 n ; n 4 3n 2 6 n 4 + 3n 2 + 6; n 2 15n+2(1 n). 2(n 2) 3 2n 3 Příklad 2 Pro

Více

11. cvičení z Matematické analýzy 2

11. cvičení z Matematické analýzy 2 11. cvičení z Matematické analýzy 11. - 15. prosince 17 11.1 (trojný integrál - Fubiniho věta) Vypočtěte (i) xyz dv, kde je ohraničeno plochami y x, x y, z xy a z. (ii) y dv, kde je ohraničeno shora rovinou

Více

Numerické metody optimalizace - úvod

Numerické metody optimalizace - úvod Numerické metody optimalizace - úvod Petr Tichý 16. února 2015 1 Organizace přednášek a cvičení 13 přednášek a cvičení. Zápočet: úloha programování a testování úloh v Matlabu. Další informace na blogu

Více

10. cvičení z Matematické analýzy 2

10. cvičení z Matematické analýzy 2 . cvičení z Matematické analýzy 3. - 7. prosince 8. (dvojný integrál - Fubiniho věta Vhodným způsobem integrace spočítejte daný integrál a načrtněte oblast integrace (a (b (c y ds, kde : y & y 4. e ma{,y

Více

INTEGRÁLY S PARAMETREM

INTEGRÁLY S PARAMETREM INTEGRÁLY S PARAMETREM b a V kapitole o integraci funkcí více proměnných byla potřeba funkce g(x) = f(x, y) dy proměnné x. Spojitost funkce g(x) = b a f(x, y) dy proměnné x znamená vlastně prohození limity

Více

Řešíme tedy soustavu dvou rovnic o dvou neznámých. 2a + b = 3, 6a + b = 27,

Řešíme tedy soustavu dvou rovnic o dvou neznámých. 2a + b = 3, 6a + b = 27, Přijímací řízení 2015/16 Přírodovědecká fakulta Ostravská univerzita v Ostravě Navazující magisterské studium, obor Aplikovaná matematika (1. červen 2016) Příklad 1 Určete taková a, b R, aby funkce f()

Více

Parametrické programování

Parametrické programování Parametrické programování Příklad 1 Parametrické pravé strany Firma vyrábí tři výrobky. K jejich výrobě potřebuje jednak surovinu a jednak stroje, na kterých dochází ke zpracování. Na první výrobek jsou

Více

Napište rovnici tečné roviny ke grafu funkce f(x, y) = xy, která je kolmá na přímku. x = y + 2 = 1 z

Napište rovnici tečné roviny ke grafu funkce f(x, y) = xy, která je kolmá na přímku. x = y + 2 = 1 z Diferenciální počet příklad Napište rovnici tečné roviny ke grafu funkce fx, y) = xy, která je kolmá na přímku x + = y + = 1 z Řešení: Směrový vektor dané přímky je n p =, 1, 1). Na ploše dané rovnicí

Více

Ukázka závěrečného testu

Ukázka závěrečného testu Okruhy otázek pro závěrečný test ) Vlastnosti funkce ) Graf funkce ) Definiční obor funkce ) imita funkce ) Derivace funkce 6) Užití derivace 7) Matice 8) Řešení soustavy lineárních rovnic 9) Určitý integrál

Více

Aplikace derivace a průběh funkce

Aplikace derivace a průběh funkce Aplikace derivace a průběh funkce Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného

Více

Přijímací zkouška na MFF UK v Praze

Přijímací zkouška na MFF UK v Praze Přijímací zkouška na MFF UK v Praze pro bakalářské studijní programy fyzika, informatika a matematika 2016, varianta A U každé z deseti úloh je nabízeno pět odpovědí: a, b, c, d, e. Vaším úkolem je u každé

Více