Psaní na mokrý papír. Andrew Kozlik KA MFF UK
|
|
- Drahomíra Fišerová
- před 5 lety
- Počet zobrazení:
Transkript
1 Psaní na mokrý papír Andrew Kozlik KA MFF UK W1
2 Motivace Problém: Vkládání do některých prvků nosiče má vysoký dopad na detekovatelnost. PNG/GIF: Oblasti s nízkou texturou. JPEG: Nulové AC koeficienty. Řešení: Při vkládání i extrakci budeme tyto citlivé prvky přeskakovat. Nový problém: Proces vkládání může mít za následek, že textura oblasti klesne pod prahovou hodnotu, nebo nenulový AC koeficient se vynuluje. Příjemce prvky přeskočí a vložená informace je tak ztracena. Řešení: Dojde-li ke ztrátě, vložíme informaci znovu. U JPEGu vede ke smrštění kapacity o cca 25 %. W2
3 Přirovnání k psaní na mokrý papír Máme obrázek na papíře. Některé pixely jsou suché, jiné mokré. Suché smíme upravovat, mokré nikoliv. Upravený obrázek odešleme, ale ten cestou uschne. Příjemce nepozná, kam jsme vložili zprávu, protože neví, které pixely byly suché a které nikoliv. W3
4 Věta (o mokrém nosiči) Pro každé ε > 0, δ > 0 a σ [0, 1] existuje n N a stegosystém takový, že do nosiče velikosti n symbolů, z nichž σn je suchých, lze s pravděpodobností alespoň 1 δ vložit informaci velikosti (σ ε)n symbolů. Důkaz. Nechť Σ je množina symbolů a q := Σ. (Typicky Σ = F 2 nebo Σ = F 3.) Nechť Z je množina zpráv velikosti Z = q (σ ε)n. Konstrukce stegosystému: Vytvoříme kódovou knihu B = { Pz : z Z }. Stránky knihy Pz jsou indexovány množinou zpráv Z. Slova z množiny Σ n rozmístíme do knihy náhodně tak, aby na každé stránce bylo q (1 σ+ε)n slov. Čili Σ n = z Z P z. W4
5 Důkaz (pokračování). Příjemce a odesílatel kódovou knihu sdílejí. Vkládání: Vstup: Nosič x Σ n s n σn mokrými prvky a zpráva z Z. Pokusíme se na stránce Pz najít n-tici, která se na mokrých pozicích shoduje s nosičem. Podaří-li se, je nalezená n-tice stegoobjektem a mokré pozice zůstávají nezměněny. Extrakce: Vstup: Stegoobjekt y Σ n. Vyhledáme y v knize. Podíváme se na index stránky, na které jsme y našli a zpráva = index. W5
6 Důkaz (pokračování). Podaří se vkládacímu algoritmu najít na stránce P z n-tici, která má na n σn určených pozicích určené hodnoty? V celé knize je takových n-tic dohromady q σn. Jaká je pravděpodobnost, že žádná z nich není v P z? P z vznikla náhodným výběrem q n σn+εn prvků z Σ n. Pravděpodobnost selhání p je méně než ( q n q σn p < q n ) q n σn+εn = ( ( q n(1 σ) ) ) q n(1 σ) q εn }{{} jde k e 1 0,37 pro n. Pro dostatečně velká n je označený výraz menší než 1 2. Od jistého n tedy platí p < ( 1 2 )qεn 0. W6
7 Praktické řešení Algoritmy z důkazu označme: y = EmbB (x, S, z). z = ExtB (y). S {1,..., n} je množina indexů suchých složek nosiče. Pomocí samoopravného kódu C: Σ = Fq. B = F n q /C. Pz = C(z). ExtF n q /C = Hy, kde H je paritní matice kódu C. Lze tedy využít maticové vkládání. Cílem však není minimalizovat počet změn, ale zajistit, aby k nim docházelo jen na určených pozicích. W7
8 Vkládání při kvantizaci předchůdce nosiče transformace nekvantizovaný nosič kvantizace nosič vkládání při kvantizaci stegoobjekt Kvantizace: Zaokrouhlení na nejbližší povolenou hodnotu. Množina povolených hodnot může být např. {0, 1,..., 255} nebo {..., 3, 0, 3, 6,... }. Příklady transformací: Snížení hloubky barev rastrového obrázku. Zmenšení rozměrů rastrového obrázku a intrpolace. Blok 8 8 hodnot jasové složky obrázku na blok 8 8 DCT koeficientů. W8
9 Příklady kvantizace vs. vkládání při kvantizaci Množina povolených hodnot je Z. Nezaokrouhlený prvek: x i = 14,9. Kvantizace: Zaokrouhlíme na 15. Distorze je 0,1 2. Vkládání při kvantizaci: Vložení bitu 0: Zaokrouhlíme na 14. Distorze je 0,9 2. Vložení bitu 1: Zaokrouhlíme na 15. Distorze je 0,1 2. Průměrná distorze při vkládání (0, ,1 2 )/2 = 0,41. Vkládáním při kvantizaci se distorze v průměru zvýší o ρ i = 0,41 0,01 = 0,4. Jiný příklad: x i = 14,5. Vkládáním se distorze nezvýší. Říkáme, že x i je nestranný. W9
10 Využití psaní na mokrý papír Ke každému x i přiřadíme ρ i : ρ i = (průměrná distorze při vkládání) (distorze při zaokrouhlení) Je-li množina povolených hodnot Z, pak δ i = dist( x i, Z) = [ x i ] x i ρ i = δ2 i + (1 δ i ) 2 2 δ i = 1 2 δ i. Množinu S volíme tak, aby součet i S ρ i byl minimální. Vkládání provádíme usměrněním zaokrouhlení. W10
11 Vkládání při dvojité ztrátové kompresi Problém: Chceme nestranné prvky, ale ty jsou vzácné. Řešení: Vyrobíme je přirozenou cestou. Předchůdce nosiče: JPEG s faktorem kvality f 1. Transformace: Rekomprimace obrázku na nižší kvalitu f 2. Za příznivých okolností vznikne v nekvantizovaném nosiči nosiči hodně nestranných DCT koeficientů. Pro f 1 = 85 a f 2 = 70 je jich v našem cvičném obrázku 14 % z celkového počtu všech koeficientů. W11
12 Příklad kvantizačních matic Q (85) = , Q (70) = DCT koeficienty na pozici (1,3) v předchůdci nosiče jsou zaokrouhlovány na násobek 3. Při snížení kvality se zaokrouhlují na násobek 6. Téměř polovina bloků bude mít na této pozici nestranný DCT koeficient. Na pozicích s větším kvantizačním koeficientem bude nestranných výrazně méně než polovina, např. 5 %. (V předchůdci nosiče je totiž většina zaokrouhlena na 0.) W12
13 Dvojitá ztrátová komprese Nejlepších výsledků se dosahuje, když se berou nestranné DCT koeficienty z bloků s vysokou neuniformitou. Neuniformitu můžeme například měřit jako součet čtverců DCT koeficientů v bloku (energie bloku). Shrnutí: Máme zprávu délky m, potřebujeme počet suchých s > m. Postupně nabíráme nestranné koeficienty do S, dokud jich nemáme dost. Přednostně vybíráme koeficienty z nejvíce neuniformních bloků. W13
14 Dvouúrovňové ±1 vkládání Jednoduché ±1 vkládání zprávy z {0, 1} m do nosiče x Z n : Jestliže lsb(x i ) = z i, pak y i := x i. Jestliže lsb(x i ) z i, pak y i := x i + a, kde a R { 1, 1}. Obrana proti kvantitativním útokům na LSB embedding. Rozhodnutí přičíst anebo odečíst 1 nám dává plnou kontrolu nad hodnotou druhého nejnižšího bitu: Poslední dvě cifry binárního rozvoje x i (... 00) 2 (... 01) 2 (... 10) 2 (... 11) 2 x i + 1 (... 01) 2 (... 10) 2 (... 11) 2 (... 00) 2 x i 1 (... 11) 2 (... 00) 2 (... 01) 2 (... 10) 2 W14
15 Dvouúrovňové ±1 vkládání Značení: H je paritní matice [n, n m 1 ] 2 kódu C s průměrnou vzdáleností r a, relativní kapacitou α a efektivitou e. B je kódová kniha, která umožňuje vkládat m 2 bitů do nosiče délky n bitů, z nichž r a je suchých. x a y vektor nejnižších bitů nosiče a stegoobjektu. x a y vektor druhých nejnižších bitů nosiče a stegoobjektu. Zpráva má dvě části z F m 1 2 a z F m 2 2. Extrakce: z = Ext H (y ) a z = Ext B (y ). W15
16 Dvouúrovňové ±1 vkládání Vkládání: První zpráva bude vložena maticovým vkládáním y = Emb H (x, z ). Na pozicích, kde dochází ke změnám, jsme schopni ovlivnit druhý nejnižší bit. Tyto označíme jako suché S = { i x i y i }; E[ S ] = r a. Druhá zpráva bude vložena metodou psaní na mokrý papír y = Emb B (x, S, z ). Stegoobjekt y se vytvoří z nosiče x změnami +1 nebo 1 tak, aby y byly nejnižší bity a y druhé nejnižší bity stegoobjektu. W16
17 Dvouúrovňové ±1 vkládání Relativní kapacita a efektivita: Efektivita kódu C je e = m 1 /r a, čili r a = m 1 /e. Podle věty o mokrém nosiči je m 2 S a víme, že S r a. Relativní kapacita a efektivita dvouúrovňového ±1 vkládání je tedy α ±1 = m 1 + m 2 n m 1 + m 1 /e n e ±1 = m 1 + m 2 m 1 + m 1 /e r a m 1 /e Zároveň si můžeme všimnout, že = α + α e, = e + 1. m1 α e = n m 1 r a = r m1+m2 a n = n m 1 +m 2 = α ±1. r a e ±1 W17
18 Dvouúrovňové ±1 vkládání Tvrzení Nechť C je binární kód, jehož efektivita dosahuje horní meze na spodní efektivitu binárních kódů. Potom dvouúrovňovým ±1 vkládání s kódem C lze dosáhnout efektivity libovolně blízké horní mezi na spodní efektivitu ternárních kódů, za předpokladu, že kód C je dostatečně dlouhý. W18
19 Dvouúrovňové ±1 vkládání Důkaz. Připomeňme, že H q (x) := x log q x (1 x) log q (1 x) + x log q (q 1). Dle předpokladu je e = α/h 1 2 (α), čili α = H 2(α/e). Dosadíme a upravíme ( α ) e α ±1 α + α e = H 2 + α e = (log 2 3)H 3 ( α e ) ( ) α±1 = (log 2 3)H 3. e ±1 Vyjádříme e ±1 α ±1 H 1 3 (α ±1/ log 2 3). W19
20 Stegosystém ZZW Značení: H 0 vzniká přidáním nulového sloupce k paritní matici Hammingova kódu délky 2 m 0 1. H 1 je paritní matice nějakého [b, b m 1 ] 2 kódu C s průměrnou vzdáleností od kódu r a. B je kódová kniha, která umožňuje vkládat m 2 bitů do nosiče délky bm 0 bitů, z nichž r a m 0 je suchých. Extrakce: 2 m 0 j=1 v y 1,j H 0 y 1 y 1,1 y 1,2... y 1,2 m 1 0 s 1,1 s 1,2... s 1,m0 2 m 0 j=1 v y 2,j H 0 y 2 y 2,1 y 2,2... y 2,2 m 2 0 s 2,1 s 2,2... s 2,m0 v m j=1 v y b,j H 0 y b y b,1 y b,2... y b,2 m b 0 s b,1 s b,2... s b,m0 H 1 v Ext B (s) z 1 F m 1 2 z 2 F m 2 2 s W20
21 Stegosystém ZZW Zakódování první části zprávy: Nosič je rozdělen na b bloků velikosti 2 m 0. Pro každý blok spočteme u i = 2 m 0 j=1 x i,j. Zakódujeme první část zprávy v = Emb H1 (u, z 1 ). Jestliže u i = v i, pak y i = x i. Jestliže u i v i, pak y i získáme tak, že v x i provedeme právě jednu změnu. (Volba její pozice v bloku dává prostor k zakódování další zprávy.) Očekávaný počet změn je tedy r a. W21
22 Stegosystém ZZW Zakódování druhé části zprávy: Syndrom H 0 x i lze upravit na libovolnou hodnotu provedením právě jedné změny v x i. Pro každý blok spočteme r i = H 0 x i. Když u i = v i, označíme složky vektoru r i jako mokré, v opačném případě jako suché. Všechna r 1,..., r b sřetězíme do jediného vektoru r. Vektor r je mokrý nosič s očekávaným počtem suchých prvků r a m 0. Podle věty o mokrém nosiči lze do r vložit m 2 r a m 0 bitů informace. W22
23 Stegosystém ZZW Parametry stegosystému: Délka nosiče = b2 m 0. Celkový počet bitů zprávy = m 1 + m 2 m 1 + r a m 0. Očekávaný počet změn = r a. Relativní kapacita a efektivita: α m 1 + r a m 0 b2 m 0 a e m 1 + r a m 0 r a. W23
24 Stegosystém ZZW Zobecnění a vylepšení: Bloky nemusejí mít všechny stejnou délku 2 m 0. Zpráva z 1 se nemusí kódovat do u najednou. Lze postupovat po blocích. Můžeme použít dvouúrovňové ±1 vkládání. Místo binárních Hammingových kódů lze použít ternární. (Kód C však zůstává binární.) Dokonce i pro triviální kód C (tj. z 1 = v) dosahuje stegosystém ZZW výborných výsledků. W24
25 Triviální ZZW vs. perfektní kódy Relativní kapacita α Efektivita e ZZW bin. Hammingovy ±1 ZZW ter. Hammingovy semiternární ZZW binární Golayův ternární Golayův e(2, α) e(3, α) Odstup od obou mezí je < 0,6. W25
1 Co jsou lineární kódy
1 Žádný záznam informace a žádný přenos dat není absolutně odolný vůči chybám. Někdy je riziko poškození zanedbatelné, v mnoha případech je však zaznamenaná a přenášená informace jištěna přidáním dat,
VíceHammingův odhad. perfektní kódy. koule, objem koule perfektní kód. triviální, Hammingův, Golayův váhový polynom. výpočet. příklad
Hammingův odhad koule, objem koule perfektní kód perfektní kódy triviální, Hammingův, Golayův váhový polynom výpočet Hammingův kód H 3 Golayův kód G 23 obecně příklad ternární kód Tvrzení: Dán binární
Více1 Determinanty a inverzní matice
Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého
VíceBCH kódy. Alena Gollová, TIK BCH kódy 1/27
7. přednáška z algebraického kódování Alena Gollová, TIK 1/27 Obsah 1 Binární Alena Gollová, TIK 2/27 Binární jsou cyklické kódy zadané svými generujícími kořeny. Díky šikovné volbě kořenů opravuje kód
VíceMatematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic
Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je
VíceHammingovy kódy. dekódování H.kódů. konstrukce. šifrování. Fanova rovina charakteristický vektor. princip generující a prověrková matice
Hammingovy kódy konstrukce Fanova rovina charakteristický vektor šifrování princip generující a prověrková matice dekódování H.kódů třída lineárních binárních kódů s A n, 3 n = délka kódu, d = distance
Více0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde
VíceLineární algebra Operace s vektory a maticemi
Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................
Více[1] samoopravné kódy: terminologie, princip
[1] Úvod do kódování samoopravné kódy: terminologie, princip blokové lineární kódy Hammingův kód Samoopravné kódy, k čemu to je [2] Data jsou uložena (nebo posílána do linky) kodérem podle určitého pravidla
VíceVI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku
VI Maticový počet VI1 Základní operace s maticemi Definice Tabulku a 11 a 12 a 1n a 21 a 22 a 2n, a m1 a m2 a mn kde a ij R, i = 1,, m, j = 1,, n, nazýváme maticí typu m n Zkráceně zapisujeme (a ij i=1m
Více[1] LU rozklad A = L U
[1] LU rozklad A = L U někdy je třeba prohodit sloupce/řádky a) lurozklad, 8, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l. Viz p. d. 4/2010 Terminologie BI-LIN, lurozklad,
VíceTeorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy
Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy Lukáš Havrlant Univerzita Palackého 10. ledna 2014 Primární zdroj Jiří Adámek: Foundations of Coding. Strany 137 160. Na webu ke stažení, heslo:
VíceVzdálenost jednoznačnosti a absolutně
Vzdálenost jednoznačnosti a absolutně bezpečné šifry Andrew Kozlík KA MFF UK Značení Pracujeme s šifrou (P, C, K, E, D), kde P je množina otevřených textů, C je množina šifrových textů, K je množina klíčů,
VíceVektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u
VíceKapitola 11: Vektory a matice:
Kapitola 11: Vektory a matice: Prostor R n R n = {(x 1,, x n ) x i R, i = 1,, n}, n N x = (x 1,, x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i = 1,, n : x i = y i
VíceGenerující kořeny cyklických kódů. Generující kořeny. Alena Gollová, TIK Generující kořeny 1/30
Generující kořeny cyklických kódů 6. přednáška z algebraického kódování Alena Gollová, TIK Generující kořeny 1/30 Obsah 1 Alena Gollová, TIK Generující kořeny 2/30 Hammingovy kódy Hammingovy kódy jsou
VíceKOMPRESE OBRAZŮ. Václav Hlaváč, Jan Kybic. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání.
1/25 KOMPRESE OBRAZŮ Václav Hlaváč, Jan Kybic Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/ hlavac KOMPRESE OBRAZŮ, ÚVOD
Více(Cramerovo pravidlo, determinanty, inverzní matice)
KMA/MAT1 Přednáška a cvičení, Lineární algebra 2 Řešení soustav lineárních rovnic se čtvercovou maticí soustavy (Cramerovo pravidlo, determinanty, inverzní matice) 16 a 21 října 2014 V dnešní přednášce
Více1 Soustavy lineárních rovnic
1 Soustavy lineárních rovnic 1.1 Základní pojmy Budeme uvažovat soustavu m lineárních rovnic o n neznámých s koeficienty z tělesa T (potom hovoříme o soustavě m lineárních rovnic o n neznámých nad tělesem
VíceVkládání pomocí Viterbiho algoritmu
Vkládání pomocí Vterbho algortmu Andrew Kozlk KA MFF UK C Vkládání pomocí Vterbho algortmu Cíl: Využít teor konvolučních kódů. Motvace: Vterbho dekodér je soft-decson dekodér. Každému prvku nosče přřadíme
VíceNecht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru
2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních
Více7. Důležité pojmy ve vektorových prostorech
7. Důležité pojmy ve vektorových prostorech Definice: Nechť Vje vektorový prostor a množina vektorů {v 1, v 2,, v n } je podmnožinou V. Pak součet skalárních násobků těchto vektorů, tj. a 1 v 1 + a 2 v
VíceVektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace
Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi
VíceZáklady matematiky pro FEK
Základy matematiky pro FEK 3. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 21 Co nás dneska čeká... Co je to soustava lineárních
Více8 Kořeny cyklických kódů, BCH-kódy
24 8 Kořeny cyklických kódů, BCH-kódy Generující kořeny cyklických kódů Nechť K je cyklický kód délky n nad Z p s generujícím polynomem g(z). Chceme najít rozšíření T tělesa Z p, tedy nějaké těleso GF
VíceGolayův kód 23,12,7 -kód G 23. rozšířený Golayův kód 24,12,8 -kód G 24. ternární Golayův kód 11,6,5 -kód G 11
Golayův kód 23,12,7 -kód G 23 rozšířený Golayův kód 24,12,8 -kód G 24 kód G 23 jako propíchnutí kódu G 24 ternární Golayův kód 11,6,5 -kód G 11 rozšířený ternární Golayův kód 12,6,6 -kód G 12 dekódování
VíceSymetrické a kvadratické formy
Symetrické a kvadratické formy Aplikace: klasifikace kvadrik(r 2 ) a kvadratických ploch(r 3 ), optimalizace(mpi) BI-LIN (Symetrické a kvadratické formy) 1 / 20 V celé přednášce uvažujeme číselné těleso
VíceMatematika IV 10. týden Kódování
Matematika IV 10. týden Kódování Jan Slovák Masarykova univerzita Fakulta informatiky 22. 26. 4. 2013 Obsah přednášky 1 (n, k) kódy 2 Polynomiální kódy 3 Lineární kódy Kde je dobré číst? připravovaná učebnice
Vícex 2 = a 2 + tv 2 tedy (a 1, a 2 ) T + [(v 1, v 2 )] T A + V Příklad. U = R n neprázdná množina řešení soustavy Ax = b.
1. Afinní podprostory 1.1. Motivace. Uvažujme R 3. Jeho všechny vektorové podprostory jsou počátek, přímky a roviny procházející počátkem a celé R 3. Chceme-li v R 3 dělat geometrii potřebujeme i jiné
Více0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání
VíceIB112 Základy matematiky
IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic
VíceVlastní čísla a vlastní vektory
Vlastní čísla a vlastní vektory 1 Motivace Uvažujme lineární prostor všech vázaných vektorů v rovině, které procházejí počátkem, a lineární zobrazení tohoto prostoru do sebe(lineární transformaci, endomorfismus)
Více10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo
0. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo (PEF PaA) Petr Gurka aktualizováno 9. prosince 202 Obsah Základní pojmy. Motivace.................................2 Aritmetický vektorový
VíceLineární algebra : Báze a dimenze
Lineární algebra : Báze a dimenze (5. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 9. dubna 2014, 13:33 1 2 5.1 Báze lineárního prostoru Definice 1. O množině vektorů M z LP V řekneme,
VíceDefinice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s
Kapitola 13 Kvadratické formy Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru f(x 1,..., x n ) = a ij x i x j, kde koeficienty a ij T. j=i Kvadratická forma v n proměnných
Více1/10. Kapitola 12: Soustavy lineárních algebraických rovnic
1/10 Kapitola 12: Soustavy lineárních algebraických rovnic Soustavy lineárních algebraických rovnic 2/10 Definice: Soustavou m lineárních algebraických rovnic o n neznámých rozumíme soustavu rovnic a 11
Více[1] Determinant. det A = 0 pro singulární matici, det A 0 pro regulární matici
[1] Determinant je číslo jistým způsobem charakterizující čtvercovou matici det A = 0 pro singulární matici, det A 0 pro regulární matici používá se při řešení lineárních soustav... a v mnoha dalších aplikacích
Více7 Konvexní množiny. min c T x. při splnění tzv. podmínek přípustnosti, tj. x = vyhovuje podmínkám: A x = b a x i 0 pro každé i n.
7 Konvexní množiny Motivace. Lineární programování (LP) řeší problém nalezení minima (resp. maxima) lineárního funkcionálu na jisté konvexní množině. Z bohaté škály úloh z této oblasti jmenujme alespoň
VíceMatice. a m1 a m2... a mn
Matice Nechť (R, +, ) je okruh a nechť m, n jsou přirozená čísla Matice typu m/n nad okruhem (R, +, ) vznikne, když libovolných m n prvků z R naskládáme do obdélníkového schematu o m řádcích a n sloupcích
Více1 Řešení soustav lineárních rovnic
1 Řešení soustav lineárních rovnic 1.1 Lineární rovnice Lineární rovnicí o n neznámých x 1,x 2,..., x n s reálnými koeficienty rozumíme rovnici ve tvaru a 1 x 1 + a 2 x 2 +... + a n x n = b, (1) kde koeficienty
VíceÚlohy nejmenších čtverců
Úlohy nejmenších čtverců Petr Tichý 7. listopadu 2012 1 Problémy nejmenších čtverců Ax b Řešení Ax = b nemusí existovat, a pokud existuje, nemusí být jednoznačné. Často má smysl hledat x tak, že Ax b.
VíceMatice. Předpokládejme, že A = (a ij ) je matice typu m n: diagonálou jsou rovny nule.
Matice Definice. Maticí typu m n nazýváme obdélníkové pole, tvořené z m n reálných čísel (tzv. prvků matice), zapsaných v m řádcích a n sloupcích. Značíme např. A = (a ij ), kde i = 1,..., m, j = 1,...,
VíceÚvod do lineární algebry
Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky
VíceZáklady maticového počtu Matice, determinant, definitnost
Základy maticového počtu Matice, determinant, definitnost Petr Liška Masarykova univerzita 18.9.2014 Matice a vektory Matice Matice typu m n je pravoúhlé (nebo obdélníkové) schéma, které má m řádků a n
VíceSOUČIN MATIC A m n B n p = C m p, přičemž: a i1 b 1j +a i2 b 2j + +a in b nj = c ij, i=1 m, j=1 p. Např: (-2) = -3
SOUČIN MATIC A m n B n p = C m p, přičemž: a i1 b 1j +a i2 b 2j + +a in b nj = c ij, i=1 m, j=1 p Např: 2 2 + (-2) 4 + 0 0 + 1 1 = -3 INVERZNÍ MATICE Pro čtvercovou matici B může (ale nemusí) existovat
VíceIVT. Rastrová grafika. 8. ročník
IVT Rastrová grafika 8. ročník listopad, prosinec 2013 Autor: Mgr. Dana Kaprálová Zpracováno v rámci projektu Krok za krokem na ZŠ Želatovská ve 21. století registrační číslo projektu: CZ.1.07/1.4.00/21.3443
VíceSoustava m lineárních rovnic o n neznámých je systém
1 1.2. Soustavy lineárních rovnic Soustava lineárních rovnic Soustava m lineárních rovnic o n neznámých je systém a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2...
Více[1] samoopravné kódy: terminologie, princip
[1] Úvod do kódování samoopravné kódy: terminologie, princip blokové lineární kódy Hammingův kód cyklické kódy a) kody, 18, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l.
VíceSubexponenciální algoritmus pro diskrétní logaritmus
Subexponenciální algoritmus pro diskrétní logaritmus 22. a 23. přednáška z kryptografie Alena Gollová SEDL 1/33 Obsah 1 Využívaná fakta y-hladká čísla 2 3 Alena Gollová SEDL 2/33 y-hladká čísla Subexponenciální
Více1 Vektorové prostory.
1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které
Vícea + b + c = 2 b + c = 1 a b = a 1 2a 1 + a a 3 + a 5 + 2a 2 + a 2 + a
Zadání A. 1. Polynom P (x) má v uspořádané bázi (x 2 + x 1, 2x 2 x 1, x 2 + x + 2) souřadnice (1, 1, 1). Najděte jeho souřadnice vzhledem k uspořádané bázi (x 2 1, x 2 + x 1, x 2 + x). Nejprve si spočítáme
Více7. Lineární vektorové prostory
7. Lineární vektorové prostory Tomáš Salač MÚ UK, MFF UK LS 2017/18 Tomáš Salač ( MÚ UK, MFF UK ) 7. Lineární vektorové prostory LS 2017/18 1 / 62 7.1 Definice a příklady Definice 7.1 Množina G s binární
VícePROSTORY SE SKALÁRNÍM SOUČINEM. Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti
PROSTORY SE SKALÁRNÍM SOUČINEM Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx, y) = λ(x,
Vícea počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:
Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se
VíceMatematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29
Matematika 1 11. přednáška MA1 1 Opakování 2 Determinant 3 Adjungovaná matice 4 Cramerovo pravidlo 5 Vlastní čísla a vlastní vektory matic 6 Zkouška; konzultace; výběrová matematika;... 11. přednáška (15.12.2010
VíceStavový model a Kalmanův filtr
Stavový model a Kalmanův filtr 2 prosince 23 Stav je veličina, kterou neznáme, ale chtěli bychom znát Dozvídáme se o ní zprostředkovaně prostřednictvím výstupů Příkladem může býapř nějaký zašuměný signál,
VíceMATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]
MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě
VícePRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOS A SAISIKA Regresní analýza - motivace Základní úlohou regresní analýzy je nalezení vhodného modelu studované závislosti. Je nutné věnovat velkou pozornost tomu aby byla modelována REÁLNÁ
VíceČíselné vektory, matice, determinanty
Číselné vektory, matice, determinanty Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny
VíceMatematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
VíceInformatika Kódování. Obsah. Kód. Radim Farana Podklady předmětu Informatika pro akademický rok 2007/2008
Informatika Kódování Radim Farana Podklady předmětu Informatika pro akademický rok 27/28 Obsah Základy pojmy diskrétních kódů. Druhy kódů. Nejkratší kódy. Detekce chyb, Hammingova vdálenost. Kontrolní
VíceUspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru
1 1. Lineární algebra 1.1. Lineární závislost a nezávislost vektorů. Hodnost matice Aritmetické vektory Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ).
VíceUčební texty k státní bakalářské zkoušce Matematika Základy lineárního programování. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování študenti MFF 15. augusta 2008 1 15 Základy lineárního programování Požadavky Simplexová metoda Věty o dualitě (bez důkazu)
VíceSamoopravné kódy. Katedra matematiky a Institut teoretické informatiky Západočeská univerzita
Katedra matematiky a Institut teoretické informatiky Západočeská univerzita Seminář pro učitele středních a vysokých škol, Plzeň, 30. března 2012 jsou všude Některé oblasti využití: CD přehrávače mobilní
Více(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.
Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k
Více6 Lineární geometrie. 6.1 Lineární variety
6 Lineární geometrie Motivace. Pojem lineární varieta, který budeme v této kapitole studovat z nejrůznějších úhlů pohledu, není žádnou umělou konstrukcí. Příkladem lineární variety je totiž množina řešení
VíceSamoopravné kódy, k čemu to je
Úvod do kódování samoopravné kódy: terminologie, princip blokové lineární kódy Hammingův kód cyklické kódy [1] Samoopravné kódy, k čemu to je BI-LIN, kody, 18, P. Olšák [2] Data jsou uložena (nebo posílána
VíceV předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti
Kapitola 5 Vektorové prostory V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti operací sčítání a násobení
VíceŘekněme nejprve, jaké kódování nás v tomto textu bude zajímat a jaké ne. K. Komprese dat, tedy kódování dat s cílem zmenšit jejich objem.
Kapitola 1 Úvod 1.1 Jaké kódy? Řekněme nejprve, jaké kódování nás v tomto textu bude zajímat a jaké ne. K jistému druhu kódování mají vztah například následující pojmy: Kryptografie, která používá šifrování
VícePRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Náhodný výběr Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
VíceMaticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:
3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...
Více3. Grafy a matice. Definice 3.2. Čtvercová matice A se nazývá rozložitelná, lze-li ji napsat ve tvaru A =
3 Grafy a matice Definice 32 Čtvercová matice A se nazývá rozložitelná, lze-li ji napsat ve tvaru A = A 11 A 12 0 A 22 kde A 11 a A 22 jsou čtvercové matice řádu alespoň 1 a 0 je nulová matice, anebo lze-li
VíceOdhady - Sdružené rozdělení pravděpodobnosti
Odhady - Sdružené rozdělení pravděpodobnosti 4. listopadu 203 Kdybych chtěl znát maximum informací o náhodné veličině, musel bych znát všechny hodnoty, které mohou padnout, a jejich pravděpodobnosti. Tedy
VíceCvičení 5 - Inverzní matice
Cvičení 5 - Inverzní matice Pojem Inverzní matice Buď A R n n. A je inverzní maticí k A, pokud platí, AA = A A = I n. Matice A, pokud existuje, je jednoznačná. A stačí nám jen jedna rovnost, aby platilo,
VíceHashovací funkce. Andrew Kozlík KA MFF UK
Hashovací funkce Andrew Kozlík KA MFF UK Hashovací funkce Hashovací funkce je zobrazení h : {0, 1} {0, 1} n. Typicky n {128, 160, 192, 224, 256, 384, 512}. Obraz h(x) nazýváme otisk, hash nebo digest prvku
VíceRosenblattův perceptron
Perceptron Přenosové funkce Rosenblattův perceptron Rosenblatt r. 1958. Inspirace lidským okem Podle fyziologického vzoru je třívrstvá: Vstupní vrstva rozvětvovací jejím úkolem je mapování dvourozměrného
VíceCVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 15 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána čtvercová mřížka, v níž každý čtverec má délku
VíceKapitola 11: Vektory a matice 1/19
Kapitola 11: Vektory a matice 1/19 2/19 Prostor R n R n = {(x 1,..., x n ) x i R, i = 1,..., n}, n N x = (x 1,..., x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i =
VíceMatematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan. 14.
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan 14. Vlastní vektory Bud V vektorový prostor nad polem P. Lineární zobrazení f : V
VíceMatice lineárních zobrazení
Matice lineárních zobrazení Nechť V, +, a W, +, jsou nenulové vektorové prostory konečných dimenzí n a m nad tělesem T, +,, nechť posloupnosti vektorů g 1, g 2,..., g n V a h 1, h 2,..., h m W tvoří báze
VíceINVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 Báze vektorových prostorů, transformace souřadnic Michal Botur Přednáška
VíceOdpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika.
Lineární kódy, část 2 Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Jiří Velebil: A7B01LAG 22.12.2014: Lineární kódy, část 2 1/12 Dnešní přednáška 1 Analýza Hammingova (7, 4)-kódu.
VíceZákladní pojmy teorie množin Vektorové prostory
Základní pojmy teorie množin Přednáška MATEMATIKA č. 1 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 7. 10. 2010 Základní pojmy teorie množin Základní pojmy
VíceDeterminanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu.
Determinanty Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Determinanty Definice determinantu Sarrusovo a křížové pravidlo Laplaceův rozvoj Vlastnosti determinantu Výpočet determinantů 2 Inverzní
Více7. přednáška Systémová analýza a modelování. Přiřazovací problém
Přiřazovací problém Přiřazovací problémy jsou podtřídou logistických úloh, kde lze obecně říci, že m dodavatelů zásobuje m spotřebitelů. Dalším specifikem je, že kapacity dodavatelů (ai) i požadavky spotřebitelů
VíceVELIKOST VEKTORU, POČETNÍ OPERACE S VEKTORY
VELIKOST VEKTORU, POČETNÍ OPERACE S VEKTORY Vektoru můžeme přisoudit velikost. S vektory také můžeme provádět početní operace, které jsme zvyklí provádět s čísly, tzn. že je možné je sčítat, odčítat a
VíceLineární algebra : Lineární prostor
Lineární algebra : Lineární prostor (3. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. dubna 2014, 14:43 1 2 3.1 Aximotické zavedení lineárního prostoru Číselné těleso Celou lineární
VíceUčební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního
VíceAnalogově-číslicové převodníky ( A/D )
Analogově-číslicové převodníky ( A/D ) Převodníky analogového signálu v číslicový (zkráceně převodník N/ Č nebo A/D jsou povětšině založeny buď na principu transformace napětí na jinou fyzikální veličinu
VíceSoustavy lineárních rovnic
Přednáška MATEMATIKA č 4 Katedra ekonometrie FEM UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz 27 10 2010 Soustava lineárních rovnic Definice Soustava rovnic a 11 x 1 + a 12 x 2 + + a
VíceModely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT
PEF ČZU Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT Okruhy SZB č. 5 Zdroje: Demel, J., Operační výzkum Jablonský J., Operační výzkum Šubrt, T., Langrová, P., Projektové řízení I. a různá internetová
VíceMatice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n
[1] Základní pojmy [2] Matice mezi sebou sčítáme a násobíme konstantou (lineární prostor) měníme je na jiné matice eliminační metodou násobíme je mezi sebou... Matice je tabulka čísel s konečným počtem
VíceVZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)
VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.
Více19. Druhý rozklad lineární transformace
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan Úmluva. Všude P = C. Vpřednášce o vlastních vektorech jsme se seznámili s diagonalizovatelnými
VíceAndrew Kozlík KA MFF UK
Autentizační kód zprávy Andrew Kozlík KA MFF UK Autentizační kód zprávy Anglicky: message authentication code (MAC). MAC algoritmus je v podstatě hashovací funkce s klíčem: MAC : {0, 1} k {0, 1} {0, 1}
Více9 Kolmost vektorových podprostorů
9 Kolmost vektorových podprostorů Od kolmosti dvou vektorů nyní přejdeme ke kolmosti dvou vektorových podprostorů. Budeme se zabývat otázkou, kdy jsou dva vektorové podprostory na sebe kolmé a jak to poznáme.
VíceHammingův kód. Vladislav Kosejk. České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská Detašované pracoviště Děčín
Hammingův kód Vladislav Kosejk České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská Detašované pracoviště Děčín Obsah prezentace Hammingův kód 1 Algoritmus Hammingova kódu 2 Generující
Více7. Analýza rozptylu.
7. Analýza rozptylu. Uvedeme obecnou ideu, která je založena na minimalizaci chyby metodou nejmenších čtverců. Nejdříve uvedeme několik základních tvrzení. Uvažujeme náhodný vektor Y = (Y, Y,..., Y n a
VíceIntervalová data a výpočet některých statistik
Intervalová data a výpočet některých statistik Milan Hladík 1 Michal Černý 2 1 Katedra aplikované matematiky Matematicko-fyzikální fakulta Univerzita Karlova 2 Katedra ekonometrie Fakulta informatiky a
Více