termodynamický zákon František SEIFRT 9. března 2006
|
|
- Filip Müller
- před 8 lety
- Počet zobrazení:
Transkript
1 Říční toky, dopravní zácpy a druhý termodynamický zákon Seminář Oddělení Mikrostruktur 9. března 2006 Plzeň
2 1 Úvod 2 Model dopravní zácpy, podmínka entropie Nelineární zákon zachování 3 Model říčního toku v 1D Saintovy-Venantovy rovnice Metody řešení Okrajové podmínky Systém říčních toků Numerické simulace 4 Model říčního toku ve 2D Saintovy-Venantovy rovnice Okrajové podmínky Model s proměnnou oblastí řešení Numerické simulace 5 Závěr
3 Úvod Poptávka po simulacích říčních toků všudypřítomný přírodní fenomén předpověditelnost chování řek systém včasného varování analýza zdrojů znečištění lodní doprava
4 Úvod Poptávka po simulacích říčních toků všudypřítomný přírodní fenomén předpověditelnost chování řek systém včasného varování analýza zdrojů znečištění lodní doprava
5 Úvod Poptávka po simulacích říčních toků všudypřítomný přírodní fenomén předpověditelnost chování řek systém včasného varování analýza zdrojů znečištění lodní doprava
6 Úvod Poptávka po simulacích říčních toků všudypřítomný přírodní fenomén předpověditelnost chování řek systém včasného varování analýza zdrojů znečištění lodní doprava
7 Úvod Poptávka po simulacích říčních toků všudypřítomný přírodní fenomén předpověditelnost chování řek systém včasného varování analýza zdrojů znečištění lodní doprava
8 Šoková vlna
9 Nelineární zákon zachování Nelineární zákon zachování q t + f(q) x = 0 (2.1) f(q) = ūq - dostaneme obyčejnou rovnici advekce f(q) = u max q(1 q) - model toku aut, nebo také stlačitelné tekutiny o kvadratická funkce hustoty aut, kapaliny o maximální tok aut pro q = 1 2
10 Nelineární zákon zachování
11 Nelineární zákon zachování Definice Charakteristika X(t) je křivka splňující tuto ODR Hodnota q je podél této křivky konstantní X (t) = f ( q ( X(t),t )). (2.2) d dt q (X(t),t) = X (t)q x + q t, (2.3) = 0. (2.4)
12 Nelineární zákon zachování
13 Nelineární zákon zachování Rychlost šíření šokové vlny Použijeme zákon zachování na část roviny x t = x 1 t1 + t t 1 x1 + x q(x,t 1 + t)dx f(q(x 1,t))dt t1 + t x1 + x x 1 q(x,t 1 )dx (2.5) t 1 f(q(x 1 + x,t))dt. (2.6) s = f(q r) f(q l ) q r q l (2.7) Podobný vztah i pro systémy A(q r q l ) = s(q r q l ) (2.8)
14 Nelineární zákon zachování Nejednoznačnost, přípustnost a podmínka entropie (1 a b) ((1 2 b) 2 (1 2 a) 2 ) 2/3 (1 2 b) 3 + 2/3 (1 2 a) q r q l η(q) = (1 2q) 2,ψ(q) = 2 3 (1 2q)3 u max (2.9)
15 Saintovy-Venantovy rovnice Model v jedné dimenzi 2.5 hloubka h = h(x,t) h + B h(x,t) u(x,t) rychlost proudění u = u(x,t) výška dna B = B(x) B(x) x Obrázek: Geometrická interpretace proměnných v 1D rovnicích.
16 Saintovy-Venantovy rovnice Saintovy-Venantovy rovnice S-V rovnice v diferenciálním tvaru h t + (hu) x = 0, (3.1) (hu) t + (hu ) gh2 = ghb x, (3.2) x 0,d (3.3) počáteční podmínky h(x,0) = h 0 (x),u(x,0) = u 0 (x) (3.4) okrajové podmínky x h(0,t) = h l (t),h(d,t) = h p (t), u(0,t) = u l (t),u(d,t) = u p (t). (3.5)
17 Saintovy-Venantovy rovnice 2.5 ρh(x,t)dx h + B ρu(x 1,t)h(x 1,t) ρu(x 2,t)h(x 2,t) 1 dx x 4 6 x 1 8 x Obrázek: Rovnice kontinuity. d x2 ρh(x,t)dx = ρu(x 1,t)h(x 1,t) ρu(x 2,t)h(x 2,t), (3.6) dt x 1
18 Saintovy-Venantovy rovnice Pohybové rovnice F ma = 0, (3.7) z T1 ma G Fp α T2 výsledná síla F o tlakové síly T 1, T 2 o síla F p způsobená změnou průřezu o tíhová síla G setrvačná síla ma x T 1 T 2 + F p + Gsinα ma = 0, (3.8)
19 Saintovy-Venantovy rovnice Pohybové rovnice F ma = 0, (3.7) z T1 ma G Fp α T2 výsledná síla F o tlakové síly T 1, T 2 o síla F p způsobená změnou průřezu o tíhová síla G setrvačná síla ma x T 1 T 2 + F p + Gsinα ma = 0, (3.8)
20 Metody řešení Metody řešení Zavedeme následující značení ( ) ( h q(x,t) =,f(q) = hu hu hu gh2 ) ( 0,S(x,q) = Saintovy-Venantovy rovnice pak lze zapsat ve tvaru ). ghb x (3.9) q t + ( f(q) ) = S(x,q). (3.10) x
21 Metody řešení Za předpokladu spojité diferencovatelnosti funkce q si můžeme dovolit udělat další úpravu rovnic (3.10) q t + f (q)q x = S(x,q), (3.11) kde f (q) je Jacobiova matice soustavy ( ) f 0 1 (q) = u 2. (3.12) + gh 2u Vlastní čísla matice f (q) jsou λ 1 = u gh, λ 2 = u + gh. (3.13)
22 Metody řešení odvodíme numerické rekurentní schéma pro homogenní rovnice průměrná hodnota zachovávané veličiny q(x,t) = 1 q(ξ,t)dξ,i x = x I x q t + f(q) x = 0 (3.14) { ξ ξ x x 2 }, (3.15) rovnice (3.14) zintegrujeme přes interval I x, vyděĺıme x a dosadíme prům. hodnotu 1 q(ξ,t)dξ + 1 [ t x I x x I x ξ f( q(ξ,t) ) ] dξ = 0, q t (x,t) + 1 [ f ( q(x + x x 2,t)) f ( q(x x ] 2,t)) = 0. (3.16)
23 Metody řešení časová diskretizace, integrujeme přes interval t τ t + t q(x,t + t) = q(x,t) 1 [ t+ t f ( q(x + x x t 2,τ)) dτ t+ t t f ( q(x x ] 2,τ)) dτ. q(, t) nahradíme po částech polynomiální funkcí w(x, t) (3.17) p 1 p 2 p j p m x 1 x 2 x j 1 x j x j+1 x m 1 x m Obrázek: Aproximační po částech polynomiální funkce.
24 Metody řešení po částech konstantní polynom Laxovo-Friedrichsovo schéma w n+1 j+ 1 2 = 1 2 ( wn j + wn j+1 ) t ( f( w n x j+1 ) f( w j n )). (3.18) po částech lineární polynom Tadmorovo schéma Kurganovo-Noellovo-Petrovové schéma
25 Okrajové podmínky Okrajové podmínky n+1 w 1/2 w 1 n+1 w j n+1 w m n+1 n+1 w m+1/2 t n+1 t n n(+, ) w 1/2 n(+, ) w 3/2 n(+, ) w j 1/2 n(+, ) w j+1/2 n(+, ) w m 1/2 n(+, ) w m+1/2 Obrázek: Okrajové podmínky
26 Okrajové podmínky Riemannovy invarianty. t n+1 R 1 = u 2 gh Γ 1 Riemannovy invarianty ξ 1 {}}{ ϕ t n x m 3 x 2 m 1 x 2 m+ 1 2 R 1 = u 2 gh,r 2 = u + 2 gh, (3.19) jsou konstantní na charakteristikách Γ i : dx dt = λ i,i = 1,2.
27 Systém říčních toků Systém říčních toků x 2l x 3p 2 3 x 1p=x 2p=x3l 1 x 1l zachování průtoku h 1 u 1 + h 2 u 2 = h 3 u 3 vzdálenost od referenční hladiny v místě soutoku je u všech tří řek stejná h 1 + B 1 = h 2 + B 2 = h 3 + B 3
28 Numerické simulace Simulace uvažující nerovnosti dna
29 Numerické simulace Simulace soutoku tří řek
30 Saintovy-Venantovy rovnice Model ve dvou dimenzích z v h(x,y) B(x,y) u x hloubka h = h(x,y,t) rychlosti proudění u = u(x,y,t) v = v(x,y,t) výška dna B = B(x,y) y Ω Obrázek: Geometrická interpretace proměnných v 2D rovnicích.
31 Saintovy-Venantovy rovnice Ve dvou dimenzích přibývá jedna rovnice h t + (hu) x + (hv) y = 0, (hu) t + (hu ) gh2 + (huv) y = ghb x, x (hv) t + (huv) x + (hv ) gh2 = ghb y, y (4.1)
32 Okrajové podmínky n w 1/2,N+1/2 L y n w M+1/2,N+1/2 y k+1 n w j,k+1 n w j+1,k+1 n+1 w j+1/2,k+1/2 y k n w j,k n w j+1,k n w 1/2,1/2 n w M+1/2,1/2 0 x j x j+1 L x Obrázek: Tadmorovo schéma.
33 Okrajové podmínky Zrcadlové okrajové podmínky Lze připodobnit pohybu vody v bazénu voda se odráží od stěn hladina u stěny je stejná jako u nejbližších vnitřních hodnot tok kolmý na stěnu má opačné znaménko tok rovnoběžný se stěnou zůstává stejný Pro levou hranici konkrétně položíme h n+1 1 2,k+ 1 2 (hu) n+1 1 2,k+ 1 2 (hv) n+1 1 2,k+ 1 2 := h n+1 3 2,k+ 1 2 := (hu) n+1 3 2,k+ 1 2 := (hv) n+1 3 2,k+ 1 2 pro k = 1... N. (4.2)
34 Model s proměnnou oblastí řešení Obrázek: Změna oblasti platnosti Saintových-Venantových rovnic. platnost S-V rovnice na oblasti { (x,y) Ω h(x) > 0 } vznik a zaplavování ostrůvků vylití řeky ze břehů
35 Model s proměnnou oblastí řešení Stefanova úloha oblast platnosti par. dif. rovnic závisí na samotném řešení způsoby řešení o pevná sít, logická proměnná pro každou buňku (indikátor minimální hladiny) o proměnná sít - v každém časovém kroku třeba určit o kdy se voda rozleje na suché buňky - zaplavení břehu (ostrůvku) o kdy se voda vrátí zpět - odkrytí břehu (ostrůvku)
36 Numerické simulace Rovné dno, model bez uvažování tření o dno
37 Numerické simulace Dno s nerovnostmi, včetně tření o podklad
38 Závěr Cílem této práce bylo pojmout problematiku říčních toků v širším kontextu fyzikální původ rovnic popisujících říční toky numerické metody počítačové simulace Vlastní přínos okrajové podmínky v jedné dimenzi - aplikace Riemannových invariantů zrcadlové okrajové podmínky ve dvou dimenzích implementace pravé strany do Tadmorova schématu - členité dno numerické simulace v jedné i ve dvou dimenzích
39 Možná rozšíření v 1D - inundační kanály, záplavování území ve 2D - model s proměnnou oblastí platnosti Saintových-Venantových rovnic o vylití ze břehů o simulace více řek v obou dimenzích - časově proměnné dno, o vymílání koryta
40 Literatura A. Kurganov, D. Levy: Central-upwind schemes for the Saint-Venant system, Mathematical Modelling and Numerical Analysis, Vol. 36 (2002), pages A. Kurganov, G. Petrova: Central schemes and contact discontinuities, Mathematical Modelling and Numerical Analysis, Vol. 34 (2002), pages G. Steinebach, S. Rademacher, P. Rentrop, M. Schulz: Mechanisms of coupling in river flow simulation systems, Journal of Computational and Applied Mathematics, R. J. Leveque: Finite volume methods for hyperbolic problems, Cambridge University Press
Fakt. Každou soustavu n lineárních ODR řádů n i lze eliminací převést ekvivalentně na jednu lineární ODR
DEN: ODR teoreticky: soustavy rovnic Soustava lineárních ODR 1 řádu s konstantními koeficienty je soustava ve tvaru y 1 = a 11 y 1 + a 12 y 2 + + a 1n y n + b 1 (x) y 2 = a 21 y 1 + a 22 y 2 + + a 2n y
Parametrické rovnice křivky
Křivkový integrál Robert Mařík jaro 2014 Tento text je tištěnou verzí prezentací dostupných z http://user.mendelu.cz/marik/am. Křivkový integrál Jedná se o rozšíření Riemannova integrálu, kdy množinou
Drsná matematika III 6. přednáška Obyčejné diferenciální rovnice vyšších řádů, Eulerovo přibližné řešení a poznámky o odhadech chyb
Drsná matematika III 6. přednáška Obyčejné diferenciální rovnice vyšších řádů, Eulerovo přibližné řešení a poznámky o odhadech chyb Jan Slovák Masarykova univerzita Fakulta informatiky 23. 10. 2006 Obsah
MODELOVÁNÍ SHALLOW WATER
Západočeská univerzita Fakulta aplikovaných věd Matematické metody v aplikovaných vědách a ve vzdělávání MODELOÁNÍ SHLLOW WTER KRISTÝN HDŠOÁ ziraf@students.zcu.cz 1 ÚOD Dostala jsem za úkol namodelovat
MATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze
Fakulta strojního inženýrství Univerzity J. E. Purkyně v Ústí nad Labem Pasteurova 7 Tel.: 475 285 511 400 96 Ústí nad Labem Fax: 475 285 566 Internet: www.ujep.cz E-mail: kontakt@ujep.cz MATEMATIKA III
Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2
Cvičení Lineární rovnice prvního řádu. Najděte řešení Cauchyovy úlohy x + x tg t = cos t, které vyhovuje podmínce xπ =. Máme nehomogenní lineární diferenciální rovnici prvního řádu. Funkce ht = tg t a
Obsah Obyčejné diferenciální rovnice
Obsah 1 Obyčejné diferenciální rovnice 3 1.1 Základní pojmy............................................ 3 1.2 Obyčejné diferenciální rovnice 1. řádu................................ 5 1.3 Exaktní rovnice............................................
Matematika 4 FSV UK, LS Miroslav Zelený
Matematika 4 FSV UK, LS 2017-18 Miroslav Zelený 13. Diferenční rovnice 14. Diferenciální rovnice se separovanými prom. 15. Lineární diferenciální rovnice prvního řádu 16. Lineární diferenciální rovnice
Základy hydrauliky vodních toků
Základy hydrauliky vodních toků Jan Unucka, 014 Motivace pro začínajícího hydroinformatika Cesta do pravěku Síly ovlivňující proudění 1. Gravitace. Tření 3. Coriolisova síla 4. Vítr 5. Vztlak (rozdíly
Diferenciální rovnice
Obyčejné diferenciální rovnice - studijní text pro cvičení v předmětu Matematika - 2. Studijní materiál byl připraven pracovníky katedry E. Novákovou, M. Hyánkovou a L. Průchou za podpory grantu IG ČVUT
1/15. Kapitola 12: Soustavy diferenciálních rovnic 1. řádu
1/15 Kapitola 12: Soustavy diferenciálních rovnic 1. řádu 2/15 Vsuvka: Vlastní čísla matic Definice: Bud A čtvercová matice a vektor h 0 splňující rovnici A h = λ h pro nějaké číslo λ R. Potom λ nazýváme
Kapitola 11: Lineární diferenciální rovnice 1/15
Kapitola 11: Lineární diferenciální rovnice 1/15 Lineární diferenciální rovnice 2. řádu Definice: Lineární diferenciální rovnice 2-tého řádu je rovnice tvaru kde: y C 2 (I) je hledaná funkce a 0 (x)y +
LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22
Lineární diferenciální rovnice druhého řádu Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice študenti MFF 15. augusta 2008 1 7 Diferenciální rovnice Požadavky Soustavy lineárních diferenciálních rovnic prvního řádu lineární
Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.
Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních
Literatura: Kapitoly 3, 4 a 2 d) ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.
Předmět: MA4 Dnešní látka: Nehomogenní okrajové podmínky. Pokračování OÚ pro PDR (jen pro fajnšmekry). Jednoznačnost zobecněného řešení. Metoda sítí v 1D. Přibližné řešení okrajových úloh. Aproximace vlastních
4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE
FBI VŠB-TUO 28. března 2014 4.1. Základní pojmy Definice 4.1. Rovnice tvaru F (x, y, y, y,..., y (n) ) = 0 se nazývá obyčejná diferenciální rovnice n-tého řádu a vyjadřuje vztah mezi neznámou funkcí y
Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2
Matematika 2 13. přednáška Obyčejné diferenciální rovnice Jan Stebel Fakulta mechatroniky, informatiky a mezioborových studíı Technická univerzita v Liberci jan.stebel@tul.cz http://bacula.nti.tul.cz/~jan.stebel
11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah
11. přednáška 10. prosince 2007 Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah F (x, y, y, y,..., y (n) ) = 0 mezi argumentem x funkce jedné
Kapitola 12: Soustavy diferenciálních rovnic 1. řádu
Kapitola 12: Soustavy diferenciálních rovnic 1. řádu Základní pojmy Definice: Rovnice tvaru = f(t, x, y) = g(t, x, y), t I nazýváme soustavou dvou diferenciálních rovnic 1. řádu. Řešením soustavy rozumíme
Diferenˇcní rovnice Diferenciální rovnice Matematika IV Matematika IV Program
Program Diferenční rovnice Program Diferenční rovnice Diferenciální rovnice Program Frisch a Samuelson: Systém je dynamický, jestliže jeho chování v čase je určeno funkcionální rovnicí, jejíž neznámé závisí
Kapitola 10: Diferenciální rovnice 1/14
Kapitola 10: Diferenciální rovnice 1/14 Co je to diferenciální rovnice? Definice: Diferenciální rovnice je vztah mezi hledanou funkcí y(x), jejími derivacemi y (x), y (x), y (x),... a nezávisle proměnnou
Rovinná úloha v MKP. (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v. prostorové úlohy: u, v, w
Rovinná úloha v MKP Hledané deformační veličiny viz klasická teorie pružnosti (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v desky: w, ϕ x, ϕ y prostorové úlohy: u,
Metody vnitřních bodů pro řešení úlohy lineární elasticity s daným třením
Metody vnitřních bodů pro řešení úlohy lineární elasticity s daným třením J. Machalová, P. Ženčák, R. Kučera Katedra matematické analýzy a aplikací matematiky PřF UP Olomouc Katedra matematiky a deskriptivní
Budeme hledat řešení y(x) okrajové úlohy pro diferenciální rovnici druhého řádu v samoadjungovaném tvaru na intervalu a, b : 2 ) y i p i+ 1
ODR - okrajová úloha Teorie (velmi stručný výběr z přednášek) Okrajová úloha 2. řádu Budeme hledat řešení y(x) okrajové úlohy pro diferenciální rovnici druhého řádu v samoadjungovaném tvaru na intervalu
Literatura: Kapitola 2 d) ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.
Předmět: MA4 Dnešní látka: Metoda sítí v 1D. Myšlenka náhrada derivací diferenčními podíly Přibližné řešení okrajových úloh Aproximace vlastních čísel Literatura: Kapitola 2 d) ze skript Karel Rektorys:
Přednáška č. 5: Jednorozměrné ustálené vedení tepla
Přednáška č. 5: Jednorozměrné ustálené vedení tepla Motivace Diferenciální rovnice problému Gradient teploty Energetická bilance Fourierův zákon Diferenciální rovnice vedení tepla Slabé řešení Diskretizace
Software pro modelování chování systému tlakové kanalizační sítě Popis metodiky a ukázka aplikace
Optimalizace systémů tlakových kanalizací pomocí matematického modelování jejich provozních stavů Software pro modelování chování systému tlakové kanalizační sítě Popis metodiky a ukázka aplikace Ing.
Úvodní informace. 17. února 2018
Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní
Obyčejné diferenciální rovnice
Obyčejné diferenciální rovnice Petra Schreiberová, Petr Volný Katedra matematiky a deskriptivní geometrie, FS Katedra matematiky, FAST Vysoká škola báňská Technická Univerzita Ostrava Ostrava 2019 OBSAH
Řešení 1D vedení tepla metodou sítí a metodou
ENumerická analýza transportních procesů - NTP2 Přednáška č. 9 Řešení 1D vedení tepla metodou sítí a metodou konečných objemů Metoda sítí (metoda konečných diferencí - MKD) Metoda sítí Základní myšlenka
4.1 Řešení základních typů diferenciálních rovnic 1.řádu
4. Řešení základních tpů diferenciálních rovnic.řádu 4..4 Určete řešení z() Cauchov úloh pro rovnici + = 0 vhovující počáteční podmínce z =. Po separaci proměnných v rovnici dostaneme rovnici = d a po
Převedení okrajové úlohy na sled
Převedení okrajové úlohy na sled úloh počátečních 1 Jiří Taufer Abstrakt Tento příspěvek je věnován řešení okrajových problémů pro soustavu okrajových obyčejných diferenciálních lineárních rovnic metodami,
Modelování proudění ve vysokém rozlišení
Modelování proudění ve vysokém rozlišení Vladimír Fuka vedoucí práce: doc. RNDr. Josef Brechler, CSc. Cíle práce Vytvořit základ počítačového modelu proudění. Vyzkoušet některé nové postupy. Ověřit funkčnost
Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6)
1. Lineární diferenciální rovnice řádu n [MA1-18:P1.7] rovnice typu y n) + p n 1 )y n 1) +... + p 1 )y + p 0 )y = q) 6) počáteční podmínky: y 0 ) = y 0 y 0 ) = y 1 y n 1) 0 ) = y n 1. 7) Věta 1.3 : Necht
pouze u některých typů rovnic a v tomto textu se jím nebudeme až na
Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)
VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY
VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................
1 Polynomiální interpolace
Polynomiální interpolace. Metoda neurčitých koeficientů Příklad.. Nalezněte polynom p co nejmenšího stupně, pro který platí p() = 0, p(2) =, p( ) = 6. Řešení. Polynom hledáme metodou neurčitých koeficientů,
Aplikace kinetických metod na dynamiku tekutin
Aplikace kinetických metod na dynamiku tekutin Martin Ptáček Abstrakt: Práce se zabývá aplikací kinetické metody na model mělké vody a porovnáním s přesným Riemannovským řešením a dalšími metodami pro
Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
Dnešní látka: Literatura: Kapitoly 3 a 4 ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.
Předmět: MA4 Dnešní látka: Od okrajových úloh v 1D k o. ú. ve 2D Laplaceův diferenciální operátor Variačně formulované okrajové úlohy pro parciální diferenciální rovnice a metody jejich přibližného řešení
úloh pro ODR jednokrokové metody
Numerické metody pro řešení počátečních úloh pro ODR jednokrokové metody Formulace: Hledáme řešení y = y() rovnice () s počáteční podmínkou () y () = f(, y()) () y( ) = y. () Smysl: Analyticky lze spočítat
Colloquium FLUID DYNAMICS 2007 Institute of Thermomechanics AS CR, v. v. i., Prague, October 24-26, 2007 p.1
Colloquium FLUID DYNAMICS 27 Institute of Thermomechanics AS CR, v. v. i., Prague, October 24-26, 27 p.1 NUMERICKÉ ŘEŠENÍ STACIONÁRNÍHO A NESTACIONÁRNÍHO TRANSSONICKÉHO PROUDĚNÍ VE VNĚJŠÍ AERODYNAMICE
Potenciální proudění
Hydromechanické procesy Potenciální proudění + plíživé obtékání koule M. Jahoda Proudění tekutiny Pohyby elementu tekutiny 2 čas t čas t + dt obecný pohyb posunutí lineární deformace rotace úhlová deformace
Parciální diferenciální rovnice
Parciální diferenciální rovnice Obsah kurzu Co bude obsahovat... úvod do PDR odvození některých PDR klasická teorie lineárních PDR 1. a 2. řádu řešení poč. a okraj. úloh vlastnosti řešení souvislost s
PARCIÁLN LNÍ ROVNICE
PARCIÁLN LNÍ DIFERENCIÁLN LNÍ ROVNICE VE ZPRACOVÁNÍ OBRAZU Autor práce: Vedoucí práce: Anna Kratochvílová Ing.Tomáš Oberhuber Zadání Najít vhodný matematický model pro segmentaci obrazových dat Navrhnout
Obyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých
Obyčejné diferenciální rovnice Obyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých se vyskytují derivace neznámé funkce jedné reálné proměnné. Příklad. Bud dána funkce f : R R.
A0B01LAA Lineární algebra a aplikace (příklady na cvičení- řešení)
A0B0LAA Lineární algebra a aplikace příklady na cvičení- řešení Martin Hadrava martin@hadrava.eu. ledna 0.týdenod9.9. Řešení soustav lineárních rovnic Gaussovou eliminační metodou diskuse počtu řešení..
Stabilizace Galerkin Least Squares pro
Fakulta strojní ČVUT Ústav technické matematiky Stabilizace Galerkin Least Squares pro MKP na řešení proudění o vyšších Reynoldsových číslech Ing. Jakub Šístek Doc. RNDr. Pavel Burda, CSc. RNDr. Jaroslav
Kombinatorická minimalizace
Kombinatorická minimalizace Cílem je nalézt globální minimum ve velké diskrétní množině, kde může být mnoho lokálních minim. Úloha obchodního cestujícího Cílem je najít nejkratší cestu, která spojuje všechny
Co jsme udělali: Au = f, u D(A)
Předmět: MA4 Dnešní látka: Od okrajových úloh v 1D k o. ú. ve 2D Laplaceův diferenciální operátor Variačně formulované okrajové úlohy pro parciální diferenciální rovnice a metody jejich přibližného řešení
12. Křivkové integrály
12 Křivkové integrály Definice 121 Jednoduchou po částech hladkou křivkou v prostoru R n rozumíme množinu bodů [x 1,, x n ], které jsou dány parametrickými rovnicemi x 1 = ϕ 1 t), x 2 = ϕ 2 t), x n = ϕ
Proudění s volnou hladinou (tj. v otevřených korytech)
(tj. v otevřených korytech) TYPY OTEVŘENÝCH KORYT PŘÍRODNÍ přirozená a upravená KORYTA - přirozená: nepravidelného geometrického průřezu - upravená: zhruba pravidel. průřezu (upravené většinou jen břehy,
8. Okrajový problém pro LODR2
8. Okrajový problém pro LODR2 A. Základní poznatky o soustavách ODR1 V kapitole 6 jsme zavedli pojem lineární diferenciální rovnice n-tého řádu, která je pro n = 2 tvaru A 2 (x)y + A 1 (x)y + A 0 (x)y
b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0
Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie A Autoři úloh: J. Thomas, 5, 6, 7), J. Jírů 2,, 4).a) Napíšeme si pohybové rovnice, ze kterých vyjádříme dobu jízdy a zrychlení automobilu A:
Betonové konstrukce (S) Přednáška 3
Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární
Počítačová dynamika tekutin (CFD) Základní rovnice. - laminární tok -
Počítačová dynamika tekutin (CFD) Základní rovnice - laminární tok - Základní pojmy 2 Tekutina nemá vlastní tvar působením nepatrných tečných sil se částice tekutiny snadno uvedou do pohybu (výjimka některé
Počítačová dynamika tekutin (CFD) Řešení rovnic. - metoda konečných objemů -
Počítačová dynamika tekutin (CFD) Řešení rovnic - metoda konečných objemů - Rozdělení parciálních diferenciálních rovnic 2 Obecná parciální diferenciální rovnice se dvěma nezávislými proměnnými x a y:
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Zkouška ověřuje znalost základních pojmů, porozumění teorii a schopnost aplikovat teorii při
Neustálené proudění v otevřených korytech. K141 HY3V (VM) Neustálené proudění v korytech 0
Neustálené proudění v otevřených kortech K4 HY3V (VM) Neustálené proudění v kortech 0 DRUHY PROUDĚNÍ V KORYTECH Přehled: Proudění neustálené ustálené nerovnoměrné rovnoměrné průtok Q f(t,x) Q konst. Q
Vzpěr jednoduchého rámu, diferenciální operátory. Lenka Dohnalová
1 / 40 Vzpěr jednoduchého rámu, diferenciální operátory Lenka Dohnalová ČVUT, fakulta stavební, ZS 2015/2016 katedra stavební mechaniky a katedra matematiky, Odborné vedení: doc. Ing. Jan Zeman, Ph.D.,
4. Napjatost v bodě tělesa
p04 1 4. Napjatost v bodě tělesa Předpokládejme, že bod C je nebezpečným bodem tělesa a pro zabránění vzniku mezních stavů je m.j. třeba zaručit, že napětí v tomto bodě nepřesáhne definované mezní hodnoty.
Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s
Kapitola 13 Kvadratické formy Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru f(x 1,..., x n ) = a ij x i x j, kde koeficienty a ij T. j=i Kvadratická forma v n proměnných
Numerické řešení 2D stlačitelného proudění s kondenzací. Michal Seifert
Numerické řešení 2D stlačitelného proudění s kondenzací Michal Seifert Úkoly diplomové práce Popsat matematické modely proudící tekutiny Popis numerických metod založených na metodě konečných objemů Porovnání
12 Obyčejné diferenciální rovnice a jejich soustavy
12 Obyčejné diferenciální rovnice a jejich soustavy 121 Úvod - opakování Opakování z 1 ročníku (z kapitoly 5) Definice 121 Rovnice se separovanými proměnnými je rovnice tvaru Návod k řešení: Pokud g(c)
MA2, M2. Kapitola 4. Vektorové funkce jedné reálné proměnné. c 2009, analyza.kma.zcu.cz
79 Kapitola 4 Vektorové funkce jedné reálné proměnné 80 Definice 4.1(vektorová funkce jedné reálné proměnné) Nechť D R.Zobrazení x: D R n se nazývá vektorová funkce jedné reálné proměnné t s definičním
Numerické řešení diferenciálních rovnic
Numerické řešení diferenciálních rovnic Omezení: obyčejné (nikoli parciální) diferenciální rovnice, Cauchyho počáteční úloha, pouze jedna diferenciální rovnice 1. řádu 1/1 Numerické řešení diferenciálních
Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t.
1 Variace konstanty Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. Příklad 1 Najděte obecné řešení rovnice: y + y = 4 sin t. Co
8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice
9. Lineární diferenciální rovnice 2. řádu Cíle Diferenciální rovnice, v nichž hledaná funkce vystupuje ve druhé či vyšší derivaci, nazýváme diferenciálními rovnicemi druhého a vyššího řádu. Analogicky
Příklady pro cvičení 22. dubna 2015
Úvod Předběžná verze (015) 1 1 Normy vektorů a matic, vlastnosti matic Příklad 1.1 Pro dané vektory x = ( 1; ; 1) T, y = (; 3; 1) T určete x =? x =? x 1 =? y =? y =? y 1 =? Příklad 1. Je dán vektor x =
ŘEŠENÍ NELINEÁRNÍCH ROVNIC
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA ŘEŠENÍ NELINEÁRNÍCH ROVNIC Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny
Studijní text pro obor G+K Katedra matematiky Fakulta stavební ROVNICE. Doc. RNDr. Milada Kočandrlová, CSc.
Studijní text pro obor G+K Katedra matematiky Fakulta stavební České vysoké učení technické OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE Doc. RNDr. Milada Kočandrlová, CSc. Lektorovali: RNDr. Milan Kočandrle, CSc.,
rovnic), Definice y + p(x)y = q(x), Je-li q(x) = 0 na M, nazývá se y + p(x)y =
Cíle Přehled základních typů diferenciálních rovnic prvního řádu zakončíme pojednáním o lineárních rovnicích, které patří v praktických úlohách k nejfrekventovanějším. Ukážeme například, že jejich řešení
Obyčejné diferenciální rovnice
1 Obyčejné diferenciální rovnice Příklad 0.1 (Motivační). Rychlost chladnutí hmotného bodu je přímo úměrná rozdílu jeho teploty minus teploty okolí. Předpokládejme teplotu bodu 30 o C v čase t = 0 a čase
1 Modelování systémů 2. řádu
OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka
ŘEŠENÍ NELINEÁRNÍCH ROVNIC
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA ŘEŠENÍ NELINEÁRNÍCH ROVNIC Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny
7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí
202-m3b2/cvic/7slf.tex 7. Derivace složené funkce. Budeme uvažovat složenou funkci F = fg, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce, které mají
metody jsou proto často jedinou možností jak danou diferenciální rovnicivyřešit.
7. ODR počáteční úlohy Průvodce studiem Jen velmi málo diferenciálních rovnic, které se vyskytují při popisu praktických úloh, se dářešit exaktně, a i když dokážeme najít vzorce popisující analytickéřešení,
TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému
TENSOR NAPĚTÍ A DEFORMACE Obrázek 1: Volba souřadnicového systému Pole posunutí, deformace, napětí v materiálovém bodě {u} = { u v w } T (1) Obecně 9 složek pole napětí lze uspořádat do matice [3x3] -
Úvod. Integrování je inverzní proces k derivování Máme zderivovanou funkci a integrací získáme původní funkci kterou jsme derivovali
NEURČITÝ INTEGRÁL Úvod Integrování je inverzní proces k derivování Máme zderivovanou funkci a integrací získáme původní funkci kterou jsme derivovali Umět pracovat s integrálním počtem Je důležité pro
ROVNOMĚRNĚ ZRYCHLENÝ POHYB
ROVNOMĚRNĚ ZRYCHLENÝ POHYB Pomůcky: LabQuest, sonda čidlo polohy (sonar), nakloněná rovina, vozík, který se může po nakloněné rovině pohybovat Postup: Nakloněnou rovinu umístíme tak, aby svírala s vodorovnou
Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál
Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál Jan Slovák Masarykova univerzita Fakulta informatiky 16. 9. 2008 Obsah přednášky 1 Literatura 2 Funkce a
Funkce v ıce promˇ enn ych Extr emy Pˇredn aˇska p at a 12.bˇrezna 2018
Funkce více proměnných Extrémy Přednáška pátá 12.března 2018 Zdroje informací Diferenciální počet http://homen.vsb.cz/~kre40/esfmat2/fceviceprom.html http://www.studopory.vsb.cz/studijnimaterialy/sbirka_uloh/pdf/7.pdf
Program SMP pro kombinované studium
Zadání příkladů k procvičení na seminář Program SMP pro kombinované studium Nejdůležitější typy příkladů - minimum znalostí před zkouškovou písemkou 1) Matice 1. Pro matice 1 0 2 1 0 3 B = 7 3 4 4 2 0
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček. 8. přednáška 11MSP pondělí 20. dubna 2015
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 8. přednáška 11MSP pondělí 20. dubna 2015 verze: 2015-04-14 12:31
Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci)
2. Diferenciál funkce, tečná rovina. Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci) df(a, h) = x (a)h + (a)h 2, h = (h, h
IB112 Základy matematiky
IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic
Mnohé problémy analýzy dynamických systémů vedou k řešení diferenciální rovnice (4.1)
4 Řešení odezev dynamických systémů ve fázové rovině 4.1 Základní pojmy teorie fázové roviny Mnohé problémy analýzy dynamických systémů vedou k řešení diferenciální rovnice ( ) x+ F x, x = (4.1) kde F(
Numerická matematika 1
Numerická matematika 1 Obsah 1 Řešení nelineárních rovnic 3 1.1 Metoda půlení intervalu....................... 3 1.2 Metoda jednoduché iterace..................... 4 1.3 Newtonova metoda..........................
1 Vedení tepla stacionární úloha
1 VEDENÍ TEPLA STACIONÁRNÍ ÚLOHA 1 1 Vedení tepla stacionární úloha Typický představitel transportních jevů Obdobným způsobem možno řešit například Fyzikální jev Neznámá Difuze koncentrace [3] Deformace
HIERARCHICKÝ OPTIMÁLNÍ REGULÁTOR Branislav Rehák ČVUT FEL, katedra řídicí techniky
HIERARCHICKÝ OPTIMÁLNÍ REGULÁTOR Branislav Rehák ČVUT FEL, katedra řídicí techniky Úvod Teorie dynamických optimalizačních úloh je již delší dobu dobře rozpracována. Přesto není v praxi příliš často využívána.
Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 "
ŘEŠENÉ PŘÍKLADY Z MB ČÁST Příklad Nalezněte pomocí Laplaceovy transformace řešení dané Cauchyho úlohy lineární diferenciální rovnice prvního řádu s konstantními koeficienty v intervalu 0,, které vyhovuje
Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
Lineární algebra : Metrická geometrie
Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních
Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36
Diferenciální rovnice a jejich aplikace Zdeněk Kadeřábek (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Obsah 1 Co to je derivace? 2 Diferenciální rovnice 3 Systémy diferenciálních rovnic
BIOMECHANIKA KINEMATIKA
BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti
PRUŽNOST A PEVNOST II
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ PRUŽNOST A PEVNOST II Navazující magisterské studium, 1. ročník Alois Materna (přednášky) Jiří Brožovský (cvičení) Kancelář: LP C 303/1
Interpolace Uvažujme třídu funkcí jedné proměnné ψ(x; a 0,..., a n ), kde a 0,..., a n jsou parametry, které popisují jednotlivé funkce této třídy. Mějme dány body x 0, x 1,..., x n, x i x k, i, k = 0,
Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky
6. Vázané a absolutní extrémy. 01-a3b/6abs.tex Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky jednoduché, vyřešíme
Mechanika kontinua. Mechanika elastických těles Mechanika kapalin
Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování