Dynamické systémy. y(t) = g( x(t), t ) kde : g(t) je výstupní fce. x(t) je hodnota vnitřních stavů

Rozměr: px
Začít zobrazení ze stránky:

Download "Dynamické systémy. y(t) = g( x(t), t ) kde : g(t) je výstupní fce. x(t) je hodnota vnitřních stavů"

Transkript

1 Dynamcké sysémy spojé-dskréní, lneární-nelneární a jejch modely df. rovnce, přenos, savový pops. Tvorba a převody modelů. Lnearzace a dskrezace. Smulace. Analoge mez sysémy různé fyzkální podsay. Idenfkace a verfkace. Laplaceova a z- ransformace: základní vlasnos, výpoče obrazu a vzoru. Dynamcké sysémy Množny popsující dynamcký sysém : a časových okamžků T, b savů sysému X, c okamžých hodno vsupních velčn U, d přípusných vsupních funkcí sgnálů U {u : T -> U}, e okamžých hodno výsupních velčn Y, f přípusných výsupních funkcí sgnálů Y {y : T -> Y }. Vlasnos dyn. sys : a ryzos srkně ryzí : je-l výsupní zobrazení nezávslé explcně na řízení, pak y g x, kde : g je výsupní fce x je hodnoa vnřních savů b Sysém S je spojý, je-l množna T množnou reálných čísel. Sysém S je dskréní, je-l množna T množnou celých čísel. Spojý sysém odpovídá nuvní předsavě dynamckého sysému. Dskréní sysém je edy sysém s dskréním časem, může vznknou ak, že všechny velčny spojého sysému měříme v dskréních časových okamžcích. c Sysém S je saconární :. množna času T je advní grupa množna, na keré je defnováno sčíání prvků, 2. množna přípusných vsupních funkcí U je uzavřena vůč operáoru posunuí v čase z v : u -> u, kerý je určen vzahem u u v z v u, pro všechna v, T 3. plaí : φ,τ,x,u φ v,τ v,x,z v u Saconárnímu sysému se vlasnos nemění v čase. Saconara sysému je důležá vlasnos sysému, nebo všechny vlasnos saconárního sysému jsou časově nvaranní

2 -nvaranní nebo časově nvaranní. d Sysém S se je lneární :. množny X, U, U, Y, Y jsou vekorové prosory 2. zobrazení φ, τ,.,. : X U -> X, je lneární pro všechna, τ 3. zobrazení g.,., : X U -> Y je lneární pro všechna. U lneárního sysému je přechodová funkce savu φ lneární vzhledem k počáečímu savu a řízení s výsupní funkce g je aké lneární vzhledem k okamžé hodnoě savu a řízení. Pops :. Savové rovnce ve spojém čase Savová rovnce nelneárního spojého sysému x f x, u, y g x, u, Savová rovnce lneárního spojého sysému x A x B u y C x D u A je mace sysému rozměru n x n, B je mace řízení rozměru n x r, C a D jsou výsupní mace rozmìru m x n a m x r. Lneární sysém - A;B;C;D n. Lneární saconární sysém - A;B;C;D n. Ryze dynamcký sysém srkně ryzí sysém - D.

3 2. Savové rovnce v dskréním čase Savová rovnce nelneárního spojého sysému k k*t s, k.,,,2,3 x k f d x k, u k, k y k g x k, u k, k Savová rovnce lneárního spojého sysému x k T s M x k T s N u k T s y k T s C x k T s D u k T s 3. Přenos G jω Y jω, přenos sysému bez zpěné vazby sjω U jω F jω Y jω W jω G jω G jω vazbou sjω, přenos se zápornou zpěnou souvslos mez přenosem a df. rovncem : Y s G s U s b s a + + b m m n ns + + a B s A s s z s z s z, s p s p s p 2 m G s K K z nuly přenosu, p póly přenosu souvslos mez přenosem a savového popsu ve spojém čase : 2 n b a m n

4 souvslos mez přenosem a savového popsu v dskréním čase : 4. Dferencální rovnce lneární dfc. rovnc jako vnější model ve varu u b u b y a y a m m n n , u kauzálních sysémů vždy plaí podmínka fyzkální realzovaelnos n m. řešením dferencální rovnce je časový průběh odezvy na vsupní sgnál meody řešení : Laplaceova ransformace vlasní číslo λ je kořenem charakerscké rovnce a je obecně komplexní λ σ+jω. Může nasa několk suací : jednonásobné charakerscké číslo dvojc komplexně sdružených čísel - kmavý mód popsaný časově posunuou funkcí sn, resp. cos. pro r-násobná charakerscká čísla λ dosáváme kořeny charakerscké rovnce jsou shodné vlasním čísly mace A : Sysém je sablní pokud plaí, že Reλ σ <, proože pak odpovídající exponencála klesá s rosoucím časem k nule. sn j e e e y θ ϖ σ ϖ σ λ + ±,, e y λ λ λ r r e r y e y λ λ! + D N M zi C z H + G s Y s U s C si A B D

5 Sysém je na mez sably, pokud Reλ σ Sysém je nesablní, pokud Reλ σ > Sysém je asacký, pokud λ 5. Dferenční rovnce lneární dfč. rovnc jako vnější model ve varu a y k a y k a n y k n b u k b y k b m y k m saconární sys. má a, b konsanní řád dsk. sysému : maxn,m řešením dferenční rovnce je časový průběh odezvy na vsupní sgnál meody řešení : z-ransformací Savová rovnce nelneárního spojého sysému : Lnearzace savových rovnc x f x, u, y g x, u, Nomnální rajekore u, x, y Rovnovážný bod u, x x e fx e ;, y. Odchylky od nomnální rajekore rovnovážného bodu ekvlbrum : x x δ x u u δ u y y δ y Funkce f a g rozvneme v øadu v okolí bodu x ;u : f x, u, f x, u, f x f δx u δu o δx,δu g x, u, g x, u, g x δx g u δu o δx,δu oδu;δx je nekoneènì malá velèna vyššího než prvního řádu. f x f, u, g x a g u dervace vekorových funkcí podle vekoru, edy mace, pøèem¾ dervace se poèíají v bodì x ; u

6 f x f x f 2 x f n x f x 2 f 2 x 2 f n x 2 f x n f 2 x n f n x n xx,uu Savové rovnce lnearzovaného spojého sysému Mace A; B; C; D f δ x x δx f u δu δ y g x g δx u δu A f x xx, uu C g x xx, uu f B u xx, uu g D u xx, uu Př. Dskrezace Dskrezace spočívá v převedení množny T, kerá v případě spojých sysémů obsahuje reálné čísla, na množnu T', kerá bude obsahova jen celá čísla. Požadavkem př dskrezac je sejná odezva na vsupní sgnál dskrání a spojý sysém musí mí sejnou nebo alespoň velm

7 podobnou odezvu. Dskrezace ve savovém popsu : N Me A T s T s e Aτ dτ B hledání mac M,N Meody přblžné dskrezace : dskrezace z přenosu Eulerova : s z T s Zpěná dference : s z z T s Tusnova : s 2 T s z z výpoče : do přenosu vyjádřeného pomocí s dosadíme za s jeden z přdlžných vzorců a přenos eď s z upravíme do požadovaného varu vlasnos přesnos aproxmace : nepřímo úměrná hodnoě T s musí bý splněna vzorkovací věa Smulace Smulace modelů sysémů provádíme v Smulnku Malabu. Kde překreslíme savové rovnce na smulační schéma nebo použjeme přímo vypočený přenos. Náročnos smulace je ndvduální.

8 Analoge mez sysémy různé fyzkální podsay A l k í h ků C Analoge u ndukčních prvků- L Jak je vdě na obrázkách ndukory, capacory a odpory nejsou jen v elekroechnce, ale v mechance ad. Proo je možné provádě smulace mechanckých sysému na sysémech elekronckých. Pops obrázků : C : prvky : elekrcký, mechancký, hydraulcký

9 kapacor velčny : C[F] kapaca, k [N/m] uhos pružny, C f [m 3 /Pa] hydraulcká kapaca, S průřes nádrže, g íhové zrychlení, ρ [kg/m 3 ]husoa L : prvky : elekrcký, mechancký, hydraulcký ndukor velčny : L [H] ndukčnos, m [kg] hmonos, I [kg*m 2 ] momen servačnos, L f [kg/m 4 ] momen hydraulcké servačnos R : prvky : elekrcký, mechancký, hydraulcký ndukor Idenfkace a verfkace Cílem denfkace je naléz co nejpřesnější maemacké pops daného sysému a zapsa jej do nějakého předepsaného varu přenos, sav. rovnce.. Posup př denfkac :. plánování expermenu expermenova s reálným syséme je náročná a drahé, proo se používá analýza odezvy sysému na vsupní sgnál. nejlepší odezva na jednokový skok a drak, ale n reálu nemožné 2. volba srukury modelu srukuru modelu zvolíme na základě znalosí o sysému, poruchách, keré na něj působí nebo podle pracovních bodů 3. volby vhodného kréra kvaly zvolením přesnos, s jakou budeme chí sesav model 4. odhad paramerů k odhadu paramerů sysému pořebujeme zná : vsupní/výsupní daa, řídu přesnos, krérum. Poé můžeme použí klascké meody určení paramerů :. analýza přechodové a frekvenční char.určení časových konsan, řádu sysému 2. Meoda korelační a spekrální analýzy analýza odezvy na Drakův mpuls 3. meoda nejmenších čverců a její modfkace 4. meoda maxmální věrohodnos 5. es shody schování modelu a sysému verfkace spočívá v porovnání odezev modelu a skuečného sysému

10 Laplaceova a z- ransformace Laplaceova ransformace defnce : F s L { f } yo podmínky :. je exponencálního řádu f e s d, kde s C a fce f je defnována na, splňuje 2. je po čásech spojá v <, nebo je absoluně negrovaelná : T T f d f d Věy :. počáeční hodnoa : lm f lm s F s s 2. konečná hodnoa : lm f lm s F s s 3. dervace fce : L { f n }s n F s s n f s n 2 ḟ f n 4. negrace fce : L { f τ dτdτ }F s s n 5. zpoždění : L { f T d } F s e s T d 6. lneary. L {k f ±k 2 f 2 }k F s ±k 2 F 2 s Tabulové fce : Fs f Fs f δ n! n e a s a n s ω n s 2 ω n 2 sn ω n s s 2 s 2 2 ω n n! n ω n s n s a 2 2 ω n cos ω n e a sn ω n s a e a s a s a 2 ω n 2 e a cos ω n s a 2 e a

11 Z - ransformace defnce : F z Z { f k } f n z n, kde z C a fk je posloupnos exponencálního řádu n defnována na, ; fn pro n< Věy :. počáeční hodnoa : f lm F z z 2. konečná hodnoa : lm k 3. kauzala : lm F z z 4. souče řady : n f k lm z F z z f n lm F z z 5. ranslace vpravo : Z { f k n }z k F z 6. lneary. Z {k f k ±k 2 f 2 k }k F z ±k 2 F 2 z Tabulové fce : Fz fk Fz fk δk z z k 2 z 3 z z z z a k a k 2 z z 3 k 2 k z z k z k z a n z 2 z a n a z z a 2 k a k n k n k a k

12 Převodní abulka mez Laplaceovou ransformací a z-rabsformací :

Matematický popis systémů pracujících ve spojitém čase.

Matematický popis systémů pracujících ve spojitém čase. Maemacký pops sysémů pracujících ve spojém čase Vnější pops nelneárních sysémů, savový pops, sabla, kauzala Základní nformace Tao výuková jednoka, jako už všechny další následující, je pokračovací, ve

Více

IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA,

IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, STABILITA. Jednokový impuls (Diracův impuls, Diracova funkce, funkce dela) někdy éž disribuce dela z maemaického hlediska nejde o pravou funkci (přesný popis eorie

Více

( ) r Urč ete mohutnost a energii impulsu. r Vypočítejte spektrální hustotu signálu z př.1.57 a nakreslete modulové a fázové spektrum.

( ) r Urč ete mohutnost a energii impulsu. r Vypočítejte spektrální hustotu signálu z př.1.57 a nakreslete modulové a fázové spektrum. Sgná ly se souvslým časem Ř EŠENÉPŘ ÍKLADY r 57 Urč ee mohunos a energ mpulsu τ ( ) ( ) I e, I ma, τ ms ( ) I τ Obr34 Analyzovaný mpuls Mohunosmpulsu ( ) M d I e τ d τ I µ As µ C (mkrocoulomb) Normovanáenerge

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Unverza Tomáše Ba ve Zlíně ABOATONÍ VIČENÍ EEKTOTEHNIKY A PŮMYSOVÉ EEKTONIKY Název úlohy: Zpracoval: Měření čnného výkonu sřídavého proudu v jednofázové sí wamerem Per uzar, Josef Skupna: IT II/ Moravčík,

Více

transformace Idea afinního prostoru Definice afinního prostoru velké a stejně orientované.

transformace Idea afinního prostoru Definice afinního prostoru velké a stejně orientované. finní ransformace je posunuí plus lineární ransformace má svou maici vzhledem k homogenním souřadnicím využií například v počíačové grafice [] Idea afinního prosoru BI-LIN, afinia, 3, P. Olšák [2] Lineární

Více

PJS Přednáška číslo 2

PJS Přednáška číslo 2 PJS Přednáška číslo Jednoduché elekromagnecké přechodné děje Předpoklady: onsanní rychlos všech očvých srojů (časové konsany delší než u el.-mg. dějů a v důsledku oho frekvence elekrckých velčn. Pops sysému

Více

Laplaceova transformace Modelování systémů a procesů (11MSP)

Laplaceova transformace Modelování systémů a procesů (11MSP) aplaceova ransformace Modelování sysémů a procesů (MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček 5. přednáška MSP čvrek 2. března 24 verze: 24-3-2 5:4 Obsah Fourierova ransformace Komplexní exponenciála

Více

STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ

STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ Saické a dnamické vlasnosi paří k základním vlasnosem regulovaných sousav, měřicích přísrojů, měřicích řeězců či jejich čásí. Zaímco saické vlasnosi se projevují

Více

Reálné opce. Typy reálných opcí. Výpočet hodnoty opce. příklady použití základních reálných opcí

Reálné opce. Typy reálných opcí. Výpočet hodnoty opce. příklady použití základních reálných opcí Reálné opce příklady použí základních reálných opcí Typy reálných opcí! Ukonč projek odsoup! Rozšíř projek expandova, růsová! Provozní! Záměny! Složená! Eapová! Jné? Výpoče hodnoy opce! Spojě pomocí řešení

Více

Studijní opora z pedmtu Poítaové metody mechaniky v dynamice

Studijní opora z pedmtu Poítaové metody mechaniky v dynamice Sudní opora z pedmu Poíaové meody mechanky v dynamce prof. Ing. Eduard Malenovský, DrSc. Sudní oporu e nuno chápa ako doplkový sudní maerál. Jako základní sou uebnce a sudní exy. Sudní opora z poíaových

Více

Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2

Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2 Cvičení 1 Lineární rovnice prvního řádu 1. Najděe řešení Cauchyovy úlohy x + x g = cos, keré vyhovuje podmínce x(π) =. Máme nehomogenní lineární diferenciální ( rovnici prvního řádu. Funkce h() = g a q()

Více

Matematika v automatizaci - pro řešení regulačních obvodů:

Matematika v automatizaci - pro řešení regulačních obvodů: . Komplexní čísla Inegrovaná sřední škola, Kumburská 846, Nová Paka Auomaizace maemaika v auomaizaci Maemaika v auomaizaci - pro řešení regulačních obvodů: Komplexní číslo je bod v rovině komplexních čísel.

Více

Pasivní tvarovací obvody RC

Pasivní tvarovací obvody RC Sřední průmyslová škola elekroechnická Pardubice CVIČENÍ Z ELEKTRONIKY Pasivní varovací obvody RC Příjmení : Česák Číslo úlohy : 3 Jméno : Per Daum zadání : 7.0.97 Školní rok : 997/98 Daum odevzdání :

Více

MODELOVÁNÍ A SIMULACE

MODELOVÁNÍ A SIMULACE MODELOVÁNÍ A SIMULACE základní pojmy a postupy vytváření matematckých modelů na základě blancí prncp numerckého řešení dferencálních rovnc základy práce se smulačním jazykem PSI Základní pojmy matematcký

Více

5. Využití elektroanalogie při analýze a modelování dynamických vlastností mechanických soustav

5. Využití elektroanalogie při analýze a modelování dynamických vlastností mechanických soustav 5. Využií elekroanalogie při analýze a modelování dynamických vlasnosí mechanických sousav Analogie mezi mechanickými, elekrickými či hydraulickými sysémy je známá a lze ji účelně využíva při analýze dynamických

Více

Tlumené kmity. Obr

Tlumené kmity. Obr 1.7.. Tluené kiy 1. Uě vysvěli podsau lueného kiavého pohybu.. Vysvěli význa luící síly. 3. Zná rovnici okažié výchylky lueného kiavého pohybu. 4. Uě popsa apliudu luených kiů. 5. Zná konsany charakerizující

Více

Derivace funkce více proměnných

Derivace funkce více proměnných Derivace funkce více proměnných Pro sudeny FP TUL Marina Šimůnková 21. prosince 2017 1. Parciální derivace. Ve výrazu f(x, y) považujeme za proměnnou jen x a proměnnou y považujeme za konsanu. Zderivujeme

Více

Parciální funkce a parciální derivace

Parciální funkce a parciální derivace Parciální funkce a parciální derivace Pro sudeny FP TUL Marina Šimůnková 19. září 2018 1. Parciální funkce. Příklad: zvolíme-li ve funkci f : (x, y) sin(xy) pevnou hodnou y, například y = 2, dosaneme funkci

Více

ÚVOD DO DYNAMIKY HMOTNÉHO BODU

ÚVOD DO DYNAMIKY HMOTNÉHO BODU ÚVOD DO DYNAMIKY HMOTNÉHO BODU Obsah Co je o dnamika? 1 Základní veličin dnamik 1 Hmonos 1 Hbnos 1 Síla Newonov pohbové zákon První Newonův zákon - zákon servačnosi Druhý Newonův zákon - zákon síl Třeí

Více

REGULACE ČINNOSTI ELEKTRICKÝCH ZAŘÍZENÍ

REGULACE ČINNOSTI ELEKTRICKÝCH ZAŘÍZENÍ REGULACE ČINNOSTI ELEKTRICKÝCH ZAŘÍZENÍ Úvod Záporná zpěná vazba Úloha reguláoru Druhy reguláorů Seřízení reguláoru Snímaní informací o echnologickém procesu ELES11-1 Úvod Ovládání je řízení, při kerém

Více

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)

Více

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat.

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat. 4 Inegrace subsiucí 4 Inegrace subsiucí Průvodce sudiem Inegrály, keré nelze řeši pomocí základních vzorců, lze velmi časo řeši subsiuční meodou Vzorce pro derivace elemenárních funkcí a věy o derivaci

Více

OBJÍMKA VÁZANÁ PRUŽINOU NA NEHLADKÉM OTOČNÉM RAMENI

OBJÍMKA VÁZANÁ PRUŽINOU NA NEHLADKÉM OTOČNÉM RAMENI OBJÍMKA VÁZANÁ RUŽINOU NA NELAKÉM OTOČNÉM RAMENI SEIFIKAE ROBLÉMU Rameno čvercového průřezu roue konanní úhlovou rychloí ω Na něm e nasazena obímka hmonoi m s koeicienem ření mezi ní a ěnami ramene Obímka

Více

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika přednášky LS 2006/07

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika přednášky LS 2006/07 Měřicí a řídicí echnika přednášky LS 26/7 SIMULACE numerické řešení diferenciálních rovnic simulační program idenifikace modelu Numerické řešení obyčejných diferenciálních rovnic krokové meody pro řešení

Více

Numerická matematika 1. t = D u. x 2 (1) tato rovnice určuje chování funkce u(t, x), která závisí na dvou proměnných. První

Numerická matematika 1. t = D u. x 2 (1) tato rovnice určuje chování funkce u(t, x), která závisí na dvou proměnných. První Numercká matematka 1 Parabolcké rovnce Budeme se zabývat rovncí t = D u x (1) tato rovnce určuje chování funkce u(t, x), která závsí na dvou proměnných. První proměnná t mívá význam času, druhá x bývá

Více

Dynamika hmotného bodu. Petr Šidlof

Dynamika hmotného bodu. Petr Šidlof Per Šidlof Úvod opakování () saika DYNAMIKA kinemaika Dynamika hmoného bodu Dynamika uhého ělesa Dynamika elasických ěles Teorie kmiání Aranz/Bombardier (Norwegian BM73) Před Galileem, Newonem: k udržení

Více

9 Viskoelastické modely

9 Viskoelastické modely 9 Viskoelasické modely Polymerní maeriály se chovají viskoelasicky, j. pod vlivem mechanického namáhání reagují současně jako pevné hookovské láky i jako viskózní newonské kapaliny. Viskoelasické maeriály

Více

1. Vysvětlete pojmy systém a orientované informační vazby (uveďte příklady a protipříklady). 2. Uveďte formy vnějšího a vnitřního popisu systémů.

1. Vysvětlete pojmy systém a orientované informační vazby (uveďte příklady a protipříklady). 2. Uveďte formy vnějšího a vnitřního popisu systémů. Soubor říkladů k individuálnímu rocvičení roblemaiky robírané v ředměech KKY/TŘ a KKY/AŘ Uozornění: Následující říklady však neokrývají veškerou roblemaiku robíranou v uvedených ředměech. Doazy, náměy,

Více

1.3.4 Rovnoměrně zrychlený pohyb po kružnici

1.3.4 Rovnoměrně zrychlený pohyb po kružnici 34 Rovnoměrně zrychlený pohyb po kružnici Předpoklady: 33 Opakování: K veličinám popisujícím posuvný pohyb exisují analogické veličiny popisující pohyb po kružnici: rovnoměrný pohyb pojíko rovnoměrný pohyb

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava Kaedra obecné elekroechnky Fakla elekroechnky a nformaky, VŠB - T Osrava. ELEKTKÉ OBVODY STEJNOSMĚNÉHO POD.. Úvod.. Základy eore elekrckých obvodů.3. Meody řešení lneárních obvodů.4. Nelneární obvody.5.

Více

2. ELEKTRICKÉ OBVODY STEJNOSMĚRNÉHO PROUDU

2. ELEKTRICKÉ OBVODY STEJNOSMĚRNÉHO PROUDU Kaedra obecné elekroechnky Fakla elekroechnky a nformaky, VŠB - T Osrava. ELEKTKÉ OBVODY STEJNOSMĚNÉHO POD rčeno pro poslchače všech bakalářských sdjních programů FS.. Úvod.. Základy eore elekrckých obvodů.3.

Více

SP NV Normalita-vlastnosti

SP NV Normalita-vlastnosti SP - - NV Normala-vlasos Přpomeuí vlasosí Normálího rozděleí Charakerscká fukce Lévyho-Ldebergova věa - cerálí lmí věa -rozměré ormálí rozděleí -rozměré ormálí rozděleí Přpomeuí vlasosí Normálího rozděleí

Více

4. Střední radiační teplota; poměr osálání,

4. Střední radiační teplota; poměr osálání, Sálavé a průmyslové vyápění (60). Sřední radiační eploa; poměr osálání, operaivní a výsledná eploa.. 08 a.. 08 Ing. Jindřich Boháč TEPLOTY Sřední radiační eploa - r Sálavé vyápění = PŘEVÁŽNĚ sálavé vyápění

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univerzia omáše Bai ve Zlíně Úsav elekroechniky a měření Sřídavý proud Přednáška č. 5 Milan Adámek adamek@f.ub.cz U5 A711 +4057603551 Sřídavý proud 1 Obecná charakerisika periodických funkcí zákl. vlasnosí

Více

SP2 01 Charakteristické funkce

SP2 01 Charakteristické funkce SP 0 Chararisicé func Chararisicé func pro NP Chararisicé func pro NV Náhld Náhodnou proměnnou, nbo vor, L, n lz popsa funčními chararisiami: F, p, f číslnými chararisiami: E, D, A, A 4 Co s dá z čho spočía:

Více

Matematika I A ukázkový test 1 pro 2018/2019

Matematika I A ukázkový test 1 pro 2018/2019 Matematka I A ukázkový test 1 pro 2018/2019 1. Je dána soustava rovnc s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napšte Frobenovu větu (předpoklady + tvrzení). b) Vyšetřete

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK Základy ekonomerie Modely simulánních rovnic Problém idenifikace srukurních simulánních rovnic Cvičení Zuzana Dlouhá Modely simulánních rovnic (MSR) eisence vzájemných vazeb mezi proměnnými v modelu,

Více

I. MECHANIKA 3. Energie a silové pole I

I. MECHANIKA 3. Energie a silové pole I I. MECHNIK. Energe a slové ole I Obsah Imuls síly. Zákon zachování hybnos. Práce. Výkon. Knecká energe. Pole konzervavních sl. Práce o uzavřené křvce. Poencální energe, rovnováha (sablní, vraká, ndferenní)

Více

listopadu 2016., t < 0., t 0, 1 2 ), t 1 2,1) 1, 1 t. Pro X, U a V najděte kvantilové funkce, střední hodnoty a rozptyly.

listopadu 2016., t < 0., t 0, 1 2 ), t 1 2,1) 1, 1 t. Pro X, U a V najděte kvantilové funkce, střední hodnoty a rozptyly. 6. cvičení z PSI 7. -. lisopadu 6 6. kvanil, sřední hodnoa, rozpyl - pokračování příkladu z minula) Náhodná veličina X má disribuční funkci e, < F X ),, ) + 3,,), a je směsí diskréní náhodné veličiny U

Více

Numerická matematika A

Numerická matematika A Numercká matematka A 5615 A1 Máme dánu soustava lneárních rovnc tvaru AX = B, kde 4 1 A = 1 4 1, B = 1 a Zapíšeme soustavu rovnc AX = B ve tvaru upravíme a následně (L + D + P X = B, DX = (L + P X + B,

Více

Přibližná linearizace modelu kyvadla

Přibližná linearizace modelu kyvadla Přibližná linearizace model kyvadla 4..08 9:47 - verze 4.0 08 Obsah Oakování kalkl - Taylorův rozvoj fnkce... Nelineární savový model a jeho řibližná linearizace... 4 Nelineární model vs-výs a jeho řibližná

Více

Simulační schemata, stavový popis. Petr Hušek

Simulační schemata, stavový popis. Petr Hušek Simulační schemaa, savový popis Per Hušek Simulační schemaa, savový popis Per Hušek husek@fel.cvu.cz kaedra řídicí echniky Fakula elekroechnická ČVUT v Praze MAS 007/08 ČVUT v Praze 6,7 - Simulační schemaa,

Více

Metodika odhadu kapitálových služeb

Metodika odhadu kapitálových služeb Vysoká škola ekonomcká v Praze Fakula nformaky a sasky aedra ekonomcké sasky Meodka odhadu kapálových služeb Prof. Ing. Sanslava Hronová, CSc., dr. h. c. Ing. Jaroslav Sxa, Ph.D. Prof. Ing. Rchard Hndls,

Více

EI GI. bezrozměrný parametr působiště zatížení vzhledem ke středu smyku ζ g =

EI GI. bezrozměrný parametr působiště zatížení vzhledem ke středu smyku ζ g = NB.3 NB.3.1 Rosah planosi Pružný kriický momen π I µ cr 1 + κ w + ζ k 诲诲쩎睃睅 睅 a s 5 s ( + ) I A 1 ψ f )I (hf / ) (1) Posup uvedený v éo příloe je vhodný pro výpoče kriického momenu nosníků konsanního dvojose

Více

3B Přechodné děje v obvodech RC a RLC

3B Přechodné děje v obvodech RC a RLC 3B Přechodné děje v obvodech a íl úlohy Prohloubi eoreické znalosi o přechodných dějích na a obvodu. Ukáza možnos měření paramerů přechodných dějů v ěcho obvodech. U obvodu 2. řádu () demonsrova vliv lumicího

Více

Fyzikální praktikum II - úloha č. 4

Fyzikální praktikum II - úloha č. 4 Fyzikální prakikum II - úloha č. 4 1 4. Přechodové jevy v obvodech s kapaciory Úkoly 1) 2) 3) 4) Sesave obvod pro demonsraci jevu nabíjení a vybíjení kondenzáoru. Naměře průběhy napěí a proudů na vybraných

Více

FREQUENCY SPECTRUM ESTIMATION BY AUTOREGRESSIVE MODELING

FREQUENCY SPECTRUM ESTIMATION BY AUTOREGRESSIVE MODELING FEQUENCY SPECU ESIAION BY AUOEGESSIVE ODELING J.ůma * Summary: he paper deals wih mehods for frequency specrum esimaion by auoregressive modeling. Esimae of he auoregressive model parameers is he firs

Více

Numerická integrace. b a. sin 100 t dt

Numerická integrace. b a. sin 100 t dt Numerická inegrace Mirko Navara Cenrum srojového vnímání kaedra kyberneiky FEL ČVUT Karlovo náměsí, budova G, mísnos 14a hp://cmpfelkcvucz/~navara/nm 1 lisopadu 18 Úloha: Odhadnou b a f() d na základě

Více

Kmitání tělesa s danou budicí frekvencí

Kmitání tělesa s danou budicí frekvencí EVROPSKÝ SOCIÁLNÍ FOND Kmiání ělesa s danou budicí frekvencí PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI České vysoké učení echnické v Praze, Fakula savební, Kaedra maemaiky Posílení vazby eoreických předměů

Více

X 3U U U. Skutečné hodnoty zkratových parametrů v pojmenovaných veličinách pak jsou: Průběh zkratového proudu: SKS =

X 3U U U. Skutečné hodnoty zkratových parametrů v pojmenovaných veličinách pak jsou: Průběh zkratového proudu: SKS = 11. Výpoče poměrů při zkraeh ve vlasní spořebě elekrárny Zkra má v obvodeh shémau smysl pouze v čáseh provozovanýh s účinně uzemněným sředem zdroje, čili mimo alernáor, vyvedení výkonu a přilehlá vinuí

Více

Diferenciální rovnice 1. řádu

Diferenciální rovnice 1. řádu Kapiola Diferenciální rovnice. řádu. Lineární diferenciální rovnice. řádu Klíčová slova: Obyčejná lineární diferenciální rovnice prvního řádu, pravá srana rovnice, homogenní rovnice, rovnice s nulovou

Více

= μ. (NB.3.1) L kde bezrozměrný kritický moment μ cr je: Okrajové podmínky při kroucení Krouticí zatížení α β. (volná deplanace) obecné 3,7 1,08

= μ. (NB.3.1) L kde bezrozměrný kritický moment μ cr je: Okrajové podmínky při kroucení Krouticí zatížení α β. (volná deplanace) obecné 3,7 1,08 Kroucení NB. Vniřní síl od kroucení Výsledk jednodušené analý pruů oevřeného průřeu se anedbáním účinku prosého kroucení ve smslu 6..7.(7) le upřesni na ákladě následující modifikované analogie ohbu a

Více

Testování a spolehlivost. 5. Laboratoř Spolehlivostní modely 2

Testování a spolehlivost. 5. Laboratoř Spolehlivostní modely 2 Tesování a solehlvos ZS 0/0 5. Laboraoř Solehlvosní modely Marn Daňhel Kaedra číslcového návrhu Fakula nformačních echnologí ČVUT v Praze Přírava sudjního rogramu Informaka je odorována rojekem fnancovaným

Více

Řešení ustáleného stavu a posuzování stability parametrických systémů s 1 stupněm volnosti

Řešení ustáleného stavu a posuzování stability parametrických systémů s 1 stupněm volnosti Západočesá unverza v Plzn Faula Aplovaných věd Kaedra mechany BAKALÁŘKÁ PRÁCE Řešení usáleného savu a posuzování sably paramercých sysémů s supněm volnos Plzeň 4 Karel Dráždl Prohlášení Předládám posouzení

Více

NA POMOC FO. Pád vodivého rámečku v magnetickém poli

NA POMOC FO. Pád vodivého rámečku v magnetickém poli NA POMOC FO Pád vodivého rámečku v maneickém poli Karel auner *, Pedaoická akula ZČU v Plzni Příklad: Odélníkový rámeček z vodivého dráu má rozměry a,, hmonos m a odpor. Je zavěšen ve výšce h nad horním

Více

7. ZÁKLADNÍ TYPY DYNAMICKÝCH SYSTÉMŮ

7. ZÁKLADNÍ TYPY DYNAMICKÝCH SYSTÉMŮ 7. ZÁKADNÍ TYPY DYNAMICKÝCH SYSTÉMŮ 7.. SPOJITÉ SYSTÉMY Téměř všechny fyzálně realzovatelné spojté lneární systémy (romě systémů s dopravním zpožděním lze vytvořt z prvů tří typů: proporconálních členů

Více

Inverzní kinematická a statická úloha manipulátoru AGEBOT

Inverzní kinematická a statická úloha manipulátoru AGEBOT Technická zpráva Kaedra kyberneiky, Fakula aplikovaných věd Západočeská univerzia v Plzni Inverzní kinemaická a saická úloha manipuláoru AGEBOT 1. 1. 212 Marin Švejda msvejda@kky.zcu.cz Obsah 1 Úvod 3

Více

Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Plocha.

Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Plocha. Saika 1 Saika 1 2. přednáška ové veličin Saický momen Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Miroslav Vokáč miroslav.vokac@klok.cvu.cz Konrolní

Více

2.2.2 Měrná tepelná kapacita

2.2.2 Měrná tepelná kapacita .. Měrná epelná kapacia Předpoklady: 0 Pedagogická poznámka: Pokud necháe sudeny počía příklady samosaně, nesihnee hodinu za 45 minu. Můžee využí oho, že následující hodina je aké objemnější a použí pro

Více

X31EO2 - Elektrické obvody 2. Kmitočtové charakteristiky

X31EO2 - Elektrické obvody 2. Kmitočtové charakteristiky X3EO - Elektrické obvody Kmitočtové charakteristiky Doc. Ing. Petr Pollák, CSc. Letní semestr 5/6!!! Volné šíření není povoleno!!! Fázory a spektra Fázor harmonického průběhu Û m = U m e jϕ ut) = U m sinωt

Více

DYNAMIKA časový účinek síly Impuls síly. 2. dráhový účinek síly mechanická práce W (skalární veličina)

DYNAMIKA časový účinek síly Impuls síly. 2. dráhový účinek síly mechanická práce W (skalární veličina) DYNAMIKA 2 Působením síly na čásici se obecně mění její pohybový sav. Síla působí vždy v učiém časovém inevalu a záoveň na učiém úseku ajekoie s. 1. časový účinek síly Impuls síly 2. dáhový účinek síly

Více

Analogový komparátor

Analogový komparátor Analogový komparáor 1. Zadání: A. Na předloženém inverujícím komparáoru s hyserezí změře: a) převodní saickou charakerisiku = f ( ) s diodovým omezovačem při zvyšování i snižování vsupního napěí b) zaěžovací

Více

Inovace a vytvoření odborných textů pro rozvoj klíčových. kompetencí v návaznosti na rámcové vzdělávací programy. education programs

Inovace a vytvoření odborných textů pro rozvoj klíčových. kompetencí v návaznosti na rámcové vzdělávací programy. education programs N V E S T C E D O R O Z V O J E V Z D Ě L Á V Á N Í Operační progra: Název oblas podpory: Název projek: Vzdělávání pro konkrenceschopnos Zvyšování kvaly ve vzdělávání novace a vyvoření odborných exů pro

Více

Radek Hendrych. Stochastické modelování v ekonomii a financích. 18. října 2010

Radek Hendrych. Stochastické modelování v ekonomii a financích. 18. října 2010 Sochasické modelování v ekonomii a financích 18. října 21 Program 1 2 3 4 Úroková míra R, T ) Uvažujme bezrizikový bezkuponový dluhopis s mauriou T a nominální hodnoou 1 $, jeho cenu v čase budeme nadále

Více

7.4.1 Parametrické vyjádření přímky I

7.4.1 Parametrické vyjádření přímky I 741 Paramerické vyjádření přímky I Předpoklady: 7303 Jak jsme vyjadřovali přímky v rovině? X = + D Ke všem bodů z roviny se z bod dosaneme posním C o vekor Pokd je bod na přímce, posováme se o vekor, E

Více

Technická kybernetika. Linearizace. Obsah

Technická kybernetika. Linearizace. Obsah Aademcý ro 06/07 řpravl: adm Farana Techncá ybernea Idenface yémů, algebra bloových chéma Obah Lnearzace. Analycá denface. Expermenální denface. Algebra bloových chéma. Záladní přenoy reglačního obvod.

Více

Úloha V.E... Vypař se!

Úloha V.E... Vypař se! Úloha V.E... Vypař se! 8 bodů; průměr 4,86; řešilo 28 sudenů Určee, jak závisí rychlos vypařování vody na povrchu, kerý ao kapalina zaujímá. Experimen proveďe alespoň pro pě různých vhodných nádob. Zamyslee

Více

XI-1 Nestacionární elektromagnetické pole...2 XI-1 Rovinná harmonická elektromagnetická vlna...3 XI-2 Vlastnosti rovinné elektromagnetické vlny...

XI-1 Nestacionární elektromagnetické pole...2 XI-1 Rovinná harmonická elektromagnetická vlna...3 XI-2 Vlastnosti rovinné elektromagnetické vlny... XI- Nesacionární elekromagneické pole... XI- Rovinná harmonická elekromagneická vlna...3 XI- Vlasnosi rovinné elekromagneické vlny...5 XI-3 obrazení rovinné elekromagneické vlny v prosoru...7 XI-4 Fázová

Více

JAN JUREK. Jméno: Podpis: Název měření: OVĚŘOVÁNÍ ČINNOSTI GENERÁTORU FUNKCÍ Číslo měření: 6. Třída: E4B Skupina: 2

JAN JUREK. Jméno: Podpis: Název měření: OVĚŘOVÁNÍ ČINNOSTI GENERÁTORU FUNKCÍ Číslo měření: 6. Třída: E4B Skupina: 2 STŘEDNÍ ŠKOLA ELEKTOTECNICKÁ FENŠTÁT p.. Jméno: JAN JEK Podpis: Název měření: OVĚŘOVÁNÍ ČINNOSTI GENEÁTO FNKCÍ Číslo měření: 6 Zkoušené předměy: ) Komparáor ) Inegráor ) Generáor unkcí Funkce při měření:

Více

ANALÝZA ZPOŽDĚNÍ PŘI MODELOVÁNÍ VZTAHŮ MEZI ČASOVÝMI ŘADAMI

ANALÝZA ZPOŽDĚNÍ PŘI MODELOVÁNÍ VZTAHŮ MEZI ČASOVÝMI ŘADAMI Polcká ekonome 49:, sr. 58-73, VŠE Praha,. ISSN 3-333 Rukops ANALÝZA ZPOŽDĚNÍ PŘI MODELOVÁNÍ VZAHŮ MEZI ČASOVÝMI ŘADAMI Josef ARL, Šěpán RADKOVSKÝ, Vsoká škola ekonomcká, Praha, Česká národní banka, Praha.

Více

Vojtěch Janoušek: III. Statistické zpracování a interpretace analytických dat

Vojtěch Janoušek: III. Statistické zpracování a interpretace analytických dat Vojěch Janoušek: III. Sascké zpracování a nerpreace analyckých da Úvod III. Zpracování a nerpreace analyckých da Sascké vyhodnocení analyckých da Zdroje chyb, přesnos a správnos analýzy Sysemacké chyby,

Více

SIMULACE A ŘÍZENÍ PNEUMATICKÉHO SERVOPOHONU POMOCÍ PROGRAMU MATLAB SIMULINK. Petr NOSKIEVIČ Petr JÁNIŠ

SIMULACE A ŘÍZENÍ PNEUMATICKÉHO SERVOPOHONU POMOCÍ PROGRAMU MATLAB SIMULINK. Petr NOSKIEVIČ Petr JÁNIŠ bstrakt SIMULCE ŘÍZENÍ PNEUMTICKÉHO SERVOPOHONU POMOCÍ PROGRMU MTL SIMULINK Petr NOSKIEVIČ Petr JÁNIŠ Katedra automatzační technky a řízení Fakulta stroní VŠ-TU Ostrava Příspěvek popsue sestavení matematckého

Více

Biologické modely. Robert Mařík. 9. listopadu Diferenciální rovnice 3. 2 Autonomní diferenciální rovnice 8

Biologické modely. Robert Mařík. 9. listopadu Diferenciální rovnice 3. 2 Autonomní diferenciální rovnice 8 Biologické modely Rober Mařík 9. lisopadu 2008 Obsah 1 Diferenciální rovnice 3 2 Auonomní diferenciální rovnice 8 3 onkréní maemaické modely 11 Dynamická rovnováha poču druhů...................... 12 Logisická

Více

Simulační metody hromadné obsluhy

Simulační metody hromadné obsluhy Smulační metody hromadné osluhy Systém m a model vstupy S výstupy Systém Část prostředí, kterou lze od jeho okolí oddělt fyzckou neo myšlenkovou hrancí Model Zjednodušený, astraktní nástroj používaný pro

Více

Demografické projekce počtu žáků mateřských a základních škol pro malé územní celky

Demografické projekce počtu žáků mateřských a základních škol pro malé územní celky Demografické projekce poču žáků maeřských a základních škol pro malé územní celky Tomáš Fiala, Jika Langhamrová Kaedra demografie Fakula informaiky a saisiky Vysoká škola ekonomická v Praze Pořebná daa

Více

Volba vhodného modelu trendu

Volba vhodného modelu trendu 8. Splinové funkce Trend mění v čase svůj charaker Nelze jej v sledovaném období popsa jedinou maemaickou křivkou aplikace echniky zv. splinových funkcí: o Řadu rozdělíme na několik úseků o V každém úseku

Více

Vliv funkce příslušnosti na průběh fuzzy regulace

Vliv funkce příslušnosti na průběh fuzzy regulace XXVI. ASR '2 Seminar, Insrumens and Conrol, Osrava, April 26-27, 2 Paper 2 Vliv funkce příslušnosi na průběh fuzzy regulace DAVIDOVÁ, Olga Ing., Vysoké učení Technické v Brně, Fakula srojního inženýrsví,

Více

DIPLOMOVÁ PRÁCE UNIVERZITA KARLOVA V PRAZE FAKULTA SOCIÁLNÍCH VĚD. Konvergence České republiky k EU (v porovnání s dalšími kandidátskými státy)

DIPLOMOVÁ PRÁCE UNIVERZITA KARLOVA V PRAZE FAKULTA SOCIÁLNÍCH VĚD. Konvergence České republiky k EU (v porovnání s dalšími kandidátskými státy) UNIVERZITA KARLOVA V PRAZE FAKULTA SOCIÁLNÍCH VĚD INSTITUT EKONOMICKÝCH STUDIÍ DIPLOMOVÁ PRÁCE Konvergence České republky k EU (v porovnání s dalším kanddáským sáy Vypracoval: Bc. Crad Slavík Konzulan:

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK Základy ekonomerie Heeroskedasicia Cvičení 7 Zuzana Dlouhá Gauss-Markovy předpoklady Náhodná složka: Gauss-Markovy předpoklady. E(u) = 0 náhodné vlivy se vzájemně vynulují. E(uu T ) = σ I n konečný

Více

Stýskala, L e k c e z e l e k t r o t e c h n i k y. Vítězslav Stýskala TÉMA 6. Oddíl 1-2. Sylabus k tématu

Stýskala, L e k c e z e l e k t r o t e c h n i k y. Vítězslav Stýskala TÉMA 6. Oddíl 1-2. Sylabus k tématu Sýskala, 22 L e k c e z e l e k r o e c h n i k y Víězslav Sýskala TÉA 6 Oddíl 1-2 Sylabus k émau 1. Definice elekrického pohonu 2. Terminologie 3. Výkonové dohody 4. Vyjádření pohybové rovnice 5. Pracovní

Více

FINANČNÍ MATEMATIKA- ÚVĚRY

FINANČNÍ MATEMATIKA- ÚVĚRY Projek ŠABLONY NA GVM Gymnázium Velké Meziříčí regisrační číslo projeku: CZ.1.07/1.5.00/4.0948 IV- Inovace a zkvalinění výuky směřující k rozvoji maemaické gramonosi žáků sředních škol FINANČNÍ MATEMATIKA-

Více

MATEMATIKA II V PŘÍKLADECH

MATEMATIKA II V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADECH CVIČENÍ Č. Ing. Pera Schreiberová, Ph.D. Osrava 0 Ing. Pera Schreiberová, Ph.D. Vysoká škola báňská Technická

Více

ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK

ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK Vzhledem ke skuečnosi, že způsob modelování elasomerových ložisek přímo ovlivňuje průběh vniřních sil v oblasi uložení, rozebereme v éo kapiole jednolivé možné

Více

Demonstrace principů NMR

Demonstrace principů NMR Úvod Demonsrace principů NMR Ve 40. leech 20. soleí byl poprvé pozorován jev, kerý dnes známe jako nukleární magneickou rezonanci a jehož podsaou je rezonanční chování někerých aomových jader v příomnosi

Více

Téma: Měření tíhového zrychlení.

Téma: Měření tíhového zrychlení. PRACOVNÍ LIST č. 2 Téma úlohy: Měření íhového zrychlení Pracoval: Třída: Daum: Spolupracovali: Teploa: Tlak: Vlhko vzduchu: Hodnocení: Téma: Měření íhového zrychlení. Míní hodnou íhového zrychlení lze

Více

Přehled modelů viskoelastických těles a materiálů

Přehled modelů viskoelastických těles a materiálů Přehled modelů vskoelsckých ěles merálů Klscké reologcké modely Klscké reologcké modely vycházejí z předsvy, že chováí ěles lze hrd chováím sysému složeého z pruž písů, edy z ookeových ewoových ěles. ookeovo

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY Kaedra obecné elekroechniky Fakula elekroechniky a inormaiky, VŠB - T Osrava. TOJFÁZOVÉ OBVODY.1 Úvod. Trojázová sousava. Spojení ází do hvězdy. Spojení ází do rojúhelníka.5 Výkon v rojázových souměrných

Více

MĚRENÍ V ELEKTROTECHNICE

MĚRENÍ V ELEKTROTECHNICE EAICKÉ OKHY ĚENÍ V ELEKOECHNICE. řesnost měření. Chyby analogových a číslcových měřcích přístrojů. Chyby nepřímých a opakovaných měření. rmární etalon napětí. Zdroje referenčních napětí. rmární etalon

Více

Přednáška kurzu MPOV. Klasifikátory, strojové učení, automatické třídění 1

Přednáška kurzu MPOV. Klasifikátory, strojové učení, automatické třídění 1 Přednáška kurzu MPOV Klasifikáory, srojové učení, auomaické řídění 1 P. Peyovský (email: peyovsky@feec.vubr.cz), kancelář E530, Inegrovaný objek - 1/25 - Přednáška kurzu MPOV... 1 Pojmy... 3 Klasifikáor...

Více

Číslicový lineární filtr prvého řádu se statisticky optimálně nastavovanými parametry

Číslicový lineární filtr prvého řádu se statisticky optimálně nastavovanými parametry Číslicový lineární filr prvého řádu se saisicky opimálně nasavovanými paramery Ing. Jiří Tůma, CSc. Tara, o. p., Kopřivnice 59.2 Článek se zabývá odvozením rekurenních vzorců pro časovou posloupnos hodno

Více

Analýza časových řad. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p

Analýza časových řad. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p Analýza časových řad Informační a komunikační echnologie ve zdravonicví Definice Řada je posloupnos hodno Časová řada chronologicky uspořádaná posloupnos hodno určiého saisického ukazaele formálně je realizací

Více

Odezva na obecnou periodickou budící funkci. Iva Petríková Katedra mechaniky, pružnosti a pevnosti

Odezva na obecnou periodickou budící funkci. Iva Petríková Katedra mechaniky, pružnosti a pevnosti Odezva a obecou periodickou budící fukci Iva Períková Kaedra mechaiky, pružosi a pevosi Obsah Fourierovy řady Odezva a polyharmoickou fukci Odezva a obecou periodickou fukci Odezva a jedokový skok Příklad

Více

I. Soustavy s jedním stupněm volnosti

I. Soustavy s jedním stupněm volnosti Jiří Máca - aedra mechaniy - B325 - el. 2 2435 45 maca@fsv.cvu.cz 1. Záladní úlohy dynamiy 2. Dynamicá zaížení 3. Pohybová rovnice 4. Volné nelumené miání 5. Vynucené nelumené miání 6. Přílady 7. Oáčivé

Více

Maxwellovy a vlnová rovnice v obecném prostředí

Maxwellovy a vlnová rovnice v obecném prostředí Maxwellovy a vlnová rovnie v obeném prosředí Ing. B. Mihal Malík, Ing. B. Jiří rimas TCHNICKÁ UNIVRZITA V LIBRCI Fakula meharoniky, informaiky a mezioborovýh sudií Teno maeriál vznikl v rámi proeku SF

Více

Příloha: Elektrická práce, příkon, výkon. Příklad: 4 varianta: Př. 4 var: BEZ CHYBY

Příloha: Elektrická práce, příkon, výkon. Příklad: 4 varianta: Př. 4 var: BEZ CHYBY říloha: Elekrická práce, příkon, výkon říklad: 4 variana: onorné čerpadlo vyčerpá axiálně 22 lirů za inuu do axiální výšky 1,5 erů Jaká je jeho účinnos, když jeho příkon je 9 Husoa vody je 1 ř 4 var: BEZ

Více

Robotika sbírka řešených příkladů

Robotika sbírka řešených příkladů FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Roboika sbírka řešených příkladů Auor exu: pro. Ing. Franišek Šolc, CSc 4 Komplexní inovace sudijních programů a zvyšování

Více

ZÁKLADY TEORIE SIGNÁLŮ A SOUSTAV

ZÁKLADY TEORIE SIGNÁLŮ A SOUSTAV VŠB TU Osrava, Fakula elekroechniky a informaiky, Kaedra měřící a řídící echniky ZÁKLADY TEORIE SIGNÁLŮ A SOUSTAV Pavel Nevřiva 007 PŘEDMLUVA Too skripum je věnováno základním meodám, používaným při analýze

Více

Studijní texty FYZIKA I. Fakulta strojní Šumperk

Studijní texty FYZIKA I. Fakulta strojní Šumperk Sudijní exy FYZIKA I Fakula srojní Šumperk RNdr Eva Janurová, PhD Kaedra fyziky, VŠB-TU Osrava 6 OBSAH ÚVOD, ZÁKLADNÍ POJMY 3 FYZIKÁLNÍ VELIČINY A JEJICH JEDNOTKY 3 ROZDĚLENÍ FYZIKÁLNÍCH VELIČIN 4 KINEMATIKA

Více

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 SIMULACE numercké řešení dferencálních rovnc smulační program dentfkace modelu Numercké řešení obyčejných dferencálních rovnc krokové metody pro řešení lneárních dferencálních rovnc 1.řádu s počátečním

Více

1 Elektrotechnika 1. 9:00 hod. G 0, 25

1 Elektrotechnika 1. 9:00 hod. G 0, 25 A 9: hod. Elektrotechnka a) Napětí stejnosměrného zdroje naprázdno je = 5 V. Př proudu A je svorkové napětí V. Vytvořte napěťový a proudový model tohoto reálného zdroje. b) Pomocí přepočtu napěťových zdrojů

Více