Tenzor malé deformace
|
|
- Danuše Slavíková
- před 6 lety
- Počet zobrazení:
Transkript
1 Moerní technologe ve stuu plkovné fk CZ..7/../7.8 Tenor mlé eformce stuní opor k přenášce SLO/EXTM
2 Anlý stvu eformce těles e ž po řu esetletí enou nečetněších úloh mechnk. Účelem tohoto krátkého stuního tetu e vést nenutněší áklní pom oboru mechnk kontnu které tvoří vbu me eformcí přemětu optckým epermentálním metom užívným v epermentální mechnce.
3 Stv eformovného těles bueme koumt be ohleu n příčn které eformc vvoláví n fkální ákon pole nchž probíhá. Změříme se poue n určení čstě geometrckého vthu me velčnm které chrkteruí vlstní eformc ervcem velčn popsuících celkové posunutí těles. V tomto celkovém posunutí e hrnut: vlstní eformce těles lneární trnslce přemětu ko tuhého těles rotce přemětu ko tuhého těles. Vlstní eformce e měn váemné poloh enotlvých hmotných boů tvořících toto těleso s tím souvseící tvrové měn těles. Lneární trnslce přemětu ko tuhého těles e posunutí př němž se celé těleso posouvá ko celek. Rotce přemětu ko tuhého celku e posunutí př kterém se celé těleso otáčí ko celek. V nšch úvhách se omeíme poue n tv. mlé eformce veeme tenor mlé eformce. Násleuící ovoení proveeme pole M. Brčk [ ]. Př této příležtost e nutno konsttovt že tento přístup k tenoru eformce e klscký. Zímvý moerní přístup k popsu teore mlé eformce pomocí krtéských tenorů může nbínout npříkl práce M. Okrouhlík [3]. Měme v blíké bo P Q n neeformovném tělese obr.. Poloh bou P těles v neeformovném stvu e vhleem k počátku soustv souřnc án polohovým vektorem ehož složk sou pro 3. Poobně poloh bou Q vhleem k počátku e určen polohovým vektorem ehož složk sou. Nní těleso vstvíme působení eformce. Jeím vlvem bo P přee o bou P bo Q o bou Q. Poloh bou P e án polohovým vektorem o složkách pro 3 poloh bou Q e án polohovým vektorem o složkách. Působením vněších sl se te bo P posunul o bou P toto posunutí bueme chrkterovt vektorem posunutí který má složk pro 3. Me souřncem boů P P pk pltí váemný vth pro 3. Pro nše úvh ále přepokláeme že funkce sou spoté mí prcální ervce všech potřebných řáů. Stuem eformovného stvu těles be ohleu n příčn které eformc vvoláví se bývá geometre konečných eformcí. 3
4 4 Obr. : K váření tenoru mlé eformce. Jk blo řečeno výše omeíme se poue n mlé eformce tkže složk vektoru posunutí spolu s ech ervcem sou velm mlé ve srovnání s číslem. Z rovnce s váříme ferencál přčemž v Tlorově rovo funkce můžeme nebt člen všších řáů. Vužeme-l entt δ 3 ke δ e Kroneckerovo elt potom le psát δ. 4 Souřnce bou Q sou proto sečteme-l rovnce 4 ískáme pro ně vth. 5 Ze vthu 5 e řemé že půvoní souřnce bou Q se náslekem eformce neměnl poue o složku vektoru posunutí le o výr
5 . 6 Protože posunutí neávsí n poloe bou Q vhleem k bou P e společné všem boům uvžovného okolí bou P popsue nám trnslc těles ko tuhého celku. Výr 6 všk ž n poloe bou Q P t. n ávsí te chrkterue bývící ěe - rotc těles ko tuhého celku eho vlstní eformc. Zbýveme se ále tímto výrem porobně. Pomocí rovnce 4 le výr 6 vářt ko δ. 7 Z tohoto vthu plne že výr 6 vlstně přestvue přírůstk složek půvoního vektoru které ončíme δ. Tto přírůstk v sobě musí hrnovt k vlstní eformc tk rotc těles. Nní prostuueme kžý příp oěleně. Pro příp rotce pltí že válenost vou lbovolných boů ůstáví konstntní. Otu plne že přírůstk δ sou sce růné o nul le kvrát élk půvoního vektoru se nemění. Te vrce tohoto kvrátu e rovn nule pltí δ δ δ. 8 Ončíme-l v rovnc 7 výr / ko potom pro přírůstek složek vektoru působený rotcí ostneme relc δ. 9 Dosíme-l tento vth o rovnce 8 obržíme po úprvě. Výr n levé strně rovnce ále roepíšeme o enotlvých složek. Te
6 Rovnce musí být splněn pro kžý bo nfntemálního okolí uvžovného bou P toho plne že sou lbovolné nenulové nfntemální velčn. Proto koefcent u 3 musí být rovn nule rovnce e tuíž splněn entck. Pk pltí nebol obecně pro 3. b Z rovnc 7 9 ž le učnt ávěr že výr přestvue ntsmetrcký tenor vřue rotc uvžovného blíkého okolí bou P ko tuhého celku. Jelkož ntsmetrcký tenor e určen v troroměrném prostoru třem neávslým složkm můžeme tenor vářt ve tvru tv. álního vektoru o složkách 3 které váíme ko Z ůvou ntsmetrčnost roložíme výr / n část smetrckou ntsmetrckou tím o sebe rolšíme příspěvek vlstní eformce příspěvek rotce přemětu. Tuíž. 4 Smetrcká část uává vlstní eformc nčíme. 5 Antsmetrcká část uává rotc elementu těles ko tuhého celku nčíme. 6 6
7 7 Zveeme-l nkonec ončení rovnc 5 6 o rovnce 7 le přírůstk složek vektoru vářt pomocí superpoce přírůstků působených vlstní eformcí rotcí elementu těles δ. 7 V ávěru shrneme ovoené výslek pokusíme se e npst v přehleném tvru. Z tímto účelem proveeme násleuící úvhu. Souřnce bou P sme v soulu s obr. ončl ko souřnce bou Q ko. Ončme nní souřnce bou Q pomocí. Pk ostneme. 8 Rovnc 7 le proto přepst o tvru δ. 9 Otu úprvou obržíme přehlený vth pro přírůstek souřnc bou Q δ δ. První člen n prvé strně rovnce vřue trnslc těles te prlelní posunutí společně s boem P k se válenost enotlvých boů nemění. Druhý člen vřue vlstní eformc kontnu př níž se mění válenost boů kontnu. Třetí člen přestvue rotc těles ko tuhého celku př níž se válenost boů nemění. Poku bchom se npříkl omel n měření eformce elementu ploch povrchu koumného přemětu v rovně voleného krtéského souřného sstému můžeme n ávěr tetu eště uvést v souhrnném ápsu všechn složk tenoru mlé eformce opovíící této rovně. S okem n le pro trnslční rotční eformční složk tenoru mlé eformce vhleem k počátku krtéského souřného sstému psát [ ]
8 ke složk repreentuí trnslce ve směru souřných os složk repreentuí rotce kolem os ále složk respektve přestvue poměrné proloužení ve směru souřné os respektve konečně složk přestvue smk. 8
9 Senm použté oporučené ltertur: [] BRDIČKA M. Mechnk kontnu. Prh: NČSAV 959. [] BRDIČKA M. SAMEK L. SOPKO B. Mechnk kontnu. Prh: Acem. [3] OKROUHLÍK M. etor Implementton of Nonlner Contnuum Mechncs n Fnte Element Coes. Prgue: Insttute of Thermomechncs Acem of Scences of the Cech Republc
U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Analytické řešení jednorozměrného proudění newtonské kapaliny dvě pevné desky
U8 Ústav rocesní a racovatelské technk FS ČVUT v Prae Analtcké řešení enoroměrného roění newtonské kaaln vě evné esk Jenoroměrné roění newtonské kaaln v meeře me věma evným eskam vlvem tlakového raent
Univerzita Tomáše Bati ve Zlíně
nvert Tomáše Bt ve Zlíně LBOTONÍ CČENÍ ELEKTOTECHNKY PŮMYSLOÉ ELEKTONKY Náev úlohy: Metody řešení stejnosměrných elektrckých ovodů v ustáleném stvu Zprcovl: Petr Lur, Josef Morvčík Skupn: T / Dtum měření:
PLANETOVÉ PŘEVODY. Pomůcka do cvičení z předmětu Mobilní energetické prostředky Doc.Ing. Pavel Sedlák, CSc.
PLANETOVÉ PŘEVODY Pomůck do cvičení předmětu Mobilní energetické prostředky Doc.Ing. Pvel Sedlák, CSc. Pro pochopení funkce plnetových převodů jejich kinemtiky je nutné se senámit se ákldy především kinemtikou
Pružnost a plasticita II
Pružnost a plastcta II 3. ročník bakalářského stua oc. Ing. Martn Kresa Ph.D. Katera stavební mechank Řešení nosných stěn metoou sítí 3 Řešení stěn metoou sítí metoa sítí (metoa konečných ferencí) těnová
( ) ( ) ( ) Vzdálenost bodu od přímky II. Předpoklady: 7312
.. Vzálenost bou o přímk II Přepokl: Pegogiká poznámk: Průběh hoin honě závisí n tom, jk oolní jsou stuenti v oszování o vzorů, které je nejtěžší částí hoin. Dlším problémem pk mohou být rovnie s bsolutní
Metoda konečných prvků. Robert Zemčík
Metod konečných prvků Robert Zemčík Zápdočeská unverzt v Plzn 2014 1 Rovnce mtemtcké teore pružnost Předpokládáme homogenní, zotropní lneární mterál, mlé deformce. Jednoosá nptost Cuchyho podmínky rovnováhy
Fyzikální kabinet GymKT Gymnázium J. Vrchlického, Klatovy
Fzikální kbinet GmKT Gmnázium J. Vrchlického, Kltov stženo z http:kbinet.zik.net Optické přístroje Subjektivní optické přístroje - vtvářejí zánlivý (neskutečný) obrz, který pozorujeme okem (subjektivně)
Nejdříve opis pro naladění čtenáře a uvedení do mého problému, ten, který budu za chvíli chtít diskutovat.
Problém Nvrátil ( tím, že neumí mtemtiku ) jsou : Nejdříve opis pro nldění čtenáře uvedení do mého problému, ten, který budu chvíli chtít diskutovt. Větu o áměnnosti smíšených derivcí le obdobných předpokldů
LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU
LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y
Konzultace z předmětu MATEMATIKA pro první ročník dálkového studia
- - Konzultce z předmětu MATEMATIKA pro první ročník dálkového studi ) Číselné obor ) Zákldní početní operce procentový počet ) Absolutní hodnot reálného čísl ) Intervl množinové operce ) Mocnin ) Odmocnin
2.1 - ( ) ( ) (020201) [ ] [ ]
- FUNKCE A ROVNICE Následující zákldní znlosti je nezbytně nutné umět od okmžiku probrání ž do konce studi mtemtiky n gymnáziu. Vyždováno bude porozumění schopnost plikovt ne pouze mechnicky zopkovt. Některé
6 Řešení soustav lineárních rovnic rozšiřující opakování
6 Řšní soustv linárníh rovni rozšiřujíí opkování Tto kpitol j rozšiřujíí ěžné učivo. Poku uvné mtoy zvlánt, zkrátí vám to čs potřný k výpočtům. Nní to všk učivo nzytné, řšit soustvy linárníh rovni lz i
Správné řešení písemné zkoušky z matematiky- varianta A Přijímací řízení do NMgr. studia učitelských oborů 2010
právné řešení písemné koušky mtemtiky- vrint A Přijímcí říení do NMgr. studi učitelských oborů Příkld. Vyšetřete průběh funkce v jejím mimálním definičním oboru nčrtněte její grf y Určete pritu (sudá/lichá),
Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254
Evropský socálí fod Prh & EU: Ivestuee do vší udoucost eto terál vkl díky Operčíu progru Prh dptlt CZ..7/3..00/3354 Mžerské kvtttví etody II - předášk č. - eore her eore her 96 vo Neu, Morgester kldtelé
a 1 = 2; a n+1 = a n + 2.
Vyjářeí poloupoti Poloupot můžeme určit ěkolik růzými způoby. Prvím je protý výčet prvků. Npříkl jeouchá poloupot uých číel by e výčtem l zpt tkto:,, 6,,... Dlší možotí je vzorec pro tý čle. Stejá poloupot
Termodynamický popis chemicky reagujícího systému
5. CHEMICKÉ ROVNOVÁHY Všechny chemcké rekce směřují k dynmcké rovnováze, v níž jsou řítomny jk výchozí látky tk rodukty, které všk nemjí jž tendenc se měnt. V řdě řídů je všk oloh rovnováhy tk osunut ve
Analytická geometrie v rovině
nltická geometrie v rovině Souřdnicová soustv v rovině Zvolme v rovině dvě nvájem kolmé přímk číselné os. růsečík O těchto přímek nveme počátek souřdnic. Vodorovnou přímku ončíme osou svislou ončíme osou
Obrázková matematika D. Šafránek Fakulta jaderná a fyzikálně inženýrská, Břehová 7, Praha 1
Orázková mtemtik D. Šfránek Fkult jerná fyzikálně inženýrská řehová 7 115 19 Prh 1.sfrnek@seznm.z strkt Názorná ovození záklníh geometrikýh vět známýh ze stření školy. 1 Úvo N stření škole se mehniky používjí
Rovinná a prostorová napjatost
Rovinná a prostorová napjatost Vdělme v bodě tělesa elementární hranolek o hranách d, d, d Vnitřní síl ve stěnách hranolku se projeví jako napětí na příslušné ploše a le je roložit do směrů souřadnicových
Galileova transformace
Glileov trnsformce r V Neeistuje v čse t = působ 0: = jk určit bsolutní rchlost m F m F m F ' konst.. Newtonův ákon r ' ' ' m ' F m ' F m ' F poloh ' ' v Vt ' rchlost ' v v ' v v ' v rchlení ' ' ' V ovnoměrně
6. a 7. března Úloha 1.1. Vypočtěte obsah obrazce ohraničeného parabolou y = 1 x 2 a osou x.
KMA/MAT Přednášk cvičení č. 4, Určitý integrál 6. 7. březn 17 1 Aplikce určitého integrálu 1.1 Počáteční úvhy o výpočtu obshu geometrických útvrů v rovině Úloh 1.1. Vypočtěte obsh obrzce ohrničeného prbolou
6.1 Shrnutí základních poznatků
6.1 Shrnutí ákladních ponatků Prostorová a rovinná napjatost Prostorová napjatost v libovolném bodě tělesa je v pravoúhlé soustavě souřadnic obecně popsána 9 složkami napětí, které le uspořádat do matice
Vzorová řešení čtvrté série úloh
FYZIKÁLNÍ SEKCE Přírodovědecká fkult Msrykovy univerzity v Brně KORESPONDENČNÍ SEMINÁŘ Z FYZIKY 8. ročník 001/00 Vzorová řešení čtvrté série úloh (5 bodů) Vzorové řešení úlohy č. 1 (8 bodů) Volný pád Měsíce
SMR 1. Pavel Padevět
MR 1 Pvel Pdevět PŘÍHRADOVÉ KONTRUKCE REAKCE A VNITŘNÍ ÍLY PŘÍHRADOVÉ KONTRUKCE jsou prutové soustvy s kloubovým vzbm. Příhrdová konstrukce je tvořen z přímých prutů nvzájem spojených ve styčnících kloubovým
Studentská tvůrčí a odborná činnost STOČ 2013
Stentsá tvůrčí oborná čnnost SOČ 03 MEODY KOMPEZACE PORUCHY V PREDIKIVÍM ŘÍZEÍ S DOPRAVÍM ZPOŽDĚÍM Stnslv ALAŠ UB ve Zlíně, FAI Stráněm 45 5. bn 03 FAI UB ve Zlíně SOČ 03 - Stentsá tvůrčí oborná čnnost
Teoretický souhrn k 2. až 4. cvičení
SYSTÉMOVÁ ANALÝZA A MODELOVÁNÍ Teoretcký souhrn k 2. ž 4. cvčení ZS 2009 / 200 . Vyezení zákldních poů.. Systé e Systé e účelově defnovná nožn prvků vze ez n, která spolu se svý vstupy výstupy vykzue ko
Pružnost a plasticita II
Pružnost a plastcta II 3 ročník bakalářského studa doc Ing Martn Kresa PhD Katedra stavební mechank Řešení pravoúhlých nosných stěn metodou sítí Statcké schéma nosné stěn q G υ (μ) h l d 3 wwwfastvsbcz
Nadměrné daňové břemeno
Nměrné ňové břemeno Nměrné ňové břemeno je efinováno jko ztrát přebytku spotřebitele přebytku výrobe, ke kterému ohází v ůsleku znění. Něky se tož nzývá jko ztrát mrtvé váhy. Připomenutí: Přebytek spotřebitele:
ÚSTAV MECHANIKY A MATERIÁLŮ FD ČVUT. DOC. ING. MICHAL MICKA, CSc. PŘEDNÁŠKA 4
ÚVOD DO TEORIE MATEMATICKÉ PRUŽNOSTI ZÁKLADNÍ PŘEDPOKLADY A POJMY. Látka, která vtváří příslušné těleso je dokonale lineárně pružné, mei napětím a přetvořením je lineární ávislost.. Látka hmotného tělesa
ALGORITMUS SILOVÉ METODY
ALGORITMUS SILOVÉ METODY CONSISTENT DEFORMATION METHOD ALGORITHM Petr Frantík 1, Mchal Štafa, Tomáš Pal 3 Abstrakt Příspěvek se věnuje popsu algortmzace slové metody sloužící pro výpočet statcky neurčtých
Grafické řešení úloh LP se dvěma neznámými
. přenáška Grafické řešení úloh LP se věma nenámými Moel úlohy lineárního programování, který obsahuje poue vě nenámé, le řešit graficky v rovině pravoúhlých souřaných os. V této rovině se nejprve obraí
Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření.
Úloh č. 9 je sestven n zákldě odkzu n dv prmeny. Kždý z nich přistupuje k stejnému úkolu částečně odlišnými způsoby. Níže jsou uvedeny ob zdroje v plném znění. V kždém z nich jsou pro posluchče cenné inormce
PRAVDĚPODOBNOST A STATISTIKA
SP Náhodý vektor PRAVĚPOOBNOS A SAISIKA Lbor Žák SP Náhodý vektor Lbor Žák Náhodý vektor přpomeutí pomů z SP V prví část kurzu SP s rozšíříme pomy o áhodém vektoru z SP: Nechť e áhodý vektor eho složky:
Základy teorie matic
Zákldy teorie mtic 1. Pojem mtice nd číselným tělesem In: Otkr Borůvk (uthor): Zákldy teorie mtic. (Czech). Prh: Acdemi, 1971. pp. 9--12. Persistent URL: http://dml.cz/dmlcz/401328 Terms of use: Akdemie
3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90
ROVNICE A NEROVNICE 8 Lineární rovnice 8 Kvdrtické rovnice 8 Rovnice s bsolutní hodnotou 88 Ircionální rovnice 90 Eponenciální rovnice 9 Logritmické rovnice 9 7 Goniometrické rovnice 98 8 Nerovnice 0 Úlohy
Zadání příkladů. Zadání:
Zdání příkldů Zdání: ) Popšte oblst vužtí plánovných expermentů ) Uveďte krtér optmlt plánů ) Co sou Hdmrdov mtce ké mí vlstnost? ) Co sou. fktorové plán k e lze vužít? 5) Blok čtverce - oblst ech vužtí
Dynamický výpočet vačkového hřídele Frotoru
Zápočeská univerzit v Plzni Fkult plikovných vě Kter mechniky ynmický výpočet včkového hříele Frotoru Výzkumná zpráv č. 5//7 Řešitel: oc. r. Ing. Jn upl Plzeň, únor 7 Úvo: Cílem přeložené zprávy je vyšetření
Normalizace fyzikálních veličin pro číslicové zpracování
Noralzace fyzkálních velčn pro číslcové zpracování Vypracoval: Petr Kaaník Aktualzace: 15. října 2003 Kažý realzovaný říící systé usel projít vě hlavní stá. Nejprve je to vlastní návrh. Na záklaě ostupných
Jaký vliv na tvar elipsy má rozdíl mezi délkou provázku mezi body přichycení a vzdáleností těchto bodů.
7.5.7 lips Přdpokldy: 7501 lips = rozšlápnutá kružnic. Jk ji sstrojit? Zhrdnická konstrukc lipsy (tkto s vytyčují záhony): Vzmm provázk n koncích ho přidělám tk, y nyl npnutý. Klcíkm provázk npnm tk, y
Měření tvaru ploch. Postup :
B ěření tvau plo Úol :. Změřte tva plo pomoí souřadnovéo měříío aříení. Poveďte eonstu tvau plo na počítač. Učete polomě sféé plo pomoí sféometu Postup :. ěření tvau plo pomoí souřadnovéo měříío aříení
SMR 2. Pavel Padevět
SR Pve Pevět Přenášk č. Přenášk č. PRINCIP VIRTUÁLNÍCH PRCÍ Výpočet přetvoření n sttk určtý konstrukí Přenášk č. Dopňková vrtuání práe momentů Vv n výpočet eformí: oment Posouvjíí sí Normáové sí (přírové
3.2. LOGARITMICKÁ FUNKCE
.. LOGARITMICKÁ FUNKCE V této kpitole se dovíte: jk je definován ritmická funkce (ritmus) jké má ákldní vlstnosti; důležité vorce pro práci s ritmickou funkcí; co nmená ritmovt odritmovt výr. Klíčová slov
m n. Matice typu m n má
MATE ZS KONZ B Mtice, hodnost mtice, Gussův tvr Mtice uspořádné schém reálných čísel: m m n n mn Toto schém se nzývá mtice typu m řádků n sloupců. m n. Mtice typu m n má Oznčujeme ji A, B,někdy používáme
6. Setrvačný kmitový člen 2. řádu
6. Setrvčný kmitový člen. řádu Nejprve uvedeme dynmické vlstnosti kmitvého členu neboli setrvčného členu. řádu. Předstviteli těchto členů jsou obvody nebo technická zřízení, která obshují dvě energetické
1.3 Derivace funkce. x x x. . V každém bodě z definičního oboru má každá z těchto funkcí vlastní derivaci. Podle tabulky derivací máme:
rivc unkc 9 Vpočtět drivci unkc nou unkci lz přpst v tvru součt tří unkcí Zřjmě ji můžm chápt jko kd Ihnd vidím ž V kždém bodě z diničního oboru má kždá z těchto unkcí vlstní drivci Podl tbulk drivcí mám:
SIMULACE A ŘÍZENÍ PNEUMATICKÉHO SERVOPOHONU POMOCÍ PROGRAMU MATLAB SIMULINK. Petr NOSKIEVIČ Petr JÁNIŠ
bstrakt SIMULCE ŘÍZENÍ PNEUMTICKÉHO SERVOPOHONU POMOCÍ PROGRMU MTL SIMULINK Petr NOSKIEVIČ Petr JÁNIŠ Katedra automatzační technky a řízení Fakulta stroní VŠ-TU Ostrava Příspěvek popsue sestavení matematckého
Fotogrammetrie. Rekonstrukce svislého snímku
Fotogrammetrie Rekonstrukce svisléo snímku Zaání: prove te úplnou rekonstrukci svisléo snímku anéo objektu, je-li známo, že vstupní část má čtvercový půorys o élce strany s = 2. pro větší přelenost nejprve
matematika vás má it naupravidl
VÝZNAM Algebrický výrz se zvádí intuitivn bez p esn ího vmezení v kolizi s názv dvoj len, troj len, mnoho len. Stále se udr uje fle ná p edstv, e ísl ozn ují mno ství, e jsou zobecn ním vnímné skute nosti.
III.4. Fubiniova (Fubiniho) věta pro trojný integrál
E. Brožíková, M. Kittlerová, F. Mrá: Sbírk příkldů Mtemtik II ( III.. Fubiniov (Fubiniho vět pro trojný integrál Vpočítejte trojné integrál n dných množinách E : Příkld. I Řešení : I ( + d d d; {[,, E
+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c
) INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem neurčitého integrálu Je dán funkce Pltí všk tké F tk, y pltilo F ( ) f ( ) Zřejmě F ( ), protože pltí, 5,, oecně c, kde c je liovolná kon- stnt f ( ) nším
Skalární matice. Jednotková matice. Matice také mohou být různě symetrické. Nejčastěji se však uplatní symetrie podle diagonály:
Mte N mte jem už rzl v kptole zveeí otáčeí. Tm jem le leko víe ež mte upltl kompleí číl, mž yí už eue možé pomo, protože kompleí číl jou upořáé voje reálýh číel, ož e pro rovu hoí. Tto kptolk je prví,
II. kolo kategorie Z5
II. kolo ktegorie Z5 Z5 II 1 Z prvé kpsy klhot jsem přendl 4 pětikoruny do levé kpsy z levé kpsy jsem přendl 16 dvoukorun do prvé kpsy. Teď mám v levé kpse o 13 korun méně než v prvé. Ve které kpse jsem
POTENCIÁL ELEKTRICKÉHO POLE ELEKTRICKÉ NAPĚTÍ
POTENCIÁL ELEKTRICKÉHO POLE ELEKTRICKÉ NAPĚTÍ ELEKTRICKÝ POTENCIÁL Elektrcká potencální energe Newtonův zákon pro gravtační sílu mm F = G r 1 2 2 Coulombův zákon pro elektrostatckou sílu QQ F = k r 1 2
Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0
Komplexní čísl Pojem komplexní číslo zvedeme př řešení rovnce: x 0 x 0 x - x Odmocnn ze záporného čísl reálně neexstuje. Z toho důvodu se oor reálných čísel rozšíří o dlší číslo : Všechny dlší odmocnny
URČITÝ INTEGRÁL FUNKCE
URČITÝ INTEGRÁL FUNKCE Formulce: Nším cílem je určit přibližnou hodnotu určitého integrálu I() = () d, kde předpokládáme, že unkce je n intervlu, b integrovtelná. Poznámk: Geometrický význm integrálu I()
Předpokládáme vlny, které jsou časově nestabilní z hlediska fáze. Jako model zvolíme vlnu kdy se fáze mění skokem, ale je konstantní během doby
. Koherence.. Časová koherence.. Souvslost časově proměnného sgnálu se spektrální závslostí.3. nterference nemonochromatckého záření.4. Fourerova spektroskope.5. Prostorová koherence. Koherence Koherence
SMR 2. Pavel Padevět
SR 2 Pvel Pevět PRINCIP VIRTUÁLNÍCH PRACÍ Silová meto Rámová konstruke, symetriké konstruke Prinipy pro symetriké konstruke ztížené oeným ztížením. Symetriká konstruke ntimetriké ztížení. Os symetrie
Předmět studia klasické fyziky
Přemě sui klsiké fik mehnik, emonmik, elekonmik, opik klsiká fik eoeiká fik epeimenální fik eoie elivi sisiká fik kvnová fik moení fik Přemě sui klsiké fik Fik oeně koumá sukuu hmo její ákon, hování přío
Téma 7, modely podloží
Pružnost a plastcta II.,.ročník bakalářského stua, přenášky Janas, Téma 7, moely položí Úvo Wnklerův moel položí Pasternakův moel položí Pružný poloprostor Nosník na pružném Wnklerově položí, řešení ODM
Hlavní body - magnetismus
Mgnetismus Hlvní body - mgnetismus Projevy mgt. pole Zdroje mgnetického pole Zákldní veličiny popisující mgt. pole Mgnetické pole proudovodiče - Biotův Svrtův zákon Mgnetické vlstnosti látek Projevy mgnetického
= = Řešení: Pro příspěvek k magnetické indukci v bodě A platí podle Biot-Savartova zákona. d 1
Mgntiké pol 8 Vypočtět mgntikou inuki B kuhové smyčky o poloměu 5 m n jjí os symti v válnosti 1 m o oviny smyčky, jstliž smyčkou potéká lktiký pou 1 A Řšní: Po příspěvk k mgntiké inuki v boě A pltí pol
Přibližné řešení algebraických rovnic
Přblžné řešení lgebrcých rovnc Algebrcou rovncí stupně n nzýváme rovnc =, tj n n x x x =, de n N, x C, oefcenty P n,,, n R, Budeme prcovt s tzv normovou lgebrcou rovncí ( = ) n n x x x = Řešením (ořenem)
Západočeská univerzita v Plzni. Technologický postup volně kovaného výkovku. Návody na cvičení. Benešová S. - Bernášek V. - Bulín P.
Zápaočeská univerzita v Plzni Technologický postup volně kovaného výkovku Návoy na cvičení Benešová S. - Bernášek V. - Bulín P. Plzeň 01 1 ISBN 980-1-00- Vyala Zápaočeská univerzita v Plzni, 01 Ing. Soňa
Sedlová plocha (hyperbolický paraboloid)
Sedlová plocha (hyperbolický paraboloid) v kosoúhlém promítání do nárysny Řešené úlohy Příklad: osoúhlém promítání do nárysny ν (ω =, q = /2) sestrojte vrchol V, osu o a tečnou rovinu τ v bodě T hyperbolického
Digitální učební materiál
Digitální učení mteriál Číslo projektu CZ.1.07/1.5.00/34.080 Název projektu Zkvlitnění výuky prostřednictvím ICT Číslo název šlony klíčové ktivity III/ Inovce zkvlitnění výuky prostřednictvím ICT Příjemce
GEOMETRICKÉ APLIKACE INTEGRÁLNÍHO POČTU
Integální počet funkcí jedné eálné poměnné - 4. - GEOMETRICKÉ APLIKACE INTEGRÁLNÍHO POČTU PŘÍKLAD Učete plochu pod gfem funkce f ( x) = sinx n intevlu,. Ploch pod gfem nezáponé funkce f(x) se n intevlu,
Úlohy školní klauzurní části I. kola kategorie C
52. ročník mtemtické olympiády Úlohy školní kluzurní části I. kol ktegorie 1. Odtrhneme-li od libovolného lespoň dvojmístného přirozeného čísl číslici n místě jednotek, dostneme číslo o jednu číslici krtší.
M A = M k1 + M k2 = 3M k1 = 2400 Nm. (2)
5.3 Řešené příkldy Příkld 1: U prutu kruhového průřezu o průměrech d d b, který je ztížen kroutícími momenty M k1 M k2 (M k2 = 2M k1 ), viz obr. 1, vypočítejte rekční účinek v uložení prutu, vyšetřete
Popis polohy tělesa. Robotika. Vladimír Smutný. Centrum strojového vnímání. České vysoké učení technické v Praze
Popis poloh těles 1 2 Robotik Popis poloh těles 3 4 5 6 7 8 9 10 11 12 Vldimír Smutný Centrum strojového vnímání České vsoké učení technické v Prze 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Téma 1 Deformace staticky určitých prutových konstrukcí
Saka savebních konsrukcí I Téma Deformace sacky určých pruových konsrukcí Kaera savební mechanky Fakua savební, VŠB - Techncká unvera Osrava Osnova přenášky Poem eformace Prncp vruáních prací Deformace
Matematické metody v kartografii
Mtemtické metody v krtogrfii. Přednášk Referenční elipsoid zákldní vzthy. Poloměry křivosti. Délky poledníkového rovnoběžkového oblouku. 1. Zákldní vzthy n rotčním elipoidu Rotční elipsoid dán následujícími
( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t
7. EXPONENCIÁLNÍ ROVNICE 7.. Řeš v R rovnice: ) 5 b) + c) 7 0 d) ( ) 0,5 ) 5 7 5 7 K { } c) 7 0 K d) ( ) b) + 0 + 0 K ( ) 5 0 5, 7 K { 5;7} Strtegie: potřebujeme zíkt tkový tvr rovnice, kd je n obou trnách
Kuželosečky. ( a 0 i b 0 ) a Na obrázku 1 je zakreslena elipsa o poloosách 3 a 7. Pokud střed elipsy se posunul do bodu S x 0
Generted b Foit PDF Cretor Foit Softwre http://www.foitsoftwre.com For elution onl. Kuželosečk I. Kuželosečk zákldních polohách posunuté to prtie je opkoání látk obkle probírné n střední škole. Kružnice
Soustava kapalina + tuhá látka Izobarický fázový diagram pro soustavu obsahující vodu a chlorid sodný
Soustv kpl + tuhá látk Izobrcký fázový dgrm pro soustvu obshující vodu chlord sodý t / o C H 2 O (s) + esyceý roztok 30 20 10 0-10 -20 t I t II esyceý roztok 2 1 p o NCl (s) + syceý roztok eutektcký bod
1.1 Steinerovy věty. lineární momenty a momenty kvadratické. Zajímat nás budou nyní osové kvadratické. v ohybu. Jejich definice je
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ PRUŽNOST A PEVNOST I Řešené příklad Výpočet osových kvadratických momentů Pátek, 9. května 8 Jan Tihlařík 1 Osové kvadratické moment průřeů
Á Á Í Á Í ř ú Č ř řů Č ř ů Č Č ú Ň ř Ť Č Č Á Ř ř ř ř Š ř ř ň ř Ý ř ů ú ř ú ř ů ř ř ú ř ů ň ř ň ú ř ů ú ř ř ů Č Á Í ů ú ř ř ř ř ř ř ř ř ů ů Ý ř ů ň ř ř Í Í ú Í Ř Á Á ů ř ř ř ú ú ú Č Ď Á ř ř ř ď ř ř ú ů
Odraz na kulové ploše Duté zrcadlo
Odz n kulové ploše Duté zcdlo o.. os zcdl V.. vchol zcdl S.. střed zcdl (kul. ploch).. polomě zcdl (kul. ploch) Ppsek vchází z odu A n ose zcdl po odzu n zcdle dopdá do nějkého odu B n ose. Podle oázku
Posloupnost v matematice je řada čísel. Je přesně určeno pořadí čísel, je tedy dáno, které číslo je první, druhé atd.
Poloupoti Poloupot v mtemtice je ř číel. Je přeě určeo poří číel, je tey áo, které čílo je prví, ruhé t. V řě číel může le emuí být ějký ytém. Poloupot můžeme určit ěkolik růzými způoby:. Výčet prvků:
1.1 Numerické integrování
1.1 Numerické integrování 1.1.1 Úvodní úvhy Nším cílem bude přibližný numerický výpočet určitého integrálu I = f(x)dx. (1.1) Je-li znám k integrovné funkci f primitivní funkce F (F (x) = f(x)), můžeme
třecí síla (tečná vazba podložky) F normálová reakce podložky výsledná reakce podložky Podmínky rovnováhy:
SPŠ VOŠ KLADO SAIKA - PASIVÍ ODPORY PASIVÍ ODPORY Při vzájemném pohybu těles vznikjí v reálných vzbách psivní odpory, jejichž práce se mění v teplo. Psivní odpory předstvují ztráty, které snižují účinnost
Digitální učební materiál
Digiální učení meriál Číslo projeku CZ..7/../.8 Náev projeku Zkvlinění výuk prosřednicvím ICT Číslo náev šlon klíčové kivi III/ Inovce kvlinění výuk prosřednicvím ICT Příjemce podpor Gmnáium, Jevíčko,
x + F F x F (x, f(x)).
I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných
Kmity vynucené
1.7.3. Kmit nucené 1. Umět sětlit posttu nucených kmitů.. Pochopit ýznm buící síl. 3. Vsětlit přechooý st. 4. Věět, jk se mění mplitu nucených kmitů záislosti n fekenci buící síl. 5. Věět, co je ezonnční
Přednáška 6: Lineární, polynomiální a nelineární regrese
Čské vsoké učí tchcké v Prz Fkult orčích tchologí Ktdr tortcké ortk Evropský socálí od Prh & EU: Ivstu do vší budoucost I-AD Algort dt gu (/ Přdášk 6: Lárí, poloálí lárí rgrs Pvl Kordík, FIT, Czch Tchcl
Pružnost a plasticita II
Pružnost plsticit II. ročník klářského studi doc. In. Mrtin Krejs, Ph.D. Ktedr stvení mechnik Řešení nosných stěn pomocí Airho funkce npětí inverzní metod Stěnová rovnice ΔΔ(, ) Stěnová rovnice, nzývná
2. ELEKTRICKÉ OBVODY STEJNOSMĚRNÉHO PROUDU
VŠB T Ostrava Faklta elektrotechnky a nformatky Katedra obecné elektrotechnky. ELEKTCKÉ OBVODY STEJNOSMĚNÉHO POD.. Topologe elektrckých obvodů.. Aktvní prvky elektrckého obvod.3. Pasvní prvky elektrckého
Obr. DI-1. K principu reverzibility (obrácení chodu paprsků).
Učebí text k předášce UFY8 Dvojvzková tererece teké vrtvě Dvojvzková tererece teké vrtvě Předpokládejme, vl o mpltudě dvou delektrk tk, že mpltud održeé vly bude o dexu lomu bude t (vz obr. DI-1). v protředí
(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a
Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:
Rovinné nosníkové soustavy II h=3
Stvní sttik,.ročník klářského stui Mimostyčníkové ztížní prutu V prutu č. vznikn v ůslku mimostyčníkového ztížní rovněž V M. q konst. Rovinné nosníkové soustvy II h Rovinný klouový příhrový nosník Mimostyčníkové
Rovinný svazek sil. Lze odvodit z obecného prostorového svazku sil vyloučením jedné dimenze. =F i. =F ix. F 2x. e 2. = F 1x. F ix. n Fi sin i.
Rovnný svazek sl Lze odvodt z obecného prostorového svazku sl vloučením edné dmenze = cos cos =sn e 2 = cos = sn = e 1 e 2 e 1 Určení výslednce r n r = =1 r e 1 r e 2 =...e 1...e 2 : r = n = n =1 =1 n
ANALYTICKÁ GEOMETRIE V PROSTORU
ANALYTICKÁ GEOMETRIE V PROSTORU 3. přednášk Vektorová lger Prvoúhlé souřdnice odu v prostoru Poloh odu v prostoru je vzhledem ke třem osám k soě kolmým určen třemi souřdnicemi, které tvoří uspořádnou trojici
Pružnost a plasticita II
Pužnost a plasticita II. očník bakalářského stuia oc. Ing. Matin Kejsa, Ph.D. Katea stavební mechanik Rovinný poblém, stěnová ovnice Rovinné úloh Řešené úloh teoie pužnosti se postatně jenouší, poku v
( ) 1.5.2 Mechanická práce II. Předpoklady: 1501
1.5. Mechnická práce II Předpokldy: 1501 Př. 1: Těleso o hmotnosti 10 kg bylo vytženo pomocí provzu do výšky m ; poprvé rovnoměrným přímočrým pohybem, podruhé pohybem rovnoměrně zrychleným se zrychlením
Řešení testu 2b. Fyzika I (Mechanika a molekulová fyzika) NOFY ledna 2016
Řešení testu b Fika I (Mecanika a molekulová fika NOFY. ledna 6 Příklad Zadání: Po kouli o poloměu se be pokluovaní valí malá koule o poloměu. Jaká bude úlová clost otáčení malé koule v okamžiku kd se
Pružnost a plasticita II
Pružnost a plastcta II 3. ročník bakalářského stua oc. Ing. Martn Krejsa, Ph.D. Katera stavební mechanky Moely položí Záklaové konstrukce Záklaové konstrukce zajšťují: přenesení tíhy vrchní stavby o položí
2.2.9 Grafické řešení rovnic a nerovnic
..9 Grfické řešení rovnic nerovnic Předpokldy: 0, 06 Př. : Řeš početně i grficky rovnici x + = x. Početně: Už umíme. x + = x x = x = K = { } Grficky: Kždá ze strn rovnice je výrzem pro lineární funkci
Pozorování obvykle kvalitativní charakter, popis stavu, popis změn, dlouhodobá zkušenost např. popis duhy, střídání dne a noci, koloběh vody.
. Měření Fzkální velčn Fzkální jednotk oustv I Jné soustv Měření - ch - zprcování výsledků měření - grf Pozorování ovkle kvlttvní chrkter, pops stvu, pops změn, dlouhodoá zkušenost npř. pops duh, střídání
Vlastnosti posloupností
Vlstosti posloupostí Nekoečá posloupost je fukce defiová v oboru přirozeých čísel Z toho plye, že kždá posloupost má prví čle (zčíme ), koečé poslouposti mjí i čle posledí Př Vypište prví čtyři čley poslouposti
4.4.3 Kosinová věta. Předpoklady:
443 Kosinová vět Předpokldy 44 Př Rozhodni zd dokážeme spočítt zývjíí strny úhly u všeh trojúhelníků zdnýh pomoí trojie prvků (délek strn velikostí úhlů) V sinové větě vystupují dvě dvojie strn-protější
6.2.1 Zobrazení komplexních čísel v Gaussově rovině
6.. Zobraení komplexních čísel v Gaussově rovině Předpoklad: 605 Pedagogická ponámka: Stihnout obsah hodin je poměrně náročné. Při dostatku času je lepší dojít poue k příkladu 7 a btek hodin spojit s úvodem